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Abstract

This paper discusses a number of likelihood ratio tests on long-run relations
and common trends in the I(2) model and provide new results on the test of
overidentifying restrictions on �0xt and the asymptotic variance for the stochas-
tic trends parameters, �?1: How to specify deterministic components in the I(2)
model is discussed at some length. Model speci�cation and tests are illustrated
with an empirical analysis of long and persistent swings in the foreign exchange
market between Germany and USA. The data analyzed consist of nominal ex-
change rates, relative prices, US in�ation rate, two long-term interest rates and
two short-term interest rates over the 1975-1999 period. One important aim of
the paper is to demonstrate that by structuring the data with the help of the
I(2) model one can achieve a better understanding of the empirical regularities
underlying the persistent swings in nominal exchange rates, typical in periods of
�oating exchange rates.

JEL: C32, C52, F41
Keywords: PPP puzzle, Forward premium puzzle, cointegrated VAR, like-

lihood inference

1 Introduction

This paper discusses a number of likelihood ratio tests on long-run relations and com-
mon trends in the I(2) model and provides new results on the test of overidentifying

�Support from Center for Research in Econometric Analysis of Time Series, CREATES, funded by
the Danish National Research Foundation is gratefully acknowledged by the �rst author.
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restrictions on �0xt and the asymptotic variance for the stochastic trends parameters,
�?1: How to specify deterministic components in the I(2) model is discussed at some
length. Model speci�cation and tests are illustrated with an empirical analysis of long
and persistent swings in the foreign exchange market between Germany and USA. The
data analyzed consist of the nominal exchange rate, relative goods prices, the U.S.
in�ation rate, and German and U.S. long-term and short-term interest rates over the
1975-1999 period during which the $/Dmk rate was �oating.
It is clear from the past three decades of �oating currencies that exchange rates have

a tendency to undergo persistent swings away from purchasing power parity (PPP) for
extended periods of time only to be followed by time periods in which exchange rates
move persistently towards this benchmark. International macro economists have long
puzzled over the long-swings behavior of �oating exchange rates. They have uncov-
ered much evidence that, although departures from PPP are ultimately bounded, the
rate at which they damp out is much too slow to be consistent with the standard sticky-
price monetary model of Dornbusch (1976) or its New Open Economy Macroeconomics
formulations. Slow adjustment can be rationalized with the aid of an equilibrium model
(Stockman, 1980, among others), but the volatility of real exchange rates (that is, the
volatility of departures from PPP) is much too large to be consistent with these mod-
els.1 The inability of exchange rate theory to explain both the high volatility and high
persistence of real exchange rates is called the PPP puzzle.
As Dornbusch himself had recognized, his in�uential monetary model of the ex-

change rate is grossly inconsistent with the long-swings behavior of exchange rates.2

Frydman and Goldberg (2007) (hereafter FG) show, however, that once the Rational
Expectations Hypothesis (REH) is replaced with an Imperfect Knowledge Economics
(IKE) representation of forecasting behavior, the traditional monetary model is able
to generate exchange rate swings away from PPP.3 Such behavior can occur in the
model even if goods prices are assumed to be fully �exible and market participants are
assumed to form their forecasts solely on the basis of macroeconomic fundamentals. In
Frydman, Goldberg and Juselius (2007) (hereafter FGJ), the authors show that this
IKE model provides a resolution to the PPP puzzle: with exchange rate swings, goods
prices can adjust quickly to equilibrium levels while departures from PPP can damp
out very slowly. The empirical analysis provided in FGJ and the one in the present
paper are both based on estimating a cointegrated I(2) model of the exchange rate,
relative goods prices, and short- and long-run interest rates using the methodology
outlined here. To provide support for its resolution of the PPP puzzle, however, FGJ
focuses on only a subset of the results from the I(2) model. By contrast, in the present

1For reviews of the PPP literature, see Rogo¤ (1996), Taylor and Taylor (2004), Taylor and Sarno
(2003), and Mark (2003).

2For example, see Dornbusch and Frankel (1983).
3In contrast to the REH and behavioral models of aggregate outcomes, IKE only partially pre-

speci�es how individual forecasting strategies might change over time. By only partially prespecifying
change, IKE models are able to recognize the importance of imperfect knowledge without presuming
that individuals are irrational. For an extensive comparsion of IKE and extant approaches to modeling
individual forecasting behvaior see part I and chapter 6 in Frydman and Goldberg (2007).
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paper, we examine more broadly whether the estimated I(2) model is consistent with
the data.
Our aim is to demonstrate that by structuring the data with the help of the cointe-

grated I(2) model, one can achieve a better understanding of the empirical regularities
underlying the persistent swings in nominal exchange rates that are typical in periods
of �oating currencies. We shall argue that the cointegrated I(2) model is well designed
to study empirical problems characterized by di¤erent levels of persistent behavior, as
it allows us to study highly persistent I(2), persistent I(1), and transitory I(0) behav-
ior in one model. By structuring the data in this way, we are able to present a number
of �sophisticated stylized facts�that any theory model should replicate in order to claim
empirical relevance.
The econometric theory of this paper builds on Johansen (1992, 1995, 1997, 2006),

Kongsted, Rahbek and Jørgensen (1999), Paruolo (2000), Paruolo (2002), Nielsen and
Rahbek (2007). There are several studies in the literature that have found nominal
variables, such as exchange rates, goods prices, and money supplies, to be well approxi-
mated as I(2).4 Despite this evidence, however, there is a resistance among economists
to consider economic data to be I(2). This resistance can be traced to the fact that the
popular REH macro models imply time series that are at most integrated of order 1.
Consequently, macro economists make use of the I(1) framework, often without testing
whether this framework provides an appropriate structuring of the data.
The common practice of ignoring trends in data that exhibit two roots near the

unit circle may lead economists to draw erroneous inferences from their �statistical�
analyses. Instead of forcing such data into an I(1) framework, it would be more useful
to construct economic models that are consistent with I(2) behavior. Indeed, FGJ
show that, under plausible assumptions, the IKE model of swings in Frydman and
Goldberg (2007) implies near I(2) behavior for exchange rates, relative goods prices,
and interest rate spreads. Thus, the �nding in FGJ and in the present study that
the I(2) hypothesis cannot be rejected for these variables indicates a rejection of the
monetary model under REH in favor of its IKE counterpart.
The organization of the paper is as follows: Section 2 gives the theoretical back-

ground for the I(2) analysis with particular attention to the role of deterministic com-
ponents in the model. Section 3 discusses the Maximum Likelihood parametrization
of the I(2) model and section 4 shows how to test structural hypotheses in that model.
Section 5 provides an ocular inspection of the data, which suggests that the nominal ex-
change rate, goods prices, and interest rate spreads should be modeled as I(2) variables.
Section 6 estimates an unrestricted VAR model with particular attention to problem of
specifying its deterministic component. Section 7 discusses the choice of rank indices
in the I(2) model. Section 8 reports a number of test results based on non-identifying
hypotheses as a general description of the properties of the data. Finally, Section 9
reports an overidenti�ed long-run structure and describes the dynamic adjustment of
the international transmission mechanisms between Germany and the USA from the

4See Johansen (1992), Juselius (1994), Kongsted (2003, 2005), Kongsted and Nielsen (2004), and
Bacchiocchi and Fanelli (2005).
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mid seventies until the beginning of the EMU. Section 10 reports the estimates of
the long-run common trends and discusses how they have pushed the variables of this
system. Section 11 concludes.

2 Theoretical background for I(2) analysis

For simplicity, the discussion of the various components in the I(2) model will be based
on the VAR(3) model formulated in acceleration rates, changes and levels:

�2xt = �1�
2xt�1 + ��xt�1 +�xt�1 (1)

+�sDs;t + �pDp;t + �trDtr;t + �0 + �1t+ �2t91:1 + "t;

where x0t = [ppt; s12;t;�p2;t; b1;t; b2;t; s1;t; s2;t]; with ppt = (p1 � p2)t describing the log
of relative prices, s12;t the Dmk/$ rate, b1;t; b2;t the long-term bond rates, s1;t; s2;t the
short-term interest rates, Ds;t is a step dummy (...0,0,1,1,...), Dp;t is a permanent
impulse dummy (...0,0,1,0,0...), Dtr;t is a transitory impulse dummy (...0,0,1,-1,0,0...),
and all parameters are unrestricted.
Similar to the I(1) model, we de�ne the concentrated I(2) model:

R0;t = �R1;t +�R2;t + "t (2)

where R0;t; R1;t; and R2;t are de�ned by:

�2xt = B̂1�
2xt�1 + B̂2Ds;t + B̂3Dp;t + B̂4Dtr;t +R0;t; (3)

�~xt�1 = B̂5�
2xt�1 + B̂6Ds;t + B̂7Dp;t + B̂8Dtr;t +R1;t; (4)

and
~xt�1 = B̂9�

2xt�1 + B̂10Ds;t + B̂11Dp;t + B̂12Dtr;t +R2;t: (5)

where ~xt = [x0t; t; t91:1] indicates that xt has been augmented with a trend, and a broken
trend t91:1. Note that we need to de�ne three types of �residuals� in the I(2) model
rather than two in the I(1) model. Similar to the I(1) model all estimation and test
procedures are based on (2).
The hypothesis that xt is I(1) is formulated as a reduced rank hypothesis

