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Abstract

A general theory of efficient estimation for ergodic diffusions sampled at high fre-

quency is presented. High frequency sampling is now possible in many applications,

in particular in finance. The theory is formulated in term of approximate martingale

estimating functions and covers a large class of estimators including most of the pre-

viously proposed estimators for diffusion processes, for instance GMM-estimators

and the maximum likelihood estimator. Simple conditions are given that ensure

rate optimality, where estimators of parameters in the diffusion coefficient converge

faster than estimators of parameters in the drift coefficient, and for efficiency. The

conditions turn out to be equal to those implying small ∆-optimality in the sense of

Jacobsen and thus gives an interpretation of this concept in terms of classical sta-

tistical concepts. Optimal martingale estimating functions in the sense of Godambe

and Heyde are shown to be give rate optimal and efficient estimators under weak

conditions.
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2 M. Sørensen

1 Introduction

Dynamic phenomena affected by random noise are often best modelled in continuous time
by stochastic differential equations. Among the advantages are model parameters with
a clear interpretation and facilitation of communication with engineers and scientists by
a common modelling tool. Finance is a well-known example of an area where stochastic
differential equations are widely used. A few other examples of areas where these mod-
els are used are neurology, Lansky, Sacerdote & Tomasetti (1995), agronomy, Pedersen
(2000), climatology, Ditlevsen, Ditlevsen & Andersen (2002), and physiology, Ditlevsen
et al. (2007). While the dynamics is formulated in continuous time, observations are, by
nature, at discrete points in time. Estimation for these models has in recent years become
an active area of research, and a large number of estimation procedures has been proposed
for parametric as well as non-parametric diffusion models, see e.g. Sørensen (2004) and
Fan (2005).

In this paper we focus on approximate martingale estimating functions for discrete
time observations of a scalar process given by the stochastic differential equation

dXt = b(Xt; α)dt + σ(Xt; β)dWt, (1.1)

where α and β are parameters to be estimated. We consider a scalar diffusion to simplify
the presentation. The results can be generalized to multivariate diffusions. In Section 3
we indicate how results for multivariate diffusions differ from the one-dimensional case.
Martingale estimating functions give consistent estimators at all sampling frequencies,
Bibby, Jacobsen & Sørensen (2005), and optimal estimating functions have turned out
to often provide estimators with a high efficiency, see e.g. Overbeck & Rydén (1997) and
Larsen & Sørensen (2007). One aim of this paper is to explain this by showing that the
estimators are efficient in a high frequency asymptotic scenario. The observation times
are i∆n, i = 0, . . . , n and the asymptotic scenario considered is that

n → ∞, ∆n → 0, n∆n → ∞.

The length of the time interval in which observations are made goes to infinity, which
is necessary to ensure that the drift parameter α can be estimated consistently. At the
same time the sampling frequency goes to infinity, which allows us to study how the
special structure of diffusion models implies that martingale estimating functions can
yield efficient estimators. For non-martingale estimating functions, we need the extra
condition that ∆n goes to zero sufficiently fast that n∆κ → 0, for a certain κ that
depends on how far the estimating function is from being a martingale. Simple and easily
checked conditions are found that ensure rate optimality and efficiency of estimators. For
diffusion models the latter is important because the diffusion coefficient parameter β can
be estimated at a higher rate than the drift parameter α, Gobet (2002). Estimators of β
that do not use the information about the diffusion coefficient contained in the quadratic
variation will converge at the same rate as estimators of α. It is shown shown that optimal
martingale estimating functions in the sense of Godambe & Heyde (1987) are rate optimal
and efficient under weak regularity conditions. Thus these estimators are not only optimal
within a relatively small class of estimators, they are in fact optimal among all estimators.

That our high frequency asymptotics is relevant to applications is due to the fact that
the sampling frequency needs not be particularly high for the asymptotics to be applicable
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if the diffusion does not move fast. This is, for instance, often the case for finance data,
where even weekly observations can in some cases be considered a high frequency. This
explains why estimators from optimal martingale estimating functions quite often have a
good efficiency in finance applications.

The theory developed in this paper covers a large class of estimators including most
of the previously proposed estimators for diffusion processes, for instance the martin-
gale estimating functions proposed by Bibby & Sørensen (1995) and Kessler & Sørensen
(1999), GMM-estimators based on conditional moments, Hansen (1982), and the maxi-
mum likelihood estimator, Pedersen (1995), Poulsen (1999), Äıt-Sahalia (2002), Durham
& Gallant (2002), and Äıt-Sahalia & Mykland (2003). The pseudo-likelihood function
obtained from the Gaussian Euler approximation to the transition density is covered too.
This pseudo-likelihood can, when β is fixed, also be obtained as a discretization of the
continuous time likelihood function. These estimators have often been used in empirical
work in finance. Estimators closely related to the Euler pseudo-likelihood were considered
by Prakasa Rao (1988), Florens-Zmirou (1989), and Yoshida (1992). Also more complex
pseudo-likelihood functions are covered such as that proposed by Kessler (1997), who ob-
tained more accurate Gaussian approximations to the likelihood function by higher order
expansions of conditional moments. The latter group of authors considered the same high
frequency asymptotic scenario as the one in the present paper. Sørensen & Uchida (2003)
considered the Euler pseudo likelihood under high frequency/small diffusion asymptotics.

The conditions for rate optimality and efficiency obtained in this paper are equal to
the conditions for small ∆-optimality obtained in Jacobsen (2002) for martingale estimat-
ing functions. The idea behind the small ∆-optimality concept, introduced in Jacobsen
(2001), is to consider the asymptotic covariance matrix obtained under a low frequency
asymptotics, where the time between observations, ∆, is fixed and does not depend on n.
This asymptotic covariance matrix is expanded in powers of ∆, and the small ∆-optimal
estimating functions are those for which the main term of the expansion is minimized
within the class of all estimating functions. The same kind of reasoning was used by
Äıt-Sahalia & Mykland (2004) to study observation at random time points. It is not
surprising that the same conditions are obtained. Our results provides an interpretation
of small ∆-optimality in terms of the classical statistical concepts rate optimality and
efficiency.

In order to prove the results, tools for studying high frequency asymptotic properties
of estimators are provided. Lemma 5.5 is a new result of some independent interest in
this context. It provides simple conditions ensuring that convergence in probability of a
normalized sum of parameter-dependent functions of pairs of consecutive observations is
uniform in the parameter.

The paper is organized as follows. Section 2 sets up the model, the class of approxi-
mate martingale estimating functions, and the assumptions used throughout the paper.
A number of often used estimators are shown to be covered by the theory. Also a crucial
fundamental lemma is presented. Section 3 develops the general high frequency asymp-
totics for general estimating functions as well as for rate optimal estimating functions.
The condition for rate optimality is given here. The asymptotic results are used in Sec-
tion 4 to find conditions for efficiency. Sufficient conditions that a given set of conditional
moments can give a rate optimal and efficient estimator are given, and it is proved that
Godambe-Heyde optimal martingale estimating functions are rate optimal and efficient. A
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number of examples are considered, including the Euler pseudo-likelihood and maximum
likelihood estimation. Proofs are given in Section 5, and Section 6 concludes.

2 Model and conditions

We consider observations Xtn0
, . . . , Xtnn of the process given by (1.1) at the time points

tni = i∆n, i = 0, . . . , n. We suppose that a solution of the stochastic differential equation
(1.1) exists, is unique in law, and is adapted to the filtration generated by the Wiener
process W and the initial value X0. For simplicity of notation we assume that α and β
are one-dimensional. All results in the paper can be immediately generalized to the case
where α and β are multivariate by replacing partial derivatives by vectors or matrices of
partial derivative and by considering estimating functions of the same dimension as the
parameter. We assume further that θ = (α, β) ∈ Θ where Θ is a subset of IR2 with a
non-empty interior int Θ, and that the true parameter value θ0 = (α0, β0) ∈ int Θ. It is no
serious restriction to assume that Θ is convex. The theory and results involve the squared
diffusion coefficient

v(x; β) = σ2(x; β) (2.1)

rather than the diffusion coefficient. We denote the state-space of X by (ℓ, r), where
−∞ ≤ ℓ < r ≤ ∞. We assume that v(x; β) > 0 for all x ∈ (ℓ, r), and that the stochastic
differential equation (1.1) satisfies the following condition.

Condition 2.1 The following holds for all θ ∈ Θ:

(1)
∫ r

x#
s(x; θ)dx =

∫ x#

ℓ
s(x; θ)dx = ∞ (2.2)

and ∫ r

ℓ
xkµ̃θ(x)dx = A(θ) < ∞ (2.3)

for all k ∈ IN, where x# is an arbitrary point in (ℓ, r),

s(x; θ) = exp

(

−2
∫ x

x#

b(y; α)

v(y; β)
dy

)

(2.4)

and
µ̃θ(x) = [s(x; θ)v(x; β)]−1. (2.5)

(2) supt Eθ(|Xt|k) < ∞ for all k ∈ IN.

(3) b, σ ∈ Cp,4,1((ℓ, r) × Θ).

We define Cp,k1,k2,k3
(IR+ × (ℓ, r)2 × Θ) as the class of real functions f(t, y, x; θ) satisfying

that

(i) f(t, y, x; θ) is k1 times continuously differentiable with respect t, k2 times contin-
uously differentiable with respect y, and k3 times continuously differentiable with
respect α and with respect to β
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(ii) f and all partial derivatives ∂i1
t ∂i2

y ∂i3
α ∂i4

β f , ij = 1, . . . kj, j = 1, 2, i3 + i4 ≤ k3, are
of polynomial growth in x and y uniformly for θ in a compact set (for fixed t).

The classes Cp,k1,k2
((ℓ, r) × Θ) and Cp,k1,k2

((ℓ, r)2 × Θ) are defined similarly for functions
f(y; θ) and f(y, x; θ), respectively. A function f(y, x; θ) is said to be of polynomial growth
in y and x uniformly for θ in a compact set if, for any compact subset K ⊆ Θ, there exists
a constant C > 0 such that supθ∈K |f(y, x; θ)| ≤ C(1 + |x|C + |y|C) for all x and y in the
state-space of the diffusion.

The conditions (2.2) and (2.3) with k = 1 ensure that the process X is ergodic with
invariant measure

µθ(x) = µ̃θ(x)/A(θ). (2.6)

Actually, (2.2) is not necessary. For instance if ℓ is finite and
∫ x#

ℓ s(x; θ) < ∞, then
the process can hit ℓ at a finite time with positive probability, but if the boundary is
instantaneously reflecting, X is also ergodic in this case. To avoid worrying about making
assumptions about the boundary behaviour, we impose the condition (2.2) under which
the boundaries cannot be reached in finite time.

