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Abstract

This paper considers the asymptotic distribution of the covariance of a nonstationary frac-
tionally integrated process with the stationary increments of another such process — possibly,
itself. Questions of interest include the relationship between the harmonic representation of
these random variables, which we have analysed in a previous paper, and the construction
derived from moving average representations in the time domain. The limiting integrals are
shown to be expressible in terms of functionals of Itd integrals with respect to two distinct
Brownian motions. Their mean is nonetheless shown to match that of the harmonic rep-
resentation, and they satisfy the required integration by parts rule. The advantages of our
approach over the harmonic analysis include the facts that our formulae are valid for the full
range of the long memory parameters, and extend to non-Gaussian processes.
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1 Introduction

Let z; and y; be linear processes having the MA(oco) forms

(o ¢] (0.0
Ty = Z bjui—j, Yt = Z Cjwi—j (1.1)
j=0 j=0

where u;, w; are zero mean, independently and identically distributed processes, and the coef-
ficient sequences {b;} and {c;} decay hyperbolically. If X,, and Y;,, denote suitably normalized
partial sum processes on the unit interval for a sample of size n, it is known under fairly general

assumptions that (X,,Y,) 4, (X,Y) where the limit processes are fractional Brownian motions,
as defined by Mandelbrot and van Ness (1968). For exemplar case X, the well-known formula is

XO =g | [ e aw s [ (et - com)aw] oo

where U is regular Brownian motion on R. Fractional noise processes are a well-known simple
case, in which

b — I'(j+dx) o — L@ +dy) (1.3)
T T(dx)T(j+ 1) T T(dy)T(j + 1)
for —% <dx,dy < % In this case,
[n€] [ng]
Xn(&) =n VXN "0y, V() = a7 Yy, (1.4)
t=1 t=1

for 0 < ¢ < 1, where [z] denotes the largest integer not exceeding x. Considerably greater
generality will be permitted, although parameters dx and dy, subject to these constraints, will
in all cases index the rate of lag decay. The best general conditions currently known for these
results are given by Davidson and de Jong (2000) (henceforth, DDJ).

In this paper, our concern is the limiting distribution of the random variable

1n1t

Gn = K@) 2 PR (1.5)

t s=1

where K (n) is a function of sample size which, for the case of (1.3) at least, can be set as n!+dx+dv

Expressions with the form of G,, arise in the theory of cointegration. For example, in the case
¢ = y¢ they appear in the formulae for the Dickey-Fuller statistic. In a cointegrating regression
they appear in error-of-estimate formulae, with y; having the interpretation of a stationary error
term and x; the difference of the stochastically trending regressor. In applications we should often
wish z; and 4; to be respectively column and row vectors, and hence G,, to be a vector or matrix.
However, this is notationally burdensome and it is more convenient to derive the main results for
the scalar case. The required extensions are obtainable by very straightforward generalizations.

A limit distribution for (1.5) has been derived from the harmonic representations of the
variables, where defined. In the fractional noise case these are

= / DN WL, = / )W () (1.6)

where i is the imaginary unit and (W,,W,,) is a vector of complex-valued Gaussian random

measures with the properties (for j, k = w,u) W;(—dX) = W;(dX), EW;(d\) = 0 and

0, otherwise.

EWi T = { e n
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Chan and Terrin (1995) is a well-known study that analyses the weak convergence of fractionally
integrated processes under the harmonic representation. The model these authors analyse is
different from the usual ‘causal’ (backward-looking) model considered here, but Davidson and
Hashimzade (2008) have extended their analysis and apply it to the causul model in particular.
The weak limits of the partial sum processes (1.4) take the form

2)\5 -1 dx

X(e \/ﬂ / (X)X TV (dN)
z)\§ -1 . dy

Y(©) = o / () W (d\)

and G,, has the weak limit

/01 Xav = - 01 </ "y, [N )> o 09

—00 —00

For the case dx + dy > 0, the expected value of this random variable is derived as

! wuw 1= —dx—dy —ir(dx—dy)
E | XdYy = |>\| x—dy omim(dx —dy)sen(N) g gy
0

Wywl' 1 - dX dY) .
= dy . 1.9
(1+dX+dy)(dX+dy) st mdy (1.9)

In this paper, we explore the counterpart of this solution in the time domain. There are
several reasons why this alternative approach provides an essential extension. The general weak
convergence proofs given by Davidson and Hashimzade (2008) are restricted to the case dx +
dy > 0, and the ‘standard’ case dx = dy = 0 is especially intractable, because the harmonic
representation of the integral breaks down (with undefined expectation) when the processes have
summable covariances. While there is no difficulty in constructing more general dependence
models than the fractional noise example given, the harmonic representation requires Gaussian,
identically distributed shocks — a restrictive requirement for econometric modelling. Working in
the time domain allows all these limitations to be relaxed.

The specific assumptions to be adopted are as follows.

