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Abstract

An algorithm suggested by Hendry (1999) for estimation in a regression with
more regressors than observations, is analyzed with the purpose of �nding an
estimator that is robust to outliers and structural breaks. This estimator is an
example of a one-step M -estimator based on Huber�s skip function. The asymp-
totic theory is derived in the situation where there are no outliers or structural
breaks using empirical process techniques. Stationary processes, trend stationary
autoregressions and unit root processes are considered.
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1 Introduction

In an analysis of US food expenditure Hendry (1999) used an indicator saturation ap-
proach. The annual data spanned the period 1931-1989 including the great depression,
World War II, and the oil crises. These episodes, covering 25% of the sample, could
potentially result in outliers. An indicator saturation approach was adopted by forming
zero-one indicators for these observation. Condensing the outcome, this large number
of indicators could be reduced to just two outliers with an institutional interpretation.
The suggestion for outlier detection divides the sample in two sets and saturates �rst

one set and then the other with indicators. The indicators are tested for signi�cance
using the parameter estimates from the other set and the corresponding observation is
deleted if the test statistic is signi�cant. The estimator is the least squares estimator
based upon the retained observations. A formal version of this estimator is the indicator
saturation estimator. This was analyzed recently by Hendry, Johansen and Santos
(2008), who derived the asymptotic distribution of the estimator of the mean in the
case of i.i.d. observations.
The purpose of the present paper is to analyse the indicator saturation algorithm

as a special case of a general procedure considered in the literature of robust statistics.
We consider the regression model yt = �0xt + "t where "t are i.i.d. (0; �2); and a
preliminary estimator (�̂; �̂2); which gives residuals rt = yt��̂

0
xt: Let !̂

2
t be an estimate

of the variance of rt: Examples are !̂
2
t = �̂2 which is constant in t and !̂2t = �̂2f1 �

x0t(
PT

s=1 xsx
0
s)
�1xtg which varies with t: From this de�ne the normalized residuals vt =

rt=!̂t: The main result in Theorem 3.1 is an asymptotic expansion of the least squares
estimator for (�; �2) based upon those observation for which c � vt � c:
This expansion is then applied to �nd asymptotic distributions for various choices

of preliminary estimator, like least squares and the split least squares considered in the
indicator saturation approach. Asymptotic distributions are derived under stationary
and trend stationary autoregressive processes and some results are given for unit root
processes.
We do not give any results on the behavior of the estimators in the presence of

outliers, but refer to further work which we intend to do in the future.

1.1 The relation to the literature on robust statistics

Detections of outliers is generally achieved by robust statistics in the class of M -
estimators, or L-estimators, see for instance Huber (1981). An M -estimator of the
type considered here is found by solving

TX
t=1

(yt � �0xt)x
0
t1(�c�yt��0xt���c) = 0; (1.1)

supplemented with an estimator of variance of the residual. The objective function is
known as Huber�s skip function and has the property that it is not di¤erentiable in
�; �2. The solution may not be unique and the calculation can be di¢ cult due to the
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lack of di¤erentiability, see Koenker (2005). A more tractable one-step estimator can
be found from a preliminary estimator (�̂; �̂) and choice of !̂2t ; by solving

TX
t=1

(yt � �0xt)x
0
t1(!̂tc�yt��̂

0
xt�!̂t�c) = 0; (1.2)

which is just the least squares estimator where some observations are removed as out-
liers according to a test based on the preliminary estimator. Note that the choice of
the quantiles requires that we know the density f:
An alternative method is to order the residuals rt = yt � �0xt and eliminate the

smallest T�1 and largest T�2 observations, and then use the remaining observations
to calculate the least squares estimators. This is an L-estimator, based upon order
statistics. A one-step estimator is easily calculated if a preliminary estimator is used
to de�ne the residuals. One can consider the M - and L-estimators as the estimators
found by iterating the one step procedure described.
Rather than discarding outliers they could be capped at the quantile c as in the

Winsorized least squares estimator solving
PT

t=1 rtx
0
tmin(1; c!̂t=jrtj) = 0; see Huber

(1981, page 18). While the treatment of the outliers must depend on the substantive
context, we focus on the skip estimator in this paper. A related estimator is the least
trimmed squares estimator by Rousseeuw (1984) which minimizes

Ph
i=1 r

2
i after having

discarded the largest T � h = T (�1 + �2) values of r2i :
The estimator we consider in our main result is the estimator (1.2), and we apply

the main result to get the asymptotic distribution of the estimators for stationary
processes, trend stationary processes, and some unit root processes for di¤erent choices
of preliminary estimator.
One-step estimators have been considered before. The paper by Bickel (1975) has a

one-step M-estimator of a di¤erent kind as the minimization problem is approximated
using a linearization of the derivative of the objective function around a preliminary
estimator. The estimator considered by Ruppert and Carroll (1980), however, is a
one-step estimator of the kind described above, although of the L-type, see also Yohai
and Maronna (1976).
The focus in the robustness literature has been on deterministic regressors satisfying

T�1
PT

t=1 xtx
0
t ! � > 0; whereas we prove results for stationary and trend stationary

autoregressive processes. We also allow for a non-symmetric error distribution.
We apply the theory of empirical processes using tightness arguments similar to

Bickel (1975). The representation in our main result Theorem 3.1 generalizes the
representations in Ruppert and Carroll (1980) to stochastic regressors needed for time
series analysis.
As an example of the relation between the one-step estimator we consider and the

general theory ofM -estimators, consider the representation we �nd in Theorem 3.1 for
the special case of i.i.d. observations with a symmetric distribution with mean �; so
that xt = 1: In this case we �nd

T 1=2(��� �) = (1� �)�1fT�1=2
TX
t=1

"t1(c��"t��c) + 2cf(c)T
1=2(�̂� �)g+ oP (1) :
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If we iterate this procedure we could end up with an estimator, ��; which satis�es

T 1=2(�� � �) = (1� �)�1fT�1=2
TX
t=1

"t1(c��"t��c) + 2cf(c)T
1=2(�� � �)g+ oP (1) ;

so that

T 1=2(�� � �) = f1� �� 2cf(c)g�1T�1=2
TX
t=1

"t1(c��"t��c) + oP (1)

D! N[0; �2
� c2

f1� �� 2cf(c)g2 ];

which is the limit distribution conjectured by Huber (1964) for the M -estimator (1.1).
It is also the asymptotic distribution of the least trimmed squares estimator, see
Rousseeuw and Leroy (1987, p. 180), who rely on Yohai and Maronna (1976) for
the i.i.d case.

1.2 The structure of the paper

The one-step estimators are described in detail in §2, and in §3 we �nd the asymptotic
expansion of the estimators under general assumptions on the regressor variables, but
under the assumption that the data generating process is given by the regression model
without indicators. The situation where the initial estimator is a least square estimator
is analysed for stationary processes in §4.1. The situation where the initial estimator is
an indicator saturated estimator is then considered for stationary process in §4.2 and
for trend stationary autoregressive processes and unit root processes in §5. Finally,
§6 contains the proof of the main theorem, which involves techniques for empirical
processes, whereas proofs for special cases are given in §7.

2 The one-step M-estimators

At �rst the statistical model is set up. Subsequently, the considered one-step estimators
are introduced.

2.1 The regression model

As a statistical model consider the regression model

yt = �0xt +

TX
i=1


i1(i=t) + "t t = 1; : : : ; T; (2.1)

where xt is an m-dimensional vector of regressors and the conditional distribution of
the errors, "t; given (x1; : : : xt; "1; : : : ; "t�1) has density ��1f(��1"), so that ��1"t are
i.i.d. with density f. Thus, the density of yt given the past should be a member of
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a location-scale family such as the family of univariate normal distributions. When
working with other distributions, such as the t-distribution the degrees of freedom
should be known. We denote expectation and variance given (x1; : : : xt; "1; : : : ; "t�1) by
Et�1 and Vart�1:
The parameter space of the model is given by �; (
1; : : : ; 
T ) ; �

2 2 Rm �RT �R+:
The number of parameters is therefore larger than the sample length. We want to make
inference on the parameter of interest � in this regression problem with T observations
and m regressors, where we consider the 
is as nuisance parameters. The least squares
estimator for � is contaminated by the 
is and we therefore seek to robustify the
estimator by introducing two critical values c < c chosen so that

� c0 =

Z c

c

f(v)dv = 1� � and � c1 =

Z c

c

vf(v)dv = 0: (2.2)

It is convenient to introduce as a general notation

�n =

Z
R
unf(u)du; � cn =

Z c

c

unf(u)du; (2.3)

for n 2 N0, for the moments and truncated moments of f. A smoothness assumption
to the density is needed.

Assumption A The density f has continuous derivative f 0 and satis�es the condition

sup
v2R
f(1 + v4)f(v) + (1 + v2)jf 0(v)jg <1;

with moments � 1 = 0; � 2 = 1; � 4 <1:

2.2 Two one-step M-estimators

Two estimators are presented based on algorithms designed to eliminate observations
with large values of j
ij: Both estimators are examples of one-stepM -estimators. They
di¤er in the choice of initial estimator. The �rst is based on a standard least squares
estimator, while the second is based on the indicator saturation argument.

2.2.1 The robusti�ed least squares estimator

The robusti�ed least squares estimator is a one-stepM -estimator with initial estimator
given as the least squares estimator (�̂; �̂2): From this, construct the t-ratios for testing

i = 0 as

vt = (yt � �̂
0
xt)=!̂t; (2.4)

where !̂2t could simply be chosen as �̂
2 or as �̂f1 � x0t(

PT
s=1 xsx

0
s)
�1xtg by following

the usual �nite sample formula for the distribution of residuals for �xed regressors.



