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Abstract
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SATURATION BY INDICATORS IN REGRESSION MODELS

1 Introduction

In an analysis of US food expenditure Hendry (1999) used an indicator saturation ap-
proach. The annual data spanned the period 1931-1989 including the great depression,
World War II, and the oil crises. These episodes, covering 25% of the sample, could
potentially result in outliers. An indicator saturation approach was adopted by forming
zero-one indicators for these observation. Condensing the outcome, this large number
of indicators could be reduced to just two outliers with an institutional interpretation.

The suggestion for outlier detection divides the sample in two sets and saturates first
one set and then the other with indicators. The indicators are tested for significance
using the parameter estimates from the other set and the corresponding observation is
deleted if the test statistic is significant. The estimator is the least squares estimator
based upon the retained observations. A formal version of this estimator is the indicator
saturation estimator. This was analyzed recently by Hendry, Johansen and Santos
(2008), who derived the asymptotic distribution of the estimator of the mean in the
case of i.i.d. observations.

The purpose of the present paper is to analyse the indicator saturation algorithm
as a special case of a general procedure considered in the literature of robust statistics.
We consider the regression model y;, = 'x; + &; where g are i.i.d. (0,0?), and a

preliminary estimator (B , &2), which gives residuals r; = vy, — Bla:t. Let dzf be an estimate
of the variance of r,. Examples are &7 = 6% which is constant in ¢ and & = 62{1 —
x;(zf:1 r,r’) " x,;} which varies with ¢. From this define the normalized residuals v; =
r¢/@;. The main result in Theorem 3.1 is an asymptotic expansion of the least squares
estimator for (3, 0%) based upon those observation for which ¢ < v; <.

This expansion is then applied to find asymptotic distributions for various choices
of preliminary estimator, like least squares and the split least squares considered in the
indicator saturation approach. Asymptotic distributions are derived under stationary
and trend stationary autoregressive processes and some results are given for unit root
processes.

We do not give any results on the behavior of the estimators in the presence of
outliers, but refer to further work which we intend to do in the future.

1.1 The relation to the literature on robust statistics

Detections of outliers is generally achieved by robust statistics in the class of M-
estimators, or L-estimators, see for instance Huber (1981). An M-estimator of the
type considered here is found by solving

Mﬂ

5 Tt 'rt (oc<yt—p'z1<0e) — 07 (11)
t=1

supplemented with an estimator of variance of the residual. The objective function is
known as Huber’s skip function and has the property that it is not differentiable in
3,02. The solution may not be unique and the calculation can be difficult due to the
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lack of differentiability, see Koenker (2005). A more tractable one-step estimator can
be found from a preliminary estimator (3, ) and choice of &?, by solving

Mﬂ

—0, (1.2)

6 Lt xt (ee<yi— -8 mt<wtc)
t=1

which is just the least squares estimator where some observations are removed as out-

liers according to a test based on the preliminary estimator. Note that the choice of

the quantiles requires that we know the density f.

An alternative method is to order the residuals r; = 1y, — 'z, and eliminate the
smallest T’y and largest T'ay observations, and then use the remaining observations
to calculate the least squares estimators. This is an L-estimator, based upon order
statistics. A one-step estimator is easily calculated if a preliminary estimator is used
to define the residuals. One can consider the M- and L-estimators as the estimators
found by iterating the one step procedure described.

Rather than discarding outliers they could be capped at the quantile ¢ as in the
Winsorized least squares estimator solving Zthl rexymin(1, cwy/|ry|) = 0, see Huber
(1981, page 18). While the treatment of the outliers must depend on the substantive
context, we focus on the skip estimator in this paper. A related estimator is the least
trimmed squares estimator by Rousseeuw (1984) which minimizes Z -, 72 after having
discarded the largest T'— h = T'(a; + a3) values of r2.

The estimator we consider in our main result is the estimator (1.2), and we apply
the main result to get the asymptotic distribution of the estimators for stationary
processes, trend stationary processes, and some unit root processes for different choices
of preliminary estimator.

One-step estimators have been considered before. The paper by Bickel (1975) has a
one-step M-estimator of a different kind as the minimization problem is approximated
using a linearization of the derivative of the objective function around a preliminary
estimator. The estimator considered by Ruppert and Carroll (1980), however, is a
one-step estimator of the kind described above, although of the L-type, see also Yohai
and Maronna (1976).

The focus in the robustness literature has been on deterministic regressors satisfying
T-! Zthl xpxy — 3 > 0, whereas we prove results for stationary and trend stationary
autoregressive processes. We also allow for a non-symmetric error distribution.

We apply the theory of empirical processes using tightness arguments similar to
Bickel (1975). The representation in our main result Theorem 3.1 generalizes the
representations in Ruppert and Carroll (1980) to stochastic regressors needed for time
series analysis.

As an example of the relation between the one-step estimator we consider and the
general theory of M-estimators, consider the representation we find in Theorem 3.1 for
the special case of i.i.d. observations with a symmetric distribution with mean u, so
that z; = 1. In this case we find

TV2(j— ) = (1 — ) 1{T—WZ@ rercon) + 208/ TY2(j1 = 1)} + op (1).
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If we iterate this procedure we could end up with an estimator, p*, which satisfies

T
Tt = ) = (1= @) T2 el (eocerom) + 26F() T2 (" — )} + 0 (1),

t=1

so that

T
TV —p) = {l—a=2c()} 'T*) " el (oo + op (1)
t=1
2 75
i s el

N[0

which is the limit distribution conjectured by Huber (1964) for the M-estimator (1.1).
It is also the asymptotic distribution of the least trimmed squares estimator, see
Rousseeuw and Leroy (1987, p. 180), who rely on Yohai and Maronna (1976) for
the i.i.d case.

1.2 The structure of the paper

The one-step estimators are described in detail in §2, and in §3 we find the asymptotic
expansion of the estimators under general assumptions on the regressor variables, but
under the assumption that the data generating process is given by the regression model
without indicators. The situation where the initial estimator is a least square estimator
is analysed for stationary processes in §4.1. The situation where the initial estimator is
an indicator saturated estimator is then considered for stationary process in §4.2 and
for trend stationary autoregressive processes and unit root processes in §5. Finally,
§6 contains the proof of the main theorem, which involves techniques for empirical
processes, whereas proofs for special cases are given in §7.

2 The one-step M-estimators

At first the statistical model is set up. Subsequently, the considered one-step estimators
are introduced.

2.1 The regression model

As a statistical model consider the regression model

T
Yt :6,3715_’_271'1(1':15)—}_575 = ]-7"'aT7 (21)
i=1

where z; is an m-dimensional vector of regressors and the conditional distribution of
the errors, &, given (r1,...%4,€1,...,61) has density o~ 'f(c7'¢), so that o7 '¢; are
i.i.d. with density f. Thus, the density of y; given the past should be a member of
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a location-scale family such as the family of univariate normal distributions. When
working with other distributions, such as the t-distribution the degrees of freedom
should be known. We denote expectation and variance given (z1, ... %, €1,...,61) by
Et—l and Vart_l.

The parameter space of the model is given by 3, (74, ...,77),02 € R™ x RT x R,.
The number of parameters is therefore larger than the sample length. We want to make
inference on the parameter of interest § in this regression problem with T" observations
and m regressors, where we consider the ;s as nuisance parameters. The least squares
estimator for 3 is contaminated by the 7,s and we therefore seek to robustify the
estimator by introducing two critical values ¢ < ¢ chosen so that

6 = / flo)Ydv=1—a and 7{= / vf(v)dv = 0. (2.2)

C

It is convenient to introduce as a general notation

Tn:/u"f(u)du, TZ:/ u™f(u)du, (2.3)
R c

for n € Ny, for the moments and truncated moments of f. A smoothness assumption
to the density is needed.

Assumption A The density f has continuous derivative f' and satisfies the condition

iléﬂlg{(l +oHf(v) + (1 4+ 0?)|f (v)|} < oo,

with moments 71 =0, 79 = 1, 74 < 0.

2.2 Two one-step M-estimators

Two estimators are presented based on algorithms designed to eliminate observations
with large values of |7,|. Both estimators are examples of one-step M-estimators. They
differ in the choice of initial estimator. The first is based on a standard least squares
estimator, while the second is based on the indicator saturation argument.