� = ��0 , where �; � are p� r (6)

implicitly assuming that � is unrestricted. The hypothesis that xt is I(2) is formulated
as an additional reduced rank hypothesis

�0?��? = ��0; where �; � are (p� r)� s1: (7)

Thus, the � matrix is no longer unrestricted in the I(2) model. The �rst reduced rank
condition (6) is associated with the variables in levels and the second (7) with the
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variables in di¤erences. The intuition is that the di¤erenced process also contains unit
roots when data are I(2).
There is, however, an important di¤erence between the �rst and the second condi-

tion. The former is formulated as a reduced rank condition directly on �; whereas the
latter is on a transformed �: Below we shall show that this is the basic reason why the
ML estimation procedure needs a di¤erent parameterization than the one in (1) .
The intuition behind (7) can be seen by pre-multiplying (1) with �0?. This makes

the levels component ��0xt�1 disappear and reduces the model to a (p�r)-dimensional
system of equations in �rst- and second order di¤erences. In this system the hypothesis
of reduced rank of the matrix �0?��? is tested in the usual way. Thus, the second
condition is similar to the �rst except that the second reduced rank is formulated on
the p� r common driving trends, rather than on the p variables.
Using (7) it is possible to decompose �? and �? into the I(1) and I(2) directions

�? = [�?1; �?2] and �? = [�?1; �?2] : The matrices �?1 and �?1 of dimension p� s1;
and �?2 and �?2 of p � s2 are de�ned by �?1 = �?�; �?;1 = �?�; �?2 = �?�? and
�?2 = �?�?; where �?; �? are the orthogonal complements of � and �; respectively

5

and � = �?(�
0
?�?)

�1 denotes a shorthand notation used all through the chapter.
The moving average representation of the I(2) model was derived in Johansen

(1992). The baseline VAR model (1) contains a constant, a trend and several dummy
variables that will have to be restricted in certain ways to avoid undesirable e¤ects.
Without such restrictions the MA model can be given in its completely unrestricted
form:

xt = C2
tP

j=1

jP
i=1

("i + �0 + �1i+ �sDs;i + �pDp;i + �trDtr;i)

+C1
tP

j=1

("j + �0 + �1j + �sDs;j + �pDp;j + �trDtr;j)

+C�(L)("t + �0 + �1t+ �sDs;t + �pDp;t + �trDtr;t) + A+Bt

(8)

where A and B are functions of the initial values x0; x�1; :::; x�k+1; and the coe¢ cient
matrices satisfy:

C2 = �?2(�
0
?2	�?2)

�1�0?2;

�0C1 = ��0�C2; �0?1C1 = ��0?1(I �	C2); (9)

	 = ���0� + �1

To facilitate the interpretation of the I(2) trends and how they load into the variables,
we denote ~�?2 = �?2(�

0
?2	�?2)

�1; so that

C2 = ~�?2�
0
?2: (10)

5Note that the matrices �?1; �?2; �?1; and �?2 are called �1; �2; �1 and �2 in the many papers
on I(2) by Johansen. The reason why we deviate here from the simpler notation is that we need
to distinguish between di¤erent � and � vectors in the empirical analysis and, hence, use the latter
notation for this purpose.
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It is now easy to see that the C2 matrix has a similar reduced rank representation as C1
in the I(1) model, so that it is straightforward to interpret �0?2

PP
"i as a measure of

the s2 second order stochastic trends which load into the variables xt with the weights
~�?2:
From (9) we note that the C1 matrix in the I(2) model cannot be given a simple

decomposition as it depends on both the C2 matrix and the other model parameters
in a complex way. Johansen (2005) derived an analytical expression for C1; essentially
showing that:

C1 = !0�
0 + !1�

0
?1 + !2�

0
?2 (11)

where !i are complicated functions of the parameters of the model (not to be repro-
duced here).

3 The ML procedure

The full ML procedure derived in Johansen (1997) exploits the fact that the I(2)
model contains r + s1 cointegration relations of which the r relations, �

0xt � I(1);
can become stationary by polynomial cointegration, �0xt +  �xt � I(0); and the
s1 relations, �

0
?1xt � I(1); can become stationary by di¤erencing, �0?1�xt � I(0):

Thus, � = (�; �?1) de�ne the r + s1 = p � s2 directions in which the process is
cointegrated from I(2) to I(1): This means that the space spanned by � = (�; �?1) can
be determined by solving just one reduced rank regression, after which the vector space
can be separated into � and �?1: However, this necessitates a re-parametrization of
the I(2) model. The following parametrization (here extended with the deterministic
components discussed above) was suggested by Johansen (1997):

�2xt = �(�0~� 0~xt�1 + ~ 
0
�~xt�1) + !0~� 0�~xt�1 + �pDp;t + �trDtr;t + "t;

"t � i:i:d: Np(0;
 ); t = 1; :::; T
(12)

where � is a (r + s1) � r matrix which picks out the r cointegration vectors �0xt (so
that �0� 0 = �0);  0 = �(�0
�1�)�1�0
�1�; !0 = 
�?(�

0
?
�?)

�1(�0?�
��; �); �0~� 0 =

[�0; �0; �01]; ~ 
0
= [ 0; 0; 01]; ~x

0
t = [x

0
t; t; t91:1] and �~x

0
t = [�x

0
t; 1; Ds91 : 1]; where t91:1

is a linear trend starting in 1991:1and Ds91:1 is a step dummy starting in 1991:1.
The relations ~� 0�~xt de�ne the p� s2 stationary relations between the growth rates,

of which r correspond �0�xt+ �0+ �01Ds91:1 and s1 to �
0
?1�xt+ ~0+ ~01Ds91 : 1: In

some cases they might be given an interpretation as medium run steady-state relations.
Based on an iterative estimation algorithm, � and � are estimated subject to the
reduced rank restriction(s) (7) on the � matrix. This is the reason why the estimates
of � and � based on the ML procedure can di¤er to some degree from the estimates
based on the I(1) model.
The FIML estimates of � = (�; �?1) are obtained using an iterative procedure

which at each step delivers the solution of just one reduced rank problem. In this case
the eigenvectors are the estimates of the CI(2; 1) relations, � 0xt; among the variables
xt; i.e: they give a decomposition of the vector xt into the r+s1 directions � = (�; �?1)

6



in which the process is I(1) and the s2 directions �? = �?2 in which it is I(2): TheML
parameterization avoids the problem of quadratic trends by restricting the constant
term, the linear trend, and the step dummy to the various cointegration relations.
The matrix  in (12) does not make a distinction between stationary and nonsta-

tionary components in �xt: For example, when xt contains variables which are I(2) as
well as I(1), then some of the di¤erenced variables picked up by  will be I(0). As
the latter do not contain any stochastic I(1) trends, they are by de�nition excludable
from the polynomially cointegrated relations: The idea behind the parametrization in
Paruolo and Rahbek (1999) was to express the polynomially cointegrated relations
exclusively in terms of the I(1) di¤erenced variables by noticing that

 0�xt�1 =  0(��� 0 + ��?�
0
?)�xt�1

so that (12) can be reformulated as:

�2xt|{z}
I(0)

= � f[�0; �01; �0]g

24 xt�1
t91:1
t

35+ [�0; 01; 0]
24 �xt�1
Ds91 : 1t�1
const

35
+�

�
�0; �0; �01
�0?1; ~0; ~01

�24 �xt�1
Ds91 : 1t�1
const

35+ �pDp;t + �trDtr;t + "t;

"t � Np(0;
 ); t = 1; :::; T

(13)

where �0 =  0��?�
0
?
6 and � = �~ 

0
~� + !0: Note that this parameterization de�nes the

I(2) model directly in terms of stationary components.

4 Testing hypotheses in the I(2) model

We discuss in this section hypotheses on the parameters �; �?1; �?2; �; and � ; in he
maximum likelihood parametrization (12) written as

�2xt = �(�0� 0xt�1 +  0��?�
0
?�xt�1) + (� 

0�� + !0)� 0�xt�1 + "t;

ignoring deterministic terms. The general theory for likelihood ratio tests for such
hypotheses is given in Boswijk (2000) and Johansen (2006) and we here discuss the
interpretation of the hypotheses and apply the result that likelihood ratio statistics are
generally asymptotically distributed as �2; except in a few cases, which we describe in
some more detail. In all cases the likelihood ratio tests are calculated by maximizing the
likelihood function, L, with the parameters restricted by the hypothesis and without
the restriction. The test statistic is �2 log(maxrestricted L=maxunrestricted L): For each
case we give the degrees of freedom for the asymptotic �2 distribution.

