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1 Introduction

Modelling volatility in financial time series has been the object of much attention ever since the
introduction of the Autoregressive Conditional Heteroskedasticity (ARCH) model in the seminal
paper of Engle (1982). Subsequently, numerous variants and extensions of ARCH models have
been proposed. A large body of this literature has been devoted to univariate models; see for
example Bollerslev, Engle, and Nelson (1994), Palm (1996), Shephard (1996), and chapters 1–7
of this Handbook for surveys of this literature.

While modelling volatility of the returns has been the main centre of attention, understanding
the comovements of financial returns is of great practical importance. It is therefore important
to extend the considerations to multivariate GARCH (MGARCH) models. For example, asset
pricing depends on the covariance of the assets in a portfolio, and risk management and asset
allocation relate for instance to finding and updating optimal hedging positions. For examples,
see Bollerslev, Engle, and Wooldridge (1988), Ng (1991), and Hansson and Hördahl (1998).
Multivariate GARCH models have also been used to investigate volatility and correlation trans-
mission and spillover effects in studies of contagion, see Tse and Tsui (2002) and Bae, Karolyi,
and Stulz (2003).

What then should the specification of an MGARCH model be like? On one hand, it should
be flexible enough to be able to represent the dynamics of the conditional variances and covari-
ances. On the other hand, as the number of parameters in an MGARCH model often increases
rapidly with the dimension of the model, the specification should be parsimonious enough to
allow for relatively easy estimation of the model and also allow for easy interpretation of the
model parameters. However, parsimony often means simplification, and models with only a
few parameters may not be able to capture the relevant dynamics in the covariance structure.
Another feature that needs to be taken into account in the specification is imposing positive
definiteness (as covariance matrices need, by definition, to be positive definite). One possibility
is to derive conditions under which the conditional covariance matrices implied by the model
are positive definite, but this is often infeasible in practice. An alternative is to formulate the
model in a way that positive definiteness is implied by the model structure (in addition to some
simple constraints).

Combining these needs has been the difficulty in the MGARCH literature. The first GARCH
model for the conditional covariance matrices was the so-called VEC model of Bollerslev, En-
gle, and Wooldridge (1988), see Engle, Granger, and Kraft (1984) for an ARCH version. This
model is a very general one, and a goal of the subsequent literature has been to formulate
more parsimonious models. Furthermore, since imposing positive definiteness of the conditional
covariance matrix in this model is difficult, formulating models with this feature has been con-
sidered important. Furthermore, constructing models in which the estimated parameters have
direct interpretation has been viewed as beneficial.

In this paper, we survey the main developments of the MGARCH literature. For another
such survey, see Bauwens, Laurent, and Rombouts (2006). This paper is organized as follows. In
Section 2, several MGARCH specifications are reviewed. Statistical properties of the models are
the topic of Section 3, whereas testing MGARCH models is discussed in Section 4. An empirical
comparison of a selection of the models is given in Section 5. Finally, some conclusions and
directions for future research are provided in Section 6.
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2 Models

Consider a stochastic vector process {rt} with dimension N × 1 such that Ert = 0. Let Ft−1

denote the information set generated by the observed series {rt} up to and including time t− 1.
We assume that rt is conditionally heteroskedastic:

rt = H
1/2
t ηt (1)

given the information set Ft−1, where the N×N matrix H t = [hijt] is the conditional covariance
matrix of rt and ηt is an iid vector error process such that Eηtη

′
t = I. This defines the standard

multivariate GARCH framework, in which there is no linear dependence structure in {rt}. In
financial applications, rt is most often viewed as a vector of log-returns of N assets.

What remains to be specified is the matrix process H t. Various parametric formulations
will be reviewed in the following subsections. We have divided these models into four categories.
In the first one, the conditional covariance matrix Ht is modelled directly. This class includes,
in particular, the VEC and BEKK models to be defined in Section 2.1 that were among the
first parametric MGARCH models. The models in the second class, the factor models, are
motivated by parsimony: the process rt is assumed to be generated by a (small) number of
unobserved heteroskedastic factors. Models in the third class are built on the idea of modelling
the conditional variances and correlations instead of straightforward modelling of the conditional
covariance matrix. Members of this class include the Constant Conditional Correlation (CCC)
model and its extensions. The appeal of this class lies in the intuitive interpretation of the
correlations, and models belonging to it have received plenty of attention in the recent literature.
Finally, we consider semi- and nonparametric approaches that can offset the loss of efficiency of
the parametric estimators due to misspecified structure of the conditional covariance matrices.
Multivariate stochastic volatility models are discussed in a separate chapter of this Handbook,
see Chib, Omori, and Asai (2008).

Before turning to the models, we discuss some points that need attention when specifying
an MGARCH model. As already mentioned, a problem with MGARCH models is that the
number of parameters can increase very rapidly as the dimension of rt increases. This creates
difficulties in the estimation of the models, and therefore an important goal in constructing
new MGARCH models is to make them reasonably parsimonious while maintaining flexibility.
Another aspect that has to be imposed is the positive definiteness of the conditional covariance
matrices. Ensuring positive definiteness of a matrix, usually through an eigenvalue-eigenvector-
decomposition, is a numerically difficult problem, especially in large systems. Yet another
difficulty with MGARCH models has to do with the numerical optimization of the likelihood
function (in the case of parametric models). The conditional covariance (or correlation) matrix
appearing in the likelihood depends on the time index t, and often has to be inverted for all t in
every iteration of the numerical optimization. When the dimension of rt increases, this is a both
time consuming and numerically unstable procedure. Avoiding excessive inversion of matrices
is thus a worthy goal in designing MGARCH models. It should be emphasized, however, that
practical implementation of all the models to be considered in this chapter is of course feasible,
but the problem lies in devising easy to use, automated estimation routines that would make
widespread use of these models possible.

2.1 Models of the conditional covariance matrix

The VEC-GARCH model of Bollerslev, Engle, and Wooldridge (1988) is a straightforward gen-
eralization of the univariate GARCH model. Every conditional variance and covariance is a
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function of all lagged conditional variances and covariances, as well as lagged squared returns
and cross-products of returns. The model may be written as follows:

vech(H t) = c +

q∑

j=1

Ajvech(rt−jr
′
t−j) +

p∑

j=1

Bjvech(H t−j) (2)

where vech(·) is an operator that stacks the columns of the lower triangular part of its argument
square matrix, c is an N(N + 1)/2 × 1 vector, and Aj and Bj are N(N + 1)/2 × N(N + 1)/2
parameter matrices. In fact, the authors introduced a multivariate GARCH–in-mean model,
but in this chapter we only consider its conditional covariance component. The generality of
the VEC model is an advantage in the sense that the model is very flexible, but it also brings
disadvantages. One is that there exist only sufficient, rather restrictive, conditions for H t to be
positive definite for all t, see Gouriéroux (1997, Chapter 6). Besides, the number of parameters
equals (p + q)(N(N + 1)/2)2 + N(N + 1)/2, which is large unless N is small. Furthermore, as
will be discussed below, estimation of the parameters is computationally demanding.

Bollerslev, Engle, and Wooldridge (1988) presented a simplified version of the model by
assuming that Aj and Bj in (2) are diagonal matrices. In this case, it is possible to obtain
conditions for H t to be positive definite for all t, see Bollerslev, Engle, and Nelson (1994).
Estimation is less difficult than in the complete VEC model because each equation can be
estimated separately. But then, this ‘diagonal VEC’ model that contains (p+ q +1)N(N +1)/2
parameters seems too restrictive since no interaction is allowed between the different conditional
variances and covariances.