2.2.1 The robustified least squares estimator

The robustified least squares estimator is a one-step M-estimator with initial estimator
given as the least squares estimator (/3, 62). From this, construct the t-ratios for testing
v; =0 as
Al N
Uy = (yt - xt)/wt, (2~4)

where &? could simply be chosen as 6% or as 6{1 — z}(3>.._, z.a’)"'z;} by following

the usual finite sample formula for the distribution of residuals for fixed regressors.
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We base the estimator on those observations that are judged insignificantly different

from the predicted value B/azt, and define the robustified least squares estimator as the
one-step M-estimator

T T
Brs = {Z xtzgl(gﬁvtéé)}_l Z Tyl (c<v,<a), (2.5)
T
&%S - 1 — 1{2 1 (<0 <7) } ' Z BLSIt (c<v:<o) - (2~6)
t=1

It will be shown that {3\ Le<u<e)} ' Yy (4 — Brsme)?liecu<e — 0275/(1 — a),
which justifies the bias correction in the expression for &7 .

Obviously the denominators can be zero, but in this case also the numerator is zero
and we can define BLS =0and 574 =0.

2.2.2 The indicator saturation estimator

Based on the idea of Hendry (1999) the indicator saturated estimator is defined as
follows:

1. We split the data in two sets Z; and Z, of 77 and T3 observations respectively,
where T;7-! — X\; > 0 for T — oo.

2. We calculate the ordinary least squares estimator for (3,0?) based upon the

sample Z;,
= (Z wery) ! Z TtYt, 57 == Z (2.7)

teT; teZ; T; teT;

and define the t-ratios for testing v, = 0:

~t . ~t .
vy = Laey) (Ye — Brxe) /et + Luer) (Ye — Bae) /W2, (2.8)

~92 ~2 / /\—1
where &; ; could be chosen as 67{1 + z}(>_, 4, ws2,) 2} for fixed regressors.

3. We then compute robustified least squares estimators B and &° by (2.5) and
(2.6) based on v; given by (2.8).
4. Based on the estimators 5 and &2 define the t-ratios for testing v, = 0

Uy = (yt - B xt)/d}ta (2~9)

where &7 could be chosen as 2. It is less obvious how to choose a finite sample correc-
tion since the second round initial estimator (3, 52) is not based upon least squares.

5. Finally, compute the indicator saturated estimators 3 gar and Gz, as the robus-
tified least squares estimators (2.5) and (2.6) based on ¥; given by (2.9).

3 The main asymptotic result

Asymptotic distributions will be derived under the assumption that in (2.1) the indica-
tors are not needed because ; = 0 for all 4, that is, (y; — 8'x;) /o are i.i.d. with density
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f. The main result, given here shows that in the analysis of one-step M-estimators

replaced by 1(.y<c,<zr) combined with correction terms. This shows how the limit

the indicators 1(.<,,<z), based on the normalized residual v, = (y; — B,xt) /@, can be

distributions of the initial estimators B and ¢ influence the limit distribution of the
robustified estimators. The result is the basis for any further asymptotic analysis and
can be applied both for stationary and trend stationary regressors, and for unit root
processes, but not for explosive processes.

It is convenient to define product moments of the retained observations for any two
processes u; and w; as Sy, = Zthl w1 (c<yp,<z), SO that the robustified estimators
(2.5) and (2.6) become

e

= S} S, (3.1)
of = (1- a) (75511)_1(51111 - Sy:cS:c_wlsxy)'

[\

The estimator &7 for the variance of residual r; can be chosen from a wide range of
estimators including 6% and 62{1 — 2}(3>"_, z.x’,) 2, }. These estimators do, however,
have to satisfy the following condition.

Assumption B The estimator &} is chosen so max;<;<r TV?|0? — 6% = op (1).

We can now formulate the main result which shows how the product moments S,
depend on the truncation points ¢ and ¢ and the initial estimators 5 and 2.

Theorem 3.1 Consider model (2.1), where v; = 0 for all i, and there exists some
estimators (B, 62) and non-stochastic normalization matrices Ny — 0, so that
(1) The initial estimators satisfy

(a) TY%(6% — %), (N;')'(B = B) = Op (1),

(b) &F satisfies Assumption B.
(i) The regressors satisfy, jointly,

(a) Np oL 2y Np 2 £ %570,

(b) TN S > o,

(¢) maxy<r E|[TY2Npa | = O (1).
(1ii) The density f satisfies Assumption A, and ¢ and ¢ are chosen so that 5 = 0.
Then it holds

T71511 l 1—06, (33)
NrSpNp 2 (1— ), (3.4)
TV2NpSy = (1—a)u. (3.5)
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For & = (€)"f(¢) — (c)" f(c) and 75 = ffv2f(v)dv we find the expansions

T
NTS:ca = NT Z{xtgtl(gagstgéa) + giwtxé(ﬁ - 6) + 65(6 - U)mt} + op (1) ) (36)
t=1

T

See = Z{gfl(goéagao) + 08B — B)wy + a&5(6 — o)} + op (T1/2) . (3.7
=1
T

S = Z{l(gogatgéa) +E(B—B)a)o+ (60— 1)} +op (T1/2) . (3.8)
=1

Combining the expressions for the product moments gives expressions for the one-
step M-estimators of the form (3.1), (3.2). The expressions give a linearization of these
estimators in terms of the initial estimators. For particular initial estimators explicit
expressions for the limiting distributions are then derived in the subsequent sections.

Corollary 3.2 Suppose the assumptions of Theorem 3.1 are satisfied. Then

T
(1 - Oé)E(N,;l),(B - ﬁ) = NTthgtl(gagstgaE)
t=1
HED(NG Y (B = B) + TV (6 — o)u+op (1), (3.9)
T C
eTl/2(52 _ 52\ — 7-1/2 2 2 T2 Lipoer. <os
5167 = 07) ;(St 01— ) eosaizor

+o ¢S (NZY (B = B) + oCiTV?(6 — o) 4+ 0p (1), (3.10)

where (¢ =& — &0 o15/(1 — «). It follows that

n

{(NzY (B = B),T*(5° = 0)} = Op (1), (3.11)
so that (B,5%) 2 (B, 0?).

The proofs of Theorem 3.1 and Corollary 3.2 are given in §6. It involves a series of
steps. In §6.1 a number of inequalities are given for the indicator functions appearing in
Sz and S,., and in §6.2 we show some limit results which take care of the remainder
terms in the expansions. The argument involves weighted empirical processes with
weights z,7}, 7,6, €7 and 1 appearing in the numerator and denominators of é and &2
Weighted empirical processes have been studied by Koul (2002), but with conditions
on the weights that would be too restrictive for this study. Finally, the threads are
pulled together in §6.3.

The assumptions (ii,a) and (ii,b) are satisfied in a wide range of models. The
assumption (74, ¢) is slightly more restrictive: It permits classical stationary regressions
as well as stationary autoregressions in which case Np = T-'/2 and trend station-
ary processes with a suitable choice of Np. It also permits unit root processes where
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Ny = T, as well as processes combining stationary and unit root phenomena. The
assumption (7i,c) does, however, exclude exponentially growing regressors. As an ex-
ample let 7, = 2. In that case Ny = 277 and max;<r TV/22772! = T2 diverges.
Likewise, explosive autoregressions are excluded.

Similarly, the assumption (i,b), referring to Assumption B, is satisfied for a wide
range of situations. If &7 = 67 it is trivially satisfied. If & = 6*{1—a(>>1_, weal) oy}
as in the computation of the robustified least squares estimator the assumption is
satisfied when the regressors x; have stationary, unit root, or polynomial components,
but not if the regressors are explosive. This is proved by first proving (47, a, ¢) and then
combining these conditions.

The assumption that 7¢ = 0 is important. If it had been different from zero then
€¢1(cr<e<ow) Would not have zero mean and the conclusion (3.11) would in general fail
because Np.S,. would diverge.

4 Asymptotic distributions in the stationary case

We now apply Theorem 3.1 and Corollary 3.2 to the case of stationary regressors
with finite fourth moment where we can choose Ny = T2, With this choice the
assumptions (i7)(a, b, ¢) of Theorem 3.1 are satisfied by the Law of Large Numbers for
stationary processes with finite fourth moments.

The stationary case covers a wide range of standard models:

(1) The classical regression model, where z; is stationary with finite fourth moment.

(#7) Stationary autoregression of order k. We let v, = X; and x; = (X;_1... Xy 4)".
An intercept could, but need not, be included as in the equation
k
Xi=> a; X j+p+e.

