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Abstract

In this paper we consider the third-moment structure of a class of time series models. It is
often argued that the marginal distribution of financial time series such as returns is skewed.
Therefore it is of importance to know what properties a model should possess if it is to
accommodate unconditional skewness. We consider modelling the unconditional mean and
variance using models that respond nonlinearly or asymmetrically to shocks. We investigate
the implications of these models on the third-moment structure of the marginal distribu-
tion as well as conditions under which the unconditional distribution exhibits skewness and
nonzero third-order autocovariance structure. In this respect, an asymmetric or nonlinear
specification of the conditional mean is found to be of greater importance than the properties
of the conditional variance. Several examples are discussed and, whenever possible, explicit
analytical expressions provided for all third-order moments and cross-moments. Finally, we
introduce a new tool, the shock impact curve, for investigating the impact of shocks on the
conditional mean squared error of return series.
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1 Introduction

Financial series such as high-frequency asset returns have little forecastable structure in the
mean. For this reason, and because volatility is used as a measure of risk, forecasting volatility
and thus modelling the conditional variance has been the main concern of practitioners. The
most popular family of volatility models, the GARCH family, see Bollerslev (1986) for the
standard GARCH model, is used to characterize two important stylized facts of return series:
fat tails of the marginal distribution of returns and volatility clustering, that is, higher-order
dependence observed in the series.

Another feature of these series that has attracted attention is an asymmetric response of
volatility to shocks. GARCH models that can take this into account include the Threshold
GARCH (TGARCH; Zakolan, 1994), the GJR-GARCH (Glosten, Jagannathan, and Runkle,
1993), and the Smooth Transition GARCH (Hagerud, 1997; Gonzilez-Rivera, 1998) model.
Pagan and Schwert (1990) and Engle and Ng (1993) have suggested a practical way of describing
this response by the so-called News Impact Curve (NIC).

In addition, it has been observed that the marginal distribution of returns is sometimes
skewed. Harvey and Siddique (1999), Chen, Hong, and Stein (2001), and Engle and Patton
(2001), to mention a few contributions, report evidence for financial time series with asymmetric
distributions. However, as pointed out by Peiro (2002, 2004), one should not go as far as stating
the skewness of marginal distributions of returns as a stylized fact, nor should one rely solely
on its traditional measurement under normality. One should investigate possible asymmetry of
the distribution using not only traditional tests but distribution-free measurements as well, see
also Kim and White (2004). Attempts to model this skewness through defining the concept of
conditional skewness have been made, see for instance Harvey and Siddique (1999), Lambert and
Laurent (2002) and references therein, Bréannés and Nordman (2003a,b), Harris, Kiigiik6zmen,
and Yilmaz (2004), Jondeau and Rockinger (2006), and Hueng (2006). This requires giving up a
standard assumption in econometric work, namely, that noise sent through a parametric filter to
generate the output has a symmetric distribution around zero. (Of course, modelling positive-
valued series constitutes an exception.) Furthermore, in some cases, see Hansen (1994), one
even gives up the assumption, otherwise invariably made in the context of GARCH processes,
that the errors of the process are independent.

There is some economic theory explaining skewness in the marginal distribution of returns.
Hong and Stein (2003) provided a model in which economic agents receive different information
about the terminal payoff of a stock and thus initally have different opinions about it. Since
selling short is not allowed in the model, these pieces of information may be revealed to the
others only gradually. This happens more slowly when the information received is positive (has
a positive effect on the agent’s valuation of the stock) than when it is negative. This can make the
prices fall more rapidly on the average than they increase, which leads to a return distribution
with a skewed density. From our point of view, an essential detail of the Hong—Stein differences
of opinion model is that it is dynamic.

Volatility feedback has been offered as another explanation to negative skewness. Campbell
and Hentschel (1992) built a dynamic model based on this idea. Large expected future volatility
tends to lower stock prices by increasing the required returns. When future volatility is perceived
to be low, the stock prices increase. For the reasons explained by the authors, the effects of
large and small future volatility on prices are not symmetric, which leads to negatively skewed
returns.

The standard models of conditional heteroskedasticity with a skewed error density are not
suitable for describing these scenarios. According to them, skewness is just a property of the



noise and has nothing to do with the dynamic behaviour of economic agents. In this paper we
therefore make an effort to find out under which conditions the marginal distribution of returns
can be skewed and how much, while the noise has a symmetric density and is not allowed to
explain any skewness in returns. That is the main purpose of this work. In order to do so,
we shall study processes with a nonconstant conditional mean. This means that we shall be
interested in the case where a shock can have a nonzero effect on both the conditional mean and
conditional variance. This leads us to consider processes with a symmetric or asymmetric, and
linear or nonlinear conditional mean.

The starting-point of our paper is a model whose first two conditional moments are paramet-
ric and the error distribution is symmetric around zero. The asymmetric moving average (asMA)
model by Wecker (1981) serves as an example of such a model. It nests a linear symmetric mov-
ing average model, and for this reason the effect of the asymmetry in the conditional mean on
the third-moment structure of the process can be easily investigated by imposing appropriate
parameter restrictions on the model. Examining the role of the conditional mean as a whole
in this framework is quite straightforward. Our other example will be the GARCH-in-mean
(GARCH-M) model introduced by Engle, Lilien, and Robins (1987) which is relevant in the
volatility feedback case. This is because a function of the conditional variance in the conditional
mean makes the marginal distribution of the observations skewed.

For the purpose of deriving analytical expressions for unconditional third-order moments,
parameterizing the conditional standard deviation is preferable to parameterizing the conditional
variance. In the latter case, the definitions of moments would involve expectations that do
not have analytic expressions. For this reason, we focus on the TGARCH model that nests
the absolute-value GARCH (AVGARCH) model of Taylor (1986) and Schwert (1989). The
TGARCH model has an asymmetric response to shocks, whereas the same response in the
AVGARCH model is symmetric as it is in the standard GARCH model of Bollerslev (1986).
The general conclusions drawn from these two models of the conditional standard deviation are
applicable to other GARCH models as well.

Recently, Bréannés and de Gooijer (2004) proposed a model that introduces asymmetry both
in the conditional mean and the conditional variance. The variance component of the model
is an extension of the QGARCH model of Sentana (1995). The authors considered the first
and second moments of their asMA—asGARCH model but did not investigate the third-moment
structure of their model. Because they parameterize the conditional variance, not the conditional
standard deviation, finding analytical expressions for the third-order moments appears difficult.
In fact, it seems that even lower-order moments may not have analytical expressions readily
available. As already suggested, the general conclusions from our models will be applicable to
the asMA—asGARCH model.