If X0 ∼ µθ, then the process is stationary and Condition 2.1 (2) follows trivially from
(2.3). Also for diffusions with a spectral gap, which is very frequently the case in practice,
Condition 2.1 (2) follows from (2.3), provided that Eθ(|X0|k) < ∞. The solution to (1.1)
is said to have a spectral gap if the smallest positive eigenvalue λθ of the generator

Lθ = b(x; α)
d

dx
+ 1

2v(x; β)
d2

dx2
(2.7)

is strictly positive. Simple conditions ensuring this were given by Genon-Catalot, Jeantheau
& Larédo (2000). It is, for instance, the case when the drift is linear, see e.g. Hansen,
Scheinkman & Touzi (1998). With µk(θ) =

∫ |x|kµθ(x)dx,

Eθ(|Xt|k − µk(θ) |X0) ≤ e−λθt(|X0|k − µk(θ)),

so that Eθ(|Xt|k) ≤ µk(θ) + Eθ(|X0|k), which shows that Condition 2.1 (2) is satisfied.
We consider estimating functions of the general form

Gn(θ) =
n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ), (2.8)

where the function g(∆, y, x; θ) with values in IR2 satisfies the following condition.
In the rest of this paper, R(∆, y, x; θ) denotes a (generic) function such that |R(∆, y, x; θ)|

≤ F (y, x; θ) where F is of polynomial growth in y and x uniformly for θ in a compact set.
Similarly for R(∆, x; θ).

Condition 2.2

(1) For a κ ≥ 2

Eθ(g(∆n, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1
) = ∆κ

nR(∆n, Xtn
i−1

; θ) for all θ ∈ Θ. (2.9)

(2) The function g(∆, y, x; θ) has an expansion in powers of ∆

g(∆, y, x; θ) = g(0, y, x; θ)+∆g(1)(y, x; θ)+ 1
2∆

2g(2)(y, x; θ)+∆3R(∆, y, x; θ). (2.10)
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(3) The function R(∆, y, x; θ) in (2.10) is differentiable with respect to θ, and

g(∆, y, x; θ) ∈ Cp,6,2((ℓ, r)
2 × Θ) for fixed ∆,

g(1)(y, x; θ) ∈ Cp,4,2((ℓ, r)
2 × Θ),

g(2)(y, x; θ) ∈ Cp,2,2((ℓ, r)
2 × Θ).

The assumption of polynomial growth is made only to simplify the presentation of
the theory. This assumption is satisfied for most models used in practice, but the results
hold under weaker assumptions as long as the necessary moments exist and the remainder
terms can be controlled so that we have expansions to the orders needed in the proofs.

We remind the reader of the trivial fact that for any non-singular 2×2 matrix, Mn, the
estimating functions MnGn(θ) and Gn(θ) give exactly the same estimator. We call them
versions of the same estimating function. The matrix Mn may depend on ∆n. Therefore
a given version of an estimating function needs not satisfy Condition 2.2. The point is
that a version must exist that satisfies the condition. It may typically be necessary to
multiply one of the coordinates by ∆n. Examples of this phenomenon will be given in
Section 4. The same remark can be made about other conditions later in the paper. A
version must exists that satisfies all necessary conditions for a given result.

We shall often apply the generator (2.7) to a function h(y, x) of two variables. This
will always be taken to mean the following

Lθ(h)(y, x) = b(y; α)∂yh(y, x) + 1
2v(y; β)∂2

yh(y, x). (2.11)

For a function h(∆, y, x; θ) that depends also on ∆ and θ, we use the notation

Lθ(h(∆; θ̃))(y, x) = b(y; α)∂yh(∆, y, x; θ̃) + 1
2v(y; β)∂2

yh(∆, y, x; θ̃).

The following lemma provides identities that play an essential role in the proofs of the
asymptotic theory in the next section. The identities are a consequence of the approximate
martingale property (2.9).

Lemma 2.3 Under the Conditions 2.1 and 2.2 (2)-(3)

g(0, x, x; θ) = 0 (2.12)

g(1)(x, x; θ) = −Lθ(g(0; θ))(x, x) (2.13)

for all x ∈ (ℓ, r) and θ ∈ Θ. If κ ≥ 3,

g(2)(x, x; θ) = −L2
θ(g(0; θ))(x, x) − 2Lθ(g

(1)(θ))(x, x). (2.14)

The identity (2.14) is not used in the rest of the paper, but is useful if expansions of a
higher order are needed.

2.1 Examples

A main example of estimating functions that satisfy condition (2.9) are the martingale
estimating functions for which

Eθ(g(∆n, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1
) = 0.
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They often have the form

g(∆, y, x; θ) =
N
∑

j=1

aj(x, ∆; θ)[fj(y; θ) − Eθ(fj(X∆; θ) |X0 = x)]. (2.15)

A simple example is obtained for N = 2, f1(x) = x and f2(x) = x2. This quadratic
martingale estimating function can be obtained as the pseudo score corresponding to a
Gaussian approximate likelihood function, see Section 4. Other instances are polynomial
estimating functions, where the functions fj are power functions, and the estimating
functions based on eigenfunctions of the generator proposed by Kessler & Sørensen (1999).
With the specification (2.15) of g, the Condition 2.2 (2) is automatically satisfied provided
the functions fj(x; θ) are 6 times continuous differentiable with respect to x. To see this
we need the result that for any 2(k + 1) times differentiable function f

Eθ(f(Xt+s) |Xt) (2.16)

=
k
∑

i=0

si

i!
Li

θf(Xt) +
∫ ∆

0

∫ u1

0
· · ·

∫ uk

0
Eθ(L

k+1
θ f(Xt+uk+1

) |Xt)duk+1 · · · du1,

where Lθ denotes the generator (2.7), see Florens-Zmirou (1989). Here we take the domain
of Lθ to be the set of all twice continuously differentiable functions defined on the state
space. That the conditional expectation in the remainder term is finite and that the
remainder term has the right order follows from Lemma 5.1 in Section 5. Usually the
weight functions aj depend on ∆ and must also be expanded to establish Condition 2.2
(2). For the specification (2.15), the conclusions of Lemma 2.3 trivially hold because in this
case g(0, y, x, θ) =

∑N
j=1 aj(x, 0; θ)[fj(y) − fj(x)], g(1)(x, x; θ) = −∑N

j=1 aj(x, 0; θ)Lθfj(x),

and g(2)(x, x; θ) = −∑N
j=1[aj(x, 0; θ)L2

θfj(x) + 2∂∆aj(x, 0; θ)Lθfj(x)].
The econometric generalized method of moments (GMM, see Hansen (1982)) based on

conditional moments is covered by our theory. This perhaps requires some explanation.
The starting point for this method is an N -dimensional function h(∆, y, x; θ) for which
each coordinate satisfies that Eθ(hj(∆n, Xtn

i
, Xtn

i−1
; θ) |Xtn

i−1
) = 0. Let An be an N × N -

matrix such that mn(θ) = An
∑n

i=1 h(∆n, Xtn
i
, Xtn

i−1
; θ) converges in probability. For the

usual low frequency asymptotics, where ∆n does not depend on n, An = n−1I, but
for the high frequency asymptotics considered here, a different choice of An is usually
necessary, as will be clear from the discussion in the next section. The GMM estimator
is obtained by minimizing Qn(θ) = mn(θ)T Wn mn(θ), where Wn is an N × N -matrix
such that Wn → W in probability. Here and later xT denotes the transpose of a vector
or matrix x. The matrix Wn is typically the inverse of a consistent estimator of the
covariance matrix of mn(θ) (suitably normalized). Under weak regularity conditions,
the GMM estimator solves the estimating equation ∂θQn(θ) = ∂θmn(θ)T Wn mn(θ) =
0, so if ∂θmn(θ) → D(θ) in probability (which is a necessary condition for asymptotic
results about the GMM estimator), then the GMM estimator has the same asymptotic
distribution as the estimator obtained from the martingale estimating function with

g(∆, y, x; θ) = D(θ)T Wh(∆, y, x; θ).

This function will very often be of the form (2.15). The close relationship between mar-
tingale estimating functions and GMM-estimators is discussed in detail in Christensen &
Sørensen (2007).
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Other estimating functions are obtained by replacing the exact conditional expecta-
tion in (2.15) by the expansion

∑κ−1
i=0 si/i! Li

θf(Xt). In this way a class of estimating
functions is obtained that satisfies (2.9). Estimators obtained from this class include the
simple example g(∆, y, x; θ) = a(x, ∆; θ)(y − b(x; α)∆) with κ = 2 considered by Prakasa
Rao (1988) and Florens-Zmirou (1989), the pseudo maximum likelihood estimators ob-
tained from the Gaussian Euler approximation to the likelihood, but also for instance,
the estimators proposed by Chan et al. (1992) and Kelly, Platen & Sørensen (2004). For
all κ ∈ IN, (κ ≥ 2), Kessler (1997) proposed a Gaussian approximation to the likelihood
function, for which the corresponding pseudo-score function is an approximate martingale
estimating function that satisfies (2.9).

3 Optimal rate

In this section we give asymptotic results for approximate martingale estimating functions.
It turns out that an extra, very simple, condition is needed to ensure rate-optimal esti-
mators, such that estimators of the parameter in the diffusion coefficient converge faster
than estimators of the parameter in the drift coefficient. The reader is reminded that
xT denotes the transpose of a vector or matrix x. We begin with a general approximate
martingale estimating functions.

Theorem 3.1 Assume that the Conditions 2.1 and 2.2 hold. Suppose, moreover, the
identifiability condition that

γ(θ, θ0) =
∫ r

ℓ
[b(x, α0) − b(x, α)]∂yg(0, x, x; θ)µθ0

(x)dx (3.1)

+ 1
2

∫ r

ℓ
[v(x, β0) − v(x, β)]∂2

yg(0, x, x; θ)µθ0
(x)dx 6= 0

for all θ 6= θ0, and that the matrix

S =
∫ r

ℓ
Aθ0

(x)µθ0
(x)dx (3.2)

is invertible, where

Aθ(x) =







∂αb(x; α)∂yg1(0, x, x; θ) 1
2∂βv(x; β)∂2

yg1(0, x, x; θ)

∂αb(x; α)∂yg2(0, x, x; θ) 1
2∂βv(x; β)∂2

yg2(0, x, x; θ)





 (3.3)

Then a consistent estimator θ̂n = (α̂n, β̂n) that solves the estimating equation Gn(θ) = 0
exists and is unique in any compact subset of Θ containing θ0 with a probability that goes
to one as n → ∞. For a martingale estimating function or more generally if n∆2κ−1 → 0,

√

n∆n(θ̂n − θ0)
D−→ N2

(

0, S−1V0(S
T )−1

)

(3.4)

under Pθ0
, where V0 = V (θ0) with

V (θ) =
∫ r

ℓ
v(x, β0)∂yg(0, x, x; θ)∂yg(0, x, x; θ)Tµθ0

(x)dx.
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The theorem follows from the following lemma by asymptotic statistical results for
stochastic processes, see e.g. Jacod & Sørensen (2007).

