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Abstract

We derive an identity for the determinant of a product involving non-squared matrices.

The identity can be used to derive the maximum likelihood estimator in reduced-rank regres-

sions with Gaussian innovations. Furthermore, the identity sheds light on the structure of the

estimation problem that arises when the reduced-rank parameters are subject to additional

constraints.
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1 Introduction

Several seminal papers came out of Ted�s Ph.D. dissertation, Anderson (1945). One of these

paper is Anderson (1951), in which he established the theory of reduced-rank regressions.

This paper was, in part, based on Anderson (1945, pp. 137-141), where Ted related the

reduced-rank regression problem to earlier work by Fisher (1938) before giving the �rst

rigorous treatment of the problem.

A cornerstone of the econometrics literature is Anderson and Rubin (1949), which intro-

duced the limited information maximum likelihood estimator. A special case of the reduced-

rank regression result was given in this paper, while the general form of reduced-rank regres-

sion was published in Anderson (1951). I was �rst exposed to Ted�s research as an under-

graduate student at the University of Copenhagen. The name T.W. Anderson frequently

appeared in my lecture notes, which were authored by faculty members at the Institute of

Mathematical Statistics. Ted�s research had left a big footprint on the statistics and econo-

metrics curriculum in Copenhagen, which continues to be true today. In recent years, I have

been fortunate to interact with Ted at Stanford and I am grateful for the opportunity to

contribution to this issue.

While the reduced-rank regression (RRR) can be attributed to Ted, he did not coin the

catchy phrase. The reduced-rank terminology was �rst used in Burket (1964) who compared

a number of reduced-rank methods for the purpose of prediction, while Izenman (1975)

bonded the maximum likelihood estimator of Anderson (1951) with reduced-rank regression.

See also Tso (1981), Davies and Tso (1982), and Anderson (1984).

Let � = diag(�1; : : : ; �p) be a p� p diagonal matrix and let y 2 Rp�r be a p� r matrix

that is such that y0y = Ir; where Ir denotes the r � r identity matrix. The contribution

of this paper is an identity that ties the determinant, jy0�yj ; to an inner product with a

convenient structure. Speci�cally

jy0�yj = h�; �i;

where � = �(�) 2 Rn is a vector that depends only on �; and � = �(y) 2 Rn is a vector that

depends only on y: In fact, � is such that
Pn

i=1 �i = 1; and �i � 0; so that jy0�yj is simply
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a convex combination of (�1; : : : ; �n): An implication is that the following problem,

max
y2Rp�r

jy0�yj =jy0yj;

which appears in the RRR estimation problem, is rather simple to solve.

A reduced-rank regression model take the form,

Yt = �Xt +	Zt + "t; t = 1; : : : ; T; (1)

where Yt; Xt and Zt are of dimension p; q; and s; respectively. What make a RRR distinct

from a standard regression model is a requirement that � has reduced rank,

rank(�) � r; where 0 � r < min(p; q):

Naturally, a standard least squares regression model emerges when r = min(p; q):

The RRR estimation problem is given by,

min
�;	

�����
TX
t=1

"t"
0
t

����� ; subject to rank(�) � r:

The reduced-rank condition makes the estimation problem more complex than the standard

least squares regression problem. However, the RRR estimation problem can be simpli�ed

to maxx2Rp�r jx0Mxj = jx0Nxj ; where M and N are data-dependent matrices. The di¢ cult

step is to show that x̂ = (v̂1; : : : ; v̂r) is the solution to this problem, where v̂1; : : : ; v̂r are

the eigenvectors of j�N �M j = 0 that corresponds to the r largest eigenvalues. This result

can be obtained by a second order Taylor expansion of log jx0Mxj = jx0Nxj, as in Johansen

(1996); by reference to Poincare�s theorem, see Magnus and Neudecker (1988); or by making

use of the determinant identity presented in this paper.

When the reduced-rank parameters are subject to additional restrictions, it will typically

result in more complex estimation problems that do not have closed-form solutions. Prob-

lems of this kind have been considered by Ahn and Reinsel (1990), Johansen and Juselius

(1992), Boswijk (1995), Hansen and Johansen (1998), and Hansen (2003). Several dexterous

algorithms to solve various estimation problems of this kind are proposed in these papers.