Saturation by indicators in regression models 6

We base the estimator on those observations that are judged insigni�cantly di¤erent
from the predicted value �̂

0
xt; and de�ne the robusti�ed least squares estimator as the

one-step M-estimator

��LS = f
TX
t=1

xtx
0
t1(c�vt�c)g�1

TX
t=1

xtyt1(c�vt�c); (2.5)

��2LS = (
� c2
1� �

)�1f
TX
t=1

1(c�vt�c)g�1
TX
t=1

(yt � ��
0
LSxt)

21(c�vt�c): (2.6)

It will be shown that f
PT

t=1 1(c�vt�c)g�1
PT

t=1(yt � ��
0
LSxt)

21(c�vt�c)
P! �2� c2=(1 � �);

which justi�es the bias correction in the expression for ��2LS:
Obviously the denominators can be zero, but in this case also the numerator is zero

and we can de�ne ��LS = 0 and ��
2
LS = 0:

2.2.2 The indicator saturation estimator

Based on the idea of Hendry (1999) the indicator saturated estimator is de�ned as
follows:
1. We split the data in two sets I1 and I2 of T1 and T2 observations respectively,

where TjT�1 ! �j > 0 for T !1.
2. We calculate the ordinary least squares estimator for (�; �2) based upon the

sample Ij;
�̂j = (

X
t2Ij

xtx
0
t)
�1
X
t2Ij

xtyt; �̂2j =
1

Tj

X
t2Ij

(yt � �̂
0
jxt)

2; (2.7)

and de�ne the t-ratios for testing 
i = 0:

vt = 1(t2I2)(yt � �̂
0
1xt)=!̂t;1 + 1(t2I1)(yt � �̂

0
2xt)=!̂t;2; (2.8)

where !̂2t;j could be chosen as �̂
2
jf1 + x0t(

P
s 62Ij xsx

0
s)
�1xtg for �xed regressors.

3. We then compute robusti�ed least squares estimators ~� and ~�2 by (2.5) and
(2.6) based on vt given by (2.8).
4. Based on the estimators ~� and ~�2 de�ne the t-ratios for testing 
i = 0:

~vt = (yt � ~�
0
xt)=~!t; (2.9)

where ~!2t could be chosen as ~�
2: It is less obvious how to choose a �nite sample correc-

tion since the second round initial estimator (~�; ~�2) is not based upon least squares.
5. Finally, compute the indicator saturated estimators ��Sat and ��

2
Sat as the robus-

ti�ed least squares estimators (2.5) and (2.6) based on ~vt given by (2.9).

3 The main asymptotic result

Asymptotic distributions will be derived under the assumption that in (2.1) the indica-
tors are not needed because 
i = 0 for all i; that is, (yt��0xt)=� are i.i.d. with density
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f: The main result, given here shows that in the analysis of one-step M -estimators
the indicators 1(c�vt�c); based on the normalized residual vt = (yt � �̂

0
xt)=!̂t; can be

replaced by 1(c��"t<�c�) combined with correction terms. This shows how the limit
distributions of the initial estimators �̂ and �̂2 in�uence the limit distribution of the
robusti�ed estimators. The result is the basis for any further asymptotic analysis and
can be applied both for stationary and trend stationary regressors, and for unit root
processes, but not for explosive processes.
It is convenient to de�ne product moments of the retained observations for any two

processes ut and wt as Suw =
PT

t=1 utw
0
t1(c�vt�c); so that the robusti�ed estimators

(2.5) and (2.6) become

�� = S�1xx Sxy; (3.1)

��2 = (1� �)(� c2S11)
�1(Syy � SyxS

�1
xx Sxy): (3.2)

The estimator !̂2t for the variance of residual rt can be chosen from a wide range of
estimators including �̂2 and �̂2f1�x0t(

PT
s=1 xsx

0
s)
�1xtg: These estimators do, however,

have to satisfy the following condition.

Assumption B The estimator !̂2t is chosen so max1�t�T T
1=2j!̂2t � �̂2j = oP (1) :

We can now formulate the main result which shows how the product moments Suv
depend on the truncation points c and c and the initial estimators �̂ and �̂2.

Theorem 3.1 Consider model (2.1), where 
i = 0 for all i; and there exists some
estimators (�̂; �̂2) and non-stochastic normalization matrices NT ! 0, so that
(i) The initial estimators satisfy

(a) T 1=2(�̂2 � �2); (N�1
T )

0(�̂ � �) = OP (1) ;
(b) !̂2t satis�es Assumption B.

(ii) The regressors satisfy, jointly,

(a) NT
PT

t=1 xtx
0
tN

0
T

D! �
a:s:
> 0;

(b) T�1=2NT
PT

t=1 xt
D! �,

(c) maxt�T EjT 1=2NTxtj4 = O(1) :
(iii) The density f satis�es Assumption A, and c and c are chosen so that � c1 = 0.
Then it holds

T�1S11
P! 1� �; (3.3)

NTSxxN
0
T

D! (1� �)�; (3.4)

T�1=2NTSx1
D! (1� �)�: (3.5)
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For �cn = (c)
nf(c)� (c)nf(c) and � c2 =

R c
c
v2f(v)dv we �nd the expansions

NTSx" = NT

TX
t=1

fxt"t1(c��"t�c�) + �c1xtx
0
t(�̂ � �) + �c2(�̂ � �)xtg+ oP (1) ; (3.6)

S"" =
TX
t=1

f"2t1(c��"t�c�) + ��c2(�̂ � �)0xt + ��c3(�̂ � �)g+ oP
�
T 1=2

�
; (3.7)

S11 =

TX
t=1

f1(c��"t�c�) + �c0(�̂ � �)0xt=� + �c1(�̂=� � 1)g+ oP
�
T 1=2

�
: (3.8)

Combining the expressions for the product moments gives expressions for the one-
stepM -estimators of the form (3.1), (3.2). The expressions give a linearization of these
estimators in terms of the initial estimators. For particular initial estimators explicit
expressions for the limiting distributions are then derived in the subsequent sections.

Corollary 3.2 Suppose the assumptions of Theorem 3.1 are satis�ed. Then

(1� �)�(N�1
T )

0(�� � �) = NT

TX
t=1

xt"t1(c��"t��c)

+�c1�(N
�1
T )

0(�̂ � �) + �c2T
1=2(�̂ � �)�+ oP (1) ; (3.9)

� c2T
1=2(��2 � �2) = T�1=2

TX
t=1

("2t � �2
� c2
1� �

)1(c��"t��c)

+��c2�
0(N�1

T )
0(�̂ � �) + ��c3T

1=2(�̂ � �) + oP (1) ; (3.10)

where �cn = �cn � �cn�2�
c
2=(1� �): It follows that

f(N�1
T )

0(�� � �); T 1=2(��2 � �2)g = OP (1) ; (3.11)

so that (��; ��2) P! (�; �2):

The proofs of Theorem 3.1 and Corollary 3.2 are given in §6. It involves a series of
steps. In §6.1 a number of inequalities are given for the indicator functions appearing in
Sxx and Sx"; and in §6.2 we show some limit results which take care of the remainder
terms in the expansions. The argument involves weighted empirical processes with
weights xtx0t, xt"t, "

2
t and 1 appearing in the numerator and denominators of �� and ��

2:
Weighted empirical processes have been studied by Koul (2002), but with conditions
on the weights that would be too restrictive for this study. Finally, the threads are
pulled together in §6.3.
The assumptions (ii; a) and (ii; b) are satis�ed in a wide range of models. The

assumption (ii; c) is slightly more restrictive: It permits classical stationary regressions
as well as stationary autoregressions in which case NT = T�1=2 and trend station-
ary processes with a suitable choice of NT : It also permits unit root processes where
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NT = T�1; as well as processes combining stationary and unit root phenomena. The
assumption (ii; c) does, however, exclude exponentially growing regressors. As an ex-
ample let xt = 2t: In that case NT = 2�T and maxt�T T 1=22�T2t = T 1=2 diverges.
Likewise, explosive autoregressions are excluded.
Similarly, the assumption (i; b), referring to Assumption B, is satis�ed for a wide

range of situations. If !̂2t = �̂2 it is trivially satis�ed. If !̂2t = �̂2f1�x0t(
PT

s=1 xsx
0
s)
�1xtg

as in the computation of the robusti�ed least squares estimator the assumption is
satis�ed when the regressors xt have stationary, unit root, or polynomial components,
but not if the regressors are explosive. This is proved by �rst proving (ii; a; c) and then
combining these conditions.
The assumption that � c1 = 0 is important. If it had been di¤erent from zero then

"t1(c��"��c) would not have zero mean and the conclusion (3.11) would in general fail
because NTSx" would diverge.

4 Asymptotic distributions in the stationary case

We now apply Theorem 3.1 and Corollary 3.2 to the case of stationary regressors
with �nite fourth moment where we can choose NT = T�1=2Im: With this choice the
assumptions (ii)(a; b; c) of Theorem 3.1 are satis�ed by the Law of Large Numbers for
stationary processes with �nite fourth moments.
The stationary case covers a wide range of standard models:

(i) The classical regression model, where xt is stationary with �nite fourth moment.

(ii) Stationary autoregression of order k: We let yt = Xt and xt = (Xt�1 : : : Xt�k)
0.

An intercept could, but need not, be included as in the equation

Xt =
kX
j=1

�jXt�j + �+ "t:

(iii) Autoregressive distributed lag models of order k: For this purpose consider a p-
dimensional stationary process Xt partitioned as Xt = (yt; z

0
t)
0. This gives the

model equation for yt given the past (Xs; s � t� 1) and zt

yt =
kX
j=1

�0jXt�j + �0zt + �y + "t:

Here, the regressor zt could be excluded to give the equation of a vector autore-
gression.