Lemma 3.2 Under the Conditions 2.1 and 2.2

1

n∆n

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ)

Pθ0−→ γ(θ, θ0), (3.5)

1

n∆n

n
∑

i=1

∂θT g(∆n, Xtn
i
, Xtn

i−1
; θ)

Pθ0−→ (3.6)

∫ r

ℓ
[Lθ0

(∂θg(0; θ))(x, x) − Lθ(∂θg(0; θ))(x, x) − Aθ(x)]µθ0
(x)dx,

and
1

n∆n

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ)g(∆n, Xtn

i
, Xtn

i−1
; θ)T Pθ0−→ V (θ), (3.7)

uniformly when θ is in a compact set. For a martingale estimating function or more
generally if n∆2κ−1 → 0,

1√
n∆n

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ0)

D−→ N2 (0, V0) . (3.8)

Note that consistent estimators of −S0 and V0, and hence of the asymptotic variance
of θ̂n, can be obtained by inserting θ̂n into the left hand side of (3.6) and (3.7).

We see from (3.4) that the rate of convergence of both α̂ and β̂ is
√

n∆n, the square
root of the length of the interval in which the diffusion is observed, when the matrix V0 is
regular. Gobet (2002) showed that under weak regularity conditions a discretely sampled
diffusion model is local asymptotically normal in the high frequency asymptotic scenario
considered in the present paper, and that the optimal rate of convergence for estimators of
parameters in the drift coefficient is indeed

√
n∆n, whereas the optimal rate for estimators

of parameters in the diffusion coefficient is
√

n. We will show that the following condition
ensures rate-optimal estimators.

Condition 3.3

∂yg2(0, x, x; θ) = 0 (3.9)

for all x ∈ (ℓ, r) and θ ∈ Θ.

We will refer to this condition as Jacobsen’s condition because it was first given in
Jacobsen (2001) as part of the condition for a martingale estimating function to give
what in that paper was called a small ∆-optimal estimator of parameters in the diffusion
coefficient. In Jacobsen’s approach the condition was introduced to avoid a singularity in
the asymptotic variance when the time between observations tends to zero. The reader
is reminded that different versions of the estimating function give the same estimator,
but will obviously not all satisfy (3.9). The point is that for a given g(∆, y, x; θ) there
must exist a version of the estimating function that satisfies the condition, i.e. there
must exist a non-singular 2 × 2-matrix M , which may depend on ∆ and θ, such that the
second coordinate of Mg(∆, y, x; θ) satisfies (3.9). We will, for simplicity of presentation,
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assume that we start with a version that satisfies the condition. Similar remarks can be
made about the conditions in the following theorem. The same version must satisfy all
conditions.

We can now give a theorem about rate-optimal estimators.

Theorem 3.4 Suppose the Conditions 2.1 and 2.2 hold, that the second coordinate of g
satisfies Jacobsen’s Condition 3.3. Assume, moreover, that the following identifiability
condition is satisfied

∫ r

ℓ
[b(x, α0) − b(x, α)]∂yg1(0, x, x; θ)µθ0

(x)dx 6= 0 when α 6= α0

∫ r

ℓ
[v(x, β0) − v(x, β)]∂2

yg2(0, x, x; θ)µθ0
(x)dx 6= 0 when β 6= β0,

and that S11 6= 0 and S22 6= 0, where S is given by (3.2). Then a consistent estimator
θ̂n = (α̂n, β̂n) that solves the estimating equation Gn(θ) = 0 exists and is unique in any
compact subset of Θ containing θ0 with a probability that goes to one as n → ∞.

If, moreover,

∂α∂2
yg2(0, x, x; θ) = 0, (3.10)

then for a martingale estimating function or if more generally n∆2(κ−1) → 0,







√
n∆n(α̂n − α0)

√
n(β̂n − β0)







D−→ N2







(

0
0

)

,







W1(θ0)/S
2
11 0

0 W2(θ0)/S
2
22











 (3.11)

where

W1(θ) =
∫ r

ℓ
v(x; β0)[∂yg1(0, x, x; θ)]2µθ0

(x)dx = V (θ)11

and

W2(θ) = 1
2

∫ r

ℓ
[v(x; β0)

2 + 1
2(v(x; β0) − v(x; β))2][∂2

yg2(0, x, x; θ)]2µθ0
(x)dx.

Note that

W2(θ0) = 1
2

∫ r

ℓ
v(x; β0)

2[∂2
yg2(0, x, x; θ0)]

2µθ0
(x)dx.

Thus Jacobsen’s condition (3.9) and the additional condition (3.10) imply rate-optimal
estimators and that the estimator of the drift parameter is asymptotically independent
of the estimator of the diffusion coefficient parameter. Note that for non-martingale
estimating functions ∆n must go faster to zero than was required in Theorem 3.1. If β is
known, the conditions (3.9) and (3.10) and the faster convergence of ∆n are not needed
for rate optimality. Note also that if the first coordinate of g satisfies Jacobsen’s condition
too, then the first part of the identifiability condition in Theorem 3.4 does not hold, and
the parameter α cannot be consistently estimated by the estimating function (2.8).

Like the previous theorem, Theorem 3.4 follows by asymptotic statistical results for
stochastic processes, see e.g. Jacod & Sørensen (2007). The theorem follows from the
following lemma.
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Lemma 3.5 Under the Conditions 2.1, 2.2 and 3.3

Dn

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ)g(∆n, Xtn

i
, Xtn

i−1
; θ)T Dn

Pθ0−→







W1(θ) 0

0 W2(θ)





 (3.12)

uniformly when θ is in a compact set, where

Dn =









1√
n∆n

0

0 1
∆n

√
n









. (3.13)

For a martingale estimating function or if more generally n∆2(κ−1) → 0,








1√
n∆n

∑n
i=1 g1(∆n, Xtn

i
, Xtn

i−1
; θ0)

1
∆n

√
n

∑n
i=1 g2(∆n, Xtn

i
, Xtn

i−1
; θ0)









D−→ N2







(

0
0

)

,







W1(θ0) 0

0 W2(θ0)











 . (3.14)

If, in addition, condition (3.10) holds, then

1

n∆
3/2
n

n
∑

i=1

∂αg2(∆n, Xtn
i
, Xtn

i−1
; θ)

Pθ0−→ 0 (3.15)

uniformly when θ is in a compact set.

Example 3.6 Consider a quadratic martingale estimating function of the form

g(∆, y, x; θ) =







a1(x, ∆; θ)[y − F (∆, x; θ)]

a2(x, ∆; θ) [(y − F (∆, x; θ))2 − φ(∆, x; θ)]





 , (3.16)

where F (∆, x; θ) = Eθ(X∆|X0 = x) and φ(∆, x; θ) = Varθ(X∆|X0 = x). Since, by (2.16),
F (∆, x; θ) = x + O(∆) and φ(∆, x; θ) = O(∆), we find that

g(0, y, x; θ) =







a1(x, 0; θ)(y − x)

a2(x, 0; θ)(y − x)2





 . (3.17)

Since ∂yg2(0, y, x; θ) = 2a2(x, ∆; θ)(y − x), Jacobsen’s condition (3.9) is satisfied, and
estimators obtained from (3.16) are rate optimal. Note that condition (3.10) is satisfied
for (3.16) whenever a2 does not depend on α.

It is perhaps also illuminating to give an example of an estimating function for which
estimators are not rate optimal. For

g(∆, y, x; θ) =







a1(x, ∆; θ)[y − F (∆, x; θ)]

a2(x, ∆; θ) [y2 − (φ(∆, x; θ) + F (∆, x; θ)2)]





 , (3.18)

we see that ∂yg1(0, x, x; θ) = a1(x, 0; θ) and ∂yg2(0, x, x; θ) = a2(x, 0; θ)2y. The only way
a linear combination of these two function can equal zero identically is if a1(x, 0; θ) is
proportional to xa2(x, 0; θ). In all other cases, the estimating function given by (3.18) is
not rate optimal.

2
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4 Efficient estimating functions

In this section we discuss under which conditions an approximate martingale estimat-
ing function Gn(θ) gives an estimator that is efficient in the high-frequency asymptotics
considered in this paper. We call such an estimating function efficient.

The following theorem follows from Theorem 4.1 in Gobet (2002), who proved that
the diffusion model (1.1) is locally asymptotically normal with Fisher information matrix
equal to the inverse of Σ(θ0) given by (4.3).

Theorem 4.1 Suppose the conditions of Theorem 3.4 are satisfied. Then if

∂yg1(0, x, x; θ) = ∂αb(x; α)/v(x; β) (4.1)

and
∂2

yg2(0, x, x; θ) = ∂βv(x; β)/v(x; β)2, (4.2)

the estimating function (2.8) is efficient. Under (4.1) and (4.2), the asymptotic covariance
matrix of the estimator θ̂n = (α̂n, β̂n) is

Σ(θ0) =















(
∫ r

ℓ

(∂αb(x;α0))2

v(x;β0)
µθ0

(x)dx
)−1

0

0 2
(∫ r

ℓ

[

∂βv(x;β0)

v(x;β0)

]2
µθ0

(x)dx
)−1















. (4.3)

A consistent estimator of the asymptotic variance is given by

1

n∆n

n
∑

i=1

g1(∆n, Xtn
i
, Xtn

i−1
; θ̂n)2 Pθ0−→

∫ r

ℓ

(∂αb(x; α0))
2

v(x; β0)
µθ0

(x)dx

and
1

n∆2
n

n
∑

i=1

g2(∆n, Xtn
i
, Xtn

i−1
; θ̂n)2 Pθ0−→

∫ r

ℓ

[

∂βv(x; β0)

v(x; β0)

]2

µθ0
(x)dx.

Note that for an efficient estimating function the condition (3.10) in Theorem 3.4 is
automatically satisfied, cf. (4.2).