Assumption 1 The collection {u, w;t € Z} are identically and independently distributed with
zero mean and covariance matrix

E [“t] [u w] = Q= [“’““ w“w} (1.10)

Wt Wyw  Www

and pit,, = E(uiw?) < co. up = wy is an admissible case.
These random variables define the filtered probability space on which our processes live, denoted
(Q,F, P, F) where

F={F,tecZ, F; CFallt, and F; C F, iff t < s}. (1.11)

The pair (ut, w) are adapted to F3, and in this setup we may also use the notation 7, (1) = Fp
for 0 < r <1 where n is sample size. Further, letting F(r) represent the limiting case as n — oo,
(X (r),Y(r)) are measurable with respect to F(r) and accordingly will be called F-adapted.



Assumption 2 The sequences {b;}3° and {c;}§° depend on parameters dx € (—%,%) and dy €

(—3.,3), respectively, and sequences {Lx(j)} and {Ly(j)} that are at most slowly varying at
infinity. These sequences satisfy one of the following conditions, stated for {b;} as exemplar
case:

(a) If0<dx < % then b; = D(dx)~'(j + 1) ~"1Lx(j).
(b) Ifdx =0 then 0 < ‘Z;’;U bj’ < 00, and b; = O(j7179) for § > 0.

(c) If =3 < dx < 0 then bp = ag and bj = aj — aj_1 for j > 0 where a; = I'(1 +dx) "' (j +
1) Lx ().

Under these assumptions, we set K (n) = n't4x+d [y (n)Ly(n) in (1.5). While the ‘pure
fractional’ cases represented by (1.3) satisfy Assumption 2, the assumption only controls the tail
behaviour of the sequences, and allows arbitrary forms for a finite number of the lag coefficients.
In particular, the x; and y; processes may be stable invertible ARFIMA (p, d, q) processes. Suppose
more generally that z; = (1 — L)~9X@(L)u; where (L) is any lag polynomial with absolutely
summable coefficients, specifically, where §; = O(;717°) for § > 0. Letting for dy > 0 the
identity a(L) = (1 — L)~ define the coefficients a;, such that! a; ~ I'(dx)~1j% 1 note the
following result.

Proposition 1.1 The sequence {b;} defined by b(L) = a(L)0(L) satisfies bj ~ O(1)T'(dx ) 1j%x 1
as j — oo.

(All proofs are given in the Appendix.) The slowly varying component can be defined to represent
the ratio of b; to the approximating sequence. Also, since €2 is unrestricted, we could impose the
normalization #(1) = 1, if desired, with no loss of generality.

The cases dx = 0 and dy = 0 are deliberately restricted under Assumption 2(b) to rule out
the ‘knife-edge’ non-summable case, to avoid complications of doubtful relevance. Be careful
to note that ¢ is not a fractional differencing coefficient in this case. Also note that the pure
fractional model, represented by (1.3) has by = 1 and b; = 0 for j > 0, in the case dx = 0. The
case dx < 0 under Assumption 2(c) has the ‘overdifferenced’ property, implying in particular
that |>°7_,bk| = O(j%). In the pure fractional case, note that b; < 0 for all j > 0 in this
instance.

A multivariate analysis would typically invoke a vector Wold representation of the form (in
the bivariate case)

e L 2 A

VARFIMA models are a popular example. However, extending our results to general linear models
of this type is a simple application of the continuous mapping theorem to the limit distributions
we explore in this paper. In the case shown, x; and y; are represented as the sums of two terms
of the type (1.1), involving {u;} and {w;} respectively. Accordingly, (1.5) becomes a sum of
four terms involving respectively the driving pairs {u, us}, {we, we}, {wi, ur} and {wy, wy}. Our
analysis can be applied to each of these cases in turn, with suitable redefinition of symbols.

!The symbol ‘~’ here denotes that the ratio of the connected sequences converges to 1 as j — co.



2 Some Properties of GG,

The key step is the following decomposition of expression (1.5). First, expand by substitution
from (1.1), as

n—1 t oo oo

1
Gn = K(n) Z Z Z Z bkcjus,kwtﬂ_j.

t=1 s=1 j=0 k=0

Decompose this sum as G, = G1,, + Gy, + G3,, where

1 n—1 t oo k+t—s
Gin = K@) Z Z bk Cjls—fWet1—;
t=1 s=1k=0 ;=0
1 n—1 t o0 00
PP PP S UL 21
t=1 s=1 j=0 k=max{0,j+s—t}
1 n—1 t 00
Gop = K(n) Z bk Chtt—s4+1Us—kWs—k (2-2)
t=1 s=1 k=0

and
n—1 0o 00

-1t
Gs, = K}n) tZ ZZ Z brCjUs—pWiy1—j. (2.3)

1 s=1 k=0 j=k+t—s+2

Thus, G1, contains those terms, and only those terms, in which s — k < ¢t — j, so that the time
indices of w strictly exceed those of u, and hence E(G1,) = 0. In Ga,, s —k =t+ 1 — j such
that the time indices of v and w match. In Gs,, s —k >t + 1 — j such that the indices of u lead
those of w, and E(Gs3,) = 0.