=1

(737) Autoregressive distributed lag models of order k. For this purpose consider a p-
dimensional stationary process X; partitioned as X; = (y, 2;)’. This gives the
model equation for y; given the past (X, s <t —1) and 2

k
Yt = Z a;‘Xt—j + B2 + oy + €t
j=1
Here, the regressor z; could be excluded to give the equation of a vector autore-
gression.

4.1 Asymptotic distribution of the robustified least squares
estimator
In this section we denote the least squares estimators by (3,62) and we let (8,g, 52)

be the robustified least squares estimators based on these, as given by (2.4), (3.1), and
(3.2). We find the asymptotic distribution of these estimators with a proof in §7.
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Theorem 4.1 Consider model (2.1) with vy, = 0 for all i. We assume that x; is a
stationary process with mean p, variance 3, and finite fourth moment so we can take
Np = T2, and that &7 satisfies Assumption B. The density f satisfies Assumption
A, and ¢ and ¢ are chosen so that 7¢{ = 0. Then

B, — D Qs Q.
T1/2 ( £2LS_O€ > — Nm+1{0a < Qi Qo )}7

LS

where
Qs = UQ(HBZ_l—i—/{ﬁE_lpJ,u'E_l),
Q. = AE A+ kXS S ),
Q= 200, + Kop'S ),

and

(1—a)’ny = 75(1+260) + (€5)°,
(1-a)hs = E{gE(ra—1) +Ers+75),

-y = Crs+5)+ S - Bl S )
O+ €075 + 2005 + €ma).
(1— )5k, = (©)° TS
2
@

2oy, = (ri— By ¢+ Bl 1y

2(15)% ke = (5(C5 + 275 + (573).
For a given f, a, ¢, and ¢, the coefficients n and r are known. The parameters (o%,3, 11)

are estimated by 53 ¢, see (3.11), NpSpeNr/(1—a), see (3.4), and T~?NpS, /(1 —a),
see (3.5), respectively, so that, for instance,

(7 + S S w) 2o STV (B g — B) = N (0, 1)

The case where f is symmetric is of special interest. The critical value is then
c=—c=cand 73 =75 =0 and & = £ = 0 so (5 = 0, whereas £] = 2¢f (¢) and
&5 = 2% (c) so €5 = { — 715/(1 — a)}2cf(c). It follows that kg = Ky = K. =1, = 0.
Theorem 4.1 then has the following Corollary.

Corollary 4.2 If f is symmetric and the assumptions of Theorem 4.1 hold, then

10
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Efficiency ofb,g Efficiency ofs?s
1.00 - 10 H
095 A 0.8 -+
0.90 H 06 -
085 04 A
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0.75 -+
0.0
T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
critical valuec critical valuec

Figure 1: The efficiency of the estimators 3 s and &7 ¢ with respect to the least squares
estimators 3 and 62, respectively, for f equal to the Gaussian density.

where, with & = 2¢f (¢) and (5 = {c? — 15/(1 — a)}2cf(c), it holds
(I—a)™my = 75(1+2€0) + (§1)°,

2e5n, = (-

(7’4 — 1)

Corollary 4.2 shows that the efficiency of the indicator saturated estimator B g With
respect to the least squares estimator (3 is

efficiency (3, B,5) = {asVar(3,s)} " {asVar(3)} = 13",

Likewise the efficiency of g is efficiency (6%, 6%¢) = n;'. In the symmetric case the
efficiency coefficients do not depend on the parameters of the process, only on the
reference density f and the chosen critical value ¢ = ¢ = —c. They are illustrated in
Figure 1.

4.2 The indicator saturated estimator

The indicator saturated estimator, B sats 18 @ one-step M-estimator iterated twice. Its
properties are derived from Theorem 3.1. We first prove two representations corre-
sponding to (3.9) and (3.10) for the first round estimators (3, 52 based on the least
squares estimators Bj and ;. Secondly, the limiting distributions of these first round
estimators are found. Finally, the limiting distributions of the second round estimators
B Sat> Osat are found.

Theorem 4.3 Suppose v, = 0 for all i in model (2.1), and that x; is stationary with
mean (i, variance Y, and finite fourth moment, and that d)il and @iz satisfy Assumption



SATURATION BY INDICATORS IN REGRESSION MODELS
B. The density f satisfies Assumption A, and ¢ and ¢ are chosen so that 7¢ = 0. Then,

for j = 1,2 it holds, with A\; + Xy = 1 and \; > 0, that

TN w o N, T w5 A (4.1)

tel; tel;

12

Defining (& = £ —£¢ ,7502/(1—a) and the function h; = (AM/X2) ey +(Aa/ A1) e,y

Then it holds that

T
1=a)ST?(B=8) = T [wfeilcree,<on) + Mkier}
t=1
3 2
+§Mh/t(€t /U - 0-)] + op (1) ) (42)
T c
. R 7 T
72T1/2(02 i 02) - T 1/2 ;{(e? B J21 _2@)1(90§€t§0a

C

+o 'S e hy + 0%(5?/0 —o)h} +op(1). (4.3)

The asymptotic distribution of the first-round estimators B, &2 can now be deduced.
For simplicity only (3 is considered.

Theorem 4.4 Suppose v, = 0 for all i in model (2.1), and that x; is stationary with
mean (., variance X, and finite fourth moment, and that (I)il and d}f’Q satisfy Assumption
B. The density f satisfies Assumption A, and c and ¢ are chosen so that 7¢{ = 0. Then

TY2(3 — ) 2 N, {0,062 (S~ + kX 'S} (4.4)
where

2 c c c\2 )\3 )\%
(I—a)'n = 75(1+28)+ () (= + 1)
A1 X
2 c 1 c )\3 )\% c
(I-a)'rn = G-+ 673 + ) + 73]
4 A1 A

We note that the result of Hendry, Johansen, and Santos (2008) is a special case
of Theorem 4.4. They were concerned with the situation of estimating the mean in an
i.i.d. sequence where ¥ = 1. Due to the relatively simple setup their proof could avoid
the empirical process arguments used here. .

In the special case where A\; = Ay = 1/2 then the limiting expression for /3 is exactly
the same as that for the robustified least squares estimator g, in that n = n; and
R = Rg.

We finally analyse the situation where we first find the least squares estimators in
the two subsets Z; and 7, then construct § and finally find the robustified least squares
estimator 3g,, based upon (. For simplicity we consider only the symmetric case.
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Theorem 4.5 Suppose v, =0, t =1,...,T in model (2.1), and that x; is stationary
with mean p, variance ¥, and finite fourth moment, and that djij and &? satisfy As-
sumption B. The symmetric density f satisfies Assumption A, and c and ¢ are chosen
so that 7 = 0. Then

b D _
T1/2<65at - 5) - Nm(07 022 1775’(115)7

where
DYDY
(1—a)'ngy = (1 —a+E)T5{(1 —a+ &) +2(£9)°} + (5?)4(A—: + A_i)' (4.5)

The assumption to the residual variance estimators is satisfied in a number of
situations If 7 = 6? and &7 = &° then Assumption B is trivially satisfied. If
o2 = 02{1 + xt(zsﬂj z,xl) 1x;} then Assumption B is satisfied due to the difference
in the order of magnitude of z; and ngzj TsTh.

5 Asymptotic distribution for trending autoregres-
sive processes

We first discuss the limit distribution of the least squares estimator in a trend station-
ary k-th order autoregression, and then apply the results to the indicator saturated
estimator. Finally, the unit root case is discussed.

5.1 Least squares estimation in an autoregression

The asymptotic distribution of the least squares estimator is derived for a trend sta-
tionary autoregression. Consider a time series y;_,...,yr. The model for gy, has a
deterministic component d;. These satisfy the autoregressive equations

k

Yy = Z”yiytfi—i-godt,l—ket, (51)
=1

di = Dd;q,

where ¢, € R are independent, identically distributed with mean zero and variance o2,
whereas d; € R? are deterministic terms. The autoregression (5.1) is of the form (2.1)
with 2} = (Y41, -+, Yt—k, ’) and 8" = (4, ...,7, @), s0 m = k + £. The least squares
estimator is denoted (3, 62).

The deterministic terms are defined in terms of the matrix D which has character-
istic roots on the complex unit circle, so d; is a vector of terms such as a constant, a
linear trend, or periodic functions like seasonal dummies. For example,

1 0 . 1
D:<0_1> with do—(1>

13
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will generate a constant and a dummy for a bi-annual frequency. The deterministic
term d; is assumed to have linearly independent coordinates, which is formalised as
follows.