4.1 Asymptotic distribution of the robusti�ed least squares
estimator

In this section we denote the least squares estimators by (�̂; �̂2) and we let (��LS; ��
2
LS)

be the robusti�ed least squares estimators based on these, as given by (2.4), (3.1), and
(3.2). We �nd the asymptotic distribution of these estimators with a proof in §7.
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Theorem 4.1 Consider model (2:1) with 
i = 0 for all i: We assume that xt is a
stationary process with mean �; variance �; and �nite fourth moment so we can take
NT = T�1=2Im, and that !̂

2
t satis�es Assumption B. The density f satis�es Assumption

A, and c and �c are chosen so that � c1 = 0. Then

T 1=2
�
��LS � �
��2LS � �2

�
D! Nm+1f0;

�

� 
c

0c 
�

�
g;

where


� = �2(���
�1 + ���

�1��0��1);


c = �3(�c�
�1�+ �c�

�1��0��1�);


� = 2�4(�� + ���
0��1�);

and

(1� �)2�� = � c2 (1 + 2�
c
1) + (�

c
1)
2 ;

(1� �)2�� = �c2f
1

4
�c2(� 4 � 1) + �c1� 3 + � c3g;

(1� �)� c2�c = �c2(�
c
2 + �c1) +

�c2
2
f� c4 �

(� c2)
2

1� �
g+ �c2�

c
3

4
(� 4 � 1)

+(1 + �c1)�
c
3 +

�c3
2
(� c3 + �c1� 3):

(1� �)� c2�c =
(�c2)

2

2
� c3

2(� c2)
2�� = f� c4 �

(� c2)
2

1� �
g(1 + �c3) +

(�c3)
2

4
(� 4 � 1)

2(� c2)
2�� = �c2(�

c
2 + 2�

c
3 + �c3� 3):

For a given f; �; c; and �c; the coe¢ cients � and � are known. The parameters (�2;�; �)
are estimated by ��2LS; see (3:11), NTSxxNT=(1��); see (3:4), and T�1=2NTSx1=(1��);
see (3:5), respectively, so that, for instance,

(���1� + ���1����0 ���1�)�1=2���1LST
1=2(��LS � �)

D! Nm (0; Im) :

The case where f is symmetric is of special interest. The critical value is then
c = �c = c and � 3 = � c3 = 0 and �c0 = �c2 = 0 so �c2 = 0; whereas �c1 = 2cf (c) and
�c3 = 2c

3f(c) so �c3 = fc2 � � c2=(1 � �)g2cf(c): It follows that �� = �� = �c = �c = 0:
Theorem 4.1 then has the following Corollary.

Corollary 4.2 If f is symmetric and the assumptions of Theorem 4.1 hold, then

T 1=2
�
��LS � �
��2LS � �2

�
D! Nm+1f0;

�
�2���

�1 0
0 2�4��

�
g;
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Figure 1: The e¢ ciency of the estimators ��LS and ��
2
LS with respect to the least squares

estimators �̂ and �̂2; respectively, for f equal to the Gaussian density.

where, with �c1 = 2cf (c) and �
c
3 = fc2 � � c2=(1� �)g2cf(c); it holds

(1� �)2�� = � c2(1 + 2�
c
1) + (�

c
1)
2;

2(� c2)
2�� = f� c4 �

(� c2)
2

1� �
g(1 + �c3) +

(�c3)
2

4
(� 4 � 1):

Corollary 4.2 shows that the e¢ ciency of the indicator saturated estimator ��LS with
respect to the least squares estimator �̂ is

e�ciency(�̂; ��LS) = fasVar(��LS)g�1fasVar(�̂)g = ��1� :

Likewise the e¢ ciency of ��LS is e�ciency(�̂
2; ��2LS) = ��1� : In the symmetric case the

e¢ ciency coe¢ cients do not depend on the parameters of the process, only on the
reference density f and the chosen critical value c = c = �c: They are illustrated in
Figure 1.

4.2 The indicator saturated estimator

The indicator saturated estimator, ��Sat; is a one-step M -estimator iterated twice. Its
properties are derived from Theorem 3.1. We �rst prove two representations corre-
sponding to (3.9) and (3.10) for the �rst round estimators ~�; ~�2 based on the least
squares estimators �̂j and �̂j: Secondly, the limiting distributions of these �rst round
estimators are found. Finally, the limiting distributions of the second round estimators
��Sat; ��Sat are found.

Theorem 4.3 Suppose 
i = 0 for all i in model (2.1), and that xt is stationary with
mean �; variance �; and �nite fourth moment, and that !̂2t;1 and !̂

2
t;2 satisfy Assumption
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B. The density f satis�es Assumption A, and c and �c are chosen so that � c1 = 0. Then,
for j = 1; 2 it holds, with �1 + �2 = 1 and �j > 0; that

T�1
X
t2Ij

xt
P! �j�; T�1

X
t2Ij

xtx
0
t
P! �j�: (4.1)

De�ning �cn = �cn��cn�2� c2�2=(1��) and the function ht = (�1=�2)1ft2I2g+(�2=�1)1ft2I1g:
Then it holds that

(1� �)�T 1=2(~� � �) = T�1=2
TX
t=1

[xtf"t1(c��"t��c) + ht�
c
1"tg

+
�c2
2
�ht("

2
t=� � �)] + oP (1) ; (4.2)

� c2T
1=2(~�2 � �2) = T�1=2

TX
t=1

f("2t � �2
� c2
1� �

)1(c��"t��c)

+��c2�
0��1xt"tht + �

�c3
2
("2t=� � �)htg+ oP (1) : (4.3)

The asymptotic distribution of the �rst-round estimators ~�; ~�2 can now be deduced.
For simplicity only ~� is considered.

Theorem 4.4 Suppose 
i = 0 for all i in model (2:1), and that xt is stationary with
mean �; variance �; and �nite fourth moment, and that !̂2t;1 and !̂

2
t;2 satisfy Assumption

B. The density f satis�es Assumption A, and c and �c are chosen so that � c1 = 0. Then

T 1=2(~� � �)
D! Nm

�
0; �2(���1 + ���1��0��1)

	
; (4.4)

where

(1� �)2� = � c2 (1 + 2�
c
1) + (�

c
1)
2 (
�22
�1
+
�21
�2
);

(1� �)2� = �c2[f
1

4
�c2(� 4 � 1) + �1� 3g(

�22
�1
+
�21
�2
) + � c3]:

We note that the result of Hendry, Johansen, and Santos (2008) is a special case
of Theorem 4.4. They were concerned with the situation of estimating the mean in an
i.i.d. sequence where � = 1. Due to the relatively simple setup their proof could avoid
the empirical process arguments used here.
In the special case where �1 = �2 = 1=2 then the limiting expression for ~� is exactly

the same as that for the robusti�ed least squares estimator ��LS; in that � = �� and
� = ��:
We �nally analyse the situation where we �rst �nd the least squares estimators in

the two subsets I1 and I2; then construct ~� and �nally �nd the robusti�ed least squares
estimator ��Sat based upon ~�: For simplicity we consider only the symmetric case.
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Theorem 4.5 Suppose 
t = 0; t = 1; : : : ; T in model (2.1), and that xt is stationary
with mean �; variance �; and �nite fourth moment, and that !̂2t;j and ~!

2
t satisfy As-

sumption B. The symmetric density f satis�es Assumption A, and c and �c are chosen
so that � c1 = 0. Then

T 1=2(��Sat � �)
D! Nm(0; �

2��1�Sat);

where

(1� �)4�Sat = (1� �+ �c1)�
c
2f(1� �+ �c1) + 2(�

c
1)
2g+ (�c1)4(

�21
�2
+
�22
�1
): (4.5)

The assumption to the residual variance estimators is satis�ed in a number of
situations. If !̂2t;j = �̂2j and ~!

2
t = ~�2 then Assumption B is trivially satis�ed. If

!̂2t;j = �̂2jf1+ x0t(
P

s=2Ij xsx
0
s)
�1xtg then Assumption B is satis�ed due to the di¤erence

in the order of magnitude of xt and
P

s=2Ij xsx
0
s:

5 Asymptotic distribution for trending autoregres-
sive processes

We �rst discuss the limit distribution of the least squares estimator in a trend station-
ary k-th order autoregression, and then apply the results to the indicator saturated
estimator. Finally, the unit root case is discussed.

5.1 Least squares estimation in an autoregression

The asymptotic distribution of the least squares estimator is derived for a trend sta-
tionary autoregression. Consider a time series y1�k; : : : ; yT . The model for yt has a
deterministic component dt: These satisfy the autoregressive equations

yt =
kX
i=1


iyt�i + 'dt�1 + "t; (5.1)

dt = Ddt�1;

where "t 2 R are independent, identically distributed with mean zero and variance �2;
whereas dt 2 R` are deterministic terms. The autoregression (5.1) is of the form (2.1)
with x0t = (yt�1; : : : ; yt�k; d

0
t) and �

0 = (
1; : : : ; 
k; �); so m = k + `: The least squares
estimator is denoted (�̂; �̂2):
The deterministic terms are de�ned in terms of the matrix D which has character-

istic roots on the complex unit circle, so dt is a vector of terms such as a constant, a
linear trend, or periodic functions like seasonal dummies. For example,

D =

�
1 0
0 �1

�
with d0 =

�
1
1

�
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will generate a constant and a dummy for a bi-annual frequency. The deterministic
term dt is assumed to have linearly independent coordinates, which is formalised as
follows.