6Note that the de�nition of � di¤eres from the one used in Johansen (1997, 2006).
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4.1 Hypotheses on �

We discuss two types of hypotheses, the hypothesis of no levels feed-back and the
hypothesis of a unit vector in �:
First, let xt = (x01t; x

0
2t)

0 be a decomposition of the variables into two sets of p�m
and m variables, and decompose � = (�01; �

0
2)
0 similarly. The hypothesis on no levels

feed-back

� =

�
�1
0

�
=

�
Ip�m
0

�
�1; (14)

or �2 = 0; means that the acceleration �2x2t does not react to a disequilibrium error
in the polynomial cointegration relations �0xt�1 + �0�xt�1: Expressed di¤erently this
means that the error term "2t cumulates to common trends and in this sense the
variables in x2t are pushing variables with long-run impact. The hypothesis of weak
exogeneity of x2t is a restriction on the rows of (�; �?1); and that is not tested here,
see however, Paruolo and Rahbek (1999).
Second, the hypothesis that a unit vector, e1, is in �; as formulated by

� = (e1; e1?�): (15)

An equivalent way of saying this is that the �rst row of �? is zero, e01�? = 0, so that

�? = e1? :

This has the interpretation that the errors of the �rst equation are not cumulating and
in this sense the variable is purely adjusting Juselius (2006 p. 200).
Both hypotheses are restrictions on the coe¢ cient of the stationary polynomial

cointegration relations, �0xt�1 + �0�xt�1, and therefore the likelihood ratio tests sta-
tistics are asymptotically �2 with degrees of freedom mr and p + r � 1 respectively,
corresponding to the number of restricted parameters.

4.2 Test on �?1 and �?2

When testing hypotheses on the adjustment coe¢ cients �?1 and �?2 it is useful to have
expressions for the asymptotic variances, so that t-test and Wald test become feasible
without having to estimate the model with the restrictions imposed on �?1 and �?2.
The maximum likelihood procedure determines the superconsistent estimators for the
parameters � ; �;  0�?; and � = ��, which can therefore be treated as known when
discussing inference on �?1 and �?2:
It turns out that �?1 and �?2 are functions of � and the coe¢ cient matrix � =

�~ 
0
��+!0 to � 0�Xt�1: The parameters � and � are determined by regression of �2xt on

the stationary processes �0xt�1+ 
0��?�

0
?�xt�1 and �

0�xt�1. The asymptotic variance
of (�̂; �̂) is therefore given by

asV ar(�̂; �̂) = 	
 
; (16)
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where

	�1 = E

�
�0xt�1 +  0��?�

0
?�xt�1

� 0�xt�1

��
�0xt�1 +  0��?�

0
?�xt�1

� 0�xt�1

�0
:

From the expression �?1 = ��?�
0
?���? and �?2 = �?(�

0
?���?)? we can therefore �nd

the asymptotic variances of the estimators for these from those of � and � using the
�� method, see Paruolo (2002).

Lemma 1 Let the asymptotic variance of �̂; �̂ be 	 
 
: The asymptotic variance of
�̂?2 is given by

�0?2
�?2 
 [(Ip � �� 0)��; �]	[(Ip � �� 0)��; �]0; (17)

where � = �?�
0
?��?(�

0
?�

0�?�
0
?��?)

�1�0?:
For any vectors u; v the asymptotic variance of u0�̂?1v is given by

(u0��(Ir; 0)	(Ir; 0)
0��0u)(v0�0?1
�?1v) (18)

+(v0��0?(�
0��;�Ip)	(� 0��;�Ip)0��?v)(u0��?�0?
��?�0?u)

+2(v0��0?(�
0��;�Ip)	(Ir; 0)0��0u)(v0�0?1
��?�0?u):

Note that by choosing the unit vectors u = ei and v = ej we �nd the asymptotic
variance of the element (�̂?1)ij = e0i�?1"j; and for u = ei + ek; v = ej we can then
also �nd the asymptotic covariance between (�̂?1)ij and (�̂?1)kj: The proof is found in
Appendix A.

4.3 Tests on �

We consider in Section 9 test for linear restrictions on each � vector

� = (h1 +H1 1; : : : ; hr +Hr r) (19)

where hi is p � 1 and Hi is p �mi both known, and  i is an unknown parameter of
dimension mi � 1.

Lemma 2 Under the assumption that the restrictions (19) are identifying the asymp-
totic distribution of the likelihood ratio test is �2(

Pr
i=1(p� r �mi)).

The proof is given in Appendix B. The hypothesis will be applied to simplify the
estimated polynomial cointegration relations. The hypothesis does not involve the
coe¢ cient �; because the asymptotic theory for such hypotheses has not been worked
out.

9



4.4 Tests on �

We consider �rst the same restriction on all vectors in � ; that is,

� = H� (20)

where H is p �m is known and � is an m � (r + s1) matrix of unknown parameters.
An equivalent formulation is R0� = 0; where R = H?:
The other hypothesis corresponds to (15), that is,

� = (b; b? ) (21)

where b is p � 1 and known and  is a (p � 1) � (r + s1 � 1) matrix of unknown
parameters:
The test statistic for the �rst test is asymptotically distributed with degrees of

freedom (p�m)(r+s1); and, in general, the test for the second one is also asymptotically
distributed as �2 with s2� 1 degrees of freedom. There is, however, one case when the
asymptotic distribution is not a �2 distribution. This is when the vector b is a vector
in �, that is, when the hypothesis � = (b; b?�) is satis�ed.
This problem can be avoided by �rst testing the hypothesis � = (b; b?�) and, if

accepted, then we have that b is a vector in � . If it is rejected, we can test � = (b; b? )
and apply the �2 distribution because we have checked that b 62 sp(�):
The above problem is related to the conditions (36) and (37) in the Appendix

which have to be checked for this case. It is shown in Johansen (2006) that for a vector
b; inference on the hypothesis � = (b; b? ) is �2 if the dimension of sp(�)\sp( b) is
max(0; 1� s1): Thus if s1 � 1 then the condition states that b 62sp(�):

5 An ocular inspection of the persistent behavior
in the data

An ocular inspection of the data o¤ers a �rst impression of the time series properties
of the nominal variables and illustrates their tendency to undergo long swings. Figure
1, upper panel, shows the graphs of the price di¤erential and nominal exchange rate.
There are three features in the upper panel that are important to notice: (1) the
downward sloping trend in price di¤erentials which should be considered a stochastic
trend (as a deterministic trend would not make sense); (2) the big swings in the nominal
exchange rate that evolve around a downward sloping trend which looks very similar
to the one behind relative goods prices; and (3) a possible change in the slope of
the time trend of goods prices around 1991 (together with a shift in the level) and
possibly one around 1980-81. Figure 1, lower panel, shows the mean and range adjusted
ppp = p1 � p2 � s12 and the real bond rate di¤erential, (b1 ��p1)� (b2 ��p2); where
the latter is given as a 12 months moving average. The close co-movements between
the two series are quite remarkable and have previously been found among others
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Figure 1: The graphs of price di¤erential and the nominal exchange rate in logs (upper
panel), and the PPP together with bond rate di¤erential (lower panel).

in Juselius (1995, 2006, Chapter 21) and Juselius and MacDonald (2004, 2006). An
important question is whether these persistent swings should be modelled as I(1) or
I(2). Since an I(2) variable typically exhibits smooth behavior, which can be di¢ cult
to distinguish from an I(1) variable with a linear trend, the graphs of the di¤erenced
data rather than the levels are often more informative about such I(2) behavior. Also,
inspecting the graph of the di¤erenced process gives a �rst hint of whether the average
growth rate has been approximately zero or not, whether the growth rates have been
changing over the sample period, and whether there is signi�cant mean reversion in
the di¤erences.
Monthly di¤erences are, however, often noisy and it is useful to apply a moving

average �lter to the original data to single out the long-run movements from the tran-
sitory noise. This has been done in Figure 2, where we have graphed �(pp)t and �s12;t
�ltered through a twelve-month moving average. The very persistent trending behav-
ior in �(pp)t and �s12;t is apparent, suggesting that it may be useful to treat both
ppt and s12;t as I(2). We note that the in�ation rate di¤erentials exhibit more persis-
tent behavior than exchange rate changes. In the middle panel, we have graphed the
short-term interest spread and in the bottom panel the long-term interest rate spread.
In both cases, the long persistent swings suggest that these variables too exhibit I(2)
behavior.
Indeed, as we mentioned in the introduction, FGJ show that, under plausible as-

sumptions, the IKE model of swings in Frydman and Goldberg (2007) implies that the
exchange rate, relative goods prices, and interest rate spreads display I(2) behavior.
This is the case if the macroeconomic fundamentals on which market participants form
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their heterogeneous exchange rate forecasts are assumed to follow random walks with
drift. With this assumption, revisions of market participants� forecasting strategies
lead to temporally unstable drift terms in the processes driving the endogenous vari-
ables of the model. FGJ show that these broken-trends processes can be approximated
as I(2).