A numerical problem is that estimation of parameters of the VEC model is computationally
demanding. Assuming that the errors ηt follow a multivariate normal distribution, the log-
likelihood of the model (1) has the following form:

T∑

t=1

ℓt(θ) = c − (1/2)

T∑

t=1

ln |H t| − (1/2)

T∑

t=1

r′
tH

−1
t rt. (3)

The parameter vector θ has to be estimated iteratively. It is seen from (3) that the conditional
covariance matrix H t has to be inverted for every t in each iteration, which may be tedious
when the number of observations is large and when, at the same time, N is not small. Another,
an even more difficult problem, is how to ensure positive definiteness of the covariance matrices.
In the case of the VEC model there does not seem to exist a general solution to this problem.
The problem of finding the necessary starting-values for H t is typically solved by using the
estimated unconditional covariance matrix as the initial value.

A model that can be viewed as a restricted version of the VEC model is the Baba-Engle-
Kraft-Kroner (BEKK) defined in Engle and Kroner (1995). It has the attractive property that
the conditional covariance matrices are positive definite by construction. The model has the
form

Ht = CC ′ +

q∑

j=1

K∑

k=1

A′
kjrt−jr

′
t−jAkj +

p∑

j=1

K∑

k=1

B′
kjH t−jBkj (4)

where Akj, Bkj, and C are N × N parameter matrices, and C is lower triangular. The de-
composition of the constant term into a product of two triangular matrices is to ensure positive
definiteness of H t. The BEKK model is covariance stationary if and only if the eigenvalues
of

∑q
j=1

∑K
k=1 Akj ⊗ Akj +

∑p
j=1

∑K
k=1 Bkj ⊗ Bkj, where ⊗ denotes the Kronecker product of

two matrices, are less than one in modulus. Whenever K > 1 an identification problem arises
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because there are several parameterizations that yield the same representation of the model.
Engle and Kroner (1995) give conditions for eliminating redundant, observationally equivalent
representations.

Interpretation of parameters of (4) is not easy. But then, consider the first order model

H t = CC′ + A′rt−1r
′
t−1A + B′H t−1B. (5)

Setting B = AD where D is a diagonal matrix, (5) becomes

H t = CC ′ + A′rt−1r
′
t−1A + DE[A′rt−1r

′
t−1A|Ft−2]D. (6)

It is seen from (6) that what is now modelled are the conditional variances and covariances
of certain linear combinations of the vector of asset returns rt or ‘portfolios’. Kroner and Ng
(1998) restrict B = δA where δ > 0 is a scalar.

A further simplified version of (5) in which A and B are diagonal matrices has sometimes
appeared in applications. This ‘diagonal BEKK’ model trivially satisfies the equation B = AD.
It is a restricted version of the diagonal VEC model such that the parameters of the covariance
equations (equations for hijt, i 6= j) are products of the parameters of the variance equations
(equations for hiit). In order to obtain a more general model (that is, to relax these restrictions
on the coefficients of the covariance terms) one has to allow K > 1. The most restricted version
of the diagonal BEKK model is the scalar BEKK one with A = aI and B = bI where a and b
are scalars.

Each of the BEKK models implies a unique VEC model, which then generates positive
definite conditional covariance matrices. Engle and Kroner (1995) provide sufficient conditions
for the two models, BEKK and VEC, to be equivalent. They also give a representation theorem
that establishes the equivalence of diagonal VEC models (that have positive definite covariance
matrices) and general diagonal BEKK models. When the number of parameters in the BEKK
model is less than the corresponding number in the VEC model, the BEKK parameterization
imposes restrictions that makes the model different from that of VEC model. Increasing K in (4)
eliminates those restrictions and thus increases the generality of the BEKK model towards the
one obtained from using pure VEC model. Engle and Kroner (1995) give necessary conditions
under which all unnecessary restrictions are eliminated. However, too large a value of K will
give rise to the identification problem mentioned earlier.

Estimation of a BEKK model still involves somewhat heavy computations due to several
matrix inversions. The number of parameters, (p+q)KN2+N(N+1)/2 in the full BEKK model,
or (p+ q)KN +N(N +1)/2 in the diagonal one, is still quite large. Obtaining convergence may
therefore be difficult because (4) is not linear in parameters. There is the advantage, however,
that the structure automatically ensures positive definiteness of H t, so this does not need to
be imposed separately. Partly because numerical difficulties are so common in the estimation of
BEKK models, it is typically assumed p = q = K = 1 in applications of (4).

Parameter restrictions to ensure positive definiteness are not needed in the matrix expo-
nential GARCH model proposed by Kawakatsu (2006). It is a generalization of the univariate
exponential GARCH model (Nelson, 1991) and is defined as follows:

vech(ln H t − C) =

q∑

i=i

Aiηt−i +

q∑

i=1

F i(|ηt−i| − E|ηt−i|)

+

p∑

i=1

Bivech(ln H t−i − C) (7)
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where C is a symmetric N × N matrix, and Ai, Bi, and F i are parameter matrices of sizes
N(N + 1)/2 × N , N(N + 1)/2 × N(N + 1)/2, and N(N + 1)/2 × N , respectively. There is
no need to impose restrictions on the parameters to ensure positive definiteness, because the
matrix ln H t need not be positive definite. The positive definiteness of the covariance matrix
H t follows from the fact that for any symmetric matrix S, the matrix exponential defined as

exp(S) =

∞∑

i=0

Si

i!

is positive definite. Since the model contains a large number of parameters, Kawakatsu (2006)
discusses a number of more parsimonious specifications. He also considers the estimation of the
model, hypothesis testing, the interpretation of the parameters, and provides an application.
How popular this model will turn out in practice remains to be seen.

2.2 Factor models

Factor models are motivated by economic theory. For instance, in the arbitrage pricing theory
of Ross (1976) returns are generated by a number of common unobserved components, or fac-
tors; for further discussion see Engle, Ng, and Rothschild (1990) who introduced the first factor
GARCH model. In this model it is assumed that the observations are generated by underlying
factors that are conditionally heteroskedastic and possess a GARCH-type structure. This ap-
proach has the advantage that it reduces the dimensionality of the problem when the number
of factors relative to the dimension of the return vector rt is small.

Engle, Ng, and Rothschild (1990) define a factor structure for the conditional covariance
matrix as follows. They assume that H t is generated by K (< N) underlying, not necessarily
uncorrelated, factors fk,t as follows:

Ht = Ω +

K∑

k=1

wkw
′
kfk,t (8)

where Ω is an N × N positive semi-definite matrix, wk, k = 1, . . . ,K, are linearly independent
N × 1 vectors of factor weights, and the fk,t’s are the factors. It is assumed that these factors
have a first-order GARCH structure:

fk,t = ωk + αk(γ
′
krt−1)

2 + βkfk,t−1

where ωk, αk, and βk are scalars and γk is an N × 1 vector of weights. The number of factors
K is intended to be much smaller than the number of assets N , which makes the model feasible
even for a large number of assets. Consistent but not efficient two-step estimation method using
maximum likelihood is discussed in Engle, Ng, and Rothschild (1990). In their application,
the authors consider two factor-representing portfolios as the underlying factors that drive the
volatilities of excess returns of the individual assets. One factor consists of value-weighted stock
index returns and the other one of average T-bill returns of different maturities. This choice is
motivated by principal component analysis.