Assumption C |eigen (D)| =1 and rank (dy,...,d;) = £.

It is convenient to introduce the companion form

o (v Vi) Y © 3
_ . _ 159 Tk=1 k _ — t
E/t—l_ . y A_{ kal 0}7 (I)_<0>a et_<0)7

Yt—k

so that Y; = AY,_; + ®d,_1 + ¢;. Focusing on the stationary case where |eigen (A)| < 1
so A and D have no eigenvalues in common, Nielsen (2005, §3) shows that

Y=Y+ V¥d, where Y, =AY," | +e,

and W is the unique solution of the linear equation ® = D — AW.
A normalization matrix N is needed. To construct this let

T
Mrp = (Y diady )2,
t=1

so that My Zthl di_1d,_ M. = I,. Equivalently, a block diagonal normalisation, Np,
could be chosen if D, without loss of generality, were assumed to have a Jordan structure
as in Nielsen (2005, §4). Theorem 4.1 of that paper then implies that

T
T2 My Yo di1 — pp,
=1

for some vector pp,. For the entire vector of regressors, x; = (Y, ;,d; ), define

(T2 0 I, -V
= (T () 52

Theorem 5.1 Let y; be the trend stationary process given by (5.1) so |eigen(A)| < 1,
with finite fourth moment and deterministic component satisfying Assumption C. Then,
with Xy = 302 AN (A and Xp = I, and pp = limg oo T-Y2Mp 3", d; it holds

T !
Yia Yia ) P def (( 2y 0
NT;(dt_l)<dt_l>NT—>z_(O 2D>, (5.3)
T
TNy 3 ( ?—1) L4 #‘ﬁf( 0 ) (5.4)
t—1

t=1 1225)
max |Mrpd,| = O(T/?), (5.5)

1<t<T

T
Yo /
Nr) ( d: ) el N, (0,0%%). (5.6)

t=1

lo
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In particular, it holds

(NZY'(B=5) = Nu(0,0°57h), (5.7)

TY?(6% —0?) = T2 i(g? —0?) +op (1) =0p(1). (5.8)

t=1

A conclusion from the above analysis is that the normalization by N7 involving the
parameter separates the asymptotic distribution into independent components. This
will be exploited to simplify the analysis of the indicator saturated estimator below.

5.2 Indicator saturation in a trend stationary autoregression

We now turn to the indicator saturated estimator in the trend stationary autoregres-
sion, although only the first round estimator 3 is considered. As before this estimator
will consist of a numerator and a denominator term, each of which is a sum of two
components. The main result in Theorem 3.1 can then be applied to each of these
components.

Theorem 5.2 Let y; be the trend stationary process given by (5.1) so |eigen(A)| <
1, with finite fourth moment, deterministic component satisfying Assumption C, and
djf’j satisfies Assumption B. Suppose the density f satisfies Assumption A, and the
truncation points are chosen so that 7¢ = 0. Finally, assume that

lim My Z dtd;MT = EDJ‘ > 0, (59)
T—o0 tEI]'

lim T°'2Mr 3 dy = pp, (5.10)
T—o0 tez; ?

where ¥py + Xpa = I, and pipy + pp o = p and define
0 Ay 0
.= , E = J .
5= (i, ) 2= (0 s0,)

(B — B)Ng" = N (0,0°S 71087, (5.11)

Then it holds

where

(1-a)’® = 75(1+26)T + (£)*(Z25]'8e + 5155'%)

&, A B §5 0 Moty [hyft]
C_ . . _ 1 24
+T3 2 (/"LQl’Ll + /’1’1/’1’2>()\1 + AQ) + <T4 )( 2 ) ( Al + AQ )
. SIS YT/ D ISED 39 ey THIIA N TS Yeid IRED 31D yeu T

2 ( )\1 )\2 )

15
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A closer look at the expression for ® shows that it is block diagonal. The variance for
the autoregressive components is (1 —a)?®y = Sy {75(1+265) 4+ (€2 X201 ).
The somewhat complicated limiting covariance matrix for the deterministic terms, ®p,
simplifies in two important special cases highlighted in the next Corollary. This covers
the case where the reference density f is symmetric so {5 = 0 and the terms involving 1,
disappear. Alternatively, the proportionality Xp ; = A;Iy and pup ; = A\jup would also
simplify the covariance. In §5.3 it is shown how this proportionality can be achieved
by choosing the index sets in a particular way.

Corollary 5.3 Iff is symmetric then &5 =0 so
(1= a)?® = 75(1+267)% + (£7)* (T2 + 155 '5).

If ¥pj = Njlp and pp ; = Ajup then ¥ = N5 and p; = \jju so @ = ng¥ + kg,
where the constants ng, kg were defined in Theorem 4.1.

5.3 Choice of index sets in the non-stationary case

Corollary 5.3 showed that the limiting distribution for the trend stationary case reduces
to that of the strictly stationary case in the presence of proportionality, that is, if
Yp; = Ajly and pp; = Ajpp. This can be achieved if the index sets are chosen
carefully. The key is that the index sets are, up to an approximation, alternating and
dense in [0, 1], so that for any 0 <u <wv <1,

1 int(Tv)
0 > Lper) = A (v =), (5.12)
t€int(Tu)+1

where A\; + Ay = 1. The alternating nature of the sets allows information to be accu-
mulated in a proportional fashion over the two sub-samples, even though the process
at hand is trend stationary. Two schemes for choosing the index sets are considered.
First, a random scheme which is, perhaps, most convenient in applications, and, sec-
ondly, a deterministic scheme. The random scheme is not far from what has been
applied in some Monte Carlo simulation experiments made by David Hendry in similar
situations.

5.3.1 Random index sets

We will consider one particular index set which is alternating in a random way. Gen-
erate a series of independent Bernoulli variables, ¢q,..., ¢y taking the values 1 and 2
so that

P(si=1)= A, P(si=2) = Ay, SO M+AN=1

for some 0 < A\;, Ay < 1. Then form the index sets

Iy =(t:¢=1) and Ty =(t:¢=2).

16
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The index sequence has to be independent of the generating process for the data, so
that the data can be analysed conditionally on the index sets. In the following we will
comment on examples of deterministic processes and unit root processes.

Consider the trend stationary model in (5.1). Since the index sets are constructed
by independent sampling then

T T
E(Np Y @aiNy) = E{Nr) (2:a})Np}El—p = E{Nr ) zaiNp}A; — A%,

tGIJ‘ t=1 t=1

T T
E(T™2Np Y @) = E(TV2Np ) w)El—y =E(T°Nr ) a); — Ajp.

tte t=1 t=1

5.3.2 Alternating index sets

It is instructive also to consider an index set, which is alternating in a deterministic
way. That is
Z; = (t is odd) and  Zy = (tis even).

This index set satisfies the property (5.12) with A\; = Ay = 1/2.

Consider the trend stationary model in (5.1) where the eigenvalues of the deter-
ministic transition matrix D are all at one, so only polynomial trends are allowed. For
simplicity restrict the calculations to a bivariate deterministic terms and let 7" be even,

so with
1 1 0
dt:<t)7 QT:(O T—1)7

the desired proportionality then follows, in that

= O — o (1 12
TQr Y, did;Qr = T Qr ) doyjdy, ;Qr — ;
2 1/2 1/3

teZ; 2

TQr Y dp = TleTT/i_ld i
t = 2t+7 2 1/2 .

teZ;

The proportionality will, however, fail if the process has a seasonal component with
the same frequency as the alternation scheme. If for instance d; = (—1)" and T even
then it holds that

_ 1 _ L&
KUp 1 =7 Z (_1)t = _57 Hpo2 =7 Z (_1)t = §a p="T 1;(_1)t =0,

tely tels

80 fip ; # Aji, and proportionality does not hold. The proportionality will only arise
when information is accumulated proportionally over the two index sets, either by
choosing them randomly or by constructing them to be out of sync with the seasonality,
for instance by choosing the first index set as every third observation.
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5.4 A few results for unit root processes.
Consider the first order autoregression
X = BXi_1 + &, (5.13)

where § = 1 gives the unit root situation, and we assume for simplicity that f is
symmetric so £5 = 0 and the term involving k; falls away. The Functional Central
Limit Theorem shows that

int(T'u) &t 1(t€I1) D Wiy
T_1/2 Z Etl(tGIQ) - Woy = Wua
=t Etlal<o wy

where W, is a Brownian motion with variance matrix

)\1 0 )\17'%
0 )\2 )\27’5

AT AoT§ TS

From the decomposition

T T
ZXE 1= ZXt 11(teI ZXtQ—l/\j + ZXE—1 {1(tte) - Aj} J
t=1 t=1

tel;

it is seen that the first term is of order 72, whereas the second term has mean zero and
variance A\ Ao F (Zthl X} ); it is therefore of order T°/2. Tt follows that