The result is not an only-if statement because of the previously mentioned fact that
different versions of the estimating function give the same estimator, but cannot all satisfy
(4.1) and (4.2), even if the estimator is efficient. A martingale estimating function is
efficient if and only if there exists a version that satisfies (4.1), (4.2) and the necessary
previous conditions. It may typically be necessary to first multiply it by a matrix Mn

depending on ∆n. Examples of this will be given below.
The covariance matrix (4.3) is, as one would expect, equal to the leading term in the

expansion of the asymptotic variance of the maximum likelihood estimator in powers of ∆
found by Dacunha-Castelle & Florens-Zmirou (1986). It equals the asymptotic covariance
matrix of the maximum likelihood estimator based on continuous time observation, see
e.g. Kutoyants (2004). In the case of continuous time observation, the parameter β
must necessarily be known. Finally, and again not a surprise, the conditions (4.1) and
(4.2) are exactly the conditions for small ∆-optimality of martingale estimating functions
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given by Jacobsen (2001), except that he included (3.9) as part of the condition for
small ∆-optimality of β̂, while here it is a condition for rate optimality. Thus we have
given an interpretation of the concept of small ∆-optimality in terms of the classical
statistical concepts of rate optimality and efficiency. It follows from Theorem 2 in Jacobsen
(2001) that (4.1) and (4.2) also imply small ∆-optimality of the approximate martingale
estimating functions considered in the present paper.

Example 4.2 Consider again the quadratic martingale estimating function (3.16). The
function g(0, y, x; θ), given by (3.17), satisfies the conditions for efficiency (4.1) and (4.2)
if we choose a1(x, ∆; θ) = ∂αb(x; α)/v(x; β) and a2(x, ∆; θ) = ∂βv(x; β)/v2(x; β), as pro-
posed by Bibby & Sørensen (1995) and Bibby & Sørensen (1996). The same is true of
any specification of the weight functions a1 and a2 that converge to ∂αb/v and ∂βv/v2

as ∆ → 0. An example is the optimal martingale estimating function in the sense of
Godambe & Heyde (1987) (after multiplication of the second coordinate by ∆), see the
papers cited above.

A similar example is obtained from the pseudo-likelihood function, where the transition
density p(∆, y, x; θ) is replaced by the Gaussian density p̃(∆, y, x; θ) with mean F (∆, x; θ)
and variance φ(∆, x; θ)

L̃n(θ) =
n
∏

i=1

p̃(∆, Xtn
i
, Xtn

i−1
; θ). (4.4)

The exact conditional moments are used to ensure that a consistent estimator is obtained
also in case ∆ is not small. Since

∂α log p̃(∆, y, x; θ) =
∂αF (∆, x; θ)

φ(∆, x; θ)
[y − F (∆, x; θ)]

∆ ∂β log p̃(∆, y, x; θ) =
∂βφ(∆, x; θ)

φ(∆, x; θ)2

[

(y − F (∆, x; θ))2 − φ(∆, x; θ)
]

,

we see that the pseudo-score ∂θ log L̃n(θ) is an efficient quadratic martingale estimating
function.

Clearly (3.17) holds if F and φ are replaced in (3.16) by expansions of order x+O(∆)
and O(∆), respectively, so also in this non-martingale case, rate optimal estimators are
obtained, provided that ∆n goes sufficiently fast to zero. The simplest example is

g(∆, y, x; θ) =







a1(x, ∆; θ)[y − x − b(x; α)∆]

a2(x, ∆; θ) [(y − x − b(x; α)∆)2 − v(∆, x; β)∆]





 , (4.5)

which gives rate optimal estimators provided that n∆2 → 0.
A pseudo-likelihood function can be obtained from the Euler approximation by replac-

ing p̃ in (4.4) by

q(∆, y, x; θ) =
1

√

2πv(x; β)∆
exp

(

−(y − x − b(x; α)∆)2

2v(x; β)∆

)

.

The corresponding pseudo score, and hence the Euler pseudo maximum likelihood es-
timator, is efficient because g(∆, y, x; θ) = ∂θ log q(∆, y, x; θ), is of the form (4.5) with



14 M. Sørensen

a1(x; θ) = ∂αb(x; α)/v(x; β) and (after multiplication by 2∆) a2(x; θ) = ∂βv(x; β)/v(x; β)2.
This estimator has often been used in empirical work in finance. In a similar way, it follows
that the estimators considered by Prakasa Rao (1988), Florens-Zmirou (1989), Yoshida
(1992), Kessler (1997) and Kelly, Platen & Sørensen (2004) are efficient under suitable
conditions on the rate of convergence of ∆n.

2

Example 4.3 Finally we consider maximum likelihood estimation. In broad general-
ity, the score function is a martingale estimating function, see e.g. Barndorff-Nielsen &
Sørensen (1994). The transition density can, under weak regularity conditions, be ex-
panded in powers of ∆

p(∆, y, x; θ) = r(∆, y, x; θ)(1 + O(∆)),

where

r(∆, y, x; θ) =
1

√

2πv(x; β)∆
exp

(

−(f(y; β)− f(x; β))2

2∆
+ A(y) − A(x) − 1

2 log

(

σ(y; β)

σ(x; β)

))

,

f(x; β) =
∫ x σ−1(z; β)dz and A(x) =

∫ x b(z; α)/v(z; β)dz, see e.g. Dacunha-Castelle &
Florens-Zmirou (1986) or Gihman & Skorohod (1972), Chapter 13. Therefore, under
regularity conditions on the remainder term that need not worry us here, the score func-
tion given by g1(∆, y, x; θ) = ∂α log p(∆, y, x; θ) and g2(∆, y, x; θ) = ∆∂β log p(∆, y, x; θ)
satisfies that

g1(0, y, x; θ) =
∫ y

x

∂αb(z; α)

v(z; β)
dz + O(∆)

g2(0, y, x; θ) = −[f(y; β) − f(x; β)][∂βf(y; β)− ∂βf(x; β)] + O(∆).

From these expansions it follows easily that the score functions (normalized as above) sat-
isfies the Jacobsen’s condition (3.9) as well as the conditions for efficiency (4.1) and (4.2).
In particular, ∂2

yg2(0, x, x; θ) = −2∂xf(x; β)∂β∂
2
xf(x; β) = ∂βv(x; β)/v(x; β)2. Obviously,

the pseudo-likelihood function obtained by replacing p̃ in (4.4) by r is also rate optimal
and efficient provided that n∆2 → 0.

2

The fact that the approximate martingale estimating functions that are rate optimal
and efficient are exactly those that are small ∆-optimal in the sense of Jacobsen (2001)
implies that we can take advantage of the very thorough study of when martingale esti-
mating functions satisfy the conditions (3.9), (4.1) and (4.2) presented in Jacobsen (2002).
Consider martingale estimating functions of the form (2.15). It is convenient to write this
type of estimating function in the following compact form

Gn(θ) =
n
∑

i=1

A(Xtn
i−1

, ∆; θ)[f(Xtn
i
; θ) − π∆

θ f(Xtn
i−1

; θ)], (4.6)

where f(y; θ) = (f1(y; θ), . . . , fN(y; θ))T , A(x, ∆; θ) a 2×N -matrix of weights, and where
π∆

θ denotes the transition operator given by

π∆
θ f(x; θ) = Eθ(f(X∆; θ) |X0 = x) (4.7)
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The following theorem follows immediately from Theorem 2.2 of Jacobsen (2002). It is
clear from the proof of this theorem that the following result holds not only for martingale
estimating functions, but also for approximate martingale estimating functions satisfying
(2.9).

Theorem 4.4 Suppose Condition 2.1 is satisfied, that N ≥ 2, and that the functions fj

are two times continuously differentiable and satisfies that the matrix

D(x) =







∂xf1(x; θ) ∂2
xf1(x; θ)

∂xf2(x; θ) ∂2
xf2(x; θ)





 (4.8)

is invertible for µθ-almost all x. Then a specification of the weight matrix A(x, ∆; θ)
exists such that the estimating function (4.6) satisfies the conditions (3.9), (4.1) and
(4.2). When N = 2, these conditions are satisfy for

A(x, 0; θ) =







∂αb(x; α)/v(x; β) c(x; θ)

0 ∂βv(x; β)/v(x; β)2





D(x)−1 (4.9)

for any function c(x; θ).

Since we can index the functions fj as we like, the condition only says that there are
two functions among f1, . . . , fN such that D is invertible. Note also that for N = 2, a
simple choice for the weight matrix A is to let it equal the expression in (4.9) for all ∆.

A useful way of choosing the weight matrix A in a martingale estimating function
of the type (4.6) is to chose the weights that are optimal in the sense of Godambe &
Heyde (1987), see also Heyde (1997). In this way we obtain estimators that minimize the
asymptotic variance of estimators within the class (4.6) for a fixed, possibly large, ∆. The
next theorem shows that the Godambe-Heyde optimal estimators are rate optimal and
efficient in the high frequency asymptotic considered the present paper. A weight matrix
A∗ is Godambe-Heyde optimal if

A∗(x, ∆; θ) Eθ

(

[f(X∆; θ) − π∆
θ f(x; θ)][f(X∆; θ) − π∆

θ f(x; θ)]T |X0 = x
)

(4.10)

= ∂θπ
∆
θ fT (x; θ) − π∆

θ ∂θf
T (x; θ).

It follows from Theorem 2.3 in Jacobsen (2002) that if N = 2 and the matrix D is
invertible, then the Godambe-Heyde optimal martingale estimating function is rate opti-
mal and efficient. If N = 1 the Godambe-Heyde optimal martingale estimating function
can only be efficient if the diffusion coefficient is known, so that only the drift depends
on a parameter. Here we prove that for general N ≥ 2 the Godambe-Heyde optimal
martingale estimating function is rate optimal and efficient provided that the matrix D
is invertible. This result was conjectured by Jacobsen (2002) (phrased in terms of the
concept small ∆-optimality).

Theorem 4.5 Suppose Condition 2.1 is satisfied, that the functions fj are six times con-
tinuously differentiable, that N ≥ 2 and that the 2 × 2 matrix D(x) given by (4.8) is
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invertible for µθ-almost all x. Let A∗(x, ∆; θ) satisfy (4.10), and define

g∗(∆, y, x; θ) =







1 0

0 2∆





A∗(x, ∆; θ)[f(y; θ) − π∆
θ f(x; θ)]. (4.11)

Then g∗(0, y, x; θ) satisfies (3.9), (4.1) and (4.2).

The fact that a condition for efficiency is N ≥ 2 may explain the finding in Larsen
& Sørensen (2007) that an optimal martingale estimating function based on two eigen-
functions seemed to be efficient for weakly observations of exchange rates in a target
zone.

The efficient estimating function given by (4.11) can be used to derive simpler, equally
efficient, martingale estimating functions by expanding the conditional moments in (4.10)
using (2.16). Further simplification can be obtained by expanding π∆

θ f(x; θ) in (4.11).
Let us conclude this section by stating the results for a d-dimensional diffusion. In

this case b(x; α) is d-dimensional and v(x; β) = σ(x; β)σ(x; β)T is a d × d-matrix. The
conditions for efficiency are

∂yg1(0, x, x; θ) = ∂αb(x; α)T v(x; β)−1

and
vec

(

∂2
yg2(0, x, x; θ)

)

= vec (∂βv(x; β))
(

v⊗2(x; β)
)−1

.