Diebold and Nerlove (1989) propose a model similar to the one formulated in Engle, Ng, and
Rothschild (1990). However their model is rather a stochastic volatility model than a GARCH
one, and hence we do not discuss its properties here; see Sentana (1998) for a comparison of this
model with the factor GARCH one.

In the factor ARCH model of Engle, Ng, and Rothschild (1990) the factors are generally
correlated. This may be undesirable as it may turn out that several of the factors capture
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very similar characteristics of the data. If the factors were uncorrelated, they would represent
genuinely different common components driving the returns. Motivated by this consideration,
several factor models with uncorrelated factors have been proposed in the literature. In all
of them, the original observed series contained in rt are assumed to be linked to unobserved,
uncorrelated variables, or factors, zt through a linear, invertible transformation W :

rt = Wzt

where W is thus a nonsingular N×N matrix. Use of uncorrelated factors can potentially reduce
their number relative to the approach where the factors can be correlated. The unobservable
factors are estimated from the data through W . The factors zt are typically assumed to follow
a GARCH process. Differences between the factor models are due to the specification of the
transformation W and, importantly, whether the number of heteroskedastic factors is less than
the number of assets or not.

In the Generalized Orthogonal (GO–) GARCH model of van der Weide (2002), the uncorre-
lated factors zt are standardized to have unit unconditional variances, that is, Eztz

′
t = I. This

specification extends the Orthogonal (O–) GARCH model of Alexander and Chibumba (1997)
in that W is not required to be orthogonal, only invertible. The factors are conditionally het-
eroskedastic with GARCH-type dynamics. The N ×N diagonal matrix of conditional variances
of zt is defined as follows:

Hz
t = (I − A − B) + A ⊙ (zt−1z

′
t−1) + BHz

t−1 (9)

where A and B are diagonal N × N parameter matrices and ⊙ denotes the Hadamard (i.e.
elementwise) product of two conformable matrices. The form of the constant term imposes the
restriction Eztz

′
t = I. Covariance stationarity of rt in the models with uncorrelated factors is

ensured if the diagonal elements of A+B are less than one. Therefore the conditional covariance
matrix of rt can be expressed as

Ht = WHz
t W

′ =

N∑

k=1

w(k)w
′
(k)h

z
k,t (10)

where w(k) are the columns of the matrix W and hz
k,t are the diagonal elements of the matrix Hz

t .
The difference between equations (8) and (10) is that the factors in (10) are uncorrelated but
then, in the GO–GARCH model it is not possible to have fewer factors than there are assets.
This is possible in the O–GARCH model but at the cost of obtaining conditional covariance
matrices with a reduced rank.

Van der Weide (2002) constructs the linear mapping W by making use of the singular value
decomposition of Ertr

′
t = WW ′. That is,

W = UΛ
1/2V

where the columns of U hold the eigenvectors of Ertr
′
t and the diagonal matrix Λ holds its

eigenvalues, thus exploiting unconditional information only. Estimation of the orthogonal matrix
V requires use of conditional information; see van der Weide (2002) for details.

Vrontos, Dellaportas, and Politis (2003) have suggested a related model. They state their
Full Factor (FF–) GARCH model as above but restrict the mapping W to be an N×N invertible
triangular parameter matrix with ones on the main diagonal. Furthermore, the parameters in
W are estimated directly using conditional information only. Assuming W to be triangular
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simplifies matters but is restrictive because, depending on the order of the components in the
vector rt, certain relationships between the factors and the returns are ruled out.

Lanne and Saikkonen (2007) put forth yet another modelling proposal. In their Generalized
Orthogonal Factor (GOF–) GARCH model the mapping W is decomposed using the polar
decomposition:

W = CV

where C is a symmetric positive definite N×N matrix and V an orthogonal N×N matrix. Since
Ertr

′
t = WW ′ = CC ′, the matrix C can be estimated making use of the spectral decomposition

C = UΛ
1/2U ′, where the columns of U are the eigenvectors of Ertr

′
t and the diagonal matrix

Λ contains its eigenvalues, thus using unconditional information only. Estimation of V requires
the use of conditional information, see Lanne and Saikkonen (2007) for details.

An important aspect of the GOF–GARCH model is that some of the factors can be con-
ditionally homoskedastic. In addition to being parsimonious, this allows the model to include
not only systematic but also idiosyncratic components of risk. Suppose K (≤ N) of the factors
are heteroskedastic, while the remaining N − K factors are homoskedastic. Without loss of
generality we can assume that the K first elements of zt are the heteroskedastic ones, in which
case this restriction is imposed by setting that the N −K last diagonal elements of A and B in
(9) equal to zero. This results in the conditional covariance matrix of rt of the following form
(ref. eq. (10)):

Ht =

K∑

k=1

w(k)w
′
(k)h

z
k,t +

N∑

k=K+1

w(k)w
′
(k)

=
K∑

k=1

w(k)w
′
(k)h

z
k,t + Ω. (11)

The expression (11) is very similar to the one in (8), but there are two important differences.
In (11) the factors are uncorrelated, whereas in (8), as already pointed out, this is not generally
the case. The role of Ω in (11) is also different from that of Ω in (8). In the factor ARCH model
Ω is required to be a positive semi-definite matrix and it has no particular interpretation. For
comparison, the matrix Ω in the GOF–GARCH model has a reduced rank directly related to
the number of heteroskedastic factors. Furthermore, it is closely related to the unconditional
covariance matrix of rt. This results to the model being possibly considerably more parsimo-
nious than the factor ARCH model; for details and a more elaborate discussion, see Lanne and
Saikkonen (2007). Therefore, the GOF–GARCH model can be seen as combining the advan-
tages of both the factor models (having a reduced number of heteroskedastic factors) and the
orthogonal models (relative ease of estimation due to the orthogonality of factors).

2.3 Models of conditional variances and correlations

Correlation models are based on the decomposition of the conditional covariance matrix into
conditional standard deviations and correlations. The simplest multivariate correlation model
that is nested in the other conditional correlation models, is the Constant Conditional Corre-
lation (CCC–) GARCH model of Bollerslev (1990). In this model, the conditional correlation
matrix is time-invariant, so the conditional covariance matrix can be expressed as follows:

H t = DtP Dt (12)
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where Dt = diag(h
1/2
1t , . . . , h

1/2
Nt ) and P = [ρij ] is positive definite with ρii = 1, i = 1, . . . , N .

This means that the off-diagonal elements of the conditional covariance matrix are defined as
follows:

[H t]ij = h
1/2
it h

1/2
jt ρij , i 6= j

where 1 ≤ i, j ≤ N . The models for the processes {rit} are members of the class of univariate
GARCH models. They are most often modelled as the GARCH(p,q) model, in which case the
conditional variances can be written in a vector form

ht = ω +

q∑

j=1

Ajr
(2)
t−j +

p∑

j=1

Bjht−j (13)

where ω is N × 1 vector, Aj and Bj are diagonal N × N matrices, and r
(2)
t = rt ⊙ rt. When

the conditional correlation matrix P is positive definite and the elements of ω and the diagonal
elements of Aj and Bj positive, the conditional covariance matrix H t is positive definite. Pos-
itivity of the diagonal elements of Aj and Bj is not, however, necessary for P to be positive
definite unless p = q = 1, see Nelson and Cao (1992) for discussion of positivity conditions for
hit in univariate GARCH(p,q) models.

An extension to the CCC–GARCH model was introduced by Jeantheau (1998). In this
Extended CCC– (ECCC–) GARCH model the assumption that the matrices Aj and Bj in (13)
are diagonal is relaxed. This allows the past squared returns and variances of all series to enter
the individual conditional variance equations. For instance, in the first-order ECCC–GARCH
model, the ith variance equation is

hit = ωi + a11r
2
1,t−1 + . . . + a1Nr2

N,t−1 + b11h1,t−1 + . . . + b1NhN,t−1,

i = 1, . . . , N.

An advantage of this extension is that it allows a considerably richer autocorrelation structure
for the squared observed returns than the standard CCC–GARCH model. For example, in the
univariate GARCH(1,1) model the autocorrelations of the squared observations decrease expo-
nentially from the first lag. In the first-order ECCC–GARCH model, the same autocorrelations
need not have a monotonic decline from the first lag. This has been shown by He and Teräsvirta
(2004) who considered the fourth-moment structure of first- and second-order ECCC–GARCH
models.

The estimation of MGARCH models with constant correlations is computationally attractive.
Because of the decomposition (12), the log-likelihood in (3) has the following simple form:

T∑

t=1

ℓt(θ) = c − (1/2)

T∑

t=1

N∑

i=1

ln |hit| − (1/2)

T∑

t=1

log |P |

−(1/2)

T∑

t=1

r′
tD

−1
t P−1D−1

t rt. (14)

From (14) it is apparent that during estimation, one has to invert the conditional correlation
matrix only once per iteration. The number of parameters in the CCC– and ECCC–GARCH
models, in addition to the ones in the univariate GARCH equations, equals N(N − 1)/2 and
covariance stationarity is ensured if the roots of det(I−

∑q
j=1 Ajλ

j−
∑p

j=1 Bjλ
j) = 0 lie outside

the unit circle.
Although the CCC–GARCH model is in many respects an attractive parameterization, em-

pirical studies have suggested that the assumption of constant conditional correlations may be
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too restrictive. The model may therefore be generalized by retaining the previous decomposition
but making the conditional correlation matrix in (12) time-varying. Thus,

Ht = DtP tDt. (15)

In conditional correlation models defined through (15), positive definiteness of H t follows if,
in addition to the conditional variances hit, i = 1, . . . , N , being well-defined, the conditional
correlation matrix P t is positive definite at each point in time. Compared to the CCC–GARCH
models, the advantage of numerically simple estimation is lost, as the correlation matrix has to
be inverted for each t during every iteration.

Due to the intuitive interpretation of correlations, there exist a vast number of proposals
for specifying P t. Tse and Tsui (2002) imposed GARCH type of dynamics on the conditional
correlations. The conditional correlations in their Varying Correlation (VC–) GARCH model are
functions of the conditional correlations of the previous period and a set of estimated correlations.
More specifically,

P t = (1 − a − b)S + aSt−1 + bP t−1

where S is a constant, positive definite parameter matrix with ones on the diagonal, a and b are
non-negative scalar parameters such that a + b ≤ 1, and St−1 is a sample correlation matrix of

the past M standardized residuals ε̂t−1, . . . , ε̂t−M where ε̂t−j = D̂
−1

t−jrt−j , j = 1, . . . ,M . The
positive definiteness of P t is ensured by construction if P 0 and St−1 are positive definite. A
necessary condition for the latter to hold is M ≥ N . The definition of the ‘intercept’ 1 − a − b
corresponds to the idea of ‘variance targeting’ in Engle and Mezrich (1996).

Kwan, Li, and Ng (in press) proposed a threshold extension to the VC–GARCH model.
Within each regime, indicated by the value of an indicator or threshold variable, the model has
a VC–GARCH specification. Specifically, the authors partition the real line into R subintervals,
r0 = −∞ < l1 < . . . < lR−1 < lR = ∞, and define an indicator variable st ∈ F∗

t−1, the extended
information set. The rth regime is defined by lr−1 < st ≤ lr, and both the univariate GARCH
models and the dynamic correlations have regime-specific parameters. Kwan, Li, and Ng (in
press) also apply the same idea to the BEKK model and discuss estimation of the number of
regimes. In order to estimate the model consistently, one has to make sure that each regime
contains a sufficient number of observations.

Engle (2002) introduced a Dynamic Conditional Correlation (DCC–) GARCH model whose
dynamic conditional correlation structure is similar to that of the VC–GARCH model. Engle
considered a dynamic matrix process

Qt = (1 − a − b)S + aεt−1ε
′
t−1 + bQt−1

where a is a positive and b a non-negative scalar parameter such that a + b < 1, S is the
unconditional correlation matrix of the standardized errors εt, and Q0 is positive definite. This
process ensures positive definiteness but does not generally produce valid correlation matrices.
They are obtained by rescaling Qt as follows:

P t = (I ⊙ Qt)
−1/2Qt(I ⊙ Qt)

−1/2.

Both the VC– and the DCC–GARCH model extend the CCC–GARCH model, but do it with
few extra parameters. In each correlation equation, the number of parameters is N(N −1)/2+2
for the VC–GARCH model and two for in the DCC–GARCH one. This is a strength of these
models but may also be seen as a weakness when N is large, because all N(N − 1)/2 correlation
processes are restricted to have the same dynamic structure.
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To avoid this limitation, various generalizations of the DCC–GARCH model have been pro-
posed. Billio and Caporin (2006) suggested a model that imposes a BEKK structure on the
conditional correlations. Their Quadratic Flexible DCC (GFDCC) GARCH model where the
matrix process Qt is defined as

Qt = C′SC + A′εt−1ε
′
t−1A + B′Qt−1B (16)

where the matrices A, B, and C are symmetric, and S is the unconditional covariance matrix
of the standardized errors εt. To obtain stationarity, C′SC has to be positive definite and the
eigenvalues of A + B are less than one in modulus. The number of parameters governing the
correlations in the GFDCC–GARCH model in its fully general form is 3N(N + 1)/2 which is
unfeasible in large systems. The authors therefore suggested several special cases: One is to
group the assets according to their properties, sector, or industry and restricting the coefficient
matrices to be block diagonal following the partition. Another is to restrict the coefficient
matrices to be diagonal with possibly suitable partition.

Cappiello, Engle, and Sheppard (2006) generalized the DCC–GARCH model in a similar
manner, but also including asymmetric effects. In their Asymmetric Generalized DCC (AG–
DCC) GARCH model the dynamics of Qt is the following:

Qt = (S − A′SA − B′SB − G′S−G) + A′εt−1ε
′
t−1A

+B′Qt−1B + G′ε−t−1ε
−′
t−1G (17)

where A, B, and G are N × N parameter matrices, ε− = I{εt<0} ⊙ εt, where I is an indicator

function, and S and S− are the unconditional covariance matrices of εt and ε−t , respectively.
Again, the number of parameters increases rapidly with the dimension of the model, and re-
stricted versions, such as diagonal, scalar, and symmetric, were suggested.

In the VC–GARCH as well as the DCC–GARCH model, the dynamic structure of the time-
varying correlations is a function of past returns. There is another class of models that allows the
dynamic structure of the correlations to be controlled by an exogenous variable. This variable
may be either an observable variable, a combination of observable variables, or a latent variable
that represents factors that are difficult to quantify. One may argue that these models are not
pure vector GARCH models because the conditioning set in them can be larger than in VC–
GARCH or DCC–GARCH models. The first one of these models to be considered here is the
Smooth Transition Conditional Correlation (STCC–) GARCH model.

In the STCC–GARCH model of Silvennoinen and Teräsvirta (2005), the conditional correla-
tion matrix varies smoothly between two extreme states according to a transition variable. The
following dynamic structure is imposed on the conditional correlations:

P t = (1 − G(st))P (1) + G(st)P (2)

where P (1) and P (2), P (1) 6= P (2), are positive definite correlation matrices that describe the two
extreme states of correlations, and G(·) : R → (0, 1), is a monotonic function of an observable
transition variable st ∈ F∗

t−1. The authors define G(·) as the logistic function

G(st) =
(
1 + e−γ(st−c)

)−1
, γ > 0 (18)

where the parameter γ determines the velocity and c the location of the transition. In addition
to the univariate variance equations, the STCC–GARCH model has N(N − 1) + 2 parameters.
The sequence {P t} is a sequence of positive definite matrices because each P t is a convex
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combination of two positive definite correlation matrices. The transition variable st is chosen by
the modeller to suit the application at hand. If there is uncertainty about an appropriate choice
of st, testing the CCC–GARCH model can be used as tool for judging the relevance of a given
transition variable to the dynamic conditional correlations. A special case of the STCC–GARCH
model is obtained when the transition variable is calendar time. The Time Varying Conditional
Correlation (TVCC–) GARCH model was in its bivariate form introduced by Berben and Jansen
(2005).

A recent extension of the STCC–GARCH model, the Double Smooth Transition Conditional
Correlation (DSTCC–) GARCH model by Silvennoinen and Teräsvirta (2007) allows for another
transition around the first one:

P t = (1 − G2(s2t))
{
(1 − G1(s1t))P (11) + G1(s1t)P (21)

}

+G2(s2t)
{
(1 − G1(s1t))P (12) + G1(s1t)P (22)

}
. (19)

For instance, one of the transition variables can simply be calendar time. If this is the case, one
has the Time Varying Smooth Transition Conditional Correlation (TVSTCC–) GARCH model
that nests the STCC–GARCH as well as the TVCC–GARCH model. The interpretation of the
extreme states is the following: At the beginning of the sample, P (11) and P (21) are the two
extreme states between which the correlations vary according to the transition variable s1t and
similarly, P (12) and P (22) are the corresponding states at the end of the sample. The TVSTCC–
GARCH model allows the extreme states, constant in the STCC–GARCH framework, to be
time-varying, which introduces extra flexibility when modelling long time series. The number of
parameters, excluding the univariate GARCH equations, is 2N(N − 1) + 4 which restricts the
use of the model in very large systems.

The Regime Switching Dynamic Correlation (RSDC–) GARCH model introduced by Pel-
letier (2006) falls somewhere between the models with constant correlations and the ones with
correlations changing continuously at every period. The model imposes constancy of correlations
within a regime while the dynamics enter through switching regimes. Specifically,

P t =

R∑

r=1

I{∆t=r}P (r)

where ∆t is a (usually first-order) Markov chain independent of ηt that can take R possible
values and is governed by a transition probability matrix Π, I is the indicator function, and P (r),
r = 1, . . . , R, are positive definite regime-specific correlation matrices. Correlation component
of the model has RN(N −1)/2−R(R−1) parameters. A version that involves fewer parameters
is obtained by restricting the R possible states of correlations to be linear combinations of a
state of zero correlations and that of possibly high correlations. Thus,

P t = (1 − λ(∆t))I + λ(∆t)P

where I is the identity matrix (‘no correlations’), P is a correlation matrix representing the state
of possibly high correlations, and λ(·) : {1, . . . , R} → [0, 1] is a monotonic function of ∆t. The
number of regimes R is not a parameter to be estimated. The conditional correlation matrices
are positive definite at each point in time by construction both in the unrestricted and restricted
version of the model. If N is not very small, Pelletier (2006) recommends two-step estimation.
First estimate the parameters of the GARCH equations and, second, conditionally on these
estimates, estimate the correlations and the switching probabilities using the EM algorithm of
Dempster, Laird, and Rubin (1977).
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2.4 Nonparametric and semiparametric approaches

Non- and semiparametric models form an alternative to parametric estimation of the condi-
tional covariance structure. These approaches have the advantage of not imposing a particular
(possibly misspecified) structure on the data. One advantage of at least a few fully parametric
multivariate GARCH models is, however, that they offer an interpretation of the dynamic struc-
ture of the conditional covariance or correlation matrices. Another is that the quasi-maximum
likelihood estimator is consistent when the errors are assumed multivariate normal. However,
there may be considerable efficiency losses in finite samples if the returns are not normally dis-
tributed. Semiparametric models combine the advantages of a parametric model in that they
reach consistency and sustain the interpretability, and those of a nonparametric model which
is robust against distributional misspecification. Nonparametric models, however, suffer from
the ‘curse of dimensionality’: due to the lack of data in all directions of the multidimensional
space, the performance of the local smoothing estimator deteriorates quickly as the dimension
of the conditioning variable increases, see Stone (1980). For this reason, it has been of interest
to study methods for dimension-reduction or to use a single, one-dimensional conditioning vari-
able. Developments in semi- and nonparametric modelling are discussed in detail in a separate
chapter of this Handbook, see Linton (2008).

One alternative is to specify a parametric model for the conditional covariance structure but
estimate the error distribution nonparametrically, thereby attempting to offset the efficiency loss
of the quasi-maximum likelihood estimator compared to the maximum likelihood estimator of
the correctly specified model. In the semiparametric model of Hafner and Rombouts (2007) the
data are generated by any particular parametric MGARCH model and the error distribution is
unspecified but estimated nonparametrically. Their approach leads to the log-likelihood

T∑

t=1

ℓt(θ) = c − (1/2)

T∑

t=1

ln |H t| +

T∑

t=1

ln g(H
−1/2
t rt) (20)

where g(·) is an unspecified density function of the standardized residuals ηt such that E[ηt] = 0

and E[ηtη
′
t] = I. This model may be seen as a multivariate extension of the semiparametric

GARCH model by Engle and González-Rivera (1991). A flexible error distribution blurs the
line between the parametric structure and the distribution of the errors. For example, if the
correlation structure of a semiparametric GARCH model is misspecified, a nonparametric error
distribution may absorb some of the misspecification. The nonparametric method for estimating
the density g is discussed in detail in Hafner and Rombouts (2007). They assume that g belongs
to the class of spherical distributions. Even with this restriction their semiparametric estimator
remains more efficient than the maximum likelihood estimator if the errors zt are non-normal.

Long and Ullah (2005) introduce an approach similar to the previous one in that the model is
based on any parametric MGARCH model. After estimating a parametric model, the estimated
standardized residuals η̂t are extracted. When the model is not correctly specified, these residu-
als may have some structure in them, and Long and Ullah (2005) use nonparametric estimation
to extract this information. This is done by estimating the conditional covariance matrix using
the Nadaraya-Watson estimator

H t = Ĥ
1/2

t

∑T
τ=1 η̂τ η̂

′
τKh(sτ − st)∑T

τ=1 Kh(sτ − st)
Ĥ

1/2

t (21)

where Ĥ t is the conditional covariance matrix estimated parametrically from an MGARCH

model, st ∈ F∗
t−1 is an observable variable that the model is conditioned on, ε̂t = D̂

−1

t rt,
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Kh(·) = K(·/h)/h, K(·) is a kernel function, and h is the bandwidth parameter. Positive

definiteness of Ĥ t ensures positive definiteness of the semiparametric estimator H t.
In the Semi-Parametric Conditional Correlation (SPCC–) GARCH model of Hafner, van

Dijk, and Franses (2005), the conditional variances are modelled parametrically by any choice

of univariate GARCH model, where ε̂t = D̂
−1

t rt is the vector consisting of the standardized
residuals. The conditional correlations P t are then estimated using a transformed Nadaraya-
Watson estimator:

P t = (I ⊙ Qt)
−1/2Qt(I ⊙ Qt)

−1/2

where

Qt =

∑T
τ=1 ε̂τ ε̂

′
τKh(sτ − st)∑T

τ=1 Kh(sτ − st)
. (22)

In (22), st ∈ F∗
t−1 is a conditioning variable, Kh(·) = K(·/h)/h, K(·) is a kernel function, and

h is the bandwidth parameter.
Long and Ullah (2005) also suggest estimating the covariance structure in a fully nonpara-

metric fashion so that the model is not an MGARCH model, but merely a parameter-free
multivariate volatility model. The estimator of the conditional covariance matrix is

H t =

∑T
τ=1 rτr

′
τKh(sτ − st)∑T

τ=1 Kh(sτ − st)

where st ∈ F∗
t−1 is a conditioning variable, Kh(·) = K(·/h)/h, K(·) is a kernel function, and h

is the bandwidth parameter. This approach ensures positive definiteness of H t.
The choice of the kernel function is not important and it could be any probability density

function, whereas the choice of the bandwidth parameter h is crucial, see for instance Pagan and
Ullah (1999, Sections 2.4.2 and 2.7). Long and Ullah (2005) consider the choice of an optimal
fixed bandwidth, whereas Hafner, van Dijk, and Franses (2005) discuss a way of choosing a
dynamic bandwidth parameter such that the bandwidth is larger in the tails of the marginal
distribution of the conditioning variable st than it is in the mid-region of the distribution.

3 Statistical Properties

Statistical properties of multivariate GARCH models are only partially known. For the devel-
opment of statistical estimation and testing theory, it would be desirable to have conditions
for strict stationarity and ergodicity of a multivariate GARCH process, as well as conditions
for consistency and asymptotic normality of the quasi-maximum likelihood estimator. The re-
sults that are available establish these properties in special cases and sometimes under strong
conditions.

Jeantheau (1998) considers the statistical properties and estimation theory of the ECCC–
GARCH model he proposes. He provides sufficient conditions for the existence of a weakly
stationary and ergodic solution, which is also strictly stationary. This is done by assuming
Ertr

′
t < ∞. It would be useful to have both a necessary and a sufficient condition for the

existence of a strictly stationary solution, but this question remains open. Jeantheau (1998)
also proves the strong consistency of the QML estimator for the ECCC–GARCH model. Ling
and McAleer (2003) complement Jeantheau’s results and also prove the asymptotic normality of
the QMLE in the case of the ECCC–GARCH model. For the global asymptotic normality result,
the existence of the sixth moment of rt is required. The statistical properties of the second-order
model are also investigated in He and Teräsvirta (2004), who provide sufficient conditions for
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the existence of fourth moments, and, furthermore, give expressions for the fourth moment as
well as the autocorrelation function of squared observations as functions of the parameters.

Comte and Lieberman (2003) study the statistical properties of the BEKK model. Relying
on a result in Boussama (1998), they give sufficient, but not necessary conditions for strict
stationarity and ergodicity. Applying Jeantheau’s results, they provide conditions for the strong
consistency of the QMLE. Furthermore, they also prove the asymptotic normality of the QMLE,
for which they assume the existence of the eighth moment of rt. The fourth-moment structure of
the BEKK and VEC models is investigated by Hafner (2003), who gives necessary and sufficient
conditions for the existence of the fourth moments and provides expressions for them. These
expressions are not functions of the parameters of the model. As the factor models listed in
Section 2.2 are special cases of the BEKK model, the results of Comte and Lieberman (2003)
and Hafner (2003) also apply to them.

4 Hypothesis testing in multivariate GARCH models

Testing the adequacy of estimated models is an important part of model building. Existing tests
of multivariate GARCH models may be divided into two broad categories: general misspecifi-
cation tests and specification tests. The purpose of the tests belonging to the former category
is to check the adequacy of an estimated model. Specification tests are different in the sense
that they are designed to test the model against a parametric extension. Such tests have been
constructed for the CCC–GARCH model, but obviously not for other models. We first review
general misspecification tests.

4.1 General misspecification tests

Ling and Li (1997) derived a rather general misspecification test for multivariate GARCH mod-
els. It is applicable for many families of GARCH models. The test statistic has the following
form:

Q(k) = Tγ′
kΩ̂

−1

k γk (23)

where γk = (γ1, ..., γk)′ with

γj =

∑T
t=j+1(r

′
tĤ

−1

t rt − N)(r′
t−jĤ

−1

t−jrt−j − N)
∑T

t=1(r
′
tĤ

−1

t rt − N)2
(24)

j = 1, . . . , k, Ĥ t is an estimator of H t, and Ω̂k is the estimated covariance matrix of γk, see
Ling and Li (1997) for details. Under the null hypothesis that the GARCH model is correctly
specified, that is, ηt ∼ IID(0, I), statistic (23) has an asymptotic χ2 distribution with k degrees
of freedom. Under H0, Er′

tH
−1
t rt = N , and therefore the expression (24) is the jth-order

sample autocorrelation between r
′
tH

−1
t rt = η′

tηt and r′
t−jH

−1
t−jrt−j = η′

t−jηt−j . The test may
thus be viewed as a generalization of the portmanteau test of Li and Mak (1994) for testing
the adequacy of a univariate GARCH model. In fact, when N = 1, (23) collapses into the Li
and Mak statistic. The McLeod and Li (1983) statistic (Ljung-Box statistic applied to squared
residuals), frequently used for evaluating GARCH models, is valid neither in the univariate nor
in the multivariate case, see Li and Mak (1994) for the univariate case.

A simulation study by Tse and Tsui (1999) indicates that the Ling and Li portmanteau
statistic (24) often has low power. The authors show examples of situations in which a port-
manteau test based on autocorrelations of pairs of individual standardized residuals performs
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better. The drawback of this statistic is, however, that its asymptotic null distribution is un-
known, and the statistic tends to be undersized. Each test is based only on a single pair of
residuals.

Duchesne (2004) introduced the test which is a direct generalization of the portmanteau test
of Li and Mak (1994) to the VEC–GARCH model (2). Let η̂t denote the maximum likelihood
estimator of the error vector ηt in the VEC–GARCH model. The idea is to derive the asymptotic
distribution of ĉj = vech(η̂tη̂

′
t−j) where j = 1, . . . , k, under the null hypothesis that {ηt} ∼

NID(0, I). Once this has been done, one can combine the results and obtain the asymptotic
null distribution of ĉ(k) = (ĉ′1, ..., ĉ

′
k)

′, where the vectors ĉj, j = 1, . . . , k, are asymptotically
uncorrelated when the null holds. This distribution is normal since the asymptotic distribution
of each ĉk is normal. It follows that under the null hypothesis,

QD(k) = T ĉ′(k)Ω̂
−1

k ĉ(k)
d
→ χ2(kN(N + 1)/2) (25)

where Ω̂k is a consistent estimator of the covariance matrix of ĉ(k), defined in Duchesne (2004).
This portmanteau test statistic collapses into the statistic of Li and Mak (1994) when N = 1.
When {ηt} = {εt}, that is, when H t ≡ σ2I, the test (25) is a test of no multivariate ARCH.
For N = 1, it is then identical to the well known portmanteau test of McLeod and Li (1983).

Yet another generalization of univariate tests can be found in Kroner and Ng (1998). Their
misspecification tests are suitable for any multivariate GARCH model. Let

Gt = rtr
′
t − Ĥ t

where Ĥ t has been estimated from a GARCH model. The elements of Gt = [gijt] are ‘generalized
residuals’. When the model is correctly specified, they form a matrix of martingale difference
sequences with respect to the information set Ft−1 that contains the past information until
t− 1. Thus any variable xs ∈ Ft−1 is uncorrelated with the elements of Gt. Tests based on these
misspecification indicators may now be constructed. This is done for each gijt separately. The
suggested tests are generalizations of the sign-bias and size-bias tests of Engle and Ng (1993).
The test statistics have an asymptotic χ2 distribution with one degree of freedom when the null
hypothesis is valid. If the dimension of the model is large and there are several misspecification
indicators, the number of available tests may be very large.

Testing the adequacy of the CCC–GARCH model has been an object of interest since it was
found that the assumption of constant correlations may sometimes be too restrictive in practice.
Tse (2000) constructed a Lagrange multiplier (LM) test of the CCC–GARCH model against the
following alternative, P t, to constant correlations:

P t = P + ∆⊙ rt−1r
′
t−1 (26)

where ∆ is a symmetric parameter matrix with the main diagonal elements equal to zero. This
means that the correlations are changing as functions of the previous observations. The null
hypothesis is H0 : ∆ = 0 or, expressed as a vector equation, vecl(∆) = 0.1 Equation (26) does
not define a particular alternative to conditional correlations as P t is not necessarily a positive
definite matrix for every t. For this reason we interpret the test as a general misspecification
test.

Bera and Kim (2002) present a test of a bivariate CCC–GARCH model against the alternative
that the correlation coefficient is stochastic. The test is an Information Matrix test and as such
an LM or score test. It is designed for a bivariate model, which restricts its usefulness in
applications.

1The operator vecl(·) stacks the columns of the strictly lower triangular part (excluding main diagonal elements)
of its argument matrix.
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4.2 Tests for extensions of the CCC–GARCH model

The most popular extension of the CCC–GARCH model to-date is the DCC–GARCH model of
Engle (2002). However, there does not seem to be any published work on developing tests of
constancy of correlations directly against this model.

As discussed in Section 2.3, Silvennoinen and Teräsvirta (2005) extend the CCC–GARCH
into a STCC–GARCH model in which the correlations fluctuate according to a transition vari-
able. They construct an LM test for testing the constant correlation hypothesis against the
smoothly changing correlations. Since the STCC–GARCH model is only identified when the
correlations are changing, standard asymptotic theory is not valid. A good discussion of this
problem can be found in Hansen (1996). The authors apply the technique in Luukkonen, Saikko-
nen, and Teräsvirta (1988) in order to circumvent the identification problem. The null hypoth-
esis is γ = 0 in (18), and a linearization of the correlation matrix P t by the first-order Taylor
expansion of (18) yields

P ∗
t = P (1) − stP

∗
(2).

Under H0, P ∗
(2) = 0 and the correlations are thus constant. The authors use this fact to

build their LM-type test on the transformed null hypothesis H ′
0: vecl(P ∗

(2)) = 0 (the diagonal

elements of P ∗
(2) equal zero by definition). When H ′

0 holds, the test statistic has an asymptotic

χ2 distribution with N(N − 1)/2 degrees of freedom. The authors also derive tests for the
constancy hypothesis under the assumption that some of the correlations remain constant also
under the alternative. Silvennoinen and Teräsvirta (2007) extend the Taylor expansion based
test to the situation where the STCC–GARCH model is the null model and the alternative is the
DSTCC–GARCH model. This test collapses into the test of the CCC–GARCH model against
STCC–GARCH model when G1(s1t) ≡ 1/2 in (19).

5 An application

In this section we compare some of the multivariate GARCH models considered in previous
sections by fitting them to the same data set. In order to keep the comparison transparent, we
only consider bivariate models. Our observations are the daily returns of S&P 500 index futures
and 10-year bond futures from January 1990 to August 2003. This data set has been analyzed
by Engle and Colacito (2006).2 There is no consensus in the literature about how stock and
long term bond returns are related. Historically, the long-run correlations have been assumed
constant, an assumption that has led to contradicting conclusions because evidence for both
positive and negative correlation has been found over the years (short-run correlations have
been found to be affected, among other things, by news announcements). From a theoretical
point of view, the long-run correlation between the two should be state-dependent, driven by
macroeconomic factors such as growth, inflation, and interest rates. The way the correlations
respond to these factors may, however, change over time.

For this reason it is interesting to see what the correlations between the two asset returns
obtained from the models are and how they fluctuate over time. The focus of reporting results
will therefore be on conditional correlations implied by the estimated models, that is, the BEKK,
GOF–, DCC–, DSTCC–, and SPCC–GARCH ones. In the last three models, the individual
GARCH equations are simply symmetric first-order ones. The BEKK model is also of order one

2The data set in Engle and Colacito (2006) begins in August 1988, but our sample starts from January 1990
because we also use the time series for a volatility index that is available only from that date onwards.
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with K = 1. All computations have been performed using Ox, version 4.02, see Doornik (2002),
and our own source code.

Estimation of the BEKK model turned out to be cumbersome. Convergence problems were
encountered in numerical algorithms, but the iterations seemed to suggest diagonality of the
coefficient matrices A and B. A diagonal BEKK model was eventually estimated without
difficulty.

In the estimation of the GOF–GARCH model it is essential to obtain good initial estimates of
the parameters; for details, see Lanne and Saikkonen (2007). Having done that, we experienced
no difficulties in the estimation of this model with a single factor. Similarly, no convergence
problems were encountered in the estimation of the DCC model of Engle (2002).

The DSTCC–GARCH model makes use of two transition variables. Because the DSTCC
framework allows one to test for relevance of a variable, or variables, to the description of the
dynamic structure of the correlations, we relied on the tests in Silvennoinen and Teräsvirta
(2005,2007), described in Section 4.2, to select relevant transition variables. Out of a multitude
of variables, including both exogenous ones and variables constructed from the past observations,
prices or returns, the Chicago Board Options Exchange volatility index (VIX) that represents
the market expectations of 30-day volatility turned out to lead to the strongest rejection of the
null hypothesis, measured by the p-value. Calendar time seemed to be another obvious transition
variable. As a result, the first-order TVSTCC–GARCH model was fitted to the bivariate data.

The semiparametric model of Hafner, van Dijk, and Franses (2005) also requires a choice of an
indicator variable. Because the previous test results indicated that VIX is informative about the
dynamics of the correlations, we chose VIX as the indicator variable. The SPCC–GARCH model
was estimated using a standard kernel smoother with an optimal fixed bandwidth, see Pagan
and Ullah (1999, Sections 2.4.2 and 2.7) for discussion on the choice of constant bandwidth.

The estimated conditional correlations are presented in Figure 1, whereas Table 1 shows the
sample correlation matrix of the estimated time-varying correlations. The correlations from the
diagonal BEKK model and the DCC–GARCH model are very strongly positively correlated,
which is also obvious from Figure 1. The second-highest correlation of correlations is the one
between the SPCC–GARCH and the GOF–GARCH model. The time-varying correlations are
mostly positive during the 1990’s and negative after the turn of the century. In most models,
correlations seem to fluctuate quite randomly, but the TVSTCC–GARCH model constitutes
an exception. This is due to the fact that one of the transition variables is calendar time.
Interestingly, in the beginning of the period the correlation between the S&P 500 and bond
futures is only mildly affected by the expected volatility (VIX) and remains positive. Towards
the end, not only does the correlation gradually turn negative, but expected volatility seems
to affect it very strongly. Rapid fluctuations are a consequence of the fact that the transition
function with VIX as the transition variable has quite a steep slope. After the turn of the
century, high values of VIX generate strongly negative correlations.

Although the estimated models do not display fully identical correlations, the general message
in them remains more or less the same. It is up to the user to select the model he wants to use
in portfolio management and forecasting. A way of comparing the models consists of inserting
the estimated covariance matrices H t, t = 1, . . . , T , into the Gaussian log-likelihood function
(3) and calculate the maximum value of log-likelihood. These values for the estimated models
appear in Table 1.

The models that are relatively easy to estimate seem to fit the data less well than the other
models. The ones with a more complicated structure and, consequently, an estimation procedure
that requires care, seem to attain higher likelihood values. However, the models do not make use
of the same information set and, besides, they do not contain the same number of parameters.
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diag BEKK GOF DCC TVSTCC SPCC

diag BEKK 1.0000
GOF 0.7713 1.0000
DCC 0.9875 0.7295 1.0000
TVSTCC 0.7577 0.7381 0.7690 1.0000
SPCC 0.6010 0.8318 0.5811 0.7374 1.0000

log-likelihood -6130 -6091 -6166 -6006 -6054
AIC 12275 12198 12347 12041 12120
BIC 12286 12211 12359 12062 12130

Table 1: Sample correlations of the estimated conditional correlations. The lower part of the
table shows the log-likelihood values and the values of the corresponding model selection criteria.

Taking this into account suggests the use of model selection criteria for assessing the performance
of the models. Nevertheless, rankings by Akaike’s information criterion (AIC) and the Bayesian
information criterion (BIC) are the same as the likelihood-based ranking; see Table 1. Note
that in theory, rankings based on a model selection criterion favour the SPCC model. This is
because no penalty is imposed on the nonparametric correlation estimates that improve the fit
compared to constant correlations.

Nonnested testing as a means of comparison is hardly a realistic option here since the com-
putational effort would be quite substantial. Out-of-sample forecasting would be another way
of comparing models. However, the models involved would be multivariate and the quantities
to be forecast would be measures of (unobserved) volatilities and cross-volatilities. This would
give rise to a number of problems, beginning from defining the quantities to be forecast and
appropriate loss functions, and from comparing forecast vectors instead of scalar forecasts. It
appears that plenty of work remains to be done in that area.

6 Final remarks

In this review, we have considered a number of multivariate GARCH models and highlighted
their features. It is obvious that the original VEC model contains too many parameters to be
easily applicable, and research has been concentrated on finding parsimonious alternatives to it.
Two lines of development are visible. First, there are the attempts to impose restrictions on the
parameters of the VEC model. The BEKK model and the factor models are examples of this.
Second, there is the idea of modelling conditional covariances through conditional variances and
correlations. It has led to a number of new models, and this family of conditional correlation
models appears to be quite popular right now. The conditional correlation models are easier
to estimate than many of their counterparts and their parameters (correlations) have a natural
interpretation.

As previously discussed, there is no statistical theory covering all MGARCH models. This
may be expected, since models in the two main categories differ substantially from each other.
Progress has been made in some special occasions, and these cases have been considered in
previous sections.

Estimation of multivariate GARCH models is not always easy. BEKK models appear more
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Figure 1: Conditional correlations implied by the estimated models: Diagonal BEKK, GOF–
GARCH, DCC–GARCH, TVSTCC–GARCH, and SPCC–GARCH.
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difficult to estimate than the CCC-GARCH model and its generalizations. While it has not been
the objective of this review to cover algorithms for performing the necessary iterations, Brooks,
Burke, and Persand (2003) compared four software packages for estimating MGARCH models.
They used a single bivariate dataset and only fitted a first-order VEC-GARCH model to the
data. A remarkable thing is that already the parameter estimates resulting from these packages
are quite different, not to mention standard deviation estimates. The estimates give rather
different ideas of the persistence of conditional volatility. These differences do not necessarily
say very much about properties of the numerical algorithms used in the packages. It is more
likely that they reflect the estimation difficulties. The log-likelihood function may contain a
large number of local maxima, and different starting-values may thus lead to different outcomes.
See Silvennoinen (2008) for more discussion. The practitioner who may wish to use these models
in portfolio management should be aware of these problems.

Not much has been done as yet to construct tests for evaluating MGARCH models. A few
tests do exist, and a number of them have been considered in this review.

It may be that VEC and BEKK models, with the possible exception of factor models, have
already matured and there is not much that can be improved. The situation may be different
for conditional correlation models. The focus has hitherto been on modelling the possibly time-
varying correlations. Less emphasis has been put on the GARCH equations that typically have
been GARCH(1,1) specifications. Designing diagnostic tools for testing and improving GARCH
equations may be one of the challenges for the future.

References

Alexander, C. O., and A. M. Chibumba (1997): “Multivariate orthogonal factor GARCH,”
University of Sussex Discussion Papers in Mathematics.

Bae, K.-H., G. A. Karolyi, and R. M. Stulz (2003): “A new approach to measuring
financial contagion,” The Review of Financial Studies, 16, 717–763.

Bauwens, L., S. Laurent, and J. V. K. Rombouts (2006): “Multivariate GARCH models:
A survey,” Journal of Applied Econometrics, 21, 79–109.

Bera, A. K., and S. Kim (2002): “Testing constancy of correlation and other specifications of
the BGARCH model with an application to international equity returns,” Journal of Empirical

Finance, 9, 171–195.

Berben, R.-P., and W. J. Jansen (2005): “Comovement in international equity markets: A
sectoral view,” Journal of International Money and Finance, 24, 832–857.

Billio, M., and M. Caporin (2006): “A generalized dynamic conditional correlation model
for portfolio risk evaluation,” unpublished manuscript, Ca’ Foscari University of Venice, De-
partment of Economics.

Bollerslev, T. (1990): “Modelling the coherence in short-run nominal exchange rates: A
multivariate generalized ARCH model,” Review of Economics and Statistics, 72, 498–505.

Bollerslev, T., R. F. Engle, and D. B. Nelson (1994): “ARCH models,” in Handbook

of Econometrics, ed. by R. F. Engle, and D. L. McFadden, vol. 4, pp. 2959–3038. Elsevier
Science, Amsterdam.

21



Bollerslev, T., R. F. Engle, and J. M. Wooldridge (1988): “A capital asset pricing
model with time-varying covariances,” The Journal of Political Economy, 96, 116–131.
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