It turns out that there is a rather large set of asMA-TGARCH parameter values such that
the marginal distribution of the observations will be skewed. Not all of them are relevant in
the sense that they would correspond to situations experienced in practice. For example, we
may expect the volatility to respond more strongly to negative than it does to positive shocks
of the same size. In order to study the relevance of the parameter combinations in question we
generalize the News Impact Curve (NIC) of Engle and Ng (1993) in order to account for the
structure in the conditional mean. For this purpose we define a new concept, the Shock Impact
Curve (SIC), that describes the impact of a shock on the conditional mean squared error of the
series, and apply it for our purposes.

The paper is organized as follows. The general model is introduced in Section 2 and its
moment structure up to the third moments derived in Section 3. Our two special cases are
presented in Section 4. The shock impact curve is defined and applied in Section 5. Conclusions



from this study can be found in Section 6. Technical derivations and expressions of the moments
are contained in the Appendix.

2 The general model

Consider a general, conditionally heteroskedastic model in which we let y; be generated by

Y = Wt e, (1)
gt = Ztht (2)

where i is the conditional mean of y; given F;_; (the sigma-field generated by the available
information until time ¢ — 1), h? is the conditional variance of y; given F;_1, and {z} ~ 4id(0,1)
with a density function that is symmetric around zero. The processes u; and h; are measurable
with respect to F;_1.

Throughout the paper the error process {e;} of (1) is assumed to be a conditionally het-
eroskedastic white noise sequence with

he = w4 e(z_1)hd 4, d=1or2 (3)

where ¢(z;) is a well-defined function and h¢ > 0 for all . To ensure this, suitable parameter
restrictions must be imposed. The moment properties of the family of GARCH models defined
by (3) were investigated in He and Terasvirta (1999). It nests many of the models in the family
of GARCH models of Hentschel (1995). For instance, setting d = 2 in (3) and

c(z) =az’ + 3
yields the standard GARCH model of Bollerslev (1986). Setting d =1 and
c(zt) = a|z| + B+ a’z (4)

equation (3) defines the TGARCH model. By setting a* = 0, the model collapses into the
AVGARCH model. Furthermore, for d = 2, the GJR-GARCH model and the nonlinear GARCH
(NLGARCH) model of Engle (1990) are nested in (3). Note that any GARCH model defined by
equation (3) is symmetric in its response to shocks if and only if ¢(2;) in (3) is an even function
of z.

3 Stationarity and moments

We begin by considering the strict stationarity and the moment structure of the general model
(1)—(3) without assuming any specific parametric form for the conditional mean or variance.
The following theorem states conditions under which the process {¢;} defined by equations (2)
and (3) is strictly and md-order stationary.

Theorem 1 If E|2)¢| < oo and Ec(z)* < 1 for some A € (0,1], then there exists a unique
Ad-order stationary solution to (2) and (3). The solution is strictly stationary and ergodic. If
E|z™| < 00, then the necessary and sufficient condition for the existence of the mdth moment
of the solution {e;} in (2) is Ec(z)™ < 1 where m is a positive integer.



For a proof, see Theorems 2.1 and 2.2 in Ling and McAleer (2002).

Assume now that {y;} is strictly stationary with finite third-order moments and set ~; =
E(yt—Ey:)" and ;5 (k) = Cov(y, yg_k), i,7 > 1. The unconditional mean and variance are Ey; =
Eu; and 7o = Varp, + Ee?, respectively. The autocovariances are v11(k) = Cov(uy, pi—p) +
Fuei_j where k > 1.

The third moment and third-order cross-moments of the general model (1) and (2) are given
by

Vs = E(u— Ew)® + 3Cov(p,e7)
You(k) = Cov(ui, i) + Cov(pi—i,e;) + Epjes—y + Bejerg,  k>1
(k) = Cov(us, pi—g) + Cov(pus, ;1) + 2Buepu—per—r, k> 1.

Define the unconditional skewness of y; as k3 = 73/ (72)3/ 2. The following proposition gives
general conditions that yield zero skewness.

Proposition 2 Consider the model (1) and (2) that is third-order stationary. The conditions
E(pe — Epg)® = 0 and Cov(ug,€2) = 0 are sufficient for k3 = 0.

When the conditional mean is time-invariant in (1), the conditions in Proposition 2 are
satisfied and thus v3 = 0. In this case, the only nonzero cross-moments are v91 (k) = EE%Et_k, k>
1. Therefore, only assuming that the conditional second moment is time-varying does not imply
unconditional skewness. However, assuming that the conditional mean is time-varying as well
results in the skewed marginal distribution for the observations. Noting this is important because
one motivation for extending standard symmetric GARCH models to include the leverage effect
has been to create asymmetric unconditional densities, see for instance Lambert and Laurent
(2002). Engle and Patton (2001) also write that ‘the asymmetric structure of volatility generates
skewed distributions of forecast prices’. But then, unconditional skewness may also be obtained
by temporal aggregation as shown in Meddahi and Renault (2004). In this paper we shall not
consider that possibility and concentrate ourselves on models with a time-varying conditional
mean.

4 Special cases

For simplicity, our focus will be on first-order models which are often found to be adequate in
modelling volatility in returns. We shall investigate two such models and demonstrate their
ability to exhibit asymmetric or nonlinear behaviour. The first model is the asymmetric moving
average model of Wecker (1981). The second one (GARCH-M) introduces the conditional
standard deviation or variance into the conditional mean. We choose the TGARCH model
for the error process {e;}. This choice is dictated by our goal which is to obtain analytical
expressions for all unconditional third-order moments and cross-moments. Such expressions
give an idea of how asymmetries and nonlinearities in conditional first and second moments
contribute to the unconditional third moments. Since the TGARCH model is asymmetric in its
response to shocks and nests the symmetric AVGARCH model, it is possible to isolate the effect
of this asymmetry on the unconditional skewness. Other GARCH models are likely to be similar
to the TGARCH model in this respect, but because most of them lack analytical expressions
for third-order moments, one has to rely on simulations to obtain numerical values for them.!

The possibility of using quantile measures as in Kim and White (2004) for unconditional skewness is yet to
be explored.