The determinant identity of this paper could potentially be useful for estimation problems
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of this sort, because the identity uncovers more of the underlying structure.

The RRR model is interesting because it appears in several econometric models, including

the analysis of multivariate time-series, see Velu, Reinsel, and Wichern (1986) and Velu

and Reinsel (1987), and the analysis of cointegrated variables in the vector autoregressive

framework, see Johansen (1988, 1991, 1996). The book by Reinsel and Velu (1998) gives an

excellent exposition of reduced-rank regression analysis and its relations to many econometric

models. It is remarkable that Ted, more that half a century later, continues to contribute to

this line of research. For instance, Anderson (1999) generalizes the results in Anderson (1951)

and Anderson (2002) discuss the properties of RRR and ordinary least squares estimators

in both a stationary and non-stationary setting.

The rest of this paper is organized as follows. We derive the determinant identity in

Section 2 and use the identity to prove a result that is useful for the RRR estimation

problem. Reduced-rank regressions are discussed in Section 3, and Section 4 concludes.

2 A Determinant Identity

We introduce the following notation. Let Drp denote the set of all possible subsets of J �

f1; : : : ; pg with r distinct integers (r � p). For a given subset J 2 Drp; a p�r matrix y; and a

p�p matrix �; we de�ne the r�r sub-matrix, yJ = fyijgi2J; j=1;:::;r and �J = f�ijgi;j2J :We

use diag(a1; : : : ; ap) to denote the p� p diagonal matrix with diagonal elements: a1; : : : ; ap.

Example 1 Consider the case where p = 3 and r = 2; so that

y =

0B@ y11 y21 y31

y12 y22 y32

1CA
0

and � = diag(�1; �2; �3):

For this case we have D23 = ff1; 2g; f1; 3g; f2; 3gg: If we take J = f1; 2g then

yJ =

0B@ y11 y12

y21 y22

1CA and �J = diag(�1; �2):

The main contribution of this paper is the following Theorem that formulates a useful

expression for a determinant of non-square matrices.
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Theorem 1 Let � = diag(�1; : : : ; �p) and let y be a p� r matrix, where p � r. Then

jy0�yj =
X
J2Drp

jy0J�JyJ j =
X
J2Drp

jy0JyJ j�i2J�i =
X
J2Drp

jyJ j2�i2J�i: (2)

An immediate consequence of Theorem 1 is that jy0�yj can be written as an inner product

of the two vectors

~� = (jyJ1 j2; : : : ; jyJnj2)0 and � = (�i2J1�i; : : : ;�i2Jn�i)
0;

where n =
�
p
r

�
: If we de�ne � = ~�=jy0yj; then �i � 0 for all i; and by applying Theorem 1

with � = I; it follows that
Pn

i=1 �i = 1: So � 2 �n�1 where �n�1 is the (n� 1)-simplex in

Rn: This shows that

jy0�yj=jy0yj =
nX
i=1

�i�i; (3)

is simply a convex linear combination of the elements in �:

Proof of Theorem 1. The second and third equality follow from the fact that jABj =

jAj jBj for matrices of proper dimensions. The �rst identity of (2) holds trivially when r = 1

and p = r: These cases are indicated by checkmarks in the follows scheme.

pnr 1 2 3 4 � � �

1 X � � �

2 X X � �

3 X ? X �

4 X ? ? X
...

...
. . .

We now complete the proof by induction, as we show that (2) holds for (p; r) when the

identity is assumed to hold for the two cases: (p� 1; r � 1) and (p� 1; r):

Let ~� � diag(�1; : : : ; �p�1): First we consider the special case where the pth row of y is

a row of zeroes, i.e. (yp1; : : : ; ypr) = (0; : : : ; 0): We let ~y denote the p � 1 � r sub-matrix of

y that results from deleting the pth row of y: Using the assumption that (2) holds for the
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case, (p� 1; r); we have

jy0�yj = j~y0~�~yj =
X

J2Drp�1

jy0JyJ j ��i2J�i

=
X

J2Drp;p=2J

jy0JyJ j ��i2J�i +
X

J2Drp;p2J
jy0JyJ j ��i2J�i;

where the last term is zero, because the pth row of y only consists of zeroes. So we have

established the result for this special case.