In this section we consider the behaviour of the sequence Ga,. Broadly speaking, its properties
depend on the sign of dx + dy, and we consider the various cases in turn.

Proposition 2.1 If dx + dy > 0 then E(Ga,) — Axy where

A o Wyaw < dY +
T T(dyx + DE(dy + 1) (dx + dy) \ (1 +dx + dy)
/ [y (1 7Y 4 der Bt — (g dy ) (1+ 1) 7] d7> (2.4)
0

Letting Ay x denote the same limit with z; and y; interchanged, also note that

Wuw

dx + DI(dy + 1

(Mlﬂly) + /OOO (4 ryx =28 (@4 m)D =7 dT)
=txy (2.5)

Axy +Ayx = X
I'( )

where

] 1 n n
Vxy = n11_>n010 K@) E<tzl Xy ; yt> . (2.6)

This is the off-diagonal element of ¥, the long-run covariance matrix of the processes, according
to equation (3.12) of DDJ. Considering the decomposition

n n n n—1 t n—1 t
B(X oY) = L Bl + X3 Baan) + Y. 3 Bonsa)  (2)
t=1 t=1 t=1 t=1 s=1 t=1 s=1
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where the second term on the right corresponds to K (n)E(G,,), note that

[e.9]

E(ziyt) = oxy = Wuw ijcj < 00. (2.8)
j=0

The first right-hand side term in (2.7) is O(n), and hence this term is of small order under the
normalization K (n). The other two terms converge to Axy and Ay x respectively under the same
normalization, as indicated by (2.5). Observe that Axy depends only on dx, dy and wy,, since
any short-run parameters have been absorbed into the functions Lx and Ly; compare Lemma
1.1 for example. The sign of Axy matches that of dy, and if dy = 0, then Axy = 0. When
dx > 0, the cases where y; is i.i.d., (¢; = 0 for j > 0) and is merely weakly dependent (dy = 0),
are equivalent asymptotically.

We give these results in the easily interpretable form of (2.4) but for computational purposes,
a closed-form expression is more useful, as follows.

wuwl'(1 —dx — dy)
m(1+dx +dy)(dx +dy)

Proposition 2.2 \xy = sindy .

This formula matches (1.9), indicating that the harmonic and moving average approaches to
constructing fractional processes yield equivalent results, at least in mean. The closed form of
(2.5)

w1 —dx —dy) <sin7rdy + Sin’ﬂ'dx> (2.9)

Vxy = (1+dx+dy) 7T(dy+dx)

follows directly.
Next, consider the cases where dx +dy is zero or negative. In the latter case, E(Gay,) diverges.

Proposition 2.3 If dx +dy <0 and wyy # 0, then E(Ga,) = O(n/K(n)).

In this instance there is no decomposition of ¥y x into components of the form Axy, and the
three terms in (2.7) are each of O(n). We may write n=! >"1 | E(zy) = oxy and also

1 n—1 t

- > E(wsyiin) = Mxy
t=1 s=1
n—1 t

%Z ZE(ysth) - )‘*YX'

t=1 s=1

These limits are finite constants depending on summable sequences of weights, hence necessarily
different from Axy and Ay x. Note that E(}_}_| ;)% = O(n?*x 1) and BE(3}, y)? = O(n?¥v+1)
(compare DDJ Lemmas 3.1 and 3.3). For dx + dy < 0 the left-hand side of (2.7) is therefore
necessarily o(n), by the Cauchy-Schwarz inequality, and so o xy + Ay + Ay x = 0. Formula (2.9)
is nonetheless well defined for dx + dy < 0. Under the normalization n the covariance vanishes,
but under normalization K (n) the limit in (2.6) is well-defined and equal to (2.5) (equivalently,
to (2.9)) as shown in DDJ Lemma 3.3. These conclusions assume wy,, # 0, but if u; and w;
are contemporaneously uncorrelated, implying under Assumption 1 that the cross-correlogram is
zero at all orders, then each of the terms in (2.7) is zero identically. Then (2.5) holds trivially
whatever the sign of dx + dy, since A\xy = Ayx = 0.

The following result shows that Gg, is a consistent estimator of the mean, albeit not a feasible
one.

Theorem 2.1 If Assumptions 1 and 2 hold, G2, — E(Gay,) L2,



The important implication is that the limit distribution of Gy, + G3, matches that of the mean
deviation of G,,, not forgetting that the mean diverges under the given normalization when
dx +dy <0.

One further result concerning the behaviour of the contemporaneous covariance term is gen-
erally needed for the analysis of regression models.

Theorem 2.2 Let Assumptions 1 and 2 hold.

o L
(i) n ! 2?11 Tt Zoxy.