Whenever possible, we try to take examples of models such as the symmetric GARCH model of
Bollerslev (1986), the asymmetric QGARCH one of Sentana (1995), or the GJR-GARCH model
of Glosten, Jagannathan, and Runkle (1993). In fact, the results in the Appendix apply to the
general family of GARCH models (3). However, fully explicit expressions for third moments are
provided only for the TGARCH or the AVGARCH model and not for models for which d = 2
in (3). Note that the QGARCH model is not a member of the family defined by equation (3).

4.1 First-order asMA model with TGARCH or AVGARCH conditional stan-
dard deviation

4.1.1 Definition

The equation
pe = e + T (e — Eef) (5)
+

where €7 = max(0,&;) and &; ~ iid(0,0?), defines the first-order asymmetric moving average
(asMA) process of Wecker (1981). For ¢ # 0 the model is asymmetric and linear in its response
to shocks. The model (5) nests a first-order MA process which is symmetric and linear. Its first-
order autocorrelation is typically nonzero, whereas the other autocorrelations equal zero if the
errors are homoskedastic. Note, however, that for ¢ = —2¢, all autocorrelations of y; equal zero
and it is not possible to empirically distinguish the asMA process from white noise by looking
at the autocorrelations. As Wecker (1981) pointed out, this model is suitable for situations in
which the response of the agents to a positive shock (e.g., a price change) is different from their
response to a negative shock of the same size.

Since shocks to volatility are also important, our complete model will be the asMA-TGARCH
model. We shall also be interested in the effect of restricting the conditional standard deviation to
follow a symmetric AVGARCH model. Subsequently, we investigate the third-moment structure
of the model when the conditional mean is simplified to only contain either the asymmetric
component (¢ = 0), the symmetric MA component (¢* = 0), or neither (¢ = ¢ = 0). In all
these cases we consider both the TGARCH and the AVGARCH specifications for the conditional
second moment.

4.1.2 Third-moment structure of the asMA-TGARCH model

The third-moment structure of the first-order asMA-TGARCH model is characterized by Lem-
mas 2 and 5. It is apparent from the rather involved expressions that this model accommodates
a rich variety of third-order moment structures.

For an asMA process combined with a model for conditional heteroskedasticity the autoco-
variances 711 (k) are nonzero for all lags k > 0, as also pointed out in Brannés and de Gooijer
(2004). This is the case for both symmetric and asymmetric GARCH processes, see Lemma 1 in
the Appendix. After a peak at the first lag, the values of autocorrelation are very low and the
decay rate is slow. Brannés and de Gooijer (2004) claimed that it may be empirically possible
to discriminate between an asMA(q) model with a constant conditional variance and one with a
GARCH process for the conditional variance because of the difference in autocovariances. The
former process has nonzero autocovariances up until lag ¢, and zero thereafter, whereas the lat-
ter has nonzero autocovariances for all lags. However, at least for the first-order asMA-GARCH
model the autocovariances are very close to zero after first lag, which complicates distinguishing
between them this way.



Since the expressions for the third-order moments are quite involved we illustrate the sit-
uation numerically. The following figures are produced using the standardized Gaussian error
distribution. Figure 1 shows the amount of unconditional skewness that can be obtained from
an invertible asMA-TGARCH process for certain parameter values of the conditional mean.
Invertibility of the asMA process has to be checked using simulations, see e.g. Brannés and
de Gooijer (1995). Each curve represents the level of unconditional skewness for a fixed value of
¢* and a suitable range of values for ¢. When |¢| is large, the invertibility condition restricts
the asymmetry parameter ¢ and thus limits the achievable amount of skewness.

When the conditional standard deviation is restricted to follow the AVGARCH model, some
of the expressions in Lemma 2 simplify, but not substantially. The resulting moment struc-
ture is given in Corollary 1. In this case the cross-moments Ee%st_k, Est_kszr , Ee—:t_kej' 2
Est_kst_k_lazr, and Eat_kazrszr_k_l, k > 1, equal zero, which can be seen from the expres-
sions in Lemma 5 and Corollary 5. Thus the third-moment structure is still rich as long as
the conditional mean is defined by an asMA model. In particular, all third-order moments are
nonzero, whether or not the conditional standard deviation exhibits asymmetry. However, there
is a reduction in the amount of skewness when the conditional standard deviation is no longer
asymmetric, which is seen by comparing the top and bottom panels in Figure 1. What seems
to have an even larger effect is the increase in the persistence of the GARCH process, which
increases the skewness of the marginal distribution whenever ¢ # 0.

Next consider the case where ¢ = (0. It can be seen from the expressions in Corollary 2 that
the third-moment structure is still rather rich and complex. It is, however, considerably simpler
than in the case of ¢ # 0. When the errors are restricted to follow a symmetric AVGARCH
model, the expressions simplify somewhat, see Corollary 3, but again not very much. Expressions
in Lemma 5 and Corollary 5 show that Ee?e;_j = Est_ksz’ = Est_ksjz = Est_ksjej'_k_l =0,
k > 1. Thus, regardless of the conditional standard deviation, an asymmetric conditional mean
leads to a skewed marginal distribution for y; and nonzero third-order cross-moments. An
obvious conclusion is that asymmetry of the conditional mean plays a very influential role in
determining both the sign and the amount of skewness in this distribution.

4.1.3 First-order M A model with TGARCH or AVGARCH conditional standard

deviation

A rather simple third-moment structure follows when ¢t = 0 in (5) while the conditional
standard deviation follows the TGARCH model. This is evident from the results in Corollary 4.
In this case we still have Ey? # 0. An interesting feature is that Eyly;_r # 0, k > 1, whereas
Eytyf_ i = 0 for & > 1. It should also be noted that the only nonzero cross-moment of ¢; is now
Ee?¢;_y,. In fact, kg = 0 if and only if Ec?e; 1 = 0, Furthermore, also assuming ¢ = 0 in (5),
i.e. having u; = 0, forces the unconditional skewness to zero regardless of the asymmetry in the
conditional second moment. In this case the only nonzero cross-moments are Eytzyt_ = Eafst_ ks
k > 1. These results may be useful in specifying asMA-TGARCH models.

The thick curve in Figure 1 represents the skewness as a function of ¢ for ¢™ = 0. In
the top panels it intersects the x-axis at ¢ = 0 in accordance with the results mentioned after
Proposition 2.