In the latter equation, vec(M) denotes for a d×d matrix M the d2-dimensional row vector
consisting of the rows of M placed one after the other, and M⊗2 is the d2×d2-matrix with
(i′, j′), (ij)th entry equal to Mi′iMj′j . Thus if M = ∂βv(x; β) and M• = (v⊗2(x; β))−1,
then the (i, j)th coordinate of vec(M) M• is

∑

i′j′ Mi′j′M
•
(i′j′),(i,j). These expressions are

the conditions for small ∆-optimality for multivariate diffusions given by Jacobsen (2002).
For a d-dimensional diffusion process, the condition analogous to the one in Theorem

4.4 ensuring the existence of a rate optimal and efficient estimating function of the form
(4.6) is that N ≥ d(d + 3)/2, and that the N × (d + d2)-matrix

(

∂xf(x; θ) ∂2
xf(x; θ)

)

has full rank d(d+ 3)/2, see Jacobsen (2002). When α and β are multivariate, we further
need that {∂αi

b(x; α)} and {∂βi
v(x; β)} are two sets of linearly independent functions of x.

These conditions also ensure that Theorem 4.5 holds for a d-dimensional diffusion process,
i.e. that the Godambe-Heyde optimal martingale estimating function is rate optimal and
efficient for a d-dimensional diffusion process.

5 Proofs

The first two lemmas are essentially taken from Kessler (1997). The reader is reminded
that R(∆, y, x; θ) denotes a (generic) function such that |R(∆, y, x; θ)| ≤ F (y, x; θ) where
F is of polynomial growth in y and x uniformly for θ in compact sets. Similarly for
R(∆, x; θ). We sometimes use the notation a ≤C b, which means that there exists a
C > 0 such that a ≤ Cb.
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Lemma 5.1 Assume Condition 2.1. For k = 1, 2, . . . a constant Ck > 0 exists such that

Eθ0
(|Xt+∆ − Xt|k |Xt) ≤ Ck∆

k/2(1 + |Xt|)Ck (5.1)

for ∆ > 0. Let f(y, x, θ) be a real function of polynomial growth in x and y uniformly for
θ in a compact set K. Then there exists a constant C > 0 such that for any fixed ∆0 > 0

Eθ0
(|f(Xt+∆, Xt, θ)| |Xt) ≤ C(1 + |Xt|)C for ∆ ∈ [0, ∆0] and θ ∈ K. (5.2)

Suppose the function f(y, x, θ) is, moreover, 2k times differentiable (k = 0, 1, 2, 3) with
respect to y with derivatives of polynomial growth in x and y uniformly for θ in compact
sets. Then

∫ ∆

0

∫ u1

0
· · ·

∫ uk−1

0
Eθ0

(

Lk
θ0

f(Xt+uk
, Xt, θ) |Xt

)

duk · · ·du1 = ∆kR(∆, Xt, θ). (5.3)

Proof. The inequality (5.1) is (A.1) in Lemma 6 in Kessler (1997), and (5.2) is proved
exactly as (A.2) in the same paper because |f(Xt+∆, Xt, θ)| ≤ C(1+ |Xt|C + |Xt+∆−Xt|C)
for some C > 0. In Kessler (1997) the constant in (5.2) depends on ∆, but it is clear from
the proof that the constants for different values of ∆ are bounded when ∆ ≤ ∆0. Finally,
(5.3) follows from (5.2) because of the conditions on the coefficients b and σ.

2

The result (5.3) is used to ensure that the remainder term in expansions of the type
(2.16) have the expected order. It could, obviously, be proved for larger values of k if
stronger conditions were imposed on the coefficients b and σ.

Proof of Lemma 2.3. Combining (2.9), (2.10) and (2.16) and using Lemma 5.1, we find
that

O(∆κ) = Eθ(g(∆, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1
)

= g(0, Xtn
i−1

, Xtn
i−1

; θ) + ∆
[

Lθ(g(0; θ))(Xtn
i−1

, Xtn
i−1

) + g(1)(Xtn
i−1

, Xtn
i−1

; θ)
]

+ 1
2∆

2
[

L2
θ(g(0; θ))(Xtn

i−1
, Xtn

i−1
) + 2Lθ(g

(1)(θ))(Xtn
i−1

, Xtn
i−1

) + g(2)(Xtn
i−1

, Xtn
i−1

; θ)
]

+ ∆3R(∆, Xtn
i−1

, θ),

from which the lemma follows.
2

Lemma 5.2 Assume Condition 2.1, and let f(x, θ) be a real function that is differentiable
with respect to x and θ with derivatives of polynomial growth in x uniformly for θ in a
compact set. Then

1

n

n
∑

i=1

f(Xtn
i
, θ)

Pθ0−→
∫ r

ℓ
f(x, θ)µθ0

(x)dx

uniformly for θ in a compact set.

Proof. This is Lemma 8 in Kessler (1997), but the proof is given for completeness.
Convergence for any fixed value of θ follows from the continuous time ergodic theorem
because

1

n∆n

∫ n∆n

0
f(Xs, θ)ds

Pθ0−→
∫ r

ℓ
f(x, θ)µθ0

(x)dx
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and

Eθ0

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(Xtn
i
, θ) − 1

n∆n

∫ n∆n

0
f(Xs, θ)ds

∣

∣

∣

∣

∣

)

≤ Eθ0

(

1

n∆n

n
∑

i=1

∫ tn
i

tn
i−1

|f(Xtn
i
, θ) − f(Xs, θ)|ds

)

≤ 1

n∆n

n
∑

i=1

∫ tn
i

tn
i−1

Eθ0

(

(Xtn
i
− Xs)

2
) 1

2 Eθ0

(

[
∫ 1

0
∂xf(Xs + u(Xtn

i
− Xs), θ)du

]2
)

1
2

ds

≤ 1

n∆n

C
n
∑

i=1

∫ tn
i

tn
i−1

(tni − s)
1
2 ds = 2

3C
√

∆n

for a C > 0. We have used (5.1), that ∂xf is of polynomial growth in x, and Condition
2.1 (2).

In order to prove that the convergence is uniform for θ in a compact set K, we show
that the sequence ζn(·) = 1

n

∑n
i=1 f(Xtn

i
, ·) converges weakly to the limit

∫ r
ℓ f(x, ·)µθ0

(x)dx
in the space of continuous functions on K with the supremum norm. Since the limit is
non-random, this implies uniform convergence in probability for θ ∈ K. We have proved
pointwise convergence, so the weak convergence result follows because the family of dis-
tributions of ζn(·) is tight. The tightness holds because ∂θf(x, θ) is of polynomial growth
in x uniformly for θ ∈ K, and hence C > 0 exists such that supn Eθ0

(supθ∈K |∂θζn(θ)|) ≤
C(1 + supt Eθ0

(|Xt|C)), where the upper bound is finite by Condition 2.1 (2). That this
bound implies tightness follows from Theorem 14.1 in Kallenberg (1997) (or Theorem 15
in Yoshida (2005)) because

sup
θ1,θ2∈K:|θ1−θ2|<δ

|ζn(θ1) − ζn(θ2)| ≤C sup
θ∈K

|∂θζn(θ)|δ.

2

Lemma 9 in Genon-Catalot & Jacod (1993) is used frequently in the proofs of Lemma
3.2 and Lemma 3.5 to establish pointwise convergence. The result is therefore cited here
for the convenience of the reader.

Lemma 5.3 Let Zn
i (i = 1, . . . , n, n ∈ IN) be a triangular array of random variables such

that Zn
i is Gn

i -measurable, where Gn
i = σ(Ws : s ≤ tni ). If

n
∑

i=1

Eθ(Z
n
i | Gn

i−1)
Pθ−→ U

and
n
∑

i=1

Eθ((Z
n
i )2 | Gn

i−1)
Pθ−→ 0,

where U is a random variable, then

n
∑

i=1

Zn
i

Pθ−→ U.

In order to establish uniform convergence in the proofs of Lemma 3.2 and Lemma 3.5, we
need a technical lemma, which is easier to formulate with the following condition.



Efficient estimation for diffusions sampled at high frequency 19

Condition 5.4 A real function f(∆, y, x; θ) satisfies the condition if f(0, x, x; θ) = 0 for
all x ∈ (ℓ, r) and θ ∈ Θ and f ∈ Cp,1,2,1(IR+, (ℓ, r)2, Θ).

Lemma 5.5 Assume Condition 2.1, and let f(∆, y, x; θ) be a function that satisfies Con-
dition 5.4. Then a constant C > 0 exists such that for m ∈ IN

Eθ0

(

|ζn(θ2) − ζn(θ1)|2m
)

≤ C|θ2 − θ1|2m (5.4)

for all θ1 and θ2 in a compact set and for all n, where

ζn(θ) =
1

n∆n

n
∑

i=1

f(∆n, Xtn
i
, Xtn

i−1
; θ). (5.5)

If, moreover, the functions h1 and h2 given by

h1(s, y, x; θ) = ∂sf(s, y, x; θ) + ∂yf(s, y, x; θ)b(y; α0) + 1
2∂

2
yf(s, y, x; θ)v(y, β0)

h2(s, y, x; θ) = ∂yf(s, y, x; θ)σ(y; β0).

satisfy Condition 5.4, then a constant C > 0 exists such that for m ∈ IN

Eθ0

(

|φn(θ2) − φn(θ1)|2m
)

≤ C|θ2 − θ1|2m (5.6)

for all θ1 and θ2 in a compact set and for all n, where

φn(θ) =
1

n∆
3/2
n

n
∑

i=1

f(∆n, Xtn
i
, Xtn

i−1
; θ). (5.7)

Finally, if the functions

hi2(s, y, x; θ) = ∂yhi(s, y, x; θ)σ(y; β0), i = 1, 2, (5.8)

satisfy Condition 5.4, then a constant C > 0 exists such that for m ∈ IN

Eθ0

(

|ξn(θ2) − ξn(θ1)|2m
)

≤ C|θ2 − θ1|2m (5.9)

for all θ1 and θ2 in a compact set and for all n, where

ξn(θ) =
1

n∆2
n

n
∑

i=1

f(∆n, Xtn
i
, Xtn

i−1
; θ). (5.10)

Proof. By Ito’s formula

f(∆n, Xtn
i
, Xtn

i−1
; θ) =

∫ tn
i

tn
i−1

h1(s, Xs, Xtn
i−1

; θ)ds +
∫ tn

i

tn
i−1

h2(s, Xs, Xtn
i−1

; θ)dWs, (5.11)