(i) If wyw = 0, —% < dy <0 and —% < dx < 0, then n~1/2 Yoty Tyt 4 N (0,V) where
V < .

3 Stochastic Integrals

In this section we use heuristic arguments to construct limiting forms for the terms Gy, and
G3p, to be denoted respectively by Z; xy and Z3 xy. Letting Exy = =1 xy + 23 xv, we shall

subsequently show that G,, — E(G5,) 4= xy where < denotes convergence in distribution.
Consider Gy, first. Replacing the summation over j in (2.1) by the summation over m =
t+1—j, and the summation over k by the summation over ¢ = s — k, rewrite G, as

n—1 t min{s,m}
Gln: ZZ Z Z bs—ici— mUi Wm+1
t:l s=1m=—0o0 i=—00
1 n—1 m n—1 t
R STD SED SR () S
m=—00 i=—00  t=max{1l,m} s=max{1,}
1 n—1
= - Z GrnmWm+1 (3.1)
nm:foo

where ¢um = D> it Animt; and

n—1-m t+m—1
n
Anim = m Z Ct Z ‘ bs (32)
t=max{1—m,0} s=max{1—1,0}

Lemma 3.1 For real-valued indices r,p with —co < p <1 <1, apppljnr) = Axy(r,p) +0(1) as
n — oo, where

1—
(=9 (=™ F (~dydy 1 dyi - =)
(14 dx)I(1+dy)

(r = p)™ (—r) F (—dx,dy,1+dy;— - )

AXY(Tv p) =

r—p
—lg<oy I'(1+dx)T(1+dy)
(=p)™ (1 =) =1y (=1)Y)
~ lp<oy L(1+dx)I(1+dy) ' 33



and
o0

F(a+ )b+ ) ;
a,b,c; z) z)?
F z L T

represents the hypergeometric function.

Making the substitutions dU (p) for u,, /v/n and dW (1) for wy,,//n, the limit of the random

variable in (3.1) can be expressed heuristically in the form Z; xyy = f_loo Q(r)dW (r) where
= [" Axy(r,p)dU(p). Note that when dy =0, Q(r) = X(r) for r > 0 and 0 for r < 0,
and Zp xy reduces to the regular It6 integral of a fractional Brownian integrand, as analysed
in DDJ. In the general case, we ought to remark on the potential existence issue posed by a
functional of Brownian motion with infinitely remote starting point. We shall show in the sequel
that these integrals can be constructed as the mean-square limits of integrals on the finite intervals
[-N,r] and [—N, 1], respectively, as N — oo. Of course, the fractional Brownian motion (1.2)
itself is well-defined on just the same basis.
Next, consider G3,,. Proceeding in the same way as before, settingm =t+1—jand i = s—k,
we obtain from (2.3)

- t
Gsn = E E E g brCjus— kWir1—j
t=1 1 k= Oj k+t—s+2
n—1 n—1
= K( g g Wm E bs—i g Ct+1-m
i=—00 M=—00 s=max{7,1} t=s

i—1U;

1=—00

where hy =>"" _  €nmiWy, and

n—1—1 n—m
Cnmi = KT(Ln Z bs ( Z Ct> . (3.4)

s=max{0,1—i} t=s+i+1—-m

Lemma 3.2 For real-valued indices r,p with —co <1 < p <1, eppprjiny] = Exy (p;7) +0(1) as
n — oo, where

1
T(dy + 1)D(dy + 1)

X [(1 —p)™ ((1 —r) —(p—r)F (—dy,dx; 1+ dy: _;_p»
—1gpeoy(—p)™¥ ((1 By S <—dy,dX; 1+ dy; p‘i))] . (3.5)

EXY(]D:T) =

This construction closely parallels the one in Lemma 3.1 except that in this case p > r. It allows
us to express the limit in the form 23 xy = f_loo H(p)dU (p) where H(p) = [*__ Exy(p,r)dW (r).
Observe that Exy (p,r) = 0 for all p and r when dy = 0, so that thls term arises only the case
of fractional integrator functions.

Notice the important fact that both =1 xy and =3 xy are stochastic integrals of F-adapted
Gaussian integrand processes with respect to F-adapted Brownian motions. Therefore, these
integrals are of Itd type. Subject to sufficient regularity conditions on the integrands, essentially



those of finite variances and almost sure continuity, plus the validity of mean-squared approxi-
mations by integrals with finite domain of integration, they may be analysed in the conventional
fashion. Section 4 provides the requisite results.

Under assumptions such that both convergence results hold, in particular dx > 0 and dy > 0,
it appears natural to equate the random variable Zxy + Axy with the one denoted fol XdY in
(1.8). We have shown in Lemma 2.2 that the means match. To confirm the representation as
an integral, however, we also need to establish that the formulae satisfy the integration by parts
rule. In Davidson and Hashimzade (2008), Corollary 4.1, this was shown to hold in expectation
for the harmonic representation. Here, we can go further and show the following result, which
does not depend on parameter sign restrictions.