Assumption C jeigen (D)j = 1 and rank (d1; : : : ; d`) = `:

It is convenient to introduce the companion form

Yt�1 =

0B@ yt�1
...

yt�k

1CA ; A =

� �

1; : : : ; 
k�1

�

k

Ik�1 0

�
; � =

�
'
0

�
; et =

�
"t
0

�
;

so that Yt = AYt�1+�dt�1+ et: Focusing on the stationary case where jeigen (A)j < 1
so A and D have no eigenvalues in common, Nielsen (2005, §3) shows that

Yt = Y �
t +	dt where Y �

t = AY �
t�1 + et;

and 	 is the unique solution of the linear equation � = 	D � A	:
A normalization matrix NT is needed. To construct this let

MT = (
TP
t=1

dt�1d
0
t�1)

�1=2;

so that MT

PT
t=1 dt�1d

0
t�1M

0
T = I`: Equivalently, a block diagonal normalisation, ND;

could be chosen ifD, without loss of generality, were assumed to have a Jordan structure
as in Nielsen (2005, §4). Theorem 4.1 of that paper then implies that

T�1=2MT

TP
t=1

dt�1 ! �D;

for some vector �D: For the entire vector of regressors, xt = (Y
0
t�1; d

0
t�1)

0; de�ne

NT =

�
T�1=2 0
0 MT

��
Ik �	
0 I`

�
: (5.2)

Theorem 5.1 Let yt be the trend stationary process given by (5:1) so jeigen(A)j < 1;
with �nite fourth moment and deterministic component satisfying Assumption C. Then,
with �Y =

P1
t=0A

t
 (At)
0 and �D = I` and �D = limT!1 T

�1=2MT

PT
t=1 dt it holds

NT

TX
t=1

�
Yt�1
dt�1

��
Yt�1
dt�1

�0
N 0
T

P! �
def
=

�
�Y 0
0 �D

�
; (5.3)

T�1=2NT
TP
t=1

�
Yt�1
dt�1

�
P! �

def
=

�
0
�D

�
; (5.4)

max
1�t�T

jMTdtj = O(T�1=2); (5.5)

NT

TX
t=1

�
Yt�1
dt�1

�
"0t

D! Nm(0; �
2�): (5.6)
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In particular, it holds

(N�1
T )

0(�̂ � �)
D! Nm(0; �

2��1); (5.7)

T 1=2(�̂2 � �2) = T�1=2
TP
t=1

("2t � �2) + oP (1) = OP (1) : (5.8)

A conclusion from the above analysis is that the normalization by NT involving the
parameter separates the asymptotic distribution into independent components. This
will be exploited to simplify the analysis of the indicator saturated estimator below.

5.2 Indicator saturation in a trend stationary autoregression

We now turn to the indicator saturated estimator in the trend stationary autoregres-
sion, although only the �rst round estimator ~� is considered. As before this estimator
will consist of a numerator and a denominator term, each of which is a sum of two
components. The main result in Theorem 3.1 can then be applied to each of these
components.

Theorem 5.2 Let yt be the trend stationary process given by (5.1) so jeigen(A)j <
1; with �nite fourth moment, deterministic component satisfying Assumption C, and
!̂2t;j satis�es Assumption B. Suppose the density f satis�es Assumption A, and the
truncation points are chosen so that � c1 = 0. Finally, assume that

lim
T!1

MT

P
t2Ij

dtd
0
tMT = �D;j > 0; (5.9)

lim
T!1

T�1=2MT

P
t2Ij

dt = �D;j; (5.10)

where �D;1 + �D;2 = Im and �D;1 + �D;2 = � and de�ne

�j =

�
0
�D;j

�
; �j =

�
�j�Y 0
0 �D;j

�
:

Then it holds
(e� � �)N�1

T

D! Nm(0; �
2��1���1); (5.11)

where

(1� �)2� = � c2(1 + 2�
c
1)� + (�

c
1)
2(�2�

�1
1 �2 + �1�

�1
2 �1)

+� c3
�c2
2
(�2�

0
1 + �1�

0
2)(
1

�1
+
1

�2
) + (� 4 � 1)(

�c2
2
)2(
�2�

0
2

�1
+
�1�

0
1

�2
)

+� 3
�c1�

c
2

2
(
�2�

0
1�

�1
1 �2 + �2�

�1
1 �1�

0
2

�1
+
�1�

0
2�

�1
2 �1 + �1�

�1
2 �2�

0
1

�2
):
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A closer look at the expression for � shows that it is block diagonal. The variance for
the autoregressive components is (1��)2�Y = �Y f� c2(1+2�c1)+(�c1)2(�22��11 +�21��12 )g.
The somewhat complicated limiting covariance matrix for the deterministic terms, �D;
simpli�es in two important special cases highlighted in the next Corollary. This covers
the case where the reference density f is symmetric so �c2 = 0 and the terms involving �j
disappear. Alternatively, the proportionality �D;j = �jI` and �D;j = �j�D would also
simplify the covariance. In §5.3 it is shown how this proportionality can be achieved
by choosing the index sets in a particular way.

Corollary 5.3 If f is symmetric then �c2 = 0 so

(1� �)2� = � c2(1 + 2�
c
1)� + (�

c
1)
2(�2�

�1
1 �2 + �1�

�1
2 �1):

If �D;j = �jI` and �D;j = �j�D then �j = �j� and �j = �j� so � = ��� + ����
0;

where the constants ��; �� were de�ned in Theorem 4.1.

5.3 Choice of index sets in the non-stationary case

Corollary 5.3 showed that the limiting distribution for the trend stationary case reduces
to that of the strictly stationary case in the presence of proportionality, that is, if
�D;j = �jI` and �D;j = �j�D: This can be achieved if the index sets are chosen
carefully. The key is that the index sets are, up to an approximation, alternating and
dense in [0; 1], so that for any 0 � u � v � 1,

1

T

int(Tv)X
t2int(Tu)+1

1(t2Ij) ! �j (v � u) ; (5.12)

where �1 + �2 = 1: The alternating nature of the sets allows information to be accu-
mulated in a proportional fashion over the two sub-samples, even though the process
at hand is trend stationary. Two schemes for choosing the index sets are considered.
First, a random scheme which is, perhaps, most convenient in applications, and, sec-
ondly, a deterministic scheme. The random scheme is not far from what has been
applied in some Monte Carlo simulation experiments made by David Hendry in similar
situations.

5.3.1 Random index sets

We will consider one particular index set which is alternating in a random way. Gen-
erate a series of independent Bernoulli variables, &1; : : : ; &T taking the values 1 and 2
so that

P (& t = 1) = �1; P (& t = 2) = �2; so �1 + �2 = 1

for some 0 � �1; �2 � 1: Then form the index sets

I1 = (t : & t = 1) and I2 = (t : & t = 2) :
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The index sequence has to be independent of the generating process for the data, so
that the data can be analysed conditionally on the index sets. In the following we will
comment on examples of deterministic processes and unit root processes.
Consider the trend stationary model in (5.1). Since the index sets are constructed

by independent sampling then

E(NT
X
t2Ij

xtx
0
tN

0
T ) = EfNT

TX
t=1

(xtx
0
t)N

0
TgE1(&t=j) = EfNT

TX
t=1

xtx
0
tN

0
Tg�j ! �j�;

E(T�1=2NT
X
t2Ij

xt) = E(T�1=2NT

TX
t=1

xt)E1(&t=j) = E(T
�1=2NT

TX
t=1

xt)�j ! �j�:

5.3.2 Alternating index sets

It is instructive also to consider an index set, which is alternating in a deterministic
way. That is

I1 = (t is odd) and I2 = (t is even) :
This index set satis�es the property (5.12) with �1 = �2 = 1=2:
Consider the trend stationary model in (5.1) where the eigenvalues of the deter-

ministic transition matrix D are all at one, so only polynomial trends are allowed. For
simplicity restrict the calculations to a bivariate deterministic terms and let T be even,
so with

dt =

�
1
t

�
; QT =

�
1 0
0 T�1

�
;

the desired proportionality then follows, in that

T�1QT
P
t2Ij

dtd
0
tQT = T�1QT

T=2�1P
t=0

d2t+jd
0
2t+jQT !

1

2

�
1 1=2
1=2 1=3

�
;

T�1QT
P
t2Ij

dt = T�1QT
T=2�1P
t=0

d2t+j !
1

2

�
1
1=2

�
:

The proportionality will, however, fail if the process has a seasonal component with
the same frequency as the alternation scheme. If for instance dt = (�1)t and T even
then it holds that

�D;1 = T�1
P
t2I1

(�1)t = �1
2
; �D;2 = T�1

P
t2I2

(�1)t = 1

2
; � = T�1

TP
t=1

(�1)t = 0;

so �D;j 6= �j�; and proportionality does not hold. The proportionality will only arise
when information is accumulated proportionally over the two index sets, either by
choosing them randomly or by constructing them to be out of sync with the seasonality,
for instance by choosing the �rst index set as every third observation.
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5.4 A few results for unit root processes.

Consider the �rst order autoregression

Xt = �Xt�1 + "t; (5.13)

where � = 1 gives the unit root situation, and we assume for simplicity that f is
symmetric so �c2 = 0 and the term involving kt falls away. The Functional Central
Limit Theorem shows that

T�1=2
int(Tu)X
t=1

8<:
"t1(t2I1)
"t1(t2I2)
"t1(j"tj<c)

9=; D!

0@ w1u
w2u
wcu

1A = Wu;

where Wu is a Brownian motion with variance matrix

e
 def
= �2

0@ �1 0 �1�
c
2

0 �2 �2�
c
2

�1�
c
2 �2�

c
2 � c2

1A :

From the decomposition

X
t2Ij

X2
t�1 =

TX
t=1

X2
t�11(t2Ij) =

TX
t=1

X2
t�1�j +

TX
t=1

X2
t�1
�
1(t2Ij) � �j

	
;

it is seen that the �rst term is of order T 2, whereas the second term has mean zero and
variance �1�2E(

PT
t=1X

4
t�1); it is therefore of order T

3=2. It follows that

1

T 2
(
X
t2I1

X2
t�1;

X
t2I2

X2
t�1;

TX
t=1

X2
t�1)

D! (�1; �2; 1)

Z 1

0

w2udu;

where wu = w1u + w2u is the Brownian motion generated by the cumulated "t. The
information accumulated over each of the two sub-samples are therefore proportional
to
R 1
0
w2udu. It follows from Theorem 3.1, that the �rst round indicator saturated

estimator satis�es

T (e� � 1) D!
R 1
0
wud

�
wcu + 2cf (c)

�
��11 �2w1u + ��12 �1w2u

�	
(1� �)2

R 1
0
w2udu

:

When c!1 then wcu
D! wu while cf (c)! 0 and �! 0 giving the usual Dickey-Fuller

distribution,

T (�̂ � 1) D!
R 1
0
wudwuR 1
0
w2udu

:

While the limiting distribution is now di¤erent from the stationary case, the relevant
modi�cation corresponds to the usual modi�cation of normal distributions into Dickey-
Fuller-type distributions when moving from the stationary to the non-stationary case.
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Nearly the same arguments apply as with random index sets. In this case the
de�nition of the Brownian motions becomes

T�1=2
int(Tu=2)X
t=1

8<:
"2t�1
"2t

"t1(j"tj<c)

9=; D!