As an aside, consider a model whose conditional mean specification is a first-order AR
process: py = ¢y;—1 in (1). In this case
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Figure 1: asMA-TGARCH: Unconditional skewness of y; as a function of ¢ for the following values of ¢+
and the TGARCH parameters: lines: ¢ = 1.0,0.75,..., —1.0 (top to bottom), thick line corresponds to
¢t = 0; TGARCH parameters: w = 0.005, a = 0.05, 3 = 0.90 (left-hand panels), 8 = 0.94 (right-hand
panels), a* = —0.04 (top panels), and a* = 0 (bottom panels).
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Clearly k3 = 0 if and only if Ee?e;_j, = 0 for all k > 1. The unconditional skewness emerging
from this model is very similar to that of the MA-TGARCH model already discussed. In Figure 2
the unconditional skewness is plotted as a function of the mean parameter ¢ for a range of values
for B and keeping the other TGARCH parameter values fixed. It can be concluded that the
amount of skewness obtained from a model with a linear and symmetric conditional mean is not
large and the effect of increasing persistence in the GARCH process on skewness is negligible.

We now turn to the analytic form of the cross-moment Fe?e;_;, in Corollary 4. When the
conditional standard deviation is defined as a TGARCH process, it follows that

k—1
Befer_y, = 2wa*ER} Y (Ec(z))* ' (Be(20)?) + 20% (Ee(z)?) ' Bc(z)||*ERY, k> 1,
7=0

where the expressions for the moments of ¢(z;) and h; are given in Lemma 5. Hence Ec?e;_j, # 0
for a* # 0. Assuming o* = 0 yields Ee?¢;_; = 0, k > 1, which implies that the third moment
and all the third-order cross-moments in Corollary 4 are zero. In fact, any parameterization
of hy or h? that has the property Es?e; , = 0 for k > 1 gives the same result. As stated
in Corollary 5, all symmetric GARCH models belonging to the family (3) have that property.
The standard GARCH model of Bollerslev (1986) is an example of such a case. As further
examples, consider the nonlinear models where the errors are governed by a first-order QGARCH
process h? = w + ag? | + Bh? | + a*e;_1 (Sentana, 1995) or by a GJR-GARCH process h? =



Figure 2: AR-TGARCH: Unconditional skewness of y; as a function of ¢ for the following values of
the TGARCH parameters: z-axis: ¢, y-axis: unconditional skewness, w = 0.005, « = 0.05, 8 = 0.94
(solid line), 8 = 0.90 (dashed line), a* = 0.04 (left), o* = 0 (middle), and a* = —0.04 (right).

0.9 0.9 0.9
0.7 0.7 0.7
0.5 0.5 0.5
0.3 0.3 0.3
0.1 0.1 0.1
-0.1 -0.1 -0.1
-0.3 -0.3 -0.3
-05 -05 -05
-0.7 -0.7 -0.7
-0.9 [0} -0.9 [0} -0.9
-1 -0.75-05-025 0 025 05 075 1 -1 -0.75-05-025 0 025 05 075 1 -1 -0.75-05-025 0 025 05 075 1

w4 ag?_| + Bh?_| + a*ef? (Glosten, Jagannathan, and Runkle, 1993). If the errors follow a
QGARCH process then the expression for Ee?e;_, is given by

Eele, . = of(a+p)FLERE, k>1,
where
w
Eh? = —— .
t 1—(a+p)

If the errors follow a GJR-GARCH process, d = 2 and ¢(z;) = az? + f + a*z 2 in (3),
Eele, . = o (a+ B+ Bz EBER], k> 1.

An explicit expression for Eh3 is not available but is known not to be trivially zero. Also in these
cases, Fe?e;_j, # 0 if and only if o* # 0. Thus, if the conditional mean is symmetric and linear,
and the conditional second moment is symmetric, the unconditional marginal distribution for
Yz is symmetric around zero. In the bottom panels of Figure 1, the thick line corresponding
to ¢ = 0 illustrates this finding. It is emphasized that the results just discussed are only
obtained if ¢ # 0. Thus, at least some linear dependence in {y;} is necessary for skewness in
the unconditional distribution of ;.

We may also note that in the case of the first-order asQGARCH model h = w + ag?_; +
Bh? | +afe 1+ oz**szr_ , (Brénnés and de Gooijer, 2004), the expression for Ec?e,_}, becomes
very complicated, and it does not seem possible to derive an analytical form for it. However,
this moment seems to be nonzero for k > 1 because its components are not trivially zero.?

4.2 GARCH-in-mean model

Next we consider a group of models that represent nonlinear models for the conditional mean.
If p; is a function of h; such that

pe=¢(h —ER]),  §=Tor?2 (6)

we have the GARCH-M model. In this case the model for the conditional mean is nonlinear
and the degree of asymmetry is controlled by the asymmetry of the GARCH process.

2In fact, it seems that there is no explicit expression for any moment Ee}", m > 1, for this model — at least it
seems that there does not exist an analytic form for EhZ.



It is well known that when the conditional standard deviation, conditional variance or any
other nontrivial function of these, enters the conditional mean, v11(k) # 0 for k& > 1 if v < oc;
see Hong (1991) and Lemma 3. It may be less well known that in this case y3 # 0. As an
example, consider the TGARCH-M model (1)-(4) and (6) so that Ey; = 0. Since h{ is a
positive-valued variable and its distribution is asymmetric, it follows that Ey} # 0. The third
moment and third-order cross-moments of the third-order stationary TGARCH-M process are
given by Lemma 4. The unconditional skewness from a TGARCH-M model with § = 1 and § = 2
are plotted in Figure 3 as a function of ¢. The figure shows that the range of possible skewness
increases with the persistence of the GARCH process. It is also seen that when the conditional
standard deviation enters the conditional mean, the distribution becomes more skewed than it
would be if the conditional mean were a function of the conditional variance. Assuming ¢ = 0
implies 3 = 0 regardless of any asymmetry in the conditional standard deviation or conditional
variance. This is also seen from Figure 3 where all the lines intersect the z-axis at ¢ = 0. In this
case the only nonzero cross-moments are Eyfyt_k = Eh%st_k; see the discussion in the previous
subsection.

Assuming that h; is defined by the standard AVGARCH model, the expressions for the
moments simplify somewhat. Then Eh?e;_j, = FEhiei_, = Ehihy_pei—r, = 0, k > 1, as can
be seen from the expressions in Lemma 5 and Corollary 5. However, provided that ¢ # 0, all
third-order moments are nonzero regardless of whether the conditional standard deviation is
symmetric or asymmetric. The amount of skewness is considerably smaller than in the case of
the TGARCH-M model, which can be seen by comparing the top and bottom panels of Figure 3.