Proposition 3.1 ZExy + Eyx + ¥ yy = X(1)Y(1).

4 Weak Convergence

Building on the results in Section 2 on the behaviour of the mean sequence, the general result to
be established in this section is the following.

Proposition 4.1 Let Assumptions 1 and 2 hold.

(i) If dy + dy > 0, then Gy % Sxy + Axy-

(ii) If dx +dy = 0, then Gy, > Exy + Ny

K
(iii) If dy + dy < 0 and My # 0, then fln)an 52Ny

(iv) If dx + dy < 0 and iy = 0, then Gy, > Zxy-.

Note that case (iii) has already been established in Theorem 2.1, subject to the components G1,,
and G, being O,(1) while G, = Op(n/K(n)).

Define cadlag processes X, = n~ /274X [y (n)~! Yqxrand Y, = n~1/2=dy [y (n)~! > iy Yt
Then, Proposition 4.1 will follow from Propositions 2.1 and 2.3 and Theorem 2.1 in combination
with the following result, which is the main concern of this section.

Theorem 4.1 Under Assumptions 1 and 2,
(X, Y, G = B(Gn)) > (X, Y, Exy) (4.1)

where Exy = EZi xy + 23, xy, and LA denotes joint weak convergence in Dg2[0,1] x R where
Dr2[0, 1] denotes the space of cadlag pairs equipped with the Skorokhod topology.

The result for the first two members of (4.1) is shown in DDJ. Since the limit processes are
almost surely continuous, it is sufficient for joint convergence that arbitrary linear combinations
of (X, Y, Gn — E(G,,)) converge to the corresponding combinations of the limit processes (see

Davidson 1994, Theorem 29.16). Since the process elements are all defined with respect to the

same filtration, these requirements follow directly. In practice, we show (X, Y,, Gin, Gsn) 4

(X,Y, =1 xv,Z3,xy) where the limit random variables Z; xy and =3 xy can be identified with
the It6 integrals on the intervals (—oo, 1]. The continuous mapping theorem then yields Theorem
4.1.



A further rearrangement of (3.1) yields

N N
Gln = E E GmWm+1 + E § (Qnm - Qnm)wm-f—l + ﬁ § : GnmWm+1 (4'2)
m=—Nn m=—Nn m=—00

where ¢ = o N GnimUis Gnim 1s defined in (3.2) and N > 0 is a fixed value to be chosen.
In the same way, write

n—1 —Nn

Gi’m—* Z hnz 1“@4'l Z (hn,ifl—hnNz 1)u1+* Z Poni—1u;

=—Nn i=—00

where hY. = an:_ Nn €nmiWm. The strategy of proof of Theorem 4.1 suggested by these decom-
positions involves three steps, which we describe for Gy, as the exemplar case.

1. Define the cadlag arrays
1 [nr]
U S e W= Y
i=—Nn

and show that Qy 4, QY , an almost surely continuous Gaussian process on the interval

[~N,1]. Also, by standard arguments, W, L WN where WY is a Brownian motion on
the interval [—N,1]. Since quxmfl is a linear process in i.i.d. shocks, by Assumption 1,
Step 1 can be tackled by a minor extension of Theorem 3.1 of de Jong and Davidson (2000)
(henceforth, DJD).

2. (QN,WN) are adapted to a common filtration F defined in (1.11), with respect to which
W is a martingale. We therefore deduce by standard arguments that

n 1
(z b $5 ) £ (en e, [ ).

3. Show that by taking N large enough, the second and third terms of (4.2) can be made as
small as desired in Lo norm, allowing the limit random process to be formally represented

as EI,XY = fioo QdW

The arguments to establish the validity of these steps are given for the case of (G, in Section 4.1.
The case of G, is on similar lines, replacing a by e, A by FE, @ by H, and exchanging w, v and
W, U in formulae. These results are given in Section 4.2.

4.1 The Case of GGy,

We use Lemma 3.1 to show the following properties, invoking Assumptions 1 and 2 in each case.
Lemma 4.1 Let v, =n"t>" a2, form € (—oo,n).

(i) limsup,, v2 ] < 00 for each fized r € (—o0, 1].

=0((— )2dY+2dX_3) as T — —oo.

(i) limsup,, v® U for] =

10



[n(r+0)] - — O(§min{12dx 1),

Lemma 4.2 sup limsupn ! ZZ 1 Uin(r+8)] =

re(—oo,1] n

Lemma 4.3 sup limsupn™! Z['W] (am[n(wr&)] _ am[m])z _ 0(52dx+1)‘
re(—oo,1] n 1=—00

Step 1 is then implemented by means of the following result.

Theorem 4.2 ( 7]1V’ W,]LV) — (QN, W) where 2 denotes weak convergence in the space of cad-
lag functions Dg2[—N, 1] endowed with the Skorokhod topology, and (QY, W) are elements of
Cr2[—N, 1] a.s..