0@ w1u
w2u
wcu

1A = Wu:

6 Proof of main result

The results of Theorem 3.1 concern the matrices

NTSxxN
0
T =

TX
t=1

NTxtx
0
tN

0
T1(c�vt�c); NTSx" =

TX
t=1

NTxt"t1(c�vt�c):

For NTSxxN 0
T the main idea in the proof is to approximate !̂tvt = "t � (�̂ � �)0xt

by "t and the indicator 1(c�vt�c) by 1(c��"t�c�); because the limit of the approximationPT
t=1NTxtx

0
tN

0
T1(c��"t�c�) is easy to �nd. It turns out that the approximation involves

terms from the preliminary estimator of � and �. In the proof of Theorem 3.1 this
replacement is justi�ed using techniques for empirical processes and in particular Koul
(2002, Theorem 7.2.1, p.298).
We de�ne the normalised regressors xTt = T 1=2NTxt and the estimation errors

âTt = !̂t � �; âT = �̂ � � and b̂T = T�1=2(N�1
T )

0(�̂ � �): Then T 1=2(âT ; b̂T ) = OP(1)
and T 1=2max1�t�T jâTt � âT j = T 1=2max1�t�T j!̂t � �̂j = oP(1) by assumption (i) of
Theorem 3.1: Note that

!̂tvt = "t � (�̂ � �)0xt = "t � fT�1=2(N�1
T )

0(�̂ � �)g0(T 1=2NTxt) = "t � b̂0TxTt; (6.1)

so that
(c � vt � c) = fc (� + âTt) � "t � b̂0TxTt � c (� + âTt)g:

We de�ne u = (a; b0)0 and

It (u) = It (a; b) = 1fc(�+a)�"t�b0xTt�c(�+a)g � 1(c��"t�c�); (6.2)

and �nd for the denominator NTSxxN 0
T

NTSxxN
0
T = T�1

TX
t=1

xTtx
0
Tt1(c�vt�c) = T�1

TX
t=1

xTtx
0
Tt1(c��"t�c�) (6.3)

+T�1
TX
t=1

xTtx
0
TtfIt(âTt; b̂T )� It(âT ; b̂T )g+ T�1

TX
t=1

xTtx
0
TtIt(âT ; b̂T )

We then have to show that âtT is so close to âT that the second term tends to
zero, and if we can show that T�1

PT
t=1 xTtx

0
TtIt(a; b) is tight as a process in (a; b) and

because T�1
PT

t=1 xTtx
0
TtIt(0; 0) = 0; and (âT ; b̂T ) = OP(T

1=2); we �nd that the last
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term tends to zero. Finally we �nd from the Law of Large Numbers the probability
limit of the �rst term.
Similarly we �nd for NTSx"

NTSx" = T�1=2
TX
t=1

xTt"t1(c�vt�c) = T�1=2
TX
t=1

xTt"t1(c��"t�c�)

+T�1=2
TX
t=1

xTt"tfIt(âtT ; b̂T )� It(âT ; b̂T )g+ T�1=2
TX
t=1

xTt"tIt(âT ; b̂T )

The limit of the second term will be shown to be zero because âTt is very close to âT :
We get a contribution from the third term, which we decompose at the point (a; b) as

T�1=2
TX
t=1

xTt"tIt(a; b) = T�1=2
TX
t=1

xTt["tIt(a; b)� Et�1f"tIt(a; b)g]

+T�1=2
TX
t=1

xTtEt�1f"tIt(a; b)g:

The �rst of these tends to zero, and for the second we �nd that a linear approximation
to the smooth function Et�1f"tIt(a; b)g is a�c2+ b0xTt�c1; and we therefore introduce the
processes, for `;m = 0; 1; 2;

M `;m
T = T�1=2

TX
t=1

gm (xTt) "
`
tfIt(âTt; b̂T )� It(âT ; b̂T )g (6.4)

W `;m
T (a; b) =

1

T

TX
t=1

gm (xTt) "
`
tIt (a; b) (6.5)

V `;m
T (a; b) =

1p
T

TX
t=1

gm(xTt)
�
"`tIt (a; b)� �`�1(a�c`+1 + b0xTt�

c
`)
	
; (6.6)

where the function gm is given as

g0 (xTt) = 1; g1 (xTt) = xTt; g2 (xTt) = xTtx
0
Tt: (6.7)

Lemma 6.4 below shows that �`�1(a�c`+1 + b0xTt�
c
`) is an approximation to the condi-

tional mean of "`tIt (a; b) given the past. Theorems 6.5, 6.6, and 6.7 below show that
as T !1 and if T 1=2(âT ; b̂T ) is tight, then

M `;m
T

P! 0; W `;m
T (âT ; b̂T )

P! 0 and V `;m
T (âT ; b̂T )

P! 0; : (6.8)

Some equalities and expansions are established initially in §6.1. The remainder
terms are analysed in §6.2. Finally, the threads are pulled together in a proof of
Theorem 3.1 in §6.3.
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6.1 Some initial inequalities and expansions

We de�ne the indicator function 1(e�"�f) as

1(e�"�f) = 1(e�f)f1("�f) � 1("�e)g:

We �rst prove an inequality for di¤erences of such indicator functions.

Lemma 6.1 For e < f; e0 < f0; and � � max(je� e0j; jf � f0j) we have

j1(e�"�f) � 1(e0�"�f0)j � 1(j"�e0j��) + 1(j"�f0j��):

Proof of Lemma 6.1. From e = e0+(e�e0) and je�e0j � � we �nd e0�� � e � e0+�
and similarly f0 � � � f � f0 + �: Hence using the monotonicity in e and f; we �nd

1(e0+��"�f0��) � 1(e�"�f) � 1(e0���"�f0+�):

Because the same inequalities hold for 1fe0�"�f0g we �nd

j1(e�"�f) � 1(e0�"�f0)j � 1(e0���"�f0+�) � 1(e0+��"�f0��) � 1(j"�e0j��) + 1(j"�f0j��);

where the last inequality is found by exploiting that e0 � f0 by assumption so

1(e0���"�f0+�) = 1(e0���f0+�)f1("�f0+�) � 1("�e0��g = 1("�f0+�) � 1("�e0��);

whereas 1(e0+�>f0��)f1("�e0+�) � 1("�f0��)g � 0 so

�1(e0+��"�f0��) = 1(e0+��f0��)f1("�e0+�) � 1("�f0��)g � 1("�e0+�) � 1("�f0��):

Now, apply this result to the indicator function It (u) introduced in (6.2). Note
that It (0) = 0 and introduce the notation, for some � > 0; and c = max(jcj; jcj);

Jt(u; �) = 1fj"t�c(�+a)�b0xTtj��(c+jxTtj)g + 1fj"t�c(�+a)�b0xTtj��(c+jxTtj)g:

Lemma 6.2 For u = (a; b0)0; u0 = (a0; b00)
0 and ju� u0j � � we have

jIt(u)� It(u0)j � Jt (u0; �)

Proof of Lemma 6.2. The object of interest is

It(u)� It(u0) = 1fc(�+a)+b0xTt�"t�c(�+a)+b0xTtg � 1fc(�+a0)+b00xTt�"t�c(�+a0)+b00xTtg:

The inequality follows from Lemma 6.1 by the choice e = c(� + a) + b0xTt; e0 =
c(� + a0) + b

0
0xTt; f = c(� + a) + b0xTt; f0 = c(� + a0) + b

0
0xTt; and � = �(c+ jxTtj):

Introduce the notation Et�1 for the expectation conditional on the information given
by (xs; "s; s � t� 1; xt).
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Lemma 6.3 For ` 2 N0; let u = (a; b0)0; u0 = (a0; b
0
0)
0 be random and Ej"tj` < 1:

Then it holds with c = max(jcj; jcj) that

Et�1f1(ju�u0j��)j"tj`jIt(u)� It(u0)jg � Et�1j"tj`Jt(u0; �)
� 4��`�1(c+ jxTtj) sup

v2R
jvj`f(v):

Proof of Lemma 6.3. The �rst inequality follows from Lemma 6.2. The function
Jt(u0; �) is nonzero on two intervals of total length 4�(c + jxTtj); and the integrand
j"tj`f("t=�)=� is bounded by �`�1 supv2R jvj`f(v); so that the second inequality holds.

Finally, an approximation to the conditional expectation of "tIt(u) follows.