This example demonstrates that the third-moment structure in the case of the TGARCH-M
or AVGARCH-M model is richer than it is in MA-TGARCH and MA-AVGARCH models,
respectively. It can be concluded that both asymmetric and nonlinear responses to shocks in
the conditional mean play an important role in producing skewness in the marginal density of

Yt-

5 Shock impact curves

Engle and Ng (1993) defined the news impact curve as a function that describes the impact
of a shock €; 1 on current volatility expressed as conditional variance htz. The shock is the
component of the return y; that can be characterized as ‘news’ to the agents in the following
model:

Yo = f(Wi—j,e1—j55 > 1) + e

In this model, the conditional mean F; 1y: is not constant over time but is a function of past
shocks. It is assumed that the conditional mean component is not news but rather structure
known to the agents. For this reason, the NIC is measuring the impact of a shock on the
conditional variance of the return. Nevertheless, for the purposes of this paper it will be useful
to introduce a slight extension that also involves the shock coming through the conditional
mean. It is called the Shock Impact Curve (SIC) and describes the impact of the shock on the
conditional mean squared error of the return. The SIC is defined as follows:

E'Syi = pi(o) + hi(o) (7)

where (o) and h?(o) are the conditional mean and variance with elements in F; o replaced
with their unconditional counterparts, for instance Var,_x_1yi(—r = hf_ x> B > 1, is replaced with
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Figure 3: TGARCH-M: Unconditional skewness of y; as a function of ¢ for the following values of
§ and the TGARCH parameters: § = 1 (left-hand panels) and § = 2 (right-hand panels), TGARCH
parameters: w = 0.005, & = 0.05, 8 = 0.94 (solid line), 8 = 0.90 (dashed line), o* = +0.04 (top panels),
and o = 0 (bottom panels).
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o2 £ Var v = Ep? + ER?. It may be argued that the correlation structure of {y;} is known
to the agents, whereby that part of the response does not qualify as news. If this structure is
weak, however, it may be difficult in practice to separate this effect from the actual ‘news’. If
ut = 0, SIC coincides with NIC. Conversely, the impact of ‘news’ and that of a ‘shock’ on the
next return can have rather different shapes.

The SIC can be used to study the effect of a shock on both the conditional mean and the
conditional variance. While one may expect negative ‘news’ to have a stronger effect on volatility
than positive ones, it may be interesting to see what the situation is when the unconditional
mean is assumed to have some structure. For the asMA process in (5)

13 (0) = 9THEef)? + ¢%el — 20¢Ter1 Eef + (672 + 2001 )e ) — 2072 Eef

In Figure 4 the top panels show the shock impact curves for a selection of parameters for the
asMA process. The solid line represents the case in which the conditional mean only responds
to negative shocks, whereas the other two curves represent models in which the effect of positive
shocks is pronounced. Consider first the top right-hand panel, look at the dashed line (¢ = 0,
¢t = £0.2) and compare it with the corresponding one in the top left-hand panel. Even if
the conditional mean only responds to positive shocks, the impact of a shock can be larger for
negative shocks than for positive ones as long as the persistence of the GARCH process is high.
The bottom panels show the SIC when the conditional mean either follows an MA process or
is constant. If the conditional mean is a linear MA process, the response to shocks due to the

11



Figure 4: asMA-TGARCH: Shock impact curves for different values for parameters for the conditional
mean, TGARCH parameters: w = 0.005, & = 0.05, § = 0.90 (left-hand panels), 8 = 0.94 (right-hand
panels), and o* = —0.04.
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conditional mean is symmetric, u?(c) = ¢?c? ;. In this case the effect of the conditional mean
dominates the effect of the conditional variance so that the impact of a shock on the mean
squared error is almost symmetric even if the GARCH process is asymmetric. A comparison of
the solid lines in the bottom left and right-hand panels results in a similar conclusion in that the
increased persistence in the GARCH process emphasizes the role of the conditional variance in
the shock impact curve. Replacing the TGARCH process with a different asymmetric GARCH
process has virtually no effect on the shape of the curves in Figure 4. A symmetric GARCH
process would somewhat dampen the impact of negative shocks, in which case the curves in the
bottom panels would be symmetric around zero.
For the GARCH-M process in (6),

13 (0) = $*(ER)? + ¢*h® — 2¢°hl EhY

In this case, the effect entering through the conditional variance is the one controlling the
response to shocks. In Figure 5 the shock impact curves are plotted for TGARCH-M model with
9 = 1and 2in (6). Comparing the left- and right-hand panels shows that increased persistence in
the TGARCH process magnifies the impact of shocks. The asymmetry of the impact is inherited
from the GARCH process. Replacing the TGARCH process with a symmetric GARCH process
produces shock impact curves that are symmetric around zero.
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Figure 5: TGARCH-M: Shock impact curves for different values for parameters for the conditional
mean, 0 = 1 (top panels), § = 2 (bottom panels); TGARCH parameters: w = 0.005, « = 0.05, 5 = 0.90
(left-hand panels), 8 = 0.94 (right-hand panels), and o* = —0.04.
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6 Conclusions

In this paper we show how different parameterizations of the conditional mean and variance
contribute to the asymmetry in the unconditional distribution of y;. This is important because
marginal distributions of return series often appear skewed. It is thus useful to know the structure
of the unconditional distribution implied by a model that has asymmetries or nonlinearities in
the first and the second conditional moment.

The models we have considered in detail are the asMA-TGARCH and the TGARCH-M
model. In the former model, both the conditional mean and the conditional standard deviation
are asymmetric around zero. The latter model even has a nonlinear mean. We derive the
analytic expressions for the third-order moment structure of these models and consider various
special cases of the asMA-TGARCH model in which the mean and/or the standard deviation
specification is restricted to be symmetric. Similar considerations are made in the case of the
TGARCH-M model. In general, we find that asymmetries or nonlinearities in the conditional
mean are of greater importance than they are in the conditional standard deviation or variance
when it comes to generating skewed marginal distributions. If the conditional mean is symmetric
and linear, then the unconditional skewness can in our case only follow from the asymmetry of
the conditional standard deviation or variance. In that situation, however, the third-moment
structure of the variable of interest is no longer particularly flexible. But then, if the conditional
mean is asymmetric or nonlinear, the distribution of 1; can be even strongly skewed regardless

13



of whether or not the conditional standard deviation or variance is symmetric or asymmetric.