Be careful to note that the topological space Dg2[—N, 1] is different from Dg[—N, 1] x Dr[—N, 1].
In the former case, the jump times are assumed to be synchronized in the component spaces so
that the Skorokhod distances can be defined in terms of a common change-of-time function, while
in the latter case they are not. Since the jumps are always the result of discrete observation dates
in our applications, the jump times match by default, and there is no problem about satisfying
this requirement in practice.

Given these results, we can proceed directly to Step 2, as follows.

Theorem 4.3 The convergence in (4.3) holds where < denotes weak convergence in the space
Dr2[—N, 1] x R endowed with the Skorokhod topology.

Theorem 4.3 is a special case of Theorem 2.2 of Kurtz and Protter (1991), see also Theorem 7.42 of
Kurtz and Protter (1995) These results are given for stochastic processes I on [0, 00) defined by
f , where H is F-adapted and left-continuous, and Y is a F-semimartingale
satlsfymg a condltlon of uniformly controlled variations (UCV). This latter condition is directly
satisfied by Wév since this is a partial sum of independent and identically distributed shocks with
finite variance, and our processes are defined on a compact interval. There is no difficulty about
considering the interval [0, N + 1], and then re-locating the initial date from 0 to —N.

We cannot apply the Kurtz-Protter results in full generality, without modification, because in
our case the integrands correspond to a family of functionals QV(r,¢), and fEN QN (r,&)dW (r)
does not have the form of I(¢). However, replacing QV (r,&) by QV(r,1) defines an integrand
process in the appropriate class, and then extracting the pointwise implication for the case £ =1
yields the desired distribution. Since Q¥ is a.s. continuous according to Lemma, 4.2, there is no
problem in meeting the left-continuity requirement.

Moving on to Step 3, we show the limiting negligibility of the remainders as follows.

Theorem 4.4 If Assumptions 1 and 2 hold,

1 n—1 2
(1) limp, o0 E < E : N (Qnm - qgm)wm—i-l) = O(NdX+dY_2)
n m=—Nn

1 —Nn 2
(i) lim, oo E ( > QWi +1) — O(Ndx+dy—3),
n m=—0o0

2This theorem is numbered 34 in an alternate version of these notes posted on the internet.

11



4.2 The Case of Gj3,

In this section the arguments are effectively the same as those in Section 4.1, although the
results differ in formulae and in the details of proofs. We simply state the counterpart results, in
abbreviated form where appropriate. The proofs of these results based on the representation in
Lemma 3.2, are treated jointly those of Section 4.1 in the Appendix.

Lemma 4.4 Let vt =n~ '3 ¢2 . forie (—oo,n). Then,

(i) limsup, v | < 0o for each fized p € (—o0, 1].

s[np

(i) limsup,, Upo lnp] = O((—p)2dr+2dx=3) g5 p — —o0.
[n(p+9)] 2

min{1,2d
m=lnp)+1 “nmln(e+8)] = O(gmin{12dx+1y

Lemma 4.5 sup limsupn_lz
pE(*OO,l] n

Lemma 4.6 sup limsupn™! Z[np] (Enmin(p+8)) — enm[np})Q = 0(52dx+1).
pE(—00,1] n m=—00

Theorem 4.5 (HY UN) < (HN,UN) € Cg2[-N, 1] a.s.

1 n d !
Theorem 4.6 <H,]LV, Uy, nzm:Nnuth]Xm_1> — <HN’ UV, /_NHNdUN>.

Theorem 4.7

1 n—1 2
(i) limy, oo < Z . (hnm — hnNm)Um—i—l) - O(Ndx+dy—2)

n
1 —Nn 2
(i) lim, o E ( > - +1> — O(Nx -ty —3),
n m=—0o0

5 Discussion

There exists quite an extensive mathematical literature on the properties of integrals with respect
to fractional Brownian motion. See, inter alia, Lin (1995), Dai and Heyde (1996), Zzhle (1998),
Decreusefond and Ustiinel (1999), Decreusefond (2001), Pipiras and Taqqu (2000, 2001, 2002),
and the references therein, Duncan et. al (2000a, 2000b) and Bender (2003). This literature is
chiefly concerned with representation and existence questions for general classes of deterministic
and non-adapted integrand. These fractional integrals have been variously represented, applying
the Wiener-Ito chaos decomposition of the fractional processes, either as the Skorokhod integrals
defined in the Malliavin calculus (see e.g. Oksendal 1997) or as the limits of Riemann sums
of the Wick products of the integrand and increments of the integrator process (Duncan et al.,
2000a). An important issue in this research, particularly for pricing applications in mathematical
finance, has been to find a counterpart of the It6 integral (featuring zero mean, in particular) for
fractional Brownian integrators.