Lemma 6.4 Let f have derivative f 0: For u = (a; b0)0 and juj � � it holds for ` 2 N0��Et�1 �"`tIt(u)	� �`�1(a�c`+1 + b0xTt�
c
`)
�� � 2�2 sup

v2R
f`jvj`�1f(v) + jv`f 0(v)jg(c2 + jxTtj2);

where c = max(jcj; jcj) and �c` = (c)`f (c)� (c)`f (c) :

Proof of Lemma 6.4. Let  (") = ("=�)` f("=�). A second order Taylor expansion
gives Z c�+h

c�

 (")d" = h (c�) +
1

2
h2 0 (�c�) ;

for c� satisfying j�c� �c�j � h. Thus

�1�`Et�1
�
"`tIt(u)

	
=

Z c(�+a)+b0xTt

c(�+a)+b0xTt

 (")d"�
Z c�

c�

 (")d" = S � S;

where

S = (ca+ b0xTt) (c�) +
1

2
(ca+ b0xTt)

2 0 (�c�1) ;

S = (ca+ b0xTt) (c�) +
1

2
(ca+ b0xTt)

2 0 (�c�2) :

Using  (c�) = c`f(c) the �rst order term of S � S is

(ca+ b0xTt)(c)
`f(c)� (ca+ b0xTt)(c)

`f(c) = a�c`+1 + b0xTt�
c
`:

Using (jcja+ b0xTt)
2 � 2�2(c2 + jxTtj2) the second order term is bounded by

2�2(c2 + jxTtj2) sup
v2R

j 0 (v)j � 2�2(c2 + jxTtj2) sup
v2R
f`jvj`�1f(v) + jv`f 0(v)jg:
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6.2 Some limit results

The �rst result on M `;m
T shows that we can replace the estimator, !̂2t ; of the variance

of the residuals with �̂2.

Theorem 6.5 Let ` 2 N0 and m 2 f0; 1; 2g. Suppose that
(i) �TT

1=2max1�t�T jâtT � âT j = OP(1); for some �T !1
(ii) maxt�T E jxTtj3 = O(1);
(iii) supv jvj`f(v) <1 and Ej"tj` <1:Then it holds for T !1 that

M `;m
T =

1

T 1=2

TX
t=1

gm (xTt) "
`
tfIt(âtT ; b̂T )� It(âT ; b̂T )g

P! 0

Proof of Theorem 6.5. Due to condition (i) ; for all � > 0 there exists a U > 0
so that for large T then P(�TT 1=2max1�t�T jâtT � âT j � U) � 1 � �: Thus, with

�T = UT�1=2��1T ; it su¢ ces to show that jM `;m
T j1(max1�t�T jâtT�âT j��T )

P! 0; and in turn
by the Markov inequality it su¢ ces to show S = EjM `;m

T j1(max1�t�T jâtT�âT j��T ) ! 0:
Using the triangle inequality and taking iterated expectations it holds

S � 1

T 1=2

TX
t=1

EjxTtjmEt�1f"`tjIt(âtT ; b̂T )� It(âT ; b̂T )j1(max1�t�T jâtT�âT j��T )g:

Lemma 6.2 then shows

S � 4�TT 1=2�`�1 sup
v2R
fjvj`f(v)ga�1T�1E

TX
t=1

jxTtjm(c+ jxTtj):

This vanishes since �TT 1=2 ! 0 and the other terms are bounded.

Theorem 6.6 Let ` 2 N0 and m 2 f0; 1; 2g. Suppose that
(i) (âT ; b̂T ) = OP(T

�1=2);
(ii) maxt�T E jxTtjm+1 = O(1);
(iii) supv jvj`f(v) <1 and Ej"tj` <1:
Then it holds for T !1 that

W `;m
T (âT ; b̂T ) =

1

T

TX
t=1

gm (xTt) "
`
tIt(âT ; b̂T )

P! 0; (6.9)

where gm was de�ned in (6:7) as 1; xTt; xTtx0Tt for m = 0; 1; 2; so that jgm(xTt)j �
jxTtjm:

Proof of Theorem 6.6. Due to condition (i) ; for all � > 0 there exists a U > 0 so
that for large T then Pfj(âT ; b̂T )j � T�1=2Ug � 1 � �: Thus, it su¢ ces to show that
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supjuj�T�1=2U jW
`;m
T (u) j P! 0; and in turn by the Markov inequality it su¢ ces to show

that E supjuj�T�1=2U jW
`;m
T (u) j ! 0:

Because It(0) = 0 then It(u) = It(u) � It(0): Lemma 6.2 then shows jIt(u)j �
Jt
�
0; T�1=2U

�
for juj � T�1=2U: Thus, using the triangle inequality it holds

sup
juj�T�1=2U

jW `;m
T (u) j � 1

T

TX
t=1

jxTtjm j"tj` Jt(0; T�1=2U):

Then take iterated expectations

S = Ef sup
juj�T�1=2U

jW `;m
T (u) jg � E 1

T

TX
t=1

jxTtjmEt�1j"tj`Jt(0; T�1=2U): (6.10)

Apply Lemma 6.3 with � = T�1=2U and �nd

S � E
1

T

TX
t=1

jxTtjm
4U�`�1

T 1=2
(c+ jxTtj) sup

v2R
jvj`f(v)

= 4U�`�1 sup
v2R
fjvj`f(v)g 1

T 3=2

TX
t=1

fcE (jxTtjm) + E(jxTtjm+1)g;

which vanishes due to Assumptions (ii) and (iii) :

Theorem 6.7 Let ` 2 N0 and m 2 f0; 1g. Suppose that
(i) (âT ; b̂T ) = OP(T

�1=2);
(ii) maxt�T E jxTtj3 = O(1);
(iii) supv2R

�
(`jvj`�1 + jvj` + v2`)f(v) + jv`f 0(v)j

	
<1 and Ej"tj2` <1:

Then it holds for T !1 that

V `;m
T (âT ; b̂T ) =

1p
T

TX
t=1

gm(xTt)f"`tIt(âT ; b̂T )� �`�1(âT �
c
`+1 + b̂0TxTt�

c
`)g

P! 0:

Proof. As in the proof of Theorem 6.6, using condition (i), it su¢ ces to show that

supjuj�T�1=2U jV
`;m
T (u)j P! 0:

1. Decompose V `;m
T as a sum of martingale di¤erences ~VT and a correction term V T

so V `;m
T (u) = ~VT (u) + V T (u); where

~VT (u) =
1p
T

TX
t=1

gm(xTt)["
`
tIt (u)� Et�1f"`tIt (u)g]

V T (u) =
1p
T

TX
t=1

gm(xTt)[Et�1f"`tIt (u)g � �`�1(âtT �
c
`+1 + b̂0TxTt�

c
`)]
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It has to be shown that the supremum of each of these terms vanishes.
2. The term V T (u): Using �rst the triangular inequality and then Lemma 6.4 with

� = T�1=2U gives

sup
juj�T�1=2U

jV T (u)j � sup
juj�T�1=2U

1p
T

TX
t=1

jxTtjm jEt�1f"`tIt (u)g � �`�1(a�c`+1 + b0xTt�
c
`)j

� 2U2 sup
v2R
f`jvj`�1f(v) + jv`f 0(v)jg 1

T 3=2

TX
t=1

jxTtjm (c2 + jxTtj2)

= OP(T
�1=2);

by Assumption (ii) and (iii); because maxt�T (E jxTtjm ;E jxTtjm+2) is bounded:
3. The term ~VT (u): For a given �; to be chosen later, choose jukj � UT�1=2; k =

1; : : : ; K and Bk = (u : ju � ukj � �T�1=2; juj � UT�1=2)T�1=2 as a �nite cover of
(u : juj � UT�1=2): Thus, for any u we have u 2 Bk for some k: In particular, it holds
for u 2 Bk

j ~VT (u)j � j ~VT (uk)j+ j ~VT (u)� ~VT (uk)j � max
k
j ~VT (uk)j+max

k
sup
u2Bk

j ~VT (u)� ~VT (uk)j:

4. The term maxk j ~VT (uk)j: Because ~VT is a sum of martingale di¤erences then

Varf ~VT (uk)g =
1

T
E

TX
t=1

�
gm(xTt)gm(xTt)

0Vart�1f"`tIt (uk)g
�
:

From Lemma 6.2 with u0 = 0; It (0) = 0; and jukj � UT�1=2 we have
�
"`tIt (uk)

	2 �
"2`t J

2
t (0; UT

�1=2): Further, by the inequality (a+b)2 � 2(a2+b2) we have J2t (0; UT�1=2) �
2Jt(0; UT

�1=2); so that from Lemma 6.3 we �nd

Et�1
�
"`tIt (uk)

	2 � 2Et�1"2`t Jt(0; UT�1=2) � 8 U

T 1=2
�2`�1(c+ jxTtj) sup

v2R
jvj2`f(v): (6.11)

Since Vart�1f"`tIt (uk)g � Et�1
�
"`tIt (uk)

	2
it then holds

Varf ~VT (uk)g �
8U�2`�1

T 3=2
sup
v2R
fv2`f(v)g

TX
t=1

EfjxTtj2m (c+ jxTtj)g �
c0
T 1=2

;

because maxt�T (E jxTtj2m ;E jxTtj2m+1) is bounded: Using �rst Boole�s inequality and
then Chebychev�s inequality it then holds for a � > 0 to be chosen later

Pfmax
k
j ~VT (uk)j � �g = P

K[
k=1

fj ~VT (uk)j � �g �
KX
k=1

Pfj ~VT (uk)j � �g

� 1

�2

KX
k=1

Varf ~VT (uk)g �
c0K

T 1=2�2
! 0; (6.12)
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for �xed K (and �) and T !1:
5. The term maxk supu2Bk j ~VT (u)� ~VT (uk)j: The inequality in Lemma 6.2 shows

sup
u2Bk

j ~VT (u)� ~VT (uk)j � ZT (k)

where

ZT (k) =
1

T 1=2

TX
t=1

jxTtjm [j"tj`Jt(uk; T�1=2�) + Et�1fj"tj`Jt(uk; T�1=2�)g];

because ju� ukj � T�1=2�:Again, write ZT as a sum of martingale di¤erences ~ZT and
a correction term ZT so ZT (k) = ~ZT (k) + ZT (k) where

~ZT (k) =
1

T 1=2

TX
t=1

jxTtjm [j"tj`Jt(uk; T�1=2�)� Et�1fj"tj`Jt(uk; T�1=2�)g];