By Condition 5.4, the partial derivatives ∂θh1 and ∂θh2 are of polynomial growth in y
and x uniformly for θ in a compact set. We can treat the two terms on the right hand
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side of (5.11) separately. Define Dhi(s, y, x; θ2, θ1) = hi(s, y, x; θ2) − hi(s, y, x; θ1). Using
Jensen’s inequality twice, we obtain

1

∆2m
n

Eθ0





∣

∣

∣

∣

∣

1

n

n
∑

i=1

∫ tn
i

tn
i−1

Dh1(s, Xs, Xtn
i−1

; θ2, θ1)ds

∣

∣

∣

∣

∣

2m




≤ 1

n∆2m
n

n
∑

i=1

Eθ0





∣

∣

∣

∣

∣

∫ tn
i

tn
i−1

Dh1(s, Xs, Xtn
i−1

; θ2, θ1)ds

∣

∣

∣

∣

∣

2m




≤ 1

n∆n

n
∑

i=1

∫ tn
i

tn
i−1

Eθ0

(

|Dh1(s, Xs, Xtn
i−1

; θ2, θ1)|2m
)

ds

≤C
1

n∆n

n
∑

i=1

∫ tn
i

tn
i−1

Eθ0

(

∣

∣

∣

∣

∫ 1

0
∂θh1(s, Xs, Xtn

i−1
; θ1 + u(θ2 − θ1))du

∣

∣

∣

∣

2m
)

ds|θ2 − θ1|2m

≤C |θ2 − θ1|2m.

By the Burkholder-Davis-Gundy inequality and Jensen’s inequality

1

∆2m
n

Eθ0





∣

∣

∣

∣

∣

1

n

n
∑

i=1

∫ tn
i

tn
i−1

Dh2(s, Xs, Xtn
i−1

; θ2, θ1)dWs

∣

∣

∣

∣

∣

2m




≤C
1

∆2m
n

Eθ0

(∣

∣

∣

∣

∣

1

n2

n
∑

i=1

∫ tn
i

tn
i−1

Dh2(s, Xs, Xtn
i−1

; θ2, θ1)
2ds

∣

∣

∣

∣

∣

m)

≤ 1

nm+1∆2m
n

n
∑

i=1

Eθ0

(∣

∣

∣

∣

∣

∫ tn
i

tn
i−1

Dh2(s, Xs, Xtn
i−1

; θ2, θ1)
2ds

∣

∣

∣

∣

∣

m)

≤ 1

(n∆n)m+1

n
∑

i=1

∫ tn
i

tn
i−1

Eθ0

(

|Dh2(s, Xs, Xtn
i−1

; θ2, θ1)|2m
)

ds

≤C
1

(n∆n)m
|θ2 − θ1|2m.

The results (5.6) and (5.9) follow in a similar way. Under the conditions for (5.6),

f(∆n, Xtn
i
, Xtn

i−1
; θ) = (5.12)

∫ tn
i

tn
i−1

∫ s

tn
i−1

h11(u, Xu, Xtn
i−1

; θ)duds +
∫ tn

i

tn
i−1

∫ s

tn
i−1

h12(u, Xu, Xtn
i−1

; θ)dWuds

+
∫ tn

i

tn
i−1

∫ s

tn
i−1

h21(u, Xu, Xtn
i−1

; θ)dudWs +
∫ tn

i

tn
i−1

∫ s

tn
i−1

h22(u, Xu, Xtn
i−1

; θ)dWudWs

with hi2 given by (5.8) and

hi1(s, y, x; θ) = ∂shi(s, y, x; θ) + ∂yhi(s, y, x; θ)b(y; α0) + 1
2∂

2
yhi(s, y, x; θ)v(y, β0).

With Dhij defined as previously, we see that

1

∆4m
n

Eθ0





∣

∣

∣

∣

∣

1

n

n
∑

i=1

∫ tni

tn
i−1

∫ s

tn
i−1

Dh11(u, Xu, Xtn
i−1

; θ2, θ1)duds

∣

∣

∣

∣

∣

2m




≤ 1

n∆4m
n

n
∑

i=1

Eθ0





∣

∣

∣

∣

∣

∫ tn
i

tn
i−1

∫ s

tn
i−1

Dh11(u, Xu, Xtn
i−1

; θ2, θ1)duds

∣

∣

∣

∣

∣

2m



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≤ 1

n∆2
n

n
∑

i=1

∫ tn
i

tn
i−1

∫ s

tn
i−1

Eθ0

(

|Dh11(u, Xu, Xtn
i−1

; θ2, θ1)|2m
)

duds

≤C |θ2 − θ1|2m,

1

∆3m
n

Eθ0





∣

∣

∣

∣

∣

1

n

n
∑

i=1

∫ tn
i

tn
i−1

∫ s

tn
i−1

Dh12(u, Xu, Xtn
i−1

; θ2, θ1)dWuds

∣

∣

∣

∣

∣

2m




≤ 1

∆3m
n n

n
∑

i=1

Eθ0





∣

∣

∣

∣

∣

∫ tn
i

tn
i−1

∫ s

tn
i−1

Dh12(u, Xu, Xtn
i−1

; θ2, θ1)dWuds

∣

∣

∣

∣

∣

2m




≤ 1

∆m+1
n n

n
∑

i=1

∫ tn
i

tn
i−1

Eθ0





∣

∣

∣

∣

∣

∫ s

tn
i−1

Dh12(u, Xu, Xtn
i−1

; θ2, θ1)dWu

∣

∣

∣

∣

∣

2m


 ds

≤C
1

∆m+1
n n

n
∑

i=1

∫ tn
i

tn
i−1

Eθ0

(∣

∣

∣

∣

∣

∫ s

tn
i−1

Dh12(u, Xu, Xtn
i−1

; θ2, θ1)
2ds

∣

∣

∣

∣

∣

m)

ds

≤ 1

∆2
nn

n
∑

i=1

∫ tn
i

tn
i−1

∫ s

tn
i−1

Eθ0

(

|Dh12(u, Xu, Xtn
i−1

; θ2, θ1)|2mduds
)

≤C |θ2 − θ1|2m,

1

∆4m
n

Eθ0





∣

∣

∣

∣

∣

1

n

n
∑

i=1

∫ tn
i

tn
i−1

∫ s

tn
i−1

Dh21(u, Xu, Xtn
i−1

; θ2, θ1)dudWs

∣

∣

∣

∣

∣

2m




≤C
1

∆4m
n

Eθ0





∣

∣

∣

∣

∣

∣

1

n2

n
∑

i=1

∫ tni

tn
i−1

(

∫ s

tn
i−1

Dh21(u, Xu, Xtn
i−1

; θ2, θ1)du

)2

ds

∣

∣

∣

∣

∣

∣

m



≤ 1

nm+1∆4m
n

n
∑

i=1

Eθ0





∣

∣

∣

∣

∣

∣

∫ tn
i

tn
i−1

(

∫ s

tn
i−1

Dh21(u, Xu, Xtn
i−1

; θ2, θ1)du

)2

ds

∣

∣

∣

∣

∣

∣

m



≤ 1

nm+1∆m+2
n

n
∑

i=1

∫ tni

tn
i−1

∫ s

tn
i−1

Eθ0

(

|Dh21(u, Xu, Xtn
i−1

; θ2, θ1)|2mduds
)

≤C
1

(n∆n)m
|θ2 − θ1|2m,

and that

1

∆3m
n

Eθ0





∣

∣

∣

∣

∣

1

n

n
∑

i=1

∫ tn
i

tn
i−1

∫ s

tn
i−1

Dh22(u, Xu, Xtn
i−1

; θ2, θ1)dWudWs

∣

∣

∣

∣

∣

2m




≤C
1

∆3m
n

Eθ0





∣

∣

∣

∣

∣

∣

1

n2

n
∑

i=1

∫ tn
i

tn
i−1

(

∫ s

tn
i−1

Dh22(u, Xu, Xtn
i−1

; θ2, θ1)dWu

)2

ds

∣

∣

∣

∣

∣

∣

m



≤ 1

nm+1∆3m
n

n
∑

i=1

Eθ0





∣

∣

∣

∣

∣

∣

∫ tn
i

tn
i−1

(

∫ s

tn
i−1

Dh22(u, Xu, Xtn
i−1

; θ2, θ1)dWu

)2

ds

∣

∣

∣

∣

∣

∣

m


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≤ 1

nm+1∆2m+1
n

n
∑

i=1

∫ tni

tn
i−1

Eθ0





∣

∣

∣

∣

∣

∫ s

tn
i−1

Dh22(u, Xu, Xtn
i−1

; θ2, θ1)dWu

∣

∣

∣

∣

∣

2m


 ds

≤C
1

nm+1∆2m+1
n

n
∑

i=1

∫ tn
i

tn
i−1

Eθ0

(∣

∣

∣

∣

∣

∫ s

tn
i−1

Dh22(u, Xu, Xtn
i−1

; θ2, θ1)
2du

∣

∣

∣

∣

∣

m)

ds

≤ 1

nm+1∆m+2
n

n
∑

i=1

∫ tn
i

tn
i−1

∫ s

tn
i−1

Eθ0

(

|Dh22(u, Xu, Xtn
i−1

; θ2, θ1)|2mduds
)

≤C
1

(n∆n)m
|θ2 − θ1|2m.

We have already taken care of two of the terms in (5.12) on the way to prove (5.9).
The terms involving h12 and h22 require more work. Since hi2, i = 1, 2 satisfy Condition
5.4, we find that

∫ tn
i

tn
i−1

∫ s

tn
i−1

h12(u, Xu, Xtn
i−1

; θ)dWuds =

∫ tn
i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

h121(v, Xv, Xtn
i−1

; θ)dvdWuds +
∫ tn

i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

h122(v, Xv, Xtn
i−1

; θ)dWvdWuds

and
∫ tn

i

tn
i−1

∫ s

tn
i−1

h22(u, Xu, Xtn
i−1

; θ)dWudWs =

∫ tn
i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

h221(v, Xv, Xtn
i−1

; θ)dvdWudWs +
∫ tn

i

tn
i−1

∫ s

tn
i−1

∫ u

tn
i−1

h222(v, Xv, Xtn
i−1

; θ)dWvdWudWs,

where

hi21(s, y, x; θ) = ∂∆hi2(s, y, x; θ) + ∂yhi2(s, y, x; θ)b(y; α0) + 1
2∂

2
yhi2(s, y, x; θ)v(y, β0)

hi22(s, y, x; θ) = ∂yhi2(s, y, x; θ)σ(y; β0).