1
T2 ZXE 1’ZXt2 1’ZXt2 1) = (A1, A, )/ w?du,
0

tely tels

where w, = wi, + ws, is the Brownian motion generated by the cumulated ;. The
information accumulated over each of the two sub-samples are therefore proportional
to fol w2du. Tt follows from Theorem 3.1, that the first round indicator saturated
estimator satisfies

T(g - ].) D f() wud {UJ + QC'F( ) (/\ 1>\2w1u + /\ >\1w2u)}
(1—a) fo w2du

When ¢ — oo then w¢ L, w, while f (¢) — 0 and o — 0 giving the usual Dickey-Fuller
distribution,
D fo Wedwy,
fol w2du
While the limiting distribution is now different from the stationary case, the relevant

modification corresponds to the usual modification of normal distributions into Dickey-
Fuller-type distributions when moving from the stationary to the non-stationary case.

T(B—1)=
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Nearly the same arguments apply as with random index sets. In this case the
definition of the Brownian motions becomes

int(Tu/2) E9t_1 W1y,

_ D

T-1/2 E €t - | wy, | =W,.
t=1 Etl(‘gtKC) wg

6 Proof of main result

The results of Theorem 3.1 concern the matrices

T T
NTSCL‘CCN/ = Z NTxtxéNé“l(ggvtSE)a NTSCCE = Z NTmtEtl(ggvt§E)~

For NrS,,N/j. the main idea in the proof is to approximate w,v; = &, — (B — B)'xy
by &; and the indicator 1(.<,,<e) by 1(co<e, <o), because the limit of the approximation

Zthl NrxxyNpl(co<e,<zo) is €asy to find. It turns out that the approximation involves
terms from the preliminary estimator of 5 and o. In the proof of Theorem 3.1 this
replacement is justified using techniques for empirical processes and in particular Koul
(2002, Theorem 7.2.1, p.298).

We define the normalised regressors zpy = T 12Nz, and the estimation errors
ary = wy — o, ar = 6 — o and by =T~ 1/2( 1y (5 3). Then T1/2(dT,6T) = Op(1)
and TY2 max,<i<r |a; — ar| = TY? max;<;<r |wt — 0| = op(1) by assumption (i) of
Theorem 3.1. Note that

~

Gy =g — (B— B)wy = e, — {T"VANFY (B — B)Y(TY*Nray) = e — bpwry,  (6.1)

so that )
(c<wv <¢)={clo+ar) <& — par <T(0+ ary)}

We define u = (a,b’)" and

[ ( ) = [t ((1 b) 1{c (o+a)<er—bzri<c(o+a)} — 1(ga§€t§EU)7 (62)

and find for the denominator Np.S,, N

T T
NrSpNp = T anahlesuss = T ) wretly ] eose,<eo) (6.3)

t=1 t=1

o T
+T  wrly{ L@, br) — L(ar, br)} + T wqyaly, Li(ar, br)

t=1 t=1

We then have to show that a,r is so close to ar that the second term tends to
zero, and if we can show that 7-' Y27 | 2%, I, (a, b) is tight as a process in (a, b) and
because TS w02l 1,(0,0) = 0, and (ag,br) = Op(T"/?), we find that the last
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term tends to zero. Finally we find from the Law of Large Numbers the probability
limit of the first term.
Similarly we find for Np.S,.

T T
NTst = T71/2 Z thgtl(ggvtSE) = T71/2 Z thEtl(gagetSEU)

t=1 t=1

T T
TS wred L, br) = Tar, be)} + T2 S wpedy(ar, br)

The limit of the second term will be shown to be zero because ar; is very close to ar.
We get a contribution from the third term, which we decompose at the point (a,b) as

T T
T2 Z wriedi(a,b) = T2 Z zrileidi(a, b) — Bea{eili(a, b)}]

t=1 =1
T
+7712 Z zriE-1{ec]i(a, b)}.
t=1

The first of these tends to zero, and for the second we find that a linear approximation
to the smooth function E;_1{e;[;(a, )} is a&5 + VxS, and we therefore introduce the
processes, for /,m = 0,1, 2,

T
Mp™ = T7Y? Z 9m (@re) €i{Te(are, br) — Li(ar, br)} (6.4)

t=1

We™ (a,b) = (z7¢) €41, (a, b) (6.5)

IIM’%

Ve (ab) = % Z gm(wre) {eily (a,b) — 0" H(afyy +Vargf)},  (6.6)
t=1

where the function g, is given as

9o (IETt) =1, g1 ($Tt) = TTt, g2 (fETt) = thxéFt- (6~7)

Lemma 6.4 below shows that o/~ (a&y, | + b'zr&)) is an approximation to the condi-
tional mean of £/1; (a,b) given the past. Theorems 6.5, 6.6, and 6.7 below show that
as T — oo and if T'2(ap, by) is tight, then

ME™ 50, WE™ar,br) 50 and VA" (ar, br) 0, (6.8)
Some equalities and expansions are established initially in §6.1. The remainder

terms are analysed in §6.2. Finally, the threads are pulled together in a proof of
Theorem 3.1 in §6.3.
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6.1 Some initial inequalities and expansions

We define the indicator function 1.<.<y) as
Le<e<p) = Lesp{le<p = Le<o}-
We first prove an inequality for differences of such indicator functions.
Lemma 6.1 Fore < f, ey < fo, and ( > max(|le — egl, |f — fo|) we have
Le<e<r) = Leoze<so)| < Lemeol<¢) + L(e—fol<0)-

Proof of Lemma 6.1. Frome = eg+(e—eg) and [e—eg| < ( we find eg—( < e < eg+C
and similarly fo — ( < f < fo + (. Hence using the monotonicity in e and f, we find

Legtcze<fo—¢) < Lese<p) S Leo—¢<e<foro):
Because the same inequalities hold for 1;.,<.<} we find
Le<e<) = Leoses )| < Leo—czessore) = Leotcze<so—¢) < Le—eol<e) T Lle—fol<0)s
where the last inequality is found by exploiting that eq < fy by assumption so
Leo—c<e<fore) = Lieo—c<foro{lehore) = Le<en—} = Le<sore) = Lie<eo—0);
whereas 1(cot¢>fo-¢) { Le<eotq) = Le<po—¢)} = 050

~L(eorc<e<fo-0) = Leorc<fo- 1 le<eore) = Le<fo-0)} < Lie<eore) = Lie<fo—0)-

Now, apply this result to the indicator function I; (u) introduced in (6.2). Note
that I, (0) = 0 and introduce the notation, for some § > 0, and ¢ = max(|c|, |¢]),

Ji(t,0) = Yje—c(o+a)-bwri|<s(ctlar)} T Hleo—a(o-+a)—bar|<s(c+lari)}-
Lemma 6.2 For u = (a,b'), ug = (ao,by)" and |u — up| < 0 we have
|1 (u) — Li(uo)| < J (uo, 6)
Proof of Lemma 6.2. The object of interest is

[t(u) - It<u0) = 1{2(0+a)+b'$ﬂ§€tSE(0+‘Z)+b'$Tt} - 1{§(U+ao)+b6thS8t§5(0+a0)+b6$n}'

The inequality follows from Lemma 6.1 by the choice e = c(o + a) + Vagy, eg =
c(o+ag) + byrry, f=7¢(o+a)+bxr, fo=72(0+ ag) + byars, and ¢ = 6(c+ |xqy]). m

Introduce the notation E, ; for the expectation conditional on the information given
by (zs,€5,8 <t —1,2¢).