6 Speci�cation of deterministic terms in the empir-
ical model

A proper speci�cation of deterministic terms in the I(2) model is mandatory for the
model to yield statistically good estimates. From (8) we know that linear trends in the
data can originate from several sources: (1) E(�xi;t) 6= 0 implying that some of the
variables have exhibited signi�cant linear growth over the sample period, (2) E(�0xt) =
�0t 6= 0 implying that some of the cointegration relations are trend-stationary, (3) from
initial conditions. Even though one would expect a linear trend to be present in
nominal prices (re�ecting the fact that average in�ation rates have been nonzero in
most economies) it is less obvious that one should expect a linear trend in relative
prices and nominal exchange rates. Since deterministic trends in p1;t and p2;t are likely
to cancel in p1;t� p2;t, one should generally expect the deterministic components to be
di¤erent in a model for p1;t; p2;t; and s12;t as compared to a model for ppt = p1;t � p2;t
and s12;t: The graph in Figure 1 shows a downward sloping trend in relative prices

12



over the sample period and the question is whether this trend should be treated as
stochastic or deterministic. From an economic point of view, a deterministic trend
in relative prices would not be plausible. From a statistical point of view it might,
however, work as a local approximation. We shall include a linear trend in the VAR
and then test whether it can be excluded from the model.
In the present data, the re-uni�cation of Germany is a very signi�cant event which

is likely a priori to have strongly a¤ected the German prices, but not the US. There
are several possibilities, for example: (1) an additive e¤ect on price levels measured
by a step dummy outside the VAR dynamics at the time when the two economies
were merged, (2) an additional innovational e¤ect measured by a step dummy inside
the VAR dynamics, (3) a change in the nominal growth rates which corresponds to a
broken linear trend in the data.7

The additive step dummy e¤ect on German prices has been removed prior to the
empirical analysis using a procedure in Nielsen (2004), the remaining two e¤ects will be
properly tested within the model. There are several possibilities for how these e¤ects
will in�uence the speci�cation of deterministic components:

1. p1 and p2 are I(2) with a level shift and linear, but no broken trends, i.e. fp1 �
b0Ds91� b1tg � I(2) and fp2 � b2tg � I(2); and, provided that p1 and p2 share
the same stochastic I(2) trend, fp1 � p2 � b0Ds91� (b1 � b2)tg � I(1); i.e. the
price di¤erential adjusted for a linear deterministic trend is I(1). If, in addition,
b1 = b2 then fp1 � p2 � b0Ds91g � I(1):

2. p1 and p2 are I(2) with a level shift and broken linear trends, i.e. fp1� b0Ds91�
b11t� b12t91:1g � I(2) and fp2� b21tg � I(2); and, provided that p1 and p2 share
the same stochastic I(2) trend, fp1 � p2 � b0Ds91� (b11 � b21)t� b12t91:1g � I(1),
i.e. the price di¤erential adjusted for a broken linear trend is I(1). If, in addition,
the linear trend is identical in two prices then

fp1 � p2 � b0Ds91� b12t91:1g � I(1):

3. p1 and p2 are I(2) with a level shift and linear (or broken linear) trends but the
stochastic I(2) trends do not cancel in p1 � p2: In this case, p1 � p2 � I(2) and
s12;t would also need to be I(2) in order for the pppt to be I(1).

We shall allow for a dynamic step dummy and a broken linear trend in the cointe-
gration relations as well as in the data to be able to test the hypothesis whether the
latter is signi�cant (assuming that the step dummy has to be there). The subsequent
results suggest that case 3 works best with our information set, but they also show
that the I(2) trend in ppt and s12;t are not necessarily identical (which is also what the
graphs showed) implying two stochastic I(2) trends. How can this make sense? The
highly persistent, downward sloping, trend in price di¤erentials (see Figure 1, upper
panel) looks as a near I(2) trend and the long swings in nominal exchange rates can be

7For a detailed description of the role of deterministic trends in the I(2) model, see Juselius, 2006,
Chapter 16.
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considered another highly persistent trend. It may not be exactly I(2), but persistent
enough for the trace test not to reject it as a double unit root.8

Unfortunately, the assumption of two stochastic I(2) trends seems to introduce an
inconsistency in the analysis. If ppt and s12;t are the only near I(2) variables then they
will be long-run excludable from � given two common stochastic I(2) trends. Thus, to
maintain the assumption of two I(2) trends, there must be other variables in the system
which exhibit approximately the same persistency pro�le. Figure 1, lower panel, clearly
suggests that the real interest rate spread is a likely candidate because it is closely co-
moving with the ppp; the long swings of which are associated with nominal exchange
rate.
The graphs of the data in the Appendix C show a number of outlier observations.

Most of them belong to the short-term interest rates in the period 1980-1982 which
coincide with the period of monetary targeting. This was a very volatile period which
does not seem representative for the rest of the sample. The hypothesis that the
parameters of the VAR model are unchanged in this period was tested in Hansen and
Johansen (1999) and clearly rejected. Because of this we have excluded the observations
from 1980:2-1982:3 from the model analysis.
The properties of the VAR estimates have been shown to be reasonably robust to

moderate excess kurtosis (long tails) as long as the error distribution is symmetrical
(Gonzalo, 1994). Therefore, among the remaining outliers only those being extra-
ordinarily large and those producing skewed residuals have been corrected for9. The
dummies and their estimated e¤ects are reported in Table 1, which shows that the very
large shocks were associated with large and unexplainable changes (given our data and
our model) in the short-term interest rates and the US bond rate. The dummy vari-
able, Dtax, measures the impact on German prices from a number of excise taxes in
1991:7, 1991:1, and 1993:1 to �nance the re-uni�cation. All dummy variables, except
the one in 1984:1 which is a transitory dummy (...,0,1,-1,0,..), are impulse dummies
(...,0,1,0,...).
Thus, provided that we are willing to consider broken linear trends in the variables,

but no quadratic or cubic trends, we need to restrict the trend, t; and the broken linear
trend, t91:1; to exclusively enter the �

0xt�1 relations, and the constant and the shift
dummy Ds91 : 1t to exclusively enter the �

0�xt�1 and � 0�xt�1 relations, whereas the
permanent blip dummy, can enter the VAR model unrestrictedly. See the speci�cation
in (13).
Given this speci�cation, Table 2 shows that the model passes most of the speci�ca-

tion tests, though there are still some problems with the normality of the short-term
interest rates and nominal exchange rates due to excess kurtosis and with residual
ARCH for the two bond rates. However, the cointegrated VAR results are reasonably

8The nonlinear adjustment process in Bec and Rahbek (2004) might even provide a better approx-
imation, but testing for this possibility is outside the scope of this paper.

9As a sensitivity check, the model has been estimated without the hole in 1980-1982 and without
correcting for outliers. The main conclusions hold, but the statistical interpretation of the results is
less reliable.
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Table 1: Estimated outlier coe¢ cients
Dummy variables in the model

Dtax 79:10 82:08 84:01 85:02 86:02 88:08 89:02 97:07
��pp 0:01

[9:77]
� � � � � � � 0:01

[3:49]

��s12 � � � 0:06
[2:67]

� �0:07
[�2:35]

� � �

��� � � �0:00
[�2:75]

� � �0:00
[�3:33]

� � �

��b1 � � � � 0:00
[2:36]

� � � �

��b2 � 0:00
[2:31]

�0:00
[�2:64]

� 0:00
[4:08]

�0:00
[�3:96]

� � �

��s1 � � � � 0:00
[2:79]

� 0:00
[5:55]

0:00
[4:40]

�

��s2 � 0:00
[5:18]

�0:00
[�12:67]

�0:00
[�13:41]

0:00
[3:27]

� � � �

t-values in brackets, * indicates a t-value < 2.0

robust to moderate ARCH and excess kurtosis.

7 Determining the two reduced rank indices

The number of stationary polynomial cointegrating relations, r; and the number of
I(1) trends, s1; among the common stochastic trends, p � r; are determined by the
ML trace test procedure in Johansen (1997). Table 3 reports the tests of the joint
hypothesis (r; s1; s2) for all values of r; s1 and s2. The test procedure starts with the
most restricted model (r = 0; s1 = 0; s2 = 5) in the upper left hand corner, continues
to the end of the �rst row (r = 0; s1 = 5; s2 = 0), and proceeds similarly row-wise from
left to right until the �rst acceptance. Based on the tests, the �rst acceptance is at
(r = 2; s1 = 4; s2 = 1); whereas the next acceptance is at (r = 3; s1 = 2; s2 = 2); which
is at a much higher p-values.
Since our model has a broken linear trend restricted to be in the cointegration

relations, and a shift dummy restricted to the di¤erences, the asymptotic trace test
distribution provided by CATS should be shifted to the right, i.e., the test is likely to
be somewhat undersized. The trace tests suggest the possibility of either r = 2 or 3:
Thus, it is useful to perform a sensitivity check before the �nal choice of r; s1; and s2.
The characteristic roots assuming no I(2) trends show that the choice of (r = 2; s1 =

5) leaves a large unrestricted root (0.90) in the model, whereas (r = 3; s1 = 4) leaves
two (0.93 and 0.90). Both cases seem to suggest a total of approximately six (near) unit
roots in the model, consistent with both (r = 2; s1 = 3; s2 = 2) and (r = 3; s1 = 2; s2 =
2). Thus, the �nal decision seems to be between two (three) polynomial cointegration
relations (�0xt + ��xt) and three (two) medium-run relations in di¤erences (�

0
?1�xt):

Checking the t�values of �̂3 shows �ve highly signi�cant coe¢ cients (with t-values
in the range of 15.4 to 3.4), which suggests that the third polynomial cointegration
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Table 2: Misspeci�cation tests
Multivariate tests (p-values in brackets)
Residual autocorrelation LM(1) �2(49) = 67:19

(0:04)

Residual autocorrelation LM(2) �2(49) = 11:56
(1:00)

Test for normality �2(14) = 87:24
(0:00)

Test for ARCH LM(1) �2(784) = 944:20
(0:00)

Univariate tests:
�2pp �2s12 �2�p �2b1 �2b2 �2s1 �2s2

ARCH 1:08
[0:58]

1:65
[0:44]

4:74
[0:09]

7:57
[0:02]

5:68
[0:06]

1:92
[0:38]

0:44
[0:80]

Skew. -0.01 0.18 0.10 0.22 -0.00 0.35 -0.02
Kurt. 2.78 4.19 3.66 3.51 3.83 4.41 5.11
Norm. 0:21

[0:90]
14:19
[0:00]

5:91
[0:05]

4:46
[0:11

8:38
[0:02]

16:69
[0:00]

35:31
[0:00]

relation is indeed stationary. A graphical inspection of Figure 3 in Section 9 con�rms
that the �rst three � relations look very stationary. Even though s2 = 1 would be
easier to discuss, s2 = 2 seems empirically more correct and we shall continue with the
case (r = 3; s1 = 2; s2 = 2).
Altogether, the evidence of highly persistent behavior in the data seems compelling.