Consider next, the situation where (yp1; : : : ; ypr) 6= (0; : : : ; 0): Here we choose a full rank

r � r-matrix, Q; that satis�es (yp1; : : : ; ypr)Q = (0; : : : ; 0; 1): Given our choice for Q; we

de�ne ~z to be the p� 1� r � 1 matrix given by the �rst r � 1 columns of ~yQ: We have

jQj2 jy0�yj =

�������Q0~y0~�~yQ+
0B@ 0r�1�r�1 0

0 �p

1CA
������� = jQ0~y0~�~yQj+ j~z0~�~zj�p: (4)

Since we have assumed that the identity holds for the case (p � 1; r); the �rst term can be

expressed as

jQ0~y0~�~yQj = jQj2
X

J2Drp�1

j~y0J ~�J ~yJ j = jQj2
X

J2Drp;p=2J

jy0J�JyJ j: (5)

Finally, we turn to the last term of (4), j~z0~�~zj�p. For J 2 Dr�1p�1 we have

j~zJ j =

�������
0B@ ~zJ 0

0 1

1CA
������� = jy ~JQj;

and �pj~�J j = j� ~J j; where ~J = fJ [ fpgg 2 Drp: So the second term of (4) can be expressed

as

j~z0~�~zj�p = jQj2
X

J2Dr�1p

p2J

jy0J�JyJ j; (6)

where we made use of the assumption that the identity holds when (p�1; r�1). Combining

the identities (4)�(6), we have shown

jQj2jy0�yj = jQj2
X

J2Drp;p=2J

jy0J�JyJ j+ jQj2
X

J2Drp;p2J
jy0J�JyJ j = jQj2

X
J2Drp

jy0J�JyJ j;
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which completes the proof.

Corollary 2 Let � = diag(�1; : : : ; �p) where �1 � �2 � � � � � �p � 0 and consider the

function

g(y) = jy0�yj = jy0yj :

Then

max
y2Rp�r

g(y) = g(ŷ) =
rY
i=1

�i and min
y2Rp�r

g(y) = g(�y) =

pY
i=p�r+1

�i;

where ŷ = (Ir; 0r�p�r)0 and �y = (0r�p�r; Ir)0.

Proof. From our discussion that followed Theorem 1, we have that g(y) = jy0�yj = jy0yj is a

convex combination over the elements in �;
Q

i2J�i, J 2 Drp. So we have

pQ
i=p�r+1

�i � g(y) �
rQ
i=1

�i:

Since these two bounds are attained for y = �y and y = ŷ, respectively, the proof is

complete.

The following Corollary is a key to the estimation problem in reduced-rank regressions

that we discuss in the next Section.

Corollary 3 Let M and N be symmetric p� p matrices, where M is positive semi-de�nite

and N is positive de�nite. Consider the matrix function

f(x) = jx0Mxj = jx0Nxj ;

where x 2 Rp�r: Then

sup
x
f(x) = f(x̂) =

rY
i=1

�i and inf
x
f(x) = f(�x) =

pY
i=p�r+1

�i;

where x̂ = (v1; : : : ; vr) and �x = (vp�r+1; : : : ; vp) and �1; : : : ; �p are the eigenvalues of

j�N �M j = 0; ordered in descending order, and v1; : : : ; vp the corresponding eigenvectors.

A partial proof of the result in Corollary 3 was given in Bellman (1960, theorem 10,

p. 129), and the result can also be found in Rao (1973) along with many related results.

Johansen (1988) establishes the result using a second order Taylor expansion of log f(x), see
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also Johansen (1996). Here we present a proof that is based on the determinant identity of

Theorem 1.

Proof of Corollary 3. Since N is symmetric and positive de�nite it can be diagonalized

as N = V 0DV; where D is a diagonal matrix with positive entries and V 0V = I: So N� 1
2 =

V 0D� 1
2V is well-de�ned. It follows that the matrix N� 1

2MN� 1
2 is symmetric and positive

semi-de�nite and can be diagonalized, N� 1
2MN� 1

2 = Q0�Q; where Q0Q = I and � =

diag(�1; : : : ; �p) with �1 � �2 � � � � � �p � 0: With y = QN
1
2x we have jx0Mxj = jx0Nxj =

jy0�yj = jy0yj. By Corollary 2, this term is maximized (minimized) by ŷ = (Ir; 0)
0 (�y =

(0; Ir)
0); so f(x) is maximized (minimized) by x̂ = N� 1

2Q0ŷ (�x = N� 1
2Q0~y).