21
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Lemma 6.3 For { € Ny, let u = (a,b)’, uy = (ao, b))’ be random and Ele;|* < oo.
Then it holds with ¢ = max(|c|,|¢|) that

< Et71|€t|£t]t<u0a5)
< 450" (e + |zpe|) sup [v]F(v).

veER

Ev1 {1 (uuo| <ty |&e|“ | T (10) — Li(uo)|}

Proof of Lemma 6.3. The first inequality follows from Lemma 6.2. The function
Ji(ug, d) is nonzero on two intervals of total length 45(c + |zry|), and the integrand
|et|“f(e1/0) /o is bounded by o‘~!sup,cg [v]“f(v), so that the second inequality holds.
u

Finally, an approximation to the conditional expectation of ,1;(u) follows.

Lemma 6.4 Let f have derivative f'. For u = (a,V')" and |u| < § it holds for £ € Ny

|Eoo1 {etle(u) } — 0" H(a€luy + Varh)| < 267 Suﬂg{ﬁlvlf’lf(v) + ()} + o),
ve

where ¢ = max(|c|, [¢]) and & = (©)f () — (¢0)f (¢) -
Proof of Lemma 6.4. Let 1(c) = (¢/0)" f(¢/0). A second order Taylor expansion
gives

co+h 1
/ Y(e)de = hp(co) + §h2w’ (oc*),

for ¢* satistying |oc — oc*| < h. Thus
c(o4a)+b zry co -
o B {ef i (u)} = (e)de — / YP(e)de =5 — 9,

c(o+a)+bzry

where

= (ca+ b'xp)(co) + %(Ea +Var)*Y (oc),

& W
|

= (ca+ bap)(co) + %(ga + V)Y (oc) .
Using v(co) = c*f(c) the first order term of S — S is

(ca + Var,) (2) F(2) — (ca+ Vare) () F(c) = a&fyy + Vo€,
Using (|c|a + Vzpy)? < 26%(2 4 |z7¢|?) the second order term is bounded by

26%(c® + |zre|?) sup [ ()] < 20%(c2 + |z7)?) suﬂg{eyvv—lf(v) + [v'f'(v)]}.
ve ve
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6.2 Some limit results

The first result on Mfwm shows that we can replace the estimator, d}? , of the variance
of the residuals with 2.

Theorem 6.5 Let ¢ € Ny and m € {0,1,2}. Suppose that

(1) O7TY? max,<i<r |Gy — ar| = Op(1), for some O — oo

(i1) max,<p E |z7,|° = O(1),

(ii1) sup, [v[*f(v) < oo and Ele;|* < oo.Then it holds for T — oo that

é7m —_—
M

”\
—_

T
Z ITt 5t{lt<atT7bT) It(&TubT)} i 0

Proof of Theorem 6.5. Due to condition (7), for all ¢ > 0 there exists a U > 0
so that for large T then P(677Y2maxi<;<r|air — ar| < U) > 1 — (. Thus, with

o7 = UT297", it suffices to show that | M1 max, coer [arr—ar /<) %0, and in turn
by the Markov inequality it suffices to show S = E|Mfim|1(maxlgtg \aer—ar|<or) — 0.
Using the triangle inequality and taking iterated expectations it holds

S <

= T1/2 Z E’th‘ Et 1{€t|It(atT7 bT) [t<dT7 bT)|]'(maX1§t§T &tT_dT‘SdT)}'

Lemma 6.2 then shows

T
S < 46,720 sup{Jo*f(0)}a " TED o |™ (e + [ar]).

veER —1

This vanishes since 6772 — 0 and the other terms are bounded. m

Theorem 6.6 Let ¢ € Ng and m € {0,1,2}. Suppose that
(i) (ar,br) = Op(T~'/?),

(ZZ) maxg<r E |th|m+1 = O(l),

(iii) sup, |v[“f(v) < co and Elg;|* < .

Then it holds for T — oo that

WJ{m(a’Tv bT Z 9m th) 5tIt(aT7 bT) 0 (69)

where g, was defined in (6.7) as 1, xqy, xpaly, for m = 0,1,2, so that |gy,(x7)| <
‘ZCTt|m.

Proof of Theorem 6.6. Due to condition (i), for all ¢ > 0 there exists a U > 0 so
that for large T’ then P{|(ar,br)| < T~Y2U} > 1 — (. Thus, it suffices to show that
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SUD|y<7-1/27 |W:ﬁm (u) | AR 0, and in turn by the Markov inequality it suffices to show
that Esupj, <y 120 [We™ (u)| — 0.

Because [;(0) = 0 then [;(u) = I;(u) — I;(0). Lemma 6.2 then shows |[;(u)| <
Jy (0,772U) for |u| < T~/2U. Thus, using the triangle inequality it holds

T
m 1 m _
sup  |Wh (u)|§TZ|th| le,|© (0, T~ 120).

lul<T=1/20 =1

Then take iterated expectations

T
m 1 m _
S=E{ sup |WE (u)|}§EfZ|xT,¢| E,_1|e| T, (0, T72U). (6.10)

lu|<T—1/2U t=1
Apply Lemma, 6.3 with 6 = 72U and find

T
1 mélU(f"Z*1
S < Enyw W(c+|xﬂ|)sup|v|ef(v)
t=1

veER
T

_ 1 m m
= A0~ sup{Io[ () g D {CE (fra™) + Elfar "),

t=1

which vanishes due to Assumptions (i7) and (i7). m

Theorem 6.7 Let ¢ € Ny and m € {0,1}. Suppose that

(i) (ar,br) = Op(T~'/?),

(i1) max;<7 E |27 > = O(1),

(i11) sup,yep { (o] + |v]* + v*)f(v) + [v'F'(v)|} < oo and E|e,|* < oc.
Then it holds for T' — oo that

T
mi~ 7 1 N~ 2 1/~ ec ~ c
V™ (ar, br) = VT > gmler){eilar, br) — o' H(args,y + brari€d)} = 0.
t=1

Proof. As in the proof of Theorem 6.6, using condition (7), it suffices to show that
£,m P
SUupy|<7r-1/2U V™ (w)] — 0.

1. Decompqse Vjé’m as a sum of martingale differences f/T and a correction term V
so V™ (u) = Vip(u) + Vp(u), where

gm(l’Tt)[é‘fIt (u) — Et,l{gflt (u)}]

N

t=1

Im(wre) [Ermr{etly (u)} = 0 (@ur€ay + Vparis)]

N

&

I

§- -
M=

~~
Il

1
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It has to be shown that the supremum of each of these terms vanishes.
2. The term V(u). Using first the triangular inequality and then Lemma 6.4 with
§ = T712U gives

T
e 1 m - c c
sup  [Vr(u)| < sup ﬁz |wre ™ [Eei{ey Iy ()} — 0" (a€fyy + Vo))
t=1

lu|<T—1/2U lu|<T—1/2U

T
! ]' m
< 22U sup{l|v|TH(v) + |v'f (1))|}T3/2 5 lzre|™ (2 + o))
=1

veER
_ OP(T_l/Q),

by Assumption () and (iii), because maxy<r(E |z7|™ , E || ") is bounded.

3. The term Vp(u). For a given y, to be chosen later, choose |u| < UT~Y?, k =
1,...,K and By = (u : |u —ug| < xT7Y2, |u| < UT7Y%)T~1/2 as a finite cover of
(u : |u| < UT~Y?). Thus, for any u we have u € By for some k. In particular, it holds
for u € By,

V()] < [V (w)| + Ve (u) = Ve(uy)| < maXWT(Uk)I + max sup [V (w) = Vir(ug)|.

u€E By,

4. The term max;, |Vp(uy)|. Because Vy is a sum of martingale differences then

T
1
Var{Vp(uz)} = EZ G (@70) g (w1e) Var, 1 {e] I (ug)}] -
t=1

From Lemma 6.2 with ug = 0, I; (0) = 0, and |uj,| < UT~'/% we have {e/I, uk)} <
g2 J2(0, UT~1/?). Further, by the inequality (a+b)? < 2(a?+b%) we have J2(0, UT~1/?) <
2.J;(0,UT~1/2), so that from Lemma 6.3 we find

U
Ee1 {ef]; (w } < 2B, 12,(0,UT/?) < 8T1/202€*1(c+\th|)SuI1§|v|2€f(v). (6.11)
ve

Since Var,_1{e/l; (ux)} < B,y {el1, (uk)}2 it then holds

~ Uqg-1 90 om
Var{Vr(ux)} < Wsup{v f(v }Z E{|zr:™ (c + |x74|) } <

t=1

T1/2’

because maxy<r(E |zr:|*™ , E |zr|*""") is bounded. Using first Boole’s inequality and
then Chebychev’s inequality it then holds for a ( > 0 to be chosen later