8 Testing non-identifying hypotheses

The �̂ matrix in Appendix C shows that the estimated coe¢ cients in the row de-
scribing the nominal exchange rate and the US long-term bond rate are essentially all
insigni�cant, suggesting that there might be no long-run levels feed-back on these two
variables. This hypothesis, described in Section 4.1, was individually accepted with
�2(3) = 5:24 [0:15] for nominal exchange rate and �2(3) = 1:27 [0:74] for the US bond
rate, as well as jointly accepted based on �2(6) = 6:578[0:362]. As FGJ points out,
this is exactly what one would expect to �nd given the temporal instability of market
participants� forecasting strategies and the limited information set employed in this
study. Another hypothesis of interest is the unit vector in �; also described in Section
4.1, implying that a variable is purely adjusting, i.e., the opposite of the no long-run
feed-back hypothesis. We found that this hypothesis was accepted for the US in�ation
rate based on �2(3) = 2:41 [0:66] : Thus, nominal exchange rates are pushing and goods
prices are adjusting, which is inconsistent with REH models of the exchange rate. This
result is, however, completely consistent with the FG model of swings. See FGJ for a
detailed discussion.
There are a number of interesting hypotheses that can be formulated as the same

restrictions on � , described in Section 4.3, expressed either as � = H' or R0� = 0: We
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Table 3: The trace test statistics for cointegration rank indices
p� r r s2 = 7 s2 = 6 s2 = 5 s2 = 4 s2 = 3 s2 = 2 s2 = 1 s2 = 0
7 0 1737:63

[0:00]
1402:12
[0:00]

1137:46
[0:00]

908:43
[0:00]

715:21
[0:00]

528:18
[0:00]

379:58
[0:00]

280:64
[0:00]

6 1 1115:86
[0:00]

885:59
[0:00]

659:57
[0:00]

470:53
[0:00]

319:31
[0:00]

190:76
[0:00]

160:82
[0:00]

5 2 646:64
[0:00]

455:20
[0:00]

271:26
[0:00]

141:15
[0:00]

94:27
[0:19]

93:63
[0:02]

4 3 265:40
[0:00]

134:94
[0:00]

69:81
[0:72]

39:63
[0:99]

40:67
[0:82]

3 4 64:60
[0:77]

32:60
[1:00]

15:58
[1:00]

22:18
[0:90]

2 5 13:04
[1:00]

2:03
[1:00]

8:06
[0:98]

1 6 �0:91
[NA]

0:17
[1:00]

test the following four hypotheses:

1. H1 : R
0
1� = 0; where R01 = [1; 1; 0; 0; 0; 0; 0; 0; 0]; i.e. we test whether we can

impose the ppp restriction on all � vectors. If accepted it would imply that the
nominal to real transformation x0t = [pppt;�p1;t;�p2;t; b1;t; b2;t; s1;t; s2;t] would
be econometrically valid (Kongsted, 2005) in the sense of transforming an I(2)
vector to an I(1) without loss of information. The hypothesis is rejected based
on �2(5) = 16:64 [0:01] :

2. H2 : R
0
2� = 0; where R

0
2 = [0; 0; 0; 0; 0; 0; 0; 1; 0]; i.e. we test whether the broken

trend is long-run excludable from � : The hypothesis was borderline accepted
based �2(5) = 9:99 [0:08] : Thus, there is only weak evidence that the direction of
the trend in relative prices and /or nominal exchange rates changed at the time
of the re-uni�cation of Germany.

3. H3 : R
0
3� = 0; where R03 = [0; 0; 0; 0; 0; 0; 0; 0; 1]; i.e. we test whether the

trend is long-run excludable from � : The hypothesis was rejected based �2(5) =
13:75 [0:02] : Thus, there is some evidence that the trend is econometrically needed
as a local approximation of the downward sloping trend in relative prices and in
the nominal exchange rate.

4. H4 : R
0
4� = 0; where R04 =

�
0; 0; 0; 0; 0; 0; 0; 0; 1
0; 0; 0; 0; 0; 0; 0; 1; 0

�
; i.e. we test whether the

trends can be left out of the long-run relations: The hypothesis was rejected
based �2(10) = 24:50 [0:01] : Thus, the hypothesis that the downward sloping
trend strongly visible in Figure 1 is stochastic rather than deterministic is re-
jected. However, the hypotheses of no such trends were only borderline rejected,
which supports our prior assumption that a deterministic trend should only be
considered a local approximation.
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Finally, we shall test �ve hypotheses formulated as a known vector b in � : If ac-
cepted, they imply the variable in question is at most I(1). If, in addition, the variable
in question is not a vector in �; then it is I(1): None of the variables tested below can
be considered a vector in �; hence, the tests are tests of I(1).

1. H5 : � = (b1; b1?') where b1 = [1; 0; 0; 0; 0; 0; 0; 0; 0]; i.e. we test whether relative
prices is a unit vector in � which, if accepted, would imply that ppt is I(1). The
test strongly rejected based on �2(4) = 55:56 [0:00] :

2. H5 : � = (b2; b2?') where b2 = [0; 1; 0; 0; 0; 0; 0; 0; 0]; i.e. we test whether nominal
exchange rate is a unit vector in � which, if accepted, would imply that s12;t is
(at most) I(1). The test is rejected based on �2(4) = 9:76 [0:04].

3. H6 : � = (b3; b3?') where b3 = [1;�1; 0; 0; 0; 0; 0; 0; 0]; i.e., we test whether the
real exchange rate is a unit vector in � which, if accepted, would imply that pppt
is I(1). The test is accepted based on �2(4) = 4:90 [0:30] : Thus, real exchange
rates can be approximately considered an I(1) process.

4. H7 : � = (b3; b3?') where b4 = [0; 0; 0; 1;�1; 0; 0; 0; 0]; i.e., we test whether
the bond rate spread is a unit vector in � which, if accepted, would imply that
b1;t � b2;t is I(1). The test is accepted based on �2(4) = 3:65 [0:46] : Thus, bond
rate di¤erential can be approximately considered an I(1) process.

5. H7 : � = (b3; b3?') where b5 = [0; 0; 0; 0; 0; 1;�1; 0; 0]; i.e., we test whether the
short spread is a unit vector in � which, if accepted, would imply that s1;t � s2;t
is I(1). The test is only borderline accepted based on �2(4) = 8:43 [0:08] : Thus,
short spread can be approximately considered an I(1) process, but barely so.

These tests provide an approximate description of the properties of the data and
should not be confused with testing structural hypotheses, which is the topic of the next
section. For example, the result that pppt; b1;t� b2;t; and s1;t� s2;t are I(1) seems to be
at odds with the previous assumption that the long swings are I(2). The explanation
for this apparent inconsistency is that the I(2) approximation of the long swings trend
is a borderline case. This is because it consists of a unit root together with a large root
of roughly 0.86. Depending on whether size or power is considered more important,
one can interpret 0.86 as a unit root or argue that it is small enough to be di¤erent
from one. But regardless of whether one interprets ppp and the interest rate spreads as
I(1) or I(2), the results are inconsistent with the REH monetary model, which implies
that ppp and interest rate spreads are I(0). By contrast, the monetary model with IKE
implies that these variables are both near I(2). Thus, beyond the inability to formally
reject the unit-root hypothesis, the FG model justi�es the I(2) interpretation of the
results.
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Table 4: An identi�ed long-run structure in �
The structure : � = (H1'1; : : : ; Hr'r) ; �

2(10) = 9:19[0:51]
pp s12 �p2 b1 b2 s1 s2 t91:1 t

�01 �0:01
[�23:49]

0:01
[23:49]

0:00
[NA]

1:00
[NA]

�1:00
[NA]

0:00
[NA]

0:00
[NA]

0:00
[NA]

0:00
[5:60]

�02 0:00
[NA]

0:00
[6:32]

0:09
[10:25]

0:00
[NA]