It may be of interest to see how the past news affect not only the current volatility but mag-
nitude of today’s returns. We introduce a definition of the shock impact curve which describes
the impact of a shock on the mean squared error of the return. It combines the effects of the
conditional mean and the conditional standard deviation or variance on the squared returns.
The conditional mean can strongly dominate the shape of the news impact curves.

It would be interesting to consider a wider variety of specifications for the conditional mean
and variance and derive the corresponding expressions in these cases. However, for many models,
such as the standard GARCH model and some of its extensions, analytical expressions for third-
order moments are not available. Our simulation experiments show that the same conclusions
can be drawn when the TGARCH or AVGARCH process is replaced with other GARCH models
that parameterize the conditional variance instead of the conditional standard deviation.

Finally, because a skewed marginal distribution can be a result of some type of asymmetric
or nonlinear behaviour in the process for the conditional mean, testing for asymmetries and
nonlinearities in the conditional mean is important. If an asymmetric or nonlinear model is
found suitable, this may have implications on the unconditional third-moment structure of the
process. Of course, any comparison of the unconditional moments estimated from the data
with the moments implied by the fitted model (plug-in estimation) is dependent on simulations
whenever analytical expressions for the moments of interest are not available.

14



References

BOLLERSLEV, T. (1986): “Generalized autoregressive conditional heteroskedasticity,” Journal
of Econometrics, 31, 307-327.

BRANNAS, K., anDp J. G. DE GOOLJER (1995): “Invertibility of nonlinear time series models,”
Communications in Statistics: Theory and Methods, 24, 2701-2714.

(2004): “Asymmetries in conditional mean and variance: Modelling stock returns by
asMA—-asQGARCH,” Journal of Forecasting, 23, 155—171.

BRANNAS, K., AND N. NORDMAN (2003a): “An alternative conditional asymmetry specification
for stock returns,” Applied Financial Economics, 13, 537-541.

(2003b): “Conditional skewness modelling for stock returns,” Applied Economic Letters,
10, 725-728.

CAMPBELL, J. Y., aND L. HENTSCHEL (1992): “No news is good news,” Journal of Financial
Economics, 31, 281-318.

CHEN, J., H. HonG, anp J. C. STEIN (2001): “Forecasting crashes: trading volume, past
returns, and conditional skewness in stock prices,” Journal of Financial Economics, 61, 345—
381.

EncLE, R. F. (1990): “Discussion: Stock market volatility and the crash of 87, Review of
Financial Studies, 3, 103—106.

ENGLE, R. F., D. M. LiLIEN, anD R. P. ROBINS (1987): “Estimating time varying risk premia
in the term structure: the ARCH-M model,” Econometrica, 55, 391-407.

ENGLE, R. F., anp V. K. Na (1993): “Measuring and testing the impact of news on volatility,”
Journal of Finance, 48, 1749-78.

ENGLE, R. F., anp A. J. PATTON (2001): “What good is a volatility model?,” Quantitative
Finance, 1, 237-245.

GLOSTEN, L. W., R. JAGANNATHAN, AND D. E. RUNKLE (1993): “On the relation between the

expected value and the volatility of the nominal excess return on stocks,” Journal of Finance,
48, 1779-1801.

GONZALEZ-RIVERA, G. (1998): “Smooth-transition GARCH models,” Studies in Nonlinear
Dynamics and Econometrics, 3, 61-78.

HAGERUD, G. E. (1997): “Specification tests for asymmetric GARCH,” SSE/EFI Working
Paper Series in Economics and Finance No. 163.

HANSEN, B. E. (1994): “Autoregressive conditional density models,” International Economic
Review, 35, 705-730.

HaRrris, R., C. C. KUQUKOZMEN, AND F. YILMAZ (2004): “Skewness in the conditional
distribution of daily equity returns,” Applied Financial Economics, 14, 195-202.

HARVEY, C. R., aAND A. SIDDIQUE (1999): “Autoregressive conditional skewness,” The Journal
of Financial and Quantitative Analysis, 34, 465—487.

15



HE, C., anp T. TERASVIRTA (1999): “Fourth moment structure of the GARCH(p,q) process,”
Econometric Theory, 15, 824-846.

HENTSCHEL, L. (1995): “All in the family: Nesting symmetric and asymmetric GARCH mod-
els,” Journal of Financial Economics, 39, 71-104.

Hong, E. P. (1991): “The autocorrelation structure for the GARCH-M process,” Economics
Letters, 37, 129-132.

HonNg, H., anp J. C. STEIN (2003): “Differences of opinion, short-sales constraints, and market
crashes,” The Review of Financial Studies, 16, 487-525.

HUENG, C. J. (2006): “Short-sales constraints and stock return asymmetry: evidence from the
Chinese stock markets,” Applied Financial Economics, 16, 707-716.

JONDEAU, E., aAND M. ROCKINGER (2006): “The impact of news on higher moments,” Unpub-
lished manuscript.

Kim, T.-H., anp H. WHITE (2004): “On more robust estimation of skewness and kurtosis,”
Finance Research Letters, 1, 56-73.

LAMBERT, P., aAND S. LAURENT (2002): “Modelling skewness dynamics in series of financial
data using skewed location-scale distributions,” Discussion Paper, Institut de Statistique,
Louvain-la-Neuve.

LiNgG, S., aND M. MCALEER (2002): “Stationarity and the existence of moments of a family of
GARCH processes,” Journal of Econometrics, 106, 109-117.

MEDDAHI, N., AND E. RENAULT (2004): “Temporal aggregation of volatility models,” Journal
of Econometrics, 119, 355-379.

PAGAN, A. R., aND G. W. SCHWERT (1990): “Alternative models for conditional stock volatil-
ity,” Journal of Econometrics, 45, 267-290.

PEIRO, A. (2002): “Skewness in individual stocks at different investment horizons,” Quantitative
Finance, 2, 139-146.

(2004): “Asymmetries and tails in stock index returns: are their distributions really
asymmetric?,” Quantitative Finance, 4, 37-44.

SCHWERT, G. W. (1989): “Why does stock market volatility change over time?,” Journal of
Finance, 44, 1115-1153.

SENTANA, E. (1995): “Quadratic ARCH models,” The Review of Economic Studies, 62, 639—
661.

TAYLOR, S. J. (1986): Modelling Financial Time Series. Wiley, Chichester.

WECKER, W. E. (1981): “Asymmetric time series,” Journal of the American Statistical Asso-
ctation, 76, 16-21.