ZT (k) =
2

T 1=2

TX
t=1

jxTtjm Et�1fj"tj`Jt(uk; T�1=2�)g:

6. The term maxk ZT (k): Lemma 6.3 shows

max
k
ZT (k) � 8� sup

v2R
fjvj`f(v)g 1

T

TX
t=1

jxTtjm (c+ jxTtj) = OP(�); (6.13)

due to Assumptions (ii), (iii) :
7. The term maxk ~ZT (k): Since ~ZT (k) is a sum of martingale di¤erences then

Varf ~ZT (k)g =
1

T

TX
t=1

E[gm(xTt)gm(xTt)
0Vart�1fj"tj`Jt(uk; T�1=2�)g]:

Since Vart�1fj"tj`Jt(uk; T�1=2�)g � Et�1fj"tj`Jt(uk; T�1=2�)g2 then (6.11) shows

Varf ~ZT (k)g � 4��2`�1 sup
v2R
fv2`f(v)g 1

T 3=2

TX
t=1

EfjxTtj2m (c+ jxTtj)g = O(T�1=2);

because maxt�T (E jxTtj2m ;E jxTtj2m+1) is bounded; using Assumptions (ii) and (iii) :
Then, like the evaluation (6.12), we �nd

Pfmax
k
j eZT (k)j � �g � c0M

T 1=2�2
! 0:

8. The proof is now complete by noticing that for given � > 0 and � > 0 we can
�rst choose U so large that

PfT 1=2j(âT ; b̂T )j � Ug � �;

using condition (i). Next choose � so small that (6.13) is small. Finally, choose T so
large that the remaining terms are small.
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6.3 Proof of main result

Proof of Theorem 3.1. We analyse the properties of the product moments:

S11 =

TX
t=1

1(c�vt�c); Sxx =
TX
t=1

xtx
0
t1(c�vt�c);

Sx" =
TX
t=1

xt"t1(c�vt�c); Sx1 =
TX
t=1

xt1(c�vt�c):

We de�ne (âtT ; b̂T ) = f!̂t � �; T�1=2(N�1
T )

0(�̂ � �)g; and note, see (6.3) that the de�n-
ition of W `;m

T (a; b) and M `;m
T implies that

T�1
TX
t=1

gm (xTt) "
`
t1(c�vt�c) = T�1

TX
t=1

gm (xTt) "
`
t1(c��"t�c�) +

+T�1=2M `;m
T +W `;m

T (âT ; b̂T );

and that for xTt = T 1=2NTxt; Theorem 6.6 implies that W `;m
T (âT ; b̂T ) = oP (1) and

Theorem 6.5 shows that M `;m
T = oP (1) :

The limits (3.3), (3.4), and (3.5). For m = 2; ` = 0 we �nd

NTSxxN
0
T = NT

TX
t=1

xtx
0
t1(c��"t�c�)N

0
T + oP(1):

Note that Et�1f1(c��"t�c�)g = 1 � �; so a martingale decomposition of the main term
on the right hand side is

NT

TX
t=1

xtx
0
tf1(c��"t�c�) � (1� �)gN 0

T +NT

TX
t=1

xtx
0
tN

0
T (1� �):

The �rst term vanishes due to Chebychev�s inequality and Assumption (ii; c) : The
second term converges in probability to (1� �)� due to Assumption (ii; a) :
The limit of Sx1 is found by a similar argument for m = 1; ` = 0; which gives

T�1=2NT

TX
t=1

xt1(c�vt�c) = T�1=2NT

TX
t=1

xt1(c��"t�c�) + oP(1):

A martingale decomposition of the main term on the right hand side is

T�1=2NT

TX
t=1

xtf1(c��"t�c�) � (1� �)g+ T�1=2NT

TX
t=1

xt(1� �):

The �rst term vanishes due to Chebychev�s inequality and Assumption (ii; a) : The
second term converges to (1� �)� due to Assumption (ii; b) :
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Finally for m = ` = 0; we �nd

T�1
TX
t=1

1(c�vt�c) = T�1
TX
t=1

1(c��"t�c�) + oP(1)
P! 1� �:

The representations (3.6), (3.7), and (3.8): The de�nition of V `;m
T (âT ; b̂T ) implies

that for m = 0; 1; ` = 0; 1; 2 we have the representation

T�1=2
TX
t=1

gm(xTt)"
`
t1fc�vt�cg =M `;m

T + V `;m
T (âT ; b̂T )

+T�1=2
TX
t=1

gm(xTt)["
`
t1(c��"t�c�) + �`�1fx0Tt(�̂ � �)�c` + (�̂ � �)�c`+1g];

and that for xTt = T 1=2NTxt; Theorem 6.7 implies that V `;m
T (âT ; b̂T ) = oP(1) and

Theorem 6.5 shows that M `;m
T = oP(1):

The representation of S11 follows for ` = m = 0; and by noting that

T�1
TX
t=1

1(c��"t<�c�)
P! 1� �;

we have proved (3.4). The representation of NTSx" follows for ` = m = 1: Finally the
representation of term S"" follows for m = 0; ` = 2.

Proof of Corollary 3.2. Representation of (N�1
T )

0(�� � �): From (3.1) we have

(N�1
T )

0(�� � �) = (NTSxxN
0
T )
�1NTSx":

Because NTSxxN 0
T

P! (1� �)� > 0 by (3.4), we see that �� is de�ned with probability
tending to one, and the representation (3.9) follows from (3.6).
The representation of T 1=2(��2��2): We use the expression, see (3.2), to show that

S�111 (Syy � SyxS
�1
xx Sxy) = S�111 fS"" +OP(1)g

P! �2
� c2
1� �

:

This shows that we need to bias correct the empirical variance and therefore we consider

��2 � �2 = (1� �)(� c2)
�1S�111 (Syy � SyxS

�1
xx Sxy) = (1� �)(� c2)

�1S�111 fS"" +OP(1)g;

and hence
� c2T

1=2(��2 � �2) = T 1=2(S"" � �2
� c2
1� �

S11) + OP(T
�1=2):

From (3.7) and (3.8) we �nd the representation

� c2T
1=2(��2 � �2) = fT�1=2

TX
t=1

("2t � �2
� c2
1� �

)1(�c�"t��c)

+T 1=2(�̂ � �)�c3 + (�̂ � �)0N�1
T T�1=2NTxt�

c
2)g+ oP(1);
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which proves (3.10), because T�1=2NTxt
P! �.

Consistency of the estimators: Finally it follows from the Assumption (i); (ii; a);
(3.9), and (3.10) that f(N�1

T )
0(����); T 1=2(��2��2)g = OP(1); and NT ! 0 and T !1

then imply that (��; ��2) P! (�; �2):

7 Proofs for stationary and trend stationary cases

The proofs relating to §4 and §5 follow.

Proof of Theorem 4.1. We apply Corollary 3.2, using NT = T�1=2Im. The least
squares estimator based on the full sample satis�es condition (i; a): T 1=2(�̂��; �̂��) =
OP(1); and the stationarity of xt shows that conditions (ii; a; b; c) hold.
For the numerator of the estimator ��LS we therefore consider

T�1=2
TX
t=1

xt"t1(�c�"t�c�) + �c1�T
1=2(�̂ � �) + �c2T

1=2(�̂ � �)�;

and insert

T 1=2(�̂ � �) = ��1T�1=2
TX
t=1

xt"t + oP(1);

T 1=2(�̂ � �) =
1

2
T�1=2

TX
t=1

("2t=� � �) + oP(1):

This shows that (1� �)�T 1=2(��LS � �) has the same limit distribution as

T�1=2
TX
t=1

fxt("t1(�c�"t�c�) + �c1"t) +
�c2
2
("2t=� � �)�g; (7.1)

where the summand is a martingale di¤erence sequence. The Central Limit Theorem
for martingales shows that this expression is asymptotically Nm (0; �2��) : To �nd ��
we calculate the sum of the conditional variances

T�1
TX
t=1

xtx
0
tf� c2 + (�c1)2 + 2�c1� 2cg+ ��0(

�c2
2
)2T�1

TX
t=1

(� 4 � 1)

+T�1
TX
t=1

(xt�
0 + �x0t)

�c2
2
(� c3 + �c1� 3)

P! �f� c2 + (�c1)2 + 2�21� c2g+ ��0f(�
c
2

2
)2(� 4 � 1) + �c2(� c3 + �c1� 3)g:

Divide by (1��)� from right and left to get the limiting variance for T�1=2(��LS � �).
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For the estimator ��LS the limiting distribution of � c2T
1=2(��LS � �) is, in the same

way, that of

T�1=2
TX
t=1

f("2t �
�2� c2
1� �

)1(�c�"t�c�) + ��c2�
0��1xt"t + �

�c3
2
("2t=� � �)g: (7.2)

This variable is asymptotically normal with variance gives by �4�� where

�� = � c4 �
(� c2)

2

1� �
+ (�c2)

2�0��1�+
(�c3)

2

4
(� 4 � 1)

+2�c2�
0��1�� c3 + 2

�c3
2
(� c4 �

(� c2)
2

1� �
) + 2�c2

�c3
2
�0��1�� 3:

Finally, the asymptotic covariance is of the expressions (7.1), (7.2) is �3�c where

�c = �(1 + �c1)�
c
3 + ��c2(�

c
2 + �c1) + �

�c3
2
(� c3 + �c1� 3)

+�
�c2
2
f� c4 �

(� c2)
2

1� �
g+ ��0��1�

�c2�
c
2

2
� 3 + �

�c2�
c
3

4
(� 4 � 1):

Proof of Theorem 4.3. We want to apply Theorem 3.1 to the contributions for the
two subsets I1 and I2: The least squares estimator based on the full sample satis�es
condition (i; a): T 1=2(�̂j � �; �̂j � �) = OP(1); and the stationarity of xt shows that
conditions (ii; a; b; c) hold. Thus, de�ne the product moments