1:00
[NA]

0:00
[NA]

�1:00
[NA]

0:00
[4:36]

0:00
[NA]

�03 �0:01
[�5:51]

0:00
[NA]

1:00
[NA]

0:00
[NA]

0:00
[NA]

�0:74
[�16:48]

0:00
[NA]

�0:00
[�4:83]

0:00
[NA]

�1 �0:92 0:15 0:03 0:03 0:04 0:04 0:04 0:00 �0:01
�2 �0:51 �0:17 0:02 0:02 0:02 0:03 0:02 0:00 �0:00
�3 1:31 �0:07 �0:04 �0:04 �0:05 �0:06 �0:05 0:00 0:00
�0?1;1 1:00 0:35 11:71 �1:62 �1:62 15:80 �0:61 �0:00 0:00
�0?1;2 2:86 1:00 33:51 �4:67 �4:69 45:23 �1:80 �0:01 0:01

9 Estimating the I(2) model subject to identifying
restrictions on the long-run structure

The decomposition � = (�; �?1) de�nes three stationary polynomially cointegrating
relations, �0ixt+�

0
i�xt; i = 1; 2; 3 and �ve stationary cointegration relations between the

di¤erenced variables, � 0�xt: The di¤erence between �
0xt and �

0
?1xt is that the latter

can only become stationary by di¤erencing, whereas the former can become stationary
by polynomial cointegration. How to impose and test over-identifying restrictions on
� was discussed in Section 4, but not on �?1 or � as their asymptotic distributions are
not yet worked out.

9.1 The estimated long-run structure

To obtain standard errors of the estimated � coe¢ cients we need to impose identifying
restrictions on each of the polynomially cointegrating relations reported above. The
asymptotic distribution of an identi�ed �̂ is given in Johansen (1997).
When interpreting the � relations below we shall only include the �rst two el-

ements of �0�xt; corresponding to the in�ation rate di¤erentials and the deprecia-
tion/appreciation rate, as they are likely to be more relevant than the other variables.
The �rst relation is approximately describing the relationship between long-term

interest rate spreads and ppp which have been found in many other VAR models of
similar data:

�01xt+ �
0
1�xt = f(b1� 0:92�p1)� (b2� 0:92�p2)+ 0:15�s12� 0:01ppp+ trendg: (22)

The second is a relation between the US term spread and US in�ation relative to
German in�ation. It can be interpreted as expected in�ation, measured by the term
spread, as a function of actual in�ation rates and the change in the Dmk/$ rate:

19



ci rel

3:pdf

1980 1985 1990 1995

10

0

10

20 Polynomial cointegration relation 1

1980 1985 1990 1995

25

0

25

50 Polynomial cointegration relation 2

1980 1985 1990 1995

10

5

0

5
Polynomial cointegration relation 3

Figure 2: The graphs of the three polynomial cointegration relations. Upper panel
describes the IKE relation, the middel panel the in�ation expectations relation, and
the lower panel the German in�ation rate relation.

�02xt+ �
0
2�xt = f(b2� s2) + 0:60�p2� 0:51�p1� 0:17�s12+0:00s12+0:00t91:1g (23)

The third relation, essentially a relation for German in�ation rate, is similar to the
relation found in Juselius and MacDonald (2006) and describes the latter as (almost)
homogeneously related to US in�ation rate, German short-term interest rate, and the
change in the Dmk/$ rate:

�03xt + �3�xt = f1:31�p1 � 0:31�p2 � 0:74s1 � 0:07�s12 + 0:00pp� 0:00t91:1g (24)

All three relations contain a tiny, but signi�cant, trend e¤ect which is more di¢ cult
to interpret. The most likely explanation is the usual one that the linear trend e¤ect in
the relations is a proxy for some information not included in the analysis. For example,
the small trend e¤ect in (22) might account for some perceived productivity di¤erential
between the two economies. In (23) the re-uni�cation trend might be a proxy for a
change in the market�s re-assessment of the riskiness of the nominal Dmk/$ rate. In
(24) the trend together with the pp may imply that German in�ation rate, in addition
to following the US in�ation rate, the short-term interest rate, and the change in the
Dmk/$ rate, has exhibited a long-run adjustment to trend-adjusted relative prices.
Figure 2 shows that the three polynomially cointegrating relations are very stationary.
The b�0?1;1xt relations are CI(2; 1) cointegrating relations which only become sta-

tionary by di¤erencing. Thus, b�0?1�xt could be interpretable as partially speci�ed
20



medium-run steady-state relations. As we are not yet able to impose and test overi-
dentifying restrictions on the estimated vectors, interpreting the unrestricted estimates
does not make much sense and will not be done here.

9.2 The dynamics of the short-run adjustment

Table 5 reports the estimates of the short-run adjustment coe¢ cients associated with
the polynomially cointegrating relations, �i = 1; 2; 3; and the coe¢ cients � i = 1; :::; 5
associated with the changes in the �ve equilibrium errors, � 0i�xt. The number of
estimated coe¢ cients is large, making it di¢ cult to summarize the main results in a
simple way. We shall not make detailed comments on the results, but instead give a
cursory description of the basic adjustment mechanisms in this system.
The estimated �1 shows that all variables, except the German long-term bond

rate, react very signi�cantly on the equilibrium error from the IKE relation, pointing
to its importance for the international transmission mechanisms. The estimated �2
shows that relative prices, nominal exchange rates, and US in�ation rate and the two
German interest rates (whereas not the US rates) react signi�cantly to a deviation
between expected in�ation and its determinants. The estimated �3 is consistent with
the interpretation of the third cointegration relation as a relation for German in�ation
rate, as it is essentially prices which are reacting on an equilibrium error, albeit the
short-term interest rates show some small e¤ects.
Given that the nominal exchange rate was found to exhibit no long-run feed-back

e¤ects in Section 8, it is somewhat surprising that there are two signi�cant � coe¢ cients
in the exchange rate equation. However, the test for a zero row in � in Section 8 was
for � relations between the levels of variables, whereas the estimated � coe¢ cients
in 9.2 correspond to polynomial cointegration relations containing variables in levels
and di¤erences. Furthermore, the combined relation (�1;2�

0
1;t+ �2;2�

0
2;t) suggests that

the two signi�cant cointegration relations almost neutralize each other, nonetheless
with some small but signi�cant evidence of the �rst relation being important for the
nominal exchange rates. Thus, the result suggests that the ppp may act as an anchor
for exchange rates, even though we do not expect its relationship to be completely
stable over time.
One of the important questions in international macro is why prices and exchange

rates adjust so sluggishly to the ppp: The answer provided by FGJ is that, with imper-
fect knowledge, equilibrium in the goods markets is no longer characterized by PPP,
but by a cointegrating relationship between ppp; b1 � b2 ; and �p1 ��p2. FGJ show
that relative goods prices adjust to this equilibrium relation extremely fast, which can
be seen from the estimates in Table 5 which are also reported in FGJ. The estimated
adjustment coe¢ cient �̂11 = 0:39 shows that relative goods prices (and US in�ation
rate with �̂13 = �0:59) adjust very fast to the �rst cointegration relation. By contrast,
the adjustment of relative prices to ppp is very slow -(0.39x0.01). Thus, ppp acts as an
anchor for prices, but the chain is very long indeed.
The estimated coe¢ cients of � i may not be highly interesting for the following
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Table 5: The short-run dynamic adjustment26666666666666664

�2ppt

�2s12;t

�2�p2;t

�2b1t

�2b2;t

�2s1;t

�2s2;t

37777777777777775
=

266666666666666664

0:39
[3:99]

0:29
[4:53]

�0:29
[�3:00]

�4:47
[�3:19]

2:88
[3:11]

�1:47
[�1:05]

�0:59
[�8:62]

�0:29
[�6:48]

�0:48
[�6:98]

0:00
[0:67]

�0:03
[�6:57]

0:01
[1:44]

�0:03
[�2:86]

0:00
[0:29]

0:00
[0:33]

0:03
[4:59]

�0:06
[�13:55]

0:02
[2:67]

�0:04
[�4:86]

0:00
[0:66]

�0:02
[�2:39]

377777777777777775

24 �01xt�1 + �01�xt�1
�02xt�1 + �02�xt�1
�03xt�1 + �03�xt�1

35+

+

266666666666666664

0:85
[1:12]

0:24
[0:48]

0:93
[2:58]

�0:32
[�0:02]

0:08
[0:01]

�7:40
[�0:68]

11:35
[1:57]

�1:88
[�0:36]

�274:41
[�1:00]

95:90
[0:99]

�0:84
[�1:58]

0:02
[0:05]

�1:39
[�5:52]

3:38
[0:25]

�1:17
[�0:25]

�0:59
[�11:16]

�0:21
[�6:10]

0:06
[2:39]

�12:26
[�9:16]

4:28
[9:16]

0:14
[1:73]

�0:45
[�8:24]

0:02
[0:57]

�20:69
[�9:86]

7:23
[9:85]

0:16
[2:91]

0:11
[2:95]

0:46
[17:62]

8:41
[5:98]

�2:95
[�6:00]

0:23
[3:52]

0:64
[14:71]

�0:05
[�1:76]