ZAKOIAN, J.-M. (1994): “Threshold heteroskedastic models,” Journal of Economic Dynamics
and Control, 18, 931-955.

16



Appendix

Lemma 1 (First and second-moment structure of asMA) Consider an asymmetric MA
process (1)-(3) and (5) that is second order stationary. The unconditional first and second-order
moments and cross-moments of y; are given by

Eyt = 07 (8)
Vary, = Eui+ Ee}, (9)
y11(k) = Eupp + Epeep, k2>1, (10)

where
Eu} = ¢*Bel + (200" + ¢T3 Eef? — ¢12(Be/)?
Eupe—, = ¢¢T By pef + ¢t Befel , — o2 (Eef)?
¢Ee2 + ¢gtEs?, k=1
Euerr = n ! i !
¢ Eer_rel_q, k> 1.

The moments of &; and € can be found in Lemma 5.
Proof. The results are readily obtained by straightforward algebra. m
Lemma 2 (Third-moment structure of asMA) Consider an asymmetric MA process (1)-

(8) and (5) that is third-order stationary. The unconditional third-order moments and cross-
moments of y; are given by

vs = Eu;+3Eme;, (11)
you(k) = Eupiu_g+ Ew_gel + Epler g+ Eciery, k>1 (12)
ma2(k) = Bpupi g + Bpei_y + 2B ke, k>1 (13)

where

Eud = (30%¢T 430072 + ¢T3 Ee? — (60T + 30T Ee[?Eef — 3¢*¢pT Ee? Eef
+2¢ 3 (Bef)?

Epim—r = ¢*Eefeii+ (20°¢" + ¢¢*)Eep_pe)”
+¢?¢T (Beiel |, — EelEef) + (20072 + ¢7°)(Bef el |, — Ee/?Ee))
—20¢ 2 FBey_yef Eef — 2013 (Fefe  EBel — (Eef)?)

By, = 6°07(Bej_ el — Ee{Bef) + (200" + ¢7°)(Beff e[%, — Ee[?Eeff)
—20¢ 2 FBey_yef Bef — 2013 (Fefef el — (Eef)?)

Eue? = ¢Feley 1+ ¢t (Eelel | — EelEe/)

Eut_k&?? = qﬁEst&?t b 1+¢+(E€t€t k1 EE?EEZF)
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F (a3 _ 2t _

Eue?, - ¢t (Fe EstEst )s 2 k=1

¢t (Ee? (h— 1) — Eg?Eef), k>1
(200" + ¢T2)Ee® — 200t Ee?Eef — 2012 Ee?Fef, k=1

2 _

Epieer = 4 (200" + ¢T3 Ee,_g_1)e/” — 2012 Eey__y)e; Bef
+¢*Eeer(j-1), k>1
(¢¢t (Beie) | — Be}Eef + Bey1f?) + ¢+2(Be/’e) | — B/’ Ee})
Epgpy_rerx = { TO0°Eeier, k=1

k(JS(JTFE‘Q_(k_l)a%g_k@j_ + ¢+2(E5t—(k—l)€j€:—_k — Eet_(k_l)Ej_Egj_), k> 1.
The moments of &, and €; can be found in Lemma 5.

Proof. The results are readily obtained by tedious but straightforward algebra. m

Corollary 1 (Third-moment structure of asMA with symmetric GARCH) Consider an
asymmetric MA process (1)-(3) and (5) that is third-order stationary. Furthermore, assume that
c(z) in (3) is even with respect to z;. The unconditional third-order moments and cross-moments
of y¢ are given by (11)-(18) in Lemma 2 where
B = (3¢°07 + 3067 + 07" B — (6097 + 3¢ Bef* Bef
—3¢?¢T EelEef + 2073 (Eef)?

Bpiu-r = ¢°07(Beje/ ) — Be{Bel) + (20912 + ¢7°)(Be/ %) | — BEe/*Eef)
—207(Bef ey Bef — (Bef )?)

Bugiiy, = ¢*¢7(Bel_yef — EeEef) + (200" + ¢7°)(Beff %, — Eef*Eef)
_2¢+3(E6:_5t kEet - (Eet )3)

Ewe; = ¢*(Bejel | — Ee{Ez])
Bu_ye; = ¢V (Eejef, | — EejEe})
+3 2 _
Euel, = *(Ee Est Egf), k=1
Y(Be? el | — EelEef), k>1
5,2 B 2¢¢+ + ¢t Eef? — 29197 B} Eef — 2¢72Ee*Fef, k=1
Hist=k = k>1
5 | ¢oT(Eetel | — EelEef + Bey_1ef?) + ¢72(Bef e — BEefPEef), k=1
Htplt—kEt—k = 0 k1

The moments of ; and &; can be found in Lemma 5.
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Corollary 2 (Third-moment structure of asMA with ¢ = 0) Consider an asymmetric MA
process (1)-(8) and (5) with ¢ = 0 that is third-order stationary. The unconditional third-order
moments and cross-moments of y; are given by (11)-(13) in Lemma 2 where

Epj
Bt
Eppi

E,utsf
Epy_ye;

Eﬂtf??—k
Eufey

Epgpis—res—k

¢T3 (Bef® — 3B 2Bl + 2(Eef)?)

¢*(Bef el — Bef?Bel) — 2073 (Bef el Beff — (EBef)?)
¢T3 (Befel? — Eel?EBef) — 2073 (Fefef | BEef — (Eef)?)
¢* (Bejely — BejEel)

¢+(E5t5t o1 — Be?Ee})

ot (Fe — EggEaj) k=1
¢T(Ee? el | — EelEe), k>1
¢t (Be® — 2Eat+2Egt ), k=1
¢T2(Bey_ kat 1— 2F¢;_ kst 1E5t ), k>1

¢t (Bef?ef | — B2 Ee)), k=1
<;5+2(Eat KEL_ 1€Zrk 1 Est_kszr_lEsj), k> 1.

The moments of &, and €; can be found in Lemma 5.

Corollary 3 (Third-moment structure of asMA with ¢ =0 and symmetric GARCH)
Consider an asymmetric MA process (1)—(3) and (5) with ¢ = 0 that is third-order stationary.
Furthermore, assume that c¢(z¢) in (3) is even with respect to z;. The unconditional third-order
moments and cross-moments of y; are given by (11)-(18) in Lemma 2 where

By}

B ik
By
Eue;
BEuy_ie}

Bueiy,
Euiei i

Epgpiy—ret—p

¢T3 (Ee® — 3Ee?Eef + 2(Be/)?)