However, there has been comparatively little emphasis on deriving these random variables as
the weak limits of normalized discrete sums. In this context our results appear to have some
novel and interesting features. For the special case of a fractional Brownian motion integrand,
we may think of the random variable Zxy + Axy defined here, with dx + dy > 0, as an integral
of Stratonovich type, the counterpart of that derived in the harmonic representation (1.8). The

12



zero-mean component Zxy is evidently the counterpart of the Wick integral. We must leave it
to future work to establish the relationship between these representations in detail. However, the
fact that the latter variable decomposes into a pair of Ito-type terms in which the ‘integrator’
and ‘integrand’ processes change places, so that the forcing processes of both ‘integrator’ and
‘integrand’ play the role of Brownian integrators is, we suggest, a potentially illuminating way to
view the implications of an integrator process that is not a semimartingale.

We have noted that reliance on the results due to Kurtz and Protter (1991, 1995) has limited
us to considering the pointwise case of integral convergence. A useful goal would be to extend
our results to the stochastic process case on [0, 1], for example to show that

1 n- )
Gin = n Lnifoo Qn,m—l(')wm i} f—oo Q(-)dW.

Our formulae would be unchanged except for the replacement of 1 by ¢ € [0,1] and n by [ng],
where required, also noting that E(Gp(£)) — Axy & T9X*4  As remarked above, dependence
of the integrands @) and H on £ prevent us from applying the cited results directly. A possible
way to achieve the extension from pointwise convergence might be to show tightness using (e.g.)
Billingsley (1968) Theorem 12.3. However, we must leave this extension also for future work.

6 Appendix: Proofs

6.1 Proof of Proposition 1.1
The coefficient of L7 in the expansion of b(L) = §(L)a(L) is

J J
L o 1 (i _ ndx—1
b = ;01%1 T (dx) ;91(3 i) . (6.1)

Therefore, for any 7 > 1 note that

dx—1 5 /0 dy—19"1 i 4 Ndx—1
J J—J X J—1 X
o (L= : 2
bi F(dX)( j ) i_00<j—j1/77) (62)
Write .
j— . .
71 dx—1 .
2 0(n) T =40+ BO)
1=0
where y
[5+/-1
7 —1 dx—1
A(g) = 0; ——
—o (] —]1/7I>
and -
ji— . .
o J—1 dx—1
)= 3 05 550)
i=[51/7]
Since the 0; are summable and
iy
j— 3
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it is clear that A(j) — 6(1) as j — oo. To show that B(j) — 0, define k = j — 4. since
0; = O(i~*7?) for § > 0 by assumption,

it 7 \dx—1
B(j) < ij(j —i77)
i=[/7]
0 j1/myidx (1+5)/nj G Jj—k dx—1
o << ) ; ( 1/77> k >

= 0((j — §my~ /)

in view of the fact that j — k > jY/7 for all the k. Since n > 1 is arbitrary, pick n < 1+ 6 to
complete the proof. 1

6.2 Proof of Proposition 2.1
Under the independence assumption,

) k+n—1 n—j

E(Gyp) = by, cj jW;)
k: j=k+1 i=1-k
w 00 n—1
uw
= b —t . 6.3
K(n) kZ:O k;(n )Chtt (6.3)
where the second equality makes the substitution t = j — k. It can be verified that
%] n—1 n—1t—1 n—1 oo
IUDBUENISES 30 3 Y INES 3) 3 (I SR 1ee
k=0 t=1 t=1 s=0 “k=0 t=1 s=t “k=s—t+1
n—1t—1 n—1 oo
= ant—s(t/m,0)csp1 + EZ&M s(t/m,0)csq1 (6.4)
t=1 s=0 t=1 s=t

where the expression
[ns]—t

ant(s,s') = Z b (6.5)

j=max{0,[ns’']—t+1}

is defined in DDJ, equation (3.2). According to a straightforward extension of DDJ Lemma 3.1,

Lx (n)[na] ™

<zx<
5.0 T(dx +1) Oswss
A, [ns]—[nz]\S) ~
e Lyl = (el = )™
x(n Tldx + 1) , T > s.

In the case dx + dy > 0 we have, applying Assumption 2 and substituting dy /I"(dy + 1) for
1/F(dy),

n—1t-1 n—1 ¢
dy
)Cs+1

dx+dy —
(dx—l—l dy—l—l ZZ( ) . 1

t=1 s=1
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dy /1 /T dx+dy —1
ddd
My + DTy + 1) Jo o © r

dy

_ . 6.6
I'(dx + 1)I'(dy + 1)(dy + dx)(1 +dy + dx) (6.6)
Similarly,
1 n—1 oo
ZZ&M s(t/m,0)cs41
t=1 s=t
— li s+t 7(E>dx s+t\!
nZF(dX+1 dy—l—l =1 o0 n n
o [ [ cenm —emicemtacar
F(dX + 1)F(dy + 1) 0 0
1
-~ T(dx + DI(dy + 1) (dx + dy)
x / [dy (1+ 7)3X+Y L gordxtdy gy 4+ dy) (14 1) 79]dr. (6.7)
0