The result is now obtained by evaluating the triple integrals using the Burkholder-
Davis-Gundy inequality and Jensen’s inequality exactly as above.

2

Proof of Lemma 3.2. By (2.10), (2.16), (2.12) and Lemma 5.1,

Eθ0

(

g(∆n, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1

)

= ∆n

[

g(1)(Xtn
i−1

, Xtn
i−1

; θ) + Lθ0
(g(0; θ))(Xtn

i−1
, Xtn

i−1
)
]

+ ∆2
nR(∆n, Xtn

i−1
, θ)

= ∆n

[

Lθ0
(g(0; θ))(Xtn

i−1
, Xtn

i−1
) − Lθ(g(0; θ))(Xtn

i−1
, Xtn

i−1
)
]

+ ∆2
nR(∆n, Xtn

i−1
, θ).

The last equality follows from (2.13). Thus

1

n∆n

n
∑

i=1

Eθ0

(

g(∆n, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1

)

=
1

n

n
∑

i=1

[

Lθ0
(g(0; θ))(Xtn

i−1
, Xtn

i−1
) − Lθ(g(0; θ))(Xtn

i−1
, Xtn

i−1
)
]

+ ∆n
1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ)

Pθ0−→ γ(θ, θ0)
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by Lemma 5.2. Moreover, Eθ0

(

gj(∆n, Xtn
i
, Xtn

i−1
; θ)2 |Xtn

i−1

)

= ∆nR(∆n, Xtn
i−1

, θ), so

1

(n∆n)2

n
∑

i=1

Eθ0

(

gj(∆n, Xtn
i
, Xtn

i−1
; θ)2 |Xtn

i−1

)

=
1

n∆n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ)
Pθ0−→ 0.

Therefore pointwise convergence in (3.5) follows from Lemma 5.3. As in the proof of
Lemma 5.2 uniform convergence for θ in a compact set K follows by proving tightness
of the family of distributions of ζn(·) = 1

n∆n

∑n
i=1 g(∆n, Xtn

i
, Xtn

i−1
, ·) in the space, C(K),

of continuous functions on K with the supremum norm. This follows from Lemma 5.5
with f = g and m = 2. That (5.4) and pointwise convergence implies tightness follows
from Corollary 14.9 in Kallenberg (1997), which is a generalization of Theorem 12.3 in
Billingsley (1968) (see also Lemma 3.1 in Yoshida (1990) and Theorem 20 in Appendix I
of Ibragimov & Has’minskii (1981)).

In a similar way it follows from (2.10), (2.16), (2.12), (2.13) and Lemma 5.1 that

Eθ0

(

∂θg(∆n, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1

)

(5.13)

= ∆n

[

∂θg
(1)(Xtn

i−1
, Xtn

i−1
; θ) + Lθ0

(∂θg(0; θ))(Xtn
i−1

, Xtn
i−1

)
]

+ ∆2
nR(∆n, Xtn

i−1
, θ)

= ∆n

[

Lθ0
(∂θg(0; θ))(Xtn

i−1
, Xtn

i−1
) − Lθ(∂θg(0; θ))(Xtn

i−1
, Xtn

i−1
) − Aθ(Xtn

i−1
)
]

+ ∆2
nR(∆n, Xtn

i−1
, θ),

and from (2.10),(2.16), (2.12), and Lemma 5.1 that

Eθ0

(

g(∆n, Xtn
i
, Xtn

i−1
; θ)g(∆n, Xtn

i
, Xtn

i−1
; θ)T |Xtn

i−1

)

= ∆nv(Xtn
i−1

, β0)∂yg(0, Xtn
i−1

, Xtn
i−1

; θ)∂yg(0, Xtn
i−1

, Xtn
i−1

; θ)T + ∆2
nR(∆n, Xtn

i−1
, θ).

Since by (2.10),(2.16), (2.12), and Lemma 5.1

Eθ0

(

[∂θg(∆n, Xtn
i
, Xtn

i−1
; θ)]2 |Xtn

i−1

)

= ∆nR(∆n, Xtn
i−1

, θ)

and

Eθ0

(

[gj(∆n, Xtn
i
, Xtn

i−1
; θ)gk(∆, Xtn

i
, Xtn

i−1
; θ)]2 |Xtn

i−1

)

= ∆nR(∆n, Xtn
i−1

, θ), (5.14)

we can, as above, use Lemma 5.2 and Lemma 5.3 to prove (3.6) and (3.7). Again uniform
convergence for θ in a compact set K follows by using Lemma 5.5 with f = ∂θj

gk and
f = gjgk to prove the tightness of (5.5) in C(K).

Finally, (3.8) follows from the central limit theorem for square integrable martingale
arrays under conditions which, in the martingale case, we have already verified in the proof
of (3.7), see e.g. Corollary 3.1 in Hall & Heyde (1980) with the conditional Lindeberg
condition replaced by the stronger conditional Liapounov condition that follows from
(5.14) and Lemma 5.2, e.g.

1

(n∆n)2

n
∑

i=1

Eθ0

(

gj(∆n, Xtn
i
, Xtn

i−1
; θ0)

4 |Xtn
i−1

)

=
1

n∆n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ0)
Pθ0−→ 0.
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The nestedness condition in Hall and Heyde’s Corollary 3.1 is not needed here because the
limit of the quadratic variation is non-random. In the case of non-martingale estimating
functions, we also need that by (2.9)

1√
n∆n

n
∑

i=1

Eθ0

(

g(∆n, Xtn
i
, Xtn

i−1
; θ0) |Xtn

i−1

)

=
√

n∆κ−1/2
n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ0)
Pθ0−→ 0,

(5.15)
and it must be checked that the martingale

∑n
i=1 g̃(∆n, Xtn

i
, Xtn

i−1
; θ0), where g̃ = g −

Eθ0

(

g|Xtn
i−1

)

, satisfies the conditions of the central limit theorem. This follows from the

expansions of conditional expectations given above and Eθ0

(

gj(∆n, Xtn
i
, Xtn

i−1
; θ0)

3 |Xtn
i−1

)

=

∆nR(∆n, Xtn
i−1

, θ0).

2

Proof of Theorem 3.1. By Lemma 3.2, the estimating function

Gn(θ) =
1

n∆n

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ) (5.16)

satisfies the conditions that Gn(θ0)
Pθ0→ 0, ∂θGn(θ)

Pθ0→ U(θ) uniformly for θ in a compact
set, and that U(θ0) = −S is invertible, where U(θ) denotes the right hand side of (3.6).
This implies the eventual existence and the consistency of θ̂n as well as the eventual
uniqueness of a consistent estimator on any compact subset of Θ containing θ0; see Jacod
& Sørensen (2007). The facts that the limit of Gn(θ) satisfies that γ(θ, θ0) 6= 0 for θ 6= θ0

and is continuous in θ imply that any non-consistent solution to the estimating equation
will eventually leave any compact subset of Θ containing θ0. The asymptotic normality
follows by standard arguments, see e.g. Jacod & Sørensen (2007).

2

Proof of Lemma 3.5. By (2.10), (2.16), (2.12), (3.9) and Lemma 5.1,

1

n∆
3/2
n

n
∑

i=1

Eθ0

(

g1(∆n, Xtn
i
, Xtn

i−1
; θ)g2(∆n, Xtn

i
, Xtn

i−1
; θ) |Xtn

i−1

)

= ∆1/2
n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ)
Pθ0−→ 0

and

1

n2∆3
n

n
∑

i=1

Eθ0

(

[g1(∆n, Xtn
i
, Xtn

i−1
; θ)g2(∆n, Xtn

i
, Xtn

i−1
; θ)]2 |Xtn

i−1

)

(5.17)

=
1

n∆n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ)
Pθ0−→ 0,

so the pointwise convergence of the two off-diagonal entries in (3.12) follows from Lemma
5.3. Similarly to the proof of Lemma 3.2, uniform convergence for θ in a compact set K
follows by using Lemma 5.5 with f = g1g2 to prove the tightness of (5.7) in C(K).
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The convergence of (n∆n)−1∑n
i=1 g1(∆n, Xtn

i
, Xtn

i−1
; θ)2 was taken care of in Lemma

3.2. By (2.10), (2.16), (2.12), (2.13), (3.9) and Lemma 5.1, we see that

Eθ0

(

g2(∆n, Xtn
i
, Xtn

i−1
; θ)2 |Xtn

i−1

)

= ∆2
n

[

1
2L

2
θ0

(g2(0; θ)2)(Xtn
i−1

, Xtn
i−1

) + 2Lθ0
(g2(0; θ)g

(1)
2 (θ))(Xtn

i−1
, Xtn

i−1
)

+ g
(1)
2 (Xtn

i−1
, Xtn

i−1
; θ)2

]

+ ∆3
nR(∆n, Xtn

i−1
, θ)

= 1
2∆

2
n

[

v(Xtn
i−1

; β0)
2 + 1

2(v(Xtn
i−1

; β0) − v(Xtn
i−1

; β))2
]

(∂2
yg2(0, Xtn

i−1
, Xtn

i−1
; θ))2

+ ∆3
nR(∆n, Xtn

i−1
, θ),

Thus

1

n∆2
n

n
∑

i=1

Eθ0

(

g2(∆n, Xtn
i
, Xtn

i−1
; θ)2 |Xtn

i−1

)

=
1

n

n
∑

i=1

1
2

[

v(Xtn
i−1

; β0) + 1
2(v(Xtn

i−1
; β0) − v(Xtn

i−1
; β))2

]

(∂2
yg2(0, Xtn

i−1
, Xtn

i−1
; θ))2

+ ∆n
1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ)

Pθ0−→ W2(θ)

by Lemma 5.2. We conclude that (n∆2
n)−1∑n

i=1 g2(∆n, Xtn
i
, Xtn

i−1
θ)2 converges to W2(θ)

by Lemma 5.3 because

1

n2∆4
n

n
∑

i=1

Eθ0

(

g2(∆n, Xtn
i
, Xtn

i−1
; θ)4 |Xtn

i−1

)

=
1

n∆n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ)
Pθ0−→ 0. (5.18)

This follows from (2.10), (2.16), (2.12), (3.9), and Lemmas 5.1 and 5.2. Uniform conver-
gence for θ in a compact set K follows by using Lemma 5.5 with f = g2

2 to prove the
tightness of (5.10) in C(K).