K

P{m]?XWT(Uk)! >(t =P U{|VT uk)] > ¢ <> P{Vi(w)| = ¢}

k=1 k=1

IN

) (6.12)
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for fixed K (and x) and T" — oo. 3
5. The term max; sup,cp, |Vr(u) — Vr(ug)|. The inequality in Lemma 6.2 shows

sup |‘~/T(u) — VT(ukﬂ < Zr (k)
u€ By
where
T

Z | ™ [l Ji(ur, T2 + Ea{led] Tu(un, T72X)],

t=1

1

Zr (k) = 71

because |u — wuy| S_T_l/ 2y. Again, write Zr -as a sum of martingale differences Zr and
a correction term Zr so Zr (k) = Zr (k) + Zr (k) where

T
. 1 - _ _
Zr (k) = WZ’HJTA [|5t|£Jt<ukaT 1/2X)—Et—1{|5tfzjt(uk,T 1/2X)}]a
t=1
9 L
Zr (k) = mz|ITt|mEt—1{|5t|ZJt(uk,T_l/zx)}-

t=1

6. The term maxy, Zr(k). Lemma 6.3 shows

mpx Z4(8) < Sxsupl o0} & Y and” (4 o) = On(), (619
t=1
due to Assumptions (i), (ii7) . )
7. The term maxy Zr(k). Since Zr(k) is a sum of martingale differences then

Var{Zy(k)} = %Z Elgun (w70) g (wr0) Var,—1{ ||y (ur, T2x)}].

t=1

Since Var,_1{|e/|*J; (us, T~?x)} < E;_1{|es|* Ty (ug, T~/?x)}? then (6.11) shows

Var{ZT<k>} S 4X0-2Z_1 Sup{U%f T3/2 Z E{|th|2m C + |th|>} = (T_1/2)7

veER

because maxy<r(E |zr:|*™ , E |z7,|*""") is bounded, using Assumptions (ii) and (i) .

Then, like the evaluation (6.12), we find

P{m]?X’ZT(k)l >(} < T12 —

8. The proof is now complete by noticing that for given ¢ > 0 and £ > 0 we can
first choose U so large that

P{T'2|(ar,br)| > U} <&,

using condition (7). Next choose x so small that (6.13) is small. Finally, choose 1" so
large that the remaining terms are small. m

26
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6.3 Proof of main result

Proof of Theorem 3.1. We analyse the properties of the product moments:

T T
/
Sll = E 1(g§vt§6)a SchE %’t%l(ggvtg),
Sxa - E mtet (c<v4<e)>y $1_§ xt (c<v¢<e)-

We define (a7, br) = {&; — o, T-Y2(N71Y' (B — B)}, and note, see (6.3) that the defin-
ition of W& (a,b) and My"™ implies that

T

(z11) 57& (c<we<e) — T ng (z11) 551(2036650) +
=1

—|—T_1/2M§im + wa’m<dT, ZA)T),

IIM%

and that for xpy = TY2Npx,, Theorem 6.6 implies that W;’m(dT,IA)T) = op (1) and
Theorem 6.5 shows that M2 = op (1).
The limits (3.3), (3.4), and (3.5). For m =2, { =0 we find

T
NTSHUNI = NT Z xtmél(gagstSEJ)Né“ + 0P<1).

Note that Et_l{l(g,ggtga,)} = 1 — «, so a martingale decomposition of the main term
on the right hand side is

T T
Nr Z T4y { L (co<e,<io) — (1 — @)} N7 + Ny Z 2y Ny (1 — «).

t=1 t=1

The first term vanishes due to Chebychev’s inequality and Assumption (ii,c). The
second term converges in probability to (1 — a)X due to Assumption (i7, a) .
The limit of S, is found by a similar argument for m = 1, ¢ = 0, which gives

T T
TY2Ny Z Tl (e<v <o) = T-2Ny Z el (cor<e,<z0) + 0p(1).

t=1 t=1

A martingale decomposition of the main term on the right hand side is

T T
T72Np Y " w{lercercery — (L= )} + T7PNp > " a(1 - ).

t=1 t=1

The first term vanishes due to Chebychev’s inequality and Assumption (iz,a). The
second term converges to (1 — a)u due to Assumption (iz,b) .
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Finally for m = ¢ = 0, we find

T T
T lecuge = T7' Y Larse<ao) +0p(1) = 1 —a

=1 t=1
The representations (3.6), (3.7), and (3.8): The definition of V" (ar, by) implies
that for m = 0,1,/ = 0,1, 2 we have the representation

T

T Z Gm(TTe)e  e<u<ey = Mq{’m + Vqé’m(&T, br)
t=1

T
T2 gnlere) [eflersei<eo) + 0 Halpy(B = B)E; + (6 — 0)6, ),

t=1

and that for z, = T"/?Nypx,, Theorem 6.7 implies that V;i’m(dT,lA)T) = op(l) and
Theorem 6.5 shows that My"™ = op(1).
The representation of Sy; follows for £ = m = 0, and by noting that

T
T_l Z 1(ga§5t<éa) i I Q,

t=1

we have proved (3.4). The representation of NzS,. follows for £ = m = 1. Finally the
representation of term S.. follows for m =0,/ =2. m

Proof of Corollary 3.2. Representation of (N7') (5 — f3): From (3.1) we have
(N7 (B = ) = (NrSewNp) ™ NpSse.

Because NpS,. N/ 5 (1 — )X > 0 by (3.4), we see that /3 is defined with probability
tending to one, and the representation (3.9) follows from (3.6).
The representation of T"/?(5° —o?): We use the expression, see (3.2), to show that

it (S — S y) = S See + Op(1)} £ 07 T2
This shows that we need to bias correct the empirical variance and therefore we consider
5 — 0% = (1 a)(75) 'S (Syy — SyeStSiy) = (1= ) (75) S {Sec + Op(1)},

and hence

T§T1/2<5'2 - 0'2) = T1/2(S&€ - 0'21 7;2(1511) + OP(T_I/Q).

From (3.7) and (3.8) we find the representation

T
TSTV2(5% —0%) = (T2 (e} - o”

t=1

+TV2(6 — )¢5+ (B — B)Y N ' T2 Nrai(5)} + op (1),

5

1— a)l(agﬁatﬁaé)
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which proves (3.10), because T~Y2Nya, &> pu.

Consistency of the estimators: Finally it follows from the Assumption (i), (i, a),
(3.9), and (3.10) that {(N; ) (3—8), T /?(5°—0?)} = Op(1), and Ny — 0 and T — oo
then imply that (3, 5?) », (8,0%). =

7 Proofs for stationary and trend stationary cases
The proofs relating to §4 and §5 follow.

Proof of Theorem 4.1. We apply Corollary 3.2, using Ny = T~'/21,,. The least
squares estimator based on the full sample satisfies condition (i,a): T?(6—0, B—3 ) =
Op(1), and the stationarity of x; shows that conditions (ii, a, b, ¢) hold.

For the numerator of the estimator /3 g we therefore consider

T
T_1/2 Z trtgt]-(agﬁétSEa) + £§ET1/2 (B - ﬁ) + €§T1/2(6 - 0)/1“7

t=1

and insert

T
TV2(B—B) = STTV2Y e +op(1),
t=1
1 T

TV (6 —0) = §T‘1/2 > (e} /o — o)+ op(1).

This shows that (1 — a)27TY2(3, 4 — () has the same limit distribution as

C

T
7-1/2 Z{xt(stl(gggstggg) + &ler) + %2(6?/0 —0)u}, (7.1)

where the summand is a martingale difference sequence. The Central Limit Theorem
for martingales shows that this expression is asymptotically N,, (0,02®3). To find ®4
we calculate the sum of the conditional variances
e T
Tt + (€6 + 2655+l (T S (- 1)

t=1 t=1
T
52
Z (2ot + py) (73"‘517'3)

P ngrs + (0 2635} + (G — 1) €505 + )],

Divide by (1 — a)3 from right and left to get the limiting variance for T-2(3, ¢ — f3).
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For the estimator &g the limiting distribution of 7§T%/2(Gg — o) is, in the same
way, that of

T
T2y {(e -
t=1

This variable is asymptotically normal with variance gives by o%®, where

c

2
]
T ez + oGS e k020 o)) (72)

c\2 c\2
v, = 25— L g Sl )

1 —
(5 (7'2) ¢G5

3
'yt
1—a M HT3.