Combining these two limits completes the first part of the proof for the cases with dy # 0. If
dy = 0, Assumption 2(b) does not permit the explicit representation used in (6.6) and (6.7).
However, summability of the cs coefficients implies that

n—1 oo

DY ang-s(t/n,0)ceir = o(n' ¥ Ly (n)) (6.8)

t=1 s=0

and E(Gy,) vanishes in the limit. These expressions are therefore formally correct in all the
cases. I

6.3 Proof of Proposition 2.2

Let
Cldx,dy) = / {dy (14 7)Y dy ™Y — (dy 4 dy) (1+ 7)™ 79 dr.
0

Denote the integrand by f(7). For 0 < dx dy < 1/2, lim; .1 f(7) =0, lim,_¢ f (7) = 1, and
the function is integrable for both positive and negative 7. For —1/2 < dx dy < 0, we have
lim, 400 f (7) = 0, f () has a singularity at 7 = 0 with lim, o f (7) 77 (4x+4) =1 and f(7) is
integrable for 7 > 0. It also has a singularity at 7 = —1 with lim,_,_q f (7) (7 + 1)_(dx+dY) =1,
and so is also integrable.

Consider an auxiliary integral £L*(dx,dy) = f f(7) dr.Changing the variable of integration,

T4 1 = —t, we obtain:

o0

C¥(dy, dy) :/

—0o0

[dy (14 7)Y 4 gyrdxtdy _(dy +dy) (1+7) TdX] dr

= /°° [dy (—t)dx+dy +dy (—t _ l)dx+dy _ (dX + dy) (_t)dy (—t _ 1)dx] gt

—0o0
o)

= (—1)ldxFdy) [d txFdy g (04 1) (dy 4 dy) tY (E+ 1)dx} dt
= (-1)™FY £*(dy, dx).
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Note that by interchanging dx and dy we obtain

L*(dx,dy) = (~1)™T £*(dy, dx)
_ (71)2(dx+dy) E*(dX,dY) =0

and hence also L*(dx,dy) =0 unless dx +dy = 0,+1,42,....
Next, divide the range of integration in £*(dy,dx) into (—oo,—1), (—1,0), and (0, c0). For
the first interval change of variables 7 = —t — 1 gives

—1
/ [dytdx+dY +dx (t+ )Y _(dy + dy) t (¢ + 1) dt

= / [dY (_1 - T)dx—i-dy +dx (—T)dx+dy _ (dX + dy) (_1 o T)dy (—T)dx] dr
0
= (_1)dx+dy/ [dY (1 +T)dx+dy + dedX—i-dY . (dX + dy) (1 —f—T)dY de] ir
0
= (1) L(dy, dy).

For the second interval using 7 = —t we have

0
/ [dytherY +dx (t+ 1) (dy +dy) 1D (14 1) | dt
—1

1
- / (=15 et e (1 ) (1) (At dy) 7 (1= 1) dr
0

(—1)™XHY gy dx p

= (1-0) = ————— (0= 1) = (1) (dx +dy) B(dx + 1,dy +1
dX+dy+1( 0) dX+dy+1(0 ) — (=) (dx +dy) B(dx + 1,dy + 1)
(_1)dx+dy dy +dx d

= — (=)™ (d dy) B (d 1,d 1

The integral over the third interval is simply £(dy,dx). Adding the integrals over these three
intervals we obtain

(—1)”1X+dY dy +dx

dx +dy +1
— (—1)dY (dx +dy)B(dx + 1,dy + 1) + L(dy,dx)

L¥(dy,dx) = (—1)TY L(dx, dy) +

By symmetry,

—1) T gy 4 dy
dx +dy +1
— (=) (dx +dy) B (dx + 1,dy + 1) + L(dx, dy)
=0. (6.10)

L¥(dx,dy) = (—1)TY £(dy, dx) + (

where we used B (z,y) = B (y, z). Now we multiply (6.9) by (—1)%* ™% and subtract from (6.10):

dx +dy +1
— (=)™ [1= (<177 ] (dx + dy) B (dx +1,dy +1).

0 = |1- (—1)2(dx+dY)} [E(andY) + dY]
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Therefore,

L T ™

L(dx,dy) = At dy i1 | = (—1)2@xta)

(dx+dy)B(dx+1,dy+l).

T

Finally, using (—1)* = €™ we rewrite in the second term

2d im2d
(—1yx = (_213 L gmiy LT
1—(=1) (dx+dy) 1 — eim2(dx+dy)
B ,”rdX el'ﬂ'dy (e—iﬂ'dy _ eiﬂ'dy)
=¢ eiﬂ(dx+dy) (efiﬂ'(dxﬁ»dy) _ 6i7r(dx+dy))
B sin rdy
~ sinT (dX + dy)
and therefore
Lldx,dy) = —— & (dy +dy) B(dy + 1,dy + 1) — S0
X %Y= dx +dy +1 X Y X it Sinﬂ'(