¢ Eef el — 9T Ee?Bef — 293 (Eefef | Eef — (Eef)?)
¢PPEefet? — o3 Ee P Bef — 2073 (Bef et | Bef — (Bef)?)
o (Eet Ch Ee?Eezr)

¢t (Bejel | — BelEe])

{¢+(E€f’ — EeEe)), k=1
¢ (Be} yei ) — EefBef), k>1

{¢+2(Est+3 —2Ee/%Ee}), k=1

0, k>1
¢+t (Bef el | — Esf?Eef), k=1
0, k> 1.

The moments of &, and € can be found in Lemma 5.
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Corollary 4 (Third-moment structure of MA) Consider an asymmetric MA process (1)-
(3) and (5) with ¢* = 0 that is third-order stationary. The unconditional third-order moments
and cross-moments of y; are given by (11)-(13) in Lemma 2 where

Ep} = Epu;—y = Bpue;_ =0
and

E,utef = ¢E€?5t_1

Euipm—r = ¢°Eeiei i
2 _ 2

Eurei = oLeier (o)
0, k=1

Eﬂget—k = 29
¢ Leiey (k-1), k>1
¢*Feleq, k=1

Eppy e = {0 ¢ ks 1

The moments of &, and € can be found in Lemma 5.

If the conditional second moment is parameterized such that Eeiei_ = 0 for all kK > 1
(for instance c(z:) in (3) is symmetric with respect to z:), then the third-order moments and
cross-moments are zero.

Lemma 3 (First and second-moment structure of GARCH-M) Consider a GARCH-M
process (1)-(83) and (6) that is third-order stationary. The unconditional first and second-order
moments and cross-moments of y; are given by (8)-(10) in Lemma 1 where

Eu; = ¢*(ER{® — (ER])?)
Epp—x = ¢*(ERJh]_}, — (ER)?)
E,U,tEt_k = ¢Eh?€t_k.

The moments of €, and hy can be found in Lemma 5.

Proof. The results are readily obtained by straightforward algebra. m

Lemma 4 (Third-moment structure of GARCH-M) Consider a GARCH-M process (1)-
(8) and (6) that is third-order stationary. The unconditional third-order moments and cross-
moments of y; are given by (11)-(13) in Lemma 2 where

Eu} = ¢3(EhY —3ERPER! + 2(ER)?)
Epip—r = ¢°(BWPhy_), —2ERihy_ ER] — Eh} ER + 2(ER{)?)

Eppiy = ¢*(Bhjhiy — 2Ehihi yEhi — Ehi® Bh; + 2(Eh)*)
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Euiei i
Epgprs—res—p
Eutag
Eﬂtfg—k

Euy_ye}

¢*(Ehi’e; 1, — 2ERje; yERY)
O*(ERhi_er-r — Bhier-kEh7)
G(EhST? — ERlEh?)

G(EMEE, ~ B BhY)

G(EhTh)_y — ERERY).

The moments of &, and € can be found in Lemma 5. If the c(z;) in (3) is even with respect to

zt, then Epfe,_j = Epypy—per—k = 0.

Proof. The results are readily obtained by straightforward algebra. For the results for the
symmetric GARCH we make use of Corollary 5. m

Lemma 5 Consider the GARCH model (2) and (8). Suppose that e, is stationary with time-
invariant moments. Provided that the moments exist, the moments of &, &?zr , and hy are given

by
Bem domERT", m even
¢ 0, m odd
B = b, Eh
ponion _ [dmBRPETE, m cven
t Ttk 0, m odd
Eefme )t = df, Ehi'en)
EEt—kEZré‘fgi)k_l = daﬁEhtEt—kEii)kq
where
1 & /m d(m—j)
dm  _ j m=j
Ehtm = 1_ dmo Z <j> ]d(m—j)OEht
j=1
i 2(+) d(n—j)+m _
Ehf”g(+)m _ Z‘;'L:O (?)w‘]d(n—])mEht ) ’ k - 1
o S5m0 (Deldiupo B " Ve k> 1
Ehfe, et | = diyldnEritel)
and
; d(n—j+m) _
Ehglnhdmk _ Z;L:(] (?)wjd(n_j)OEhzl B ) k=
t—-k — i —Jj
Z;L:O (?)Wjd(n—j)OEht " ])hgin(k—l)’ k>1
EhIRd e = diytdy BRI
with k > 1 and where
dij = Ec(z)'zl, i>0,7>0
d- = Ec(zt)iz;rj, 120, >0

v
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In the expressions above the notation (+) means that + is either included in or excluded from
the equation in question. When d = 1 the recursions above yield analytically explicit expressions
whereas for d = 2 some of them involve moments that have to be calculated numerically through
stmulations. If the conditional standard deviation follows the TGARCH process (3) and (4) then

1
1. I . .
dij = > PRTNT] oM et S Bl T >, >0
0<hi,ha,hg<i 12
Fiy +ha+hs=i
h3+j even
1 L
1. — . .
D DI v T A A N
0<hi,ha,hg<i 12T
Fy+ha+hs=i

For the AVGARCH process the expressions for d;; and d;; are obtained by setting o = 0,
restricting the index hy = 0, and defining 0° = 1. Furthermore, if z ~ nid(0,1), then the
moments of z, |z, and the censored variable z;” are given in Lemma 6.

Proof. The results are readily obtained by straightforward but tedious algebra. m

Corollary 5 Consider the GARCH model (2) and (3) in Lemma 5. If the process for the
conditional second moment is symmetric in its response to shocks, then dy., = 0 whenever m is
odd. Hence, of the moments in Lemma 5,

Ehfre = Ehih e, = Ehie, el | =

and
Eeel, = BEef el = Bey_pefell),_| =

where m is odd.

Proof. If ¢(z;) in (3) is an even function of z; then the function c(z;)"2{" is an odd function of
z for any odd m and therefore d,,;, =0. m

Lemma 6 Assume 2z; ~ nid(0,1). Then the moments of z, |z, and z;” are given by

m—1
I i m even
moo= i=1
Bz i odd
0, m odd
Ez",  m even
m _ m—1
Ela|™ = 2 1] i, m odd
1=2
i even
1
Ezf™ = §E|zt|m.

Proof. Straightforward by recursion and by noticing that the censored variable z; can be
expressed as

1
z" = max(0, ;) = 5(!%] + zt).

Note that an empty product is defined to equal one. m
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