�12:02
[�7:30]

4:20
[7:29]

377777777777777775

266664
�01�xt�1
�02�xt�1
�03�xt�1
�0?1;1�xt�1
�0?1;2�xt�1

377775+
2666666664

"1;t
"2;t
"3;t
"4;t
"5;t
"6;t
"7;t

3777777775

with 
 =

2666666664

1:00
0:12 1:00
�0:58 �0:07 1:00
�0:04 �0:04 0:15 1:00
0:00 0:03 0:15 0:31 1:00
�0:04 �0:03 0:12 0:35 �0:07 1:00
0:02 0:06 0:01 0:18 0:19 0:11 1:00

3777777775

22



Table 6: The estimates of the common stochastic trends
"pp "s12 "�p2 "b1 "b2 "s1 "s2

The estimates of the �rst order stochastic trends, �?1
�0?1;1 0:02

[0:32]
�0:03
[�0:85]

0:08
[1:01]

�0:14
[�0:53]

�1:61
[�7:89]

1:32
[2:45]

�0:17
[�0:79]

�0?1;2 �0:01
[�0:48]

�0:00
[�0:01]

0:04
[0:88]

�0:33
[�1:75]

�1:29
[�8:50]

0:57
[1:44]

�0:14
[�0:88]

The estimates of the second order stochastic trends, �?2
�0?2;1 �0:00

[�0:13]
0:01
[1:06]

�0:00
[�0:30]

1:00
[NA]

�0:47
[�8:03]

�0:47
[�7:99]

�0:00
[NA]

�0?2;2 0:01
[0:29]

0:00
[0:24]

�0:03
[�0:78]

0:00
[NA]

�0:12
[�0:77]

�0:01
[�0:05]

1:00
[NA]

reason: The estimated model is formulated in second di¤erences, which for the interest
rates and U.S. in�ation rate means over-di¤erencing. Thus, the highly signi�cant
coe¢ cients in the last four rows are likely to compensate for this.

10 The driving forces

Table 6 reports the estimates of the common stochastic trends where �?1 and �?2 de�ne
the �rst and second order stochastic trends as a linear function of the VAR residuals.
The two �?1vectors are determined by the chosen normalization of �?1; whereas �?2
has been normalized and just-identi�ed by the choice of the two zero coe¢ cients.
As discussed in Section 2, the estimates of the second order trends are more straight-

forward to interpret and we shall mostly focus on them. Based on the estimates in
Table 6, the �rst stochastic I(2) trend, �0?2;1

PP
"̂s; seems to be generated from the

twice cumulated shocks to the bond spread and to the German term spread with al-
most equal weights (roughly 0.5, 0.5), whereas the second trend, �0?2;2

PP
"̂s; seems

to have been generated from the twice cumulated shocks to the US short term interest
rate.
Even though the estimates of the I(1) stochastic trends are less straightforward

to interpret, it is quite interesting to note that only the interest rates coe¢ cients are
signi�cant. Since, cumulated shocks both to the long-term and short-term interest rates
are highly signi�cant, it means that there are not just one stochastic trend driving the
term structure, but at least two.10

The coe¢ cients to�p2 and the pp are completely insigni�cant as are the coe¢ cients
to nominal exchange rates. The former result seems very plausible given the previous
�nding that prices seem to be purely adjusting (see also Juselius and MacDonald, 2004
and 2006). But, the �nding that exchange rate shocks are completely insigni�cant may
seem surprising, given that the nominal exchange rate was found to have no long-run
levels feed-back. On the other hand, the fact that it was found to signi�cantly adjust
to the polynomial cointegration relations can explain the lack of signi�cant e¤ects in

10This is consistent with the �ndings in Johansen and Juselius (2001).
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Table 7: The common stochastic trends and their loadings2666666664

ppt
s12;t
�p2;t
b1t
b2;t
s1;t
s2;t

3777777775
=

2666666664

1:56 �0:69
2:43 3:35
�0:00 0:07
�0:01 0:09
�0:03 0:08
0:00 0:16
�0:05 0:12

3777777775
�
�0?2;1

PP
"̂s

�0?2;2
PP

"̂s

�
+

+

2666666664

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44
c51 c52 c53 c54
c61 c62 c63 c64
c71 c72 c73 c74

3777777775

2664
�0?2;1

P
"̂i

�0?2;2
P
"̂i

�0?1;1
P
"̂i

�0?1;2
P
"̂i

3775+
2666666664

b11 b12
b21 b22
b31 b32
b41 b42
b51 b52
b61 b62
b71 b72

3777777775
�
t91:1
t

�

Table 6. We also note that this adjustment explains a small part of the variation in
the nominal exchange rate.
Finally, Table 7 reports the weights with which the I(2) stochastic trends have

a¤ected the variables of the system. We do not report the weights of the I(1) trends
as these are complicated functions of the estimated matrices. See Section 2.
We note that the �rst I(2) trend seems to have a¤ected pp and s12 with coe¢ cients

of the same sign, but not the same magnitude, whereas the second I(2) trend appears
to in�uence these variables with coe¢ cients of opposite signs. Interpreting the �rst
trend as the long-run downward sloping trend visible in both relative prices and nom-
inal exchange rates suggests that it is associated with twice cumulated shocks to the
bond spread and the German term spread. Interpreting the second trend as capturing
the long swings movements predominantly in nominal exchange rates suggests that it
is predominantly associated with the twice cumulated shocks to the US short- term
interest rate. Moreover, this second trend has a¤ected relative prices with a fairly small
coe¢ cient that is opposite in sign to the one on nominal exchange rates. This re�ects,
of course, the tendency of the nominal exchange rate to move away from relative prices
for extended periods of time. Finally, it is notable that nominal interest rates seem to
have been a¤ected in particular by the second I(2) trend which is consistent with the
FG model as discussed in FGJ.
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11 Conclusions

This paper has discussed a number of likelihood ratio tests in the I(2) model. Using
these procedures we have been able to investigate the empirical regularities behind
the long swings in the Dmk/$ rate. This has been done by structuring the data
according to di¤erent levels of persistence using the I(2) model. We have argued that
allowing for I(2) trends is important for the econometric analysis of macroeconomic
data To ignore such trends when they are present in the data is likely to impede a full
understanding of the data. Moreover, the I(2) framework enabled us to present some
empirical regularities in characterizing the long swings properties of real and nominal
exchange rates.
The estimated four stochastic trends summarizing the di¤erent levels of persistence

seemed primarily to derive from shocks to the interest rates. Thus, many of the basic
assumptions behind standard rational expectations models (such as the PPP and Fisher
parity) are incompatible with the empirical evidence. The sluggish adjustment of
relative goods prices and nominal exchange rates to the ppp is also incompatible with
standard rational expectations models. The fact that price in�ation was found to be
�purely�adjusting, whereas nominal exchange rates showed no long-run feed-back is
also in con�ict with the assumptions of such models. In striking contrast, these results
accord well with the IKE monetary model in FG.
To conclude, we �nd the general-to-speci�c approach of a cointegrated VAR model

to be potentially very important as a way of making abductive inference in economics
(Hoover, 2006). This is because it allows us to systematically search for an econometric
model that is as simple as possible (but not more so) without distorting some of the
information in the data. Thus, this approach should allow us to address the question:
if the standard theory is too simple, what then? In contrast, the speci�c-to-general
approach is designed to replicate the favorite theory model and is, therefore, likely to
have a built-in theory bias (see Juselius and Franchi, 2007).
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13 Appendices

A Proof of Lemma 1

It is convenient to introduce � = �0?���?; so that �?1 = ��?� and �?2 = �?�?: Because
the estimates of �; � ; �; � are superconsistent we can �nd the asymptotic variance of
�̂?1 and �̂?2 by �nding derivatives of �?1 and �?2 with respect to � and �; and then
transform the asymptotic variance of (�̂; �̂) by an application of the �� method.
It is convenient to express the matrix expansion

(�+ u)0? = �0? � �0?u��
0 +O(juj2)

in terms of di¤erentials
(d�0?) = ��0?(d�)��0: (25)

As an example of the ��method we can �nd the asymptotic variance of �̂? from (16)
and (25) as

asV ar(�̂?) = ��(Ir; 0)	(Ir; 0)
0��0 
 �0?
�?:

Applying (25) we �nd derivatives of � = �0?���?; �?; and ��? :

d� = ��0?(d�)��0���? + �0?(d�)��?;

d�? = ����0?(�
0��(d�)0 � (d�)0)�?2;

d��? = ���(d�)0��?:

Hence from �?2 = �?�?; we get

d�?2 = (d�?)�? + �?(d�?) = �(Ip � �?����
0
?�

0)��;�?����
0
?)

�
(d�)0

(d�)0

�
�?2;

where we �nd
� = �?����

0
? = �?�

0
?��?(�

0
?�

0�?�
0
?��?)