+2¢51'%" M3+2 (74— ——=) + 205>

Finally, the asymptotic covariance is of the expressions (7.1), (7.2) is 0®, where

D = p(L+ TS+ uCs(r ) + u%” (75 + £ms)

52{7_?1 o (Tc) -1, §2C2 524@

}+ (7'4—1).

Proof of Theorem 4.3. We want to apply Theorem 3.1 to the contributions for the
two subsets Z; and Z,. The least squares estimator based on the full sample satisfies
condition (i,a): TY?(6; — o, Bj — ) = Op(1), and the stationarity of x; shows that
conditions (7, a, b, ¢) hold. Thus, define the product moments

Z utwt1{0<vt<c} = Z utwtl{c<vt<c} + Z utwt1{6<vt<c} S?iw + Siw

= tel tels

The stationarity of x; implies that (4.1) holds. Considering the term S,, apply (3.4)
of Theorem (3.1) to get

P

TS BNl —a)2  so TS, 5 (1-a)%, (7.3)

since T;/T — A;. ) )
Representation of TY/*(3 — ) : The estimator 3 satisfies

where 3 — 3 = (S7,)71S7_ is the contribution from Z;. Due to (7.3) we then find
B=B=N(F =5+ Xl — ) +op(1) (7.4)

Turning to the individual contributions Bj, Theorem 3.1 shows

(1= )S}B' = 8) =TT Y @il reercon) +EE(By — B) + €562 — o)+ op(T717),

tely
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where BQ, 0o are the initial least squares estimators satisfying

By—B = ST e +op (1),

tels

Gy —0 = —T Z ?jo—o)+op(l).

tely

Inserting these in the expression for B ' then gives
~1
{(1=a)Z} (5 - 5)
= T Z 'Ttgt (co<er<o7) + ng Z TiEr + £2IU/T Z /o‘ — O' + op (T*1/2) .

teZy tels tels

Interchanging the role of the indices 1, 2 gives a similar expression for BQ — (. Combining
these expressions according to (7.4) then proves (4.2).
Representation of T'/?(5* — 0?): We use the expression (3.2) showing
5’2 = (1 — a)(T;Sll)_l(S Sny S )
= (1-a)(7551) " {Se = (B = B)'Seal(B = B)}.
Since (4.2) implies 3 — 8 = Op (T~Y/2) while S, = Op (T) by (7.3) then
= (1= a)(15811) ' {S= + Op (1)},

so that, using 715, P1-q,
C

. _ T
STV (52 — 62) = T~ Y3(S.. — o2 . _2a5'11) +op(1).

We apply (3.7) and (3.8) and find that the contribution from Z; is

C

.
T*1/2 Z[(g? — 0’21 ja)l(gaﬁétﬁég)

tel

VI s
+0A_;{Czu’2 TTVEY jmet ZTTVY (/o = o)l + Op (T'7),

tels Io

which together with an expression for the contribution from Z, shows (4.3). m

Proof of Theorem 4.4. We apply (4.2) where the summands on the right hand
side is a martingale difference sequence and we apply the Central Limit Theorem for

martingales to shows that TV2(5 — ) 5N, (0,®). In order to find ® we calculate
the sum of the conditional variances and find

T
TS {72 4 BE)? + 25}l (2P )

t=1
T

_ §5.1 e c
+77 Z(fﬂtl/ + M%)Ez(hﬂ's + hiEiTs).

t=1

31
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Using the relations

T )\2 )\2
b =1 T ZhQ_—+A—
=1 1
a p A2
7! thht — U T ZﬁthQ — ,u()\2 + = " ),
= t=1

AN

T
T! tha:;ht S T Za:txthz — E(>\2 )\1),

t=1

we find the limit (4.4). m

Proof of Theorem 4.5. We apply Theorem 3.1 and Corollary 3.2. The initial
estimators 3 and & satisfy condition (i,a), and the stationarity implies conditions

(i1, a,b,c). We therefore get that T—1S,, LN (1— )%, and TS, 5, (1 — @)p. Finally
we find from (3.9), that, when the density is symmetric so that £§ = 0,

T
(1- &)ET1/2(BSat —B) = T_I/Q{Z T1€¢l(co<ey<or) T ﬁZTl/?(B —B)}+op(1),
t=1
Now insert the expression for 3 in (4.2) with &5 = 0, which is
) T
(1- O‘)ETI/2(ﬁ —pB) = T2 Z r{etl(co<ei<or) + S1E Y + 0p (1)
t=1

and we find

&1
1-

(£1)?
1—

(1 - Q)ZT1/2(BSat ) = {T_1/2 Z Ty 1 + )6t1(00<8t<0'6) + &4 ht} +op ( )
Again the summands form a martingale difference sequence and the Central Limit

Theorem for martingales shows that TV2(3 — 8) 2> N(0, ®). We calculate the sum of
the conditional variances

"1 - a)? l—a’'l—«

T c ¢ ]
*T7H Y Jwa{(1+ 15_1 Prga gy S E0
t=1

which converges in probability towards

2 2 )\2

A
S{(1— o+ €075+ 2(1 - a+ ED(ED*s + (5L + DED,

(1—a)?

which gives the expression (4.5) after dividing by (1 — «)?X%. =
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Proof of Theorem 5.1. The results (5.3), (5.4), (5.5): Note that it can be assumed
without loss of generality that D has the Jordan form of Nielsen (2005, §4). Using
the normalisation Np suggested in that paper it follows that 7-'Nj, 31 d,d,Np con-
verges. The results then follow from Nielsen (2005, Theorem 4.1, 6.2, 6.4).

The result (5.6) follows from the Central Limit Theorem for martingales noting
that the Lindeberg conditions hold:

T
T7'Y (Yt = Wdi)el Py, —wi_yegomiea — O
t=1
a 112 1 a 4
Y EIMrdiet "L asga, et z1v20) < o > |Myd,* — 0.
=1 -1

Finally, (5.7), (5.8) follow by combining (5.3) and (5.6). =

Proof of Theorem 5.2. We can mimic the steps of the proof of Theorem 5.1 for
the sums over the subsets ¢t € Z; rather than ¢ € Z; U Z,. Thus, the assumptions of
Theorem 3.1 are satisfied for each subset. In particular, it holds

(N (B;—B) = S;7'Npy e +op (1), (7.6)
TV2(6;—0) = (200)7'T2) (2= 0%) +0p (1). (7.7)

We can now apply Theorem 3.1 to the estimator
(Nijl)/(B - /6) = (NTSmJ:Né“)_lNTSxa-
Apply (3.4), (3.5), (3.6) of Theorem 3.1 to each component to get

NrSpNL 5 (1—a)(S1+ %) = (1—a)%,
T2NpSe 5 (1= a)(py + pp) = (1— ).

2
NprSze = Nr Z Z{$t€t1(ga<st<a¢) + fixtﬂf;(ﬂj —B)+ & (65— o)} +op(1).

J=1 t¢T;

For S,. insert the expressions (7.6), (7.7) for the estimators to get the expression

T T T
c €5 e
Z NTxtgtl(g0'<Et<EO') + 51 Z HtNTxtgt -+ iT 1/2 ; Kt (52 _ 0‘2) + op (1) )

t=1 t=1
where

Hy = SoX7 Lger) + 2155 e,
K, = M2)‘;11(t611)+N1A511(t612)-
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This expression is a sum of a martingale difference sequence and we therefore apply
the Central Limit Theorem for martingales. We calculate the sum of the conditional
variances to be
T T e T
> Nra@iNpo*rs +0*(€0) ) HiNrayaiNpHy + (2T Y KiKi(7a = 1)
t=1 t=1 t=1
T

+0°€575 Y (Nrayi Ny H] + HyNrayx;Ny)
t=1

c T c T
+027352—255T—” > (HNpa K] + Ky NpH) + aQ%TéT‘” 2> (Npa K]+ Ky Ny)

t=1 t=1

Now we apply the results that

S iy Nraya, Ny, 53, T Y KK — uf\_l:,2 + Mj\_l;,l
P — - _ P
>y HiNrawiNpH = S50 15 + 515515, Y250 NraoK) = puypty + popth

Sy NrayaNpH] = 5, T7Y2 00 Hy Nray K] = oS i Ayt + 5155 g Ay

which gives the result. m
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