Suv =
TX
t=1

utw
0
t1fc�vt�cg =

X
t2I1

utw
0
t1fc�vt�cg +

X
t2I2

utw
0
t1fc�vt�cg = S1uw + S2uw:

The stationarity of xt implies that (4.1) holds. Considering the term Sxx apply (3.4)
of Theorem (3.1) to get

T�11 Sjxx
P! �j(1� �)� so T�1Sxx

P! (1� �)�; (7.3)

since Tj=T ! �j.
Representation of T 1=2(~� � �) : The estimator ~� satis�es

~� � � = S�1xx Sx" = S�1xx fS1xx(~�
1 � �) + S2xx(

~�
2 � �)g;

where ~�
j � � = (Sjxx)

�1Sjx" is the contribution from Ij: Due to (7.3) we then �nd

~� � � = �1(~�
1 � �) + �2(~�

2 � �) + oP(1): (7.4)

Turning to the individual contributions ~�
j
, Theorem 3.1 shows

f(1��)�g(~�1� �) = T�11
X
t2I1

xt"t1(c��"t��c)+ �
c
1�(�̂2� �) + �c2(�̂2� �)�+oP(T

�1=2
1 );
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where �̂2; �̂2 are the initial least squares estimators satisfying

�̂2 � � = ��1T�12
X
t2I2

xt"t + oP (1) ;

�̂2 � � =
1

2
T�12

X
t2I2

("2t=� � �) + oP (1) :

Inserting these in the expression for ~�
1
then gives

f(1� �)�g(~�1 � �)

= T�11
X
t2I1

xt"t1(c��"t��c) + �c1T
�1
2

X
t2I2

xt"t +
1

2
�c2�T

�1
2

X
t2I2

("2t=� � �) + oP
�
T�1=2

�
:

Interchanging the role of the indices 1; 2 gives a similar expression for ~�
2��. Combining

these expressions according to (7.4) then proves (4.2).
Representation of T 1=2(~�2 � �2): We use the expression (3.2) showing

~�2 = (1� �)(� c2S11)
�1(Syy � SyxS

�1
xx Sxy)

= (1� �)(� c2S11)
�1fS"" � (~� � �)0Sxx(~� � �)g:

Since (4.2) implies ~� � � = OP
�
T�1=2

�
while Sxx = OP (T ) by (7.3) then

~�2 = (1� �)(� c2S11)
�1fS"" +OP (1)g;

so that, using T�1S11
P! 1� �;

� c2T
1=2(~�2 � �2) = T�1=2(S"" � �2

� c2
1� �

S11) + oP (1) :

We apply (3.7) and (3.8) and �nd that the contribution from I1 is

T�1=2
X
t2I1

[("2t � �2
� c2
1� �

)1(c��"t�c�)

+�
�1
�2
f�c2�0��1T�1=2

X
t2I2

xt"t +
�c3
2
T�1=2

X
I2

("2t=� � �)g] + OP
�
T 1=2

�
;

which together with an expression for the contribution from I2 shows (4.3).

Proof of Theorem 4.4. We apply (4.2) where the summands on the right hand
side is a martingale di¤erence sequence and we apply the Central Limit Theorem for
martingales to shows that T 1=2(~� � �)

D! Nm (0;�). In order to �nd � we calculate
the sum of the conditional variances and �nd

T�1
TX
t=1

xtx
0
tf� 2c + h2t (�

c
1)
2 + 2ht�

c
1�
c
2g+ ��0(

�c2
2
)2h2t (� 4 � 1)

+T�1
TX
t=1

(xt�
0 + �x0t)

�c2
2
(ht�

c
3 + h2t �

c
1� 3):
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Using the relations

T�1
TX
t=1

ht = 1 T�1
TX
t=1

h2t =
�21
�2
+
�22
�1
;

T�1
TX
t=1

xtht
P! � T�1

TX
t=1

xth
2
t
P! �(

�21
�2
+
�22
�1
);

T�1
TX
t=1

xtx
0
tht

P! �; T�1
TX
t=1

xtx
0
th
2
t
P! �(

�21
�2
+
�22
�1
); (7.5)

we �nd the limit (4.4).

Proof of Theorem 4.5. We apply Theorem 3.1 and Corollary 3.2. The initial
estimators ~� and ~�2 satisfy condition (i; a); and the stationarity implies conditions

(ii; a; b; c):We therefore get that T�1Sxx
P! (1��)�; and T�1Sx1

P! (1��)�: Finally
we �nd from (3.9), that, when the density is symmetric so that �c2 = 0;

(1� �)�T 1=2(��Sat � �) = T�1=2f
TX
t=1

xt"t1(c��"t��c) + �c1�T
1=2(~� � �)g+ oP (1) ;

Now insert the expression for ~� in (4.2) with �c2 = 0; which is

(1� �)�T 1=2(~� � �) = T�1=2
TX
t=1

xtf"t1(c��"t��c) + �c1"thtg+ oP (1)

and we �nd

(1��)�T 1=2(��Sat� �) = fT�1=2
TX
t=1

xtf(1+
�c1
1� �

)"t1(c��"t��c)+ "t
(�c1)

2

1� �
htg+oP (1) :

Again the summands form a martingale di¤erence sequence and the Central Limit
Theorem for martingales shows that T 1=2(�� � �)

D! N(0;�): We calculate the sum of
the conditional variances

�2T�1
TX
t=1

xtx
0
tf(1 +

�c1
1� �

)2� c2 + h2t
(�c1)

4

(1� �)2
+ 2(1 +

�c1
1� �

)
(�c1)

2

1� �
ht�

c
2g;

which converges in probability towards

�2

(1� �)2
�f(1� �+ �c1)

2� c2 + 2(1� �+ �c1)(�
c
1)
2� c2 + (

�21
�2
+
�22
�1
)(�c1)

4g;

which gives the expression (4.5) after dividing by (1� �)2�2:
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Proof of Theorem 5.1. The results (5.3), (5.4), (5.5): Note that it can be assumed
without loss of generality that D has the Jordan form of Nielsen (2005, §4). Using
the normalisation ND suggested in that paper it follows that T�1N 0

D

PT
t=1 dtd

0
tND con-

verges. The results then follow from Nielsen (2005, Theorem 4.1, 6.2, 6.4).
The result (5.6) follows from the Central Limit Theorem for martingales noting

that the Lindeberg conditions hold:

T�1
TX
t=1

Ej(Yt�1 �	dt�1)"0tj21(jYt�1�	dt�1)"0tj�T 1=2a) ! 0;

TX
t=1

EjMTdt"
0
tj21(jMT dt�1"0tj�T 1=2a) � c

1

T

TX
t=1

jMTdtj4 ! 0:

Finally, (5.7), (5.8) follow by combining (5.3) and (5.6).

Proof of Theorem 5.2. We can mimic the steps of the proof of Theorem 5.1 for
the sums over the subsets t 2 Ij rather than t 2 I1 [ I2: Thus, the assumptions of
Theorem 3.1 are satis�ed for each subset. In particular, it holds

(N�1
T )

0(�̂j � �) = ��1j NT
X
t2Ij

xt"t + oP (1) ; (7.6)

T 1=2(�̂j � �) = (2��j)
�1T�1=2

X
t2Ij

�
"2 � �2

�
+ oP (1) : (7.7)

We can now apply Theorem 3.1 to the estimator

(N�1
T )

0(~� � �) = (NTSxxN
0
T )
�1NTSx":

Apply (3.4), (3.5), (3.6) of Theorem 3.1 to each component to get

NTSxxN
0
T

P! (1� �)(�1 + �2) = (1� �)�;

T�1=2NTSx1
P! (1� �)(�1 + �2) = (1� �)�:

NTSx" = NT

2X
j=1

X
t=2Ij

fxt"t1(c�<"t<c�) + �c1xtx
0
t(�̂j � �) + �c2xt (�̂j � �)g+ oP (1) :

For Sx" insert the expressions (7.6), (7.7) for the estimators to get the expression

TX
t=1

NTxt"t1(c�<"t<c�) + �c1

TX
t=1

HtNTxt"t +
�c2
2�
T�1=2

TX
t=1

Kt

�
"2 � �2

�
+ oP (1) ;

where

Ht = �2�
�1
1 1(t2I1) + �1�

�1
2 1(t2I2);

Kt = �2�
�1
1 1(t2I1) + �1�

�1
2 1(t2I2):
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This expression is a sum of a martingale di¤erence sequence and we therefore apply
the Central Limit Theorem for martingales. We calculate the sum of the conditional
variances to be

TX
t=1

NTxtx
0
tN

0
T�

2� c2 + �2(�c1)
2

TX
t=1

HtNTxtx
0
tN

0
TH

0
t + (

�c2
2
)2T�1

TX
t=1

KtKt(� 4 � 1)

+�2�c1�
c
2

TX
t=1

(NTxtx
0
tN

0
TH

0
t +HtNTxtx

0
tN

0
T )

+�2� 3
�c2
2
�c1T

�1=2
TX
t=1

(HtNTxtK
0
t +Ktx

0
tN

0
TH

0
t) + �2

�c2
2
� c3T

�1=2
TX
t=1

(NTxtK
0
t +Ktx

0
tN

0
T )

Now we apply the results thatPT
t=1NTxtx

0
tN

0
T

P! �; T�1
PT

t=1KtK
0
t !

�2�
0
2

�1
+

�1�
0
1

�2PT
t=1HtNTxtx

0
tN

0
TH

0
t
P! �2�

�1
1 �2 + �1�

�1
2 �1; T�1=2

PT
t=1NTxtK

0
t
P! �1�

0
2 + �2�

0
1PT

t=1NTxtx
0
tN

0
TH

0
t
P! �; T�1=2

PT
t=1HtNTxtK

0
t
P! �2�

�1
1 �1�

0
2�
�1
1 + �1�

�1
2 �2�

0
1�
�1
2

which gives the result.
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