3 Reduced Rank Regression

In this Section, we discuss the RRR estimation problem. A convenient way to impose the

rank condition, rank(�) � r; is to rewrite � as the product, � = ��0; where � and �

have dimensions p� r and q � r; respectively. Then the reduced-rank regression model, (1),

becomes

Yt = ��
0Xt +	Zt + "t; t = 1; : : : ; T;

and the RRR estimators of �; �; and 	 are de�ned from the solution to

min
�;�;	

�����
TX
t=1

"t"
0
t

����� : (7)

In matrix notation a RRR take the form Y = X��0 + Z	0 + "; where the tth row of Y;

X; Z; and " are given by Y 0t ; X
0
t; Z

0
t; and "

0
t respectively. Thus var("

0) = IT 
 
:

We de�ne the moment matrix, Myx = Y
0X=T; and de�ne the matrices, Myy; Myz; Mxx;

etc. similarly. Finally, de�ne

Syy =Myy �MyzM
�1
zz Mzy; Syx =Myx �MyzM

�1
zz Mzx;

and de�ne Sxx and Sxy = S0yx in a similar manner.

8



Theorem 4 (Reduced Rank Regression) The estimators that solve (7) are given by

�̂ = (v̂1; : : : ; v̂r)�;

�̂ = Syx�̂(�̂
0
Sxx�̂)

�1;

	̂ = MyzM
�1
zz � �̂�̂

0
MxzM

�1
zz ;

where (v̂1; : : : ; v̂r) are the eigenvectors corresponding to the r largest eigenvalues of

j�Sxx � SxyS�1yy Syxj = 0;

and where � is an arbitrary r � r matrix with full rank.

Remark 1 The parameters � and � are not identi�ed. However, the r � r matrix, �; can

be used as a normalization device. E.g. if the normalization � = (Ir; �
0
2)
0 is desired, one can

choose � to be the inverse of the matrix that consists of the �rst r rows of (v̂1; : : : ; v̂r):

Remark 2 The eigenvectors in Theorem 4 are easy to obtain with standard software, such

as Ox, Gauss, or Matlab, because (v̂1; : : : ; v̂p) = S
�1=2
xx (x1; : : : ; xp); where (x1; : : : ; xp) are the

eigenvectors of the matrix S�1=2xx SxyS
�1
yy SyxS

�1=2
xx : The eigenvalues of the two problems are

identical and the eigenvectors in Theorem 4 satisfy SxyS�1yy Syxv̂i = �iSxxv̂i; v̂
0
iSxxv̂j = �ij ;

where �ij is the Kronecker delta.

Proof of Theorem 4. The objective is to minimize m0(�; �;	); where

m0(�; �;	) =

�����T�1
TX
t=1

"t"
0
t

����� ; "t = Yt � ��0Xt �	Zt:

It is simple to verify that argmin	m(�; �;	) = 	̂(�; �) � MyzM
�1
zz � ��0MxzM

�1
zz ; as it

follows from the standard least squares result. By de�ning the auxiliary variables, ~Yt = Yt�

MyzM
�1
zz Zt and ~Xt = Xt �MxzM

�1
zz Zt; the estimation problem is simpli�ed to minimizing

m1(�; �) = m0(�; �;	(�; �)) = jT�1
TX
t=1

~"t~"
0
tj;

where ~"t = ~Yt � ��0 ~Xt:

For a �xed value of �; the estimation problem (of �) is a least squares problem, so that

argmin�m1(�; �) = �̂(�) � Syx�(�
0Sxx�)

�1: The residual problem is now to minimize
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m2(�) = m0 (�(�); �;	(�(�); �)) ; where

m2(�) = jT�1
TX
t=1

( ~Yt � �̂(�)�0 ~Xt)( ~Yt � �̂(�)�0 ~Xt)0j

= jSyy � Syx�(�0Sxx�)�1�0Sxyj = jSyyj
j�0(Sxx � SxyS�1yy Syx)�j

j�0Sxx�j
:

Let 0 � �̂1 � � � � � �̂p be the eigenvalues of j�Sxx � (Sxx � SxyS�1yy Syx)j = 0 and v̂1; : : : ; v̂p

the corresponding eigenvectors. By Corollary 3 it follows that �̂ = (v1; : : : ; vr) minimizes

m2(�): The eigenvectors satisfy (Sxx � SxyS�1yy Syx)vi = �iSxxvi; such that SxyS�1yy Syxvi =

(1 � �̂i)Sxxvi i = 1; : : : ; p. So vi is also an eigenvector of the eigenvalue problem, j�Sxx �

SxyS
�1
yy Syxj = 0; with eigenvalue �̂i = 1� �̂i: It now follows that the solution to min�m2(�)

is given from the r eigenvectors that are associated with the r largest eigenvalues of j�Sxx�

SxyS
�1
yy Syxj = 0: The results for �̂ and 	̂ now follows by substituting �̂ into �̂(�) and (�̂; �̂)

into 	̂(�; �):

3.1 Maximum Likelihood Estimators by RRR

The estimators derived in Theorem 4 were simply de�ned to be the solution to least squares

problem, (7). However, the RRR estimators, �̂; �̂; and 	̂; are the maximum likelihood

estimators under the assumptions that: Xt and Zt are deterministic or predetermined; and

"t is independent and identically Gaussian distributed, "t � N(0;
):

In this situation the maximum likelihood estimator of 
 is given by


̂ = Syy � Syx�̂(�̂
0
Sxx�̂)

�1�̂
0
Sxy;

and the maximum value of the likelihood function, L(�̂; �̂; 	̂; 
̂); is

L�2=Tmax = (2�e)
p jSyyj

rY
i=1

(1� �̂i):

So we have

2 logLmax _ T
rX
i=1

log(1� �̂i);

and this leads to the the likelihood ratio test of the rank of �; by Anderson (1951), as the

likelihood ratio statistic for the hypothesis: H0 : rank(�) � r against rank(�) = p ^ q; is
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simply T
Pq

i=r+1 log(1� �̂i): The asymptotic distribution of this likelihood ratio statistic is

�2 in a setting with stationary variables, whereas non-standard distributions arise when the

underlying variables are non-stationary, see Johansen (1991, 1996) and Anderson (2002).

Empirical studies using the cointegrated vector autoregressive model by Johansen (1988),

is probably the area where reduced-rank regression analysis is used most extensively. In the

special case with a vector autoregressive model of order two, this model can be written as

the, so-called, error correction model:

�Vt = ��
0Vt�1 + �1�Vt�1 + �+ "t;

where �Vt = Vt � Vt�1; � is a vector of constants, and f"tg is a sequence of iid Gaussian

random variables, "t � N(0;
): The RRR structure is evident in this model. Simply set

Yt = �Vt; Xt = Vt�1 and Zt = (�V 0t�1; 1)
0: See Johansen (1996) for a comprehensive

treatment of this model.

3.2 RRR with Additional Restrictions

Many econometric problems lead to a reduced-rank regression where the parameters are

subject to additional restrictions, see Ahn and Reinsel (1990), Johansen and Juselius (1992),

Boswijk (1995), Hansen and Johansen (1998), and Hansen (2003). Estimation problems of

this kind will typically have a complex structure, that cannot be solved with the methods

discusses above.

In the proof of Theorem 4 we saw that the estimation problem for � could be ex-

presses as the problem miny jy0�yj=jy0yj; and the estimator of � is tied to that of y by

the relation y = QS
1=2
xx �; where Q is given from the orthogonal decomposition: Q0�Q =

S
�1=2
xx SxyS

�1
yy SyxS

�1=2
xx : This shows that restrictions on � translate into restrictions on y

through y(�) = QS1=2xx �: From (3) we have that

jy0�yj=jy0yj = h�; �i;

where �(y) is a vector that depends only on y; and � = �(�) is a vector that depends only

on �: So restrictions on �; � 2 B0 say, can be translated into restrictions on the vector

�, � 2 �0 say, in which case the estimation problem can be expressed as max�2� �
0�: This
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suggests a general framework for analyzing RRR subject to additional restrictions on �. We

shall not pursue this issue further in this paper.

4 Conclusion

This paper derived a determinant identity, that can be used to solve the estimation problem in

the reduced-rank regression model by Anderson (1951). The expression for the determinant

provides additional insight about the estimation problem in reduced-rank regressions where

the reduced-rank parameters are subject to additional restrictions.
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