As in the proof of Lemma 3.2, (3.14) follows from the central limit theorem for square
integrable martingale arrays (Corollary 3.1 in Hall & Heyde (1980)) under conditions
which, in the martingale case, we have already verified in the proof of (3.12). In particular,
the conditional Liapounov condition follows from (5.14), (5.18) and (5.17). In the case
of non-martingale estimating functions, we also need that g1 satisfies (5.15) and that by
(2.9)

1

∆n

√
n

n
∑

i=1

Eθ0

(

g2(∆n, Xtn
i
, Xtn

i−1
; θ0) |Xtn

i−1

)

=
√

n∆κ−1
n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ0)
Pθ0−→ 0,

and it must be checked that the martingale
∑n

i=1 g̃(∆n, Xtn
i
, Xtn

i−1
; θ0), where g̃ = g −

Eθ0

(

g|Xtn
i−1

)

, satisfies the conditions of the central limit theorem. This follows from the

expansions of conditional expectations given above and Eθ0

(

g2(∆n, Xtn
i
, Xtn

i−1
; θ0)

3 |Xtn
i−1

)

=

∆2
nR(∆n, Xtn

i−1
, θ0).

Finally, to prove (3.15) note that (5.13), (3.9) and (3.10) imply that

Eθ0

(

∂αg2(∆n, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1

)

= ∆2R(∆n, Xtn
i−1

, θ),
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and that it follows from (2.10), (2.16), (2.12), (2.13), (3.9), (3.10) and Lemma 5.1 that

Eθ0

(

[∂αg2(∆n, Xtn
i
, Xtn

i−1
; θ)]2 |Xtn

i−1

)

= ∆3
nR(∆n, Xtn

i−1
, θ).

Therefore by Lemma 5.2

1

n∆
3/2
n

n
∑

i=1

Eθ0

(

∂αg2(∆n, Xtn
i
, Xtn

i−1
; θ) |Xtn

i−1

)

=
√

∆n
1

n

n
∑

i=1

R(∆n, Xtn
i−1

; θ)
Pθ0−→ 0.

and

1

n2∆3
n

n
∑

i=1

Eθ0

(

[∂αg2(∆n, Xtn
i
, Xtn

i−1
; θ)]2 |Xtn

i−1

)

=
1

n

1

n

n
∑

i=1

R(∆n, Xtn
i−1

, θ)
Pθ0−→ 0,

so that (3.15) follows from Lemma 5.3. Uniform convergence for θ in a compact set
K follows by using Lemma 5.5 with f = ∂αg2 to conclude tightness of (5.7) in C(K).
To see that ∂αg2 satisfies the conditions of the lemma, we use (2.12) to conclude that

∂∆∂αg2(0, x, x; θ) = ∂αg
(1)
2 (x, x; θ) = −∂αLθ(g2(0; θ))(x, x) = 0.

2

Proof of Theorem 3.4. The eventual existence and uniqueness and the consistence of θ̂n

on any compact subset of Θ containing θ0 follows from Theorem 3.1: Since (3.9) implies
S21 = 0, the assumptions that S11 6= 0 and S22 6= 0 ensure that S is invertible, and
under Condition 3.3 the identifiability condition imposed in Theorem 3.4 ensures that
γ(θ, θ0) 6= 0 for θ 6= θ0 with γ, the limit of Gn(θ), given by (3.1).

To prove the asymptotic normality (3.11) of the estimator θ̂n we consider

G̃n(θ) = Dn

n
∑

i=1

g(∆n, Xtn
i
, Xtn

i−1
; θ),

where Dn is given by (3.13). On the set {G̃n(θ̂n) = 0} (the probability of which goes to
one)

−∂θT G̃n(θ(1)
n , θ(2)

n )A−1
n An(θ̂n − θ0) = G̃n(θ0),

where

An =

( √
∆nn 0
0

√
n

)

,

∂θT G̃n(θ(1)
n , θ(2)

n ) is the 2× 2-matrix whose jkth entry is ∂θk
G̃n(θ(j)

n )j, and θ(j)
n is a random

convex combination of θ̂n and θ0. Since by (3.6) and (3.15)

−∂θT G̃n(θ(1)
n , θ(2)

n )A−1
n

Pθ0−→
(

S11 0
0 S22

)

,

(3.11) follows from (3.14).
2

Proof of Theorem 4.4. This theorem follows from Theorem 2.2 of Jacobsen (2002). It
is, however, instructive to give a proof that when N = 2 and A is given by (4.9),
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then the estimating function (4.6) satisfies (3.9), (4.1) and (4.2). For g(∆, y, x; θ) =
A(x, ∆; θ)[f(y; θ) − π∆

θ f(x; θ)],

∂yg(0, y, x; θ) = A(x, 0; θ) ∂yf(y)

∂2
yg(0, y, x; θ) = A(x, 0; θ) ∂2

yf(y).

Therefore

(

∂yg(0, x, x; θ), ∂2
yg(0, x, x; θ)

)

=







∂αb(x; α)/v(x; β) c(x; θ)

0 ∂βv(x; β)/v(x; β)2





D(x)−1D(x)

=







∂αb(x; α)/v(x; β) c(x; θ)

0 ∂βv(x; β)/v(x; β)2





 ,

from which we read (3.9), (4.1) and (4.2).
2

Proof of Theorem 4.5. By (2.16)

π∆
θ f(x; θ) = f(x; θ) + ∆Lθf(x; θ) + 1

2∆
2L2

θf(x; θ) + O(∆3), (5.19)

which after another application of (2.16) implies that for h(∆, y, x; θ) = f(y; θ)−π∆
θ f(x; θ)

Eθ

(

h(∆, X∆, x; θ)h(∆, X∆, x; θ)T |X0 = x
)

= ∆Lθ(h(0; θ)h(0; θ)T )(x, x) (5.20)

+ ∆2
(

1
2L

2
θ(h(0; θ)h(0; θ)T )(x, x) − Lθf(x; θ)Lθf

T (x; θ)
)

+ O(∆3)

= ∆v(x; β)∂xf(x; θ)∂xf(x; θ)T

+ ∆2
[

q1(x; θ)∂xf(x; θ)∂xf(x; θ)T + q2(x; θ)
(

∂2
xf(x; θ)∂xf(x; θ)T + ∂xf(x; θ)∂2

xf(x; θ)T
)

+ v(x; β)2
(

∂2
xf(x; θ)∂2

xf(x; θ)T + 1
2(∂

3
xf(x; θ)∂xf(x; θ)T + ∂xf(x; θ)∂3

xf(x; θ)T )
)]

+ O(∆3),

where

q1(x; θ) = 1
2 [b(x; α)(2 + ∂xv(x; β)) − 2b(x; α) + 1

2v(x; β)(4∂xb(x; α) + ∂2
xv(x; β))]

q2(x, θ) = 3
4v(x; β)(1 + 1

3b(x; α) + ∂xv(x; β)).

Since

∂αLθf(x; θ) − Lθ∂αf(x; θ) = ∂αb(x; α)∂xf(x; θ)

∂βLθf(x; θ) − Lθ∂βf(x; θ) = 1
2∂βv(x; β)∂2

xf(x; θ)

it also follows from (5.19) that

∂θT π∆
θ f(x) − π∆

θ ∂θT f(x) = ∆F (x)







∂αb(x; α) 0

0 1
2
∂βv(x; β)





+ O(∆2),

where F (x) denotes the N × 2-matrix F (x) = (∂xf(x), ∂2
xf(x)).
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If A∗(x, ∆; θ) satisfies (4.10), then the 2 × N -matrix

B(x, ∆; θ) =







1 0

0 2∆





A∗(x, ∆; θ).

satisfies that

B(x, ∆; θ)
[

v(x; β)∂xf(x; θ)∂xf(x; θ)T + ∆M(x; θ) + O(∆2)
]

=







∂αb(x; α) 0

0 ∆∂βv(x; β)





F (x)T +







O(∆)

O(∆2)







where ∆2M(x; θ) denotes the term of order ∆2 in (5.20). Let B(x, ∆; θ)i denote the ith
row of B(x, ∆; θ) (i = 1, 2). Then it follows by letting ∆ tend to zero that

v(x; β)B(x, 0; θ)2∂xf(x; θ)∂xf(x; θ)T = 0. (5.21)

The condition that D(x) is invertible implies that we can find a coordinate of ∂xf(x; θ)
which is not equal to zero, so we conclude that

∂yg
∗
2(0, x, x; θ) = B(x, 0; θ)2∂xf(x; θ) = 0.

Similarly we find that

[v(x; β)B(x, 0; θ)1∂xf(x; θ) − ∂αb(x; α)]∂xf(x; θ)T = 0,

which implies

∂yg
∗
1(0, x, x; θ) = B(x, 0; θ)1∂xf(x; θ) = ∂αb(x; α)/v(x; β).

Finally, (5.21) implies that

B(x, 0; θ)2M(x; θ) = ∂βv(x; β)∂2
xf(x; θ)T .

Since we have shown that B(x, 0; θ)2∂xf(x; θ) = 0, this expression simplifies to

[q2(x; θ)B(x, 0; θ)2∂
2
xf(x; θ) + 1

2v(x; β)2B(x, 0; θ)2∂
3
xf(x; θ)]∂xf(x; θ)T

= [∂βv(x; β) − v(x; β)2B(x, 0; θ)2∂
2
xf(x; θ)]∂2

xf(x; θ)T .

Thus real functions c1(x; θ) and c2(x; θ) exist such that c1(x; θ)∂xf(x; θ) = c2(x; θ)∂2
xf(x; θ).

If c2(x; θ) 6= 0, then ∂2
xf(x) = c1(x; θ)/c2(x; θ)∂xf(x; θ), which implies that det(D(x)) = 0.

Thus we can conclude that ∂βv(x; β) − v(x; β)2B(x, 0; θ)2∂
2
xf(x; θ) = c2(x; θ) = 0 or

∂2
yg

∗
2(0, x, x; θ) = B(x, 0; θ)2∂

2
xf(x; θ) = ∂βv(x; β)/v(x; β)2.

2
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6 Conclusions

A general theory of high frequency asymptotics has been developed for a large class of
estimators, essentially any estimator that can be obtained from estimating functions or
the generalized method of moments based on conditional moments or on approximations
to conditional moments. Simple conditions have been derived that ensure rate-optimality
and efficiency of the estimators. For diffusion models it is important to use rate optimal
estimators, because otherwise the information about the diffusion coefficient contained
in the quadratic variation is not used. A number of previously proposed estimators
have been shown to satisfy the conditions for rate optimality and efficiency, including
the maximum likelihood estimator, the estimator based on the Gaussian Euler approxi-
mation to the likelihood function, other similar maximum pseudo-likelihood estimators,
and Godambe-Heyde optimal martingale estimating functions. Tools for studying high
frequency asymptotic properties of estimators have been provided, including in partic-
ular simple conditions ensuring that convergence in probability of a normalized sum of
parameter-dependent functions of pairs of consecutive observations is uniform in the pa-
rameter.
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