�1�0?;

which gives the expression (17). We next �nd

d�?1 = d(��?)�
0
?���? + ��?d(�

0
?)���? + ��?�

0
?(d�)��?; (26)

= ���(d�)0�?1 � ��?�0?(d�)��0���? + ��?�0?(d�)��?:

In order to �nd the elements of the asymptotic variance of �̂?1 it is enough to have
an expression for the asymptotic variance of v0�̂?1u for any vectors v; u: We �nd from
(26)

v0d�?1u = �u0��(d�)0�?1v � u0��?�
0
?(d�)��

0���?v + u0��?�
0
?(d�)��?v

= �v0�0?1(d�)��0u+ u0��?�
0
?[(d�)� (d�)��0�]��?v

= N1 +N2

Then V ar(v0d�?1u) = V ar(N1) + V ar(N2) + 2Cov(N1; N2); which is the expression in
(18).
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B Proof of Lemma 2

We apply the maximum likelihood parameterization (12), especially the parameters
�; � and � = ��: In order to apply the results in Johansen (2006) we have to normalize
� and � on �� 0 and ��0 respectively, that is, so that �0��0 = Ir and � 0�� 0 = Ir+s: We split
the parameters � ; � into the variation free parameters � = ��; � = ��? and �; and let
� = �( ) be given by (19)

�( ) = (h1 +H1 1; : : : ; hr +Hr r):

B.1 Normalization of parameters

We de�ne the normalized versions of �; � and the corresponding �; as functions of the
free parameters  ; �; �; using the decomposition � = ����0 + ��?��

0
? = �( )��0 + ���0? :

~� = ~�( ) = �( )(��
00
�( ))�1;

~� = ~�( ; �; �) = (�( )��0 + ���0?)(��
00�( )��0 + �� 00���0?)

�1;

~� = ~�( ) = �� 00�( )(��
00
�( ))�1:

which satis�es ��00~� = Ir; ��
00~� = Ir+s1 ; and ~� = ~�~�:

The asymptotic theory for hypotheses on the parameters in the I(2) model, Jo-
hansen (2006), is developed in terms of the parameters

B1 = ��
00
?1
~�( ) = B1(�1B; �2);

B2 = ��
00
?2
~�( ) = B2(�1B; �2);

C = ��
00
?2~�~�? = �1C ;

where �1 = (�1B; �1C) and �2; are de�ned below, in such a way that the estimators
for B2 and �2 are T

2 consistent and the estimators for B1; C; and �1 = (�1B; �2B) are
T consistent. Moreover the asymptotic distribution of (TB̂1; T 2B̂2) is mixed Gaussian
and so is the asymptotic distribution of TĈ: The asymptotic distribution of T 2�̂2 and
T �̂1 are only mixed Gaussian under some further conditions, which we discuss below.

B.2 The parameters �2; �1B; and �1C

We start de�ning the parameters �2 which determine the variation of B2 through

��
00
?2�( ) =

��
00
?2(h1 +H1 1; : : : ; hr +Hr r) = ��

00
?2H1( 1 �  01); : : : ;

��
00
?2Hr( r �  0r)

In order to �nd the e¤ective number of parameters we write ��00?2Hi = aib
0
i; where

ai; s1 � gi; and b0i; gi �mi; are of rank gi = rank(��
00
?2Hi) � min(mi; s2): We de�ne thePr

i=1 gi parameters

�2 = (�21; : : : ; �2r) = (b
0
1( 1 �  01); : : : ; b

0
r( r �  0r));
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and the
Pr

i=1(mi � gi) parameters

�1B = (�1B1; : : : ; �1Br) = (b
0
1?( 1 �  01); : : : ; b

0
r?( r �  0r));

and �nally the s1s2 parameters
�1C =

��
00
?2�:

Thus the number of parameters is
Pr

i=1mi + s1s2: Note that

 i �  0i =
�bib

0
i( i �  0i ) +

�bi?b
0
i?( i �  0i ) =

�bi�2i +�bi?�1Bi:

The parameters �1B; �1C ; and �2 are varying freely.

B.3 Derivatives of parameter functions

We �rst investigate the derivatives of B2 with respect to the parameters  ; and �nd

@

@ 
B2 = ��

00
?2[

@

@ 
�( )](��

00
�( ))�1 + ��

00
?2�( )[

@

@ 
(��
00
�( ))�1]

@2

@ 2
B2 = ��

00
?2[

@2

@ 2
�( )](��

00
�( ))�1 + ��

00
?2�( )[

@2

@ 2
(��
00
�( ))�1]

+2��
00
?2[

@

@ 
�( )][

@

@ 
(��
00
�( ))�1]:

For  =  0 we have �( 0) = �0; so that ��00?2�( 0) = ��
00
?2�

0 = 0; and ��00�( 0) = Ir;
which means that because @2

@ 2
�( ) = 0; we �nd

@

@ 
B2j = 0 = ��

00
?2[H1(d 1); : : : ; Hr(d r)] = (a1b

0
1(d 1); : : : ; arb

0
r(d r)); (27)

@2

@ 2
B2j = 0 = 2��

00
?2[

@

@ 
�( )j = 0 ][

@

@ 
(��
00
�( ))�1j = 0 ]: (28)

This implies, using d i = �bi(d�2i) + �bi?(d�1Bi); that

@

@�2
B2j = 0 = (a1(d�21); : : : ; ar(d�2r)); (29)

@

@�1B
B2j = 0 = (a1b

0
1
�b1?(d�1B1); : : : ; arb

0
r
�br(d�1Br)) = 0: (30)

Similarly

��
00
?2

@

@�1B
�( )j = 0 = (a1b01�b1?(d�1B1); : : : ; arb0r�br(d�1Br)) = 0
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so that from (28) we �nd
@2

@�21B
B2j = 0 = 0: (31)

The derivative of B1 = ��
00
?1
~�( ) with respect to �1B is

@

@�1B
B1j = 0 = ��

00
?H1

�b1?(d�1B1); : : : ;
��
00
?Hr

�br?(d�1Br)] = 0; (32)

which will be discussed below, and �nally we �nd the derivative of C

@

@�
Cj = 0;�=�0;�=�0 = ��

00
?2(d�)��

00
?�

0
? = d�1C ; (33)

@

@ 
Cj = 0;�=�0;�=�0 = ��

00
?2

@

@ 
�( )j = 0��00�0? = 0; (34)

@

@�
Cj = 0;�=�0;�=�0 = ��

00
?2[�

0 @

@�
��0j�=�0 + �0

@

@�
��0?j�=�0 ]�0? = 0; (35)

because ��00�0? = 0; ��
00
?2�

0 = 0; and ��00?2�
0 = 0:

B.4 Conditions for asymptotic �2 distribution

The conditions are expressed in terms of the derivative at the true value, see Johansen
(2006, Theorem 5). There are two conditions, the �rst states that although B2 may
depend on �1; the dependence is very small close to the true value, and the second
implies that we can split the parameter �1 into �1B which locally determines B1 and
�1C which locally determines C: Thus at the true value it should holds that

@B2
@�1

= 0;
@2B2

@�21
= 0; (36)

@B1
@�1C

= 0;
@C

@�1B
= 0: (37)

We �nd from (30) and (31) that (36) is satis�ed. Because B1 does not depend on
�1C ; we have

@B1
@�1C

= 0: On the other hand C does depend on �1B; but from (34) we

have @C
@�1B

= 0 at the true value so that (37) holds. The consequence of this is that
asymptotic inference is �2 and we only have to �nd the degrees of freedom, that is, the
di¤erence between the number of identi�ed parameters with and without restrictions.

B.5 Number of parameters

The number of parameters in the unrestricted parameters B1; B2; and C are s1r; s2r
and s1s2 respectively: We next want to show that when � is identi�ed by the linear
restrictions, the number of parameters in the model is s1s2+

Pr
i=1mi; which gives the
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degrees of freedom.
Pr

i=1(p � r �mi): From (32), (29), and (33) it follows that at the
true value we have

@B1
@�1B

(d�1B) = (��
00
?1H1

�b1?(d�11B); : : : ; ��
00
?1Hr

�br?(d�1rB));

@B2
@�2

(d�2) = (a1(d�21); : : : ; ar(d�2r));

@C

@�1C
(d�1C) = d�1C :

Wewant to determine the rank of these matrices to determine the number of parameters
in the restricted model. We now need the result, see Johansen (2007).

Lemma 3 If �i = hi+Hi i is identi�ed, then the (p� r)�mi matrix �
0
?Hi has rank

mi:

It follows that ��00?Hi has rank mi; and therefor so has the matrix

��
00
?Hi(�bi;�bi?) = (��

0
?1;
��
0
?2)

0Hi(�bi;�bi?) =

�
��
0
?1Hi

�bi ��
0
?1Hi

�bi?
ai 0

�
:

The rank of ai is gi so the rank of ��
0
?1Hi

�bi? is mi � gi: Therefore

rank(
@vec(B1)

@vec(�1B)
) =

rX
i=1

rank(��0?1Hi
�bi?) =

rX
i=1

(mi � gi);

rank(
@vec(B2)

@vec(�2)
) =

rX
i=1

rank(ai) =
rX
i=1

gi;

rank(
@vec(C)

@(�1C)
) = s1s2:

This shows that the number of parameters is s1s2+
Pr

i=1mi; and hence that the test
for the identifying restrictions is asymptotically distributed as �2 with

Pr
i=1(p�r�mi)

degrees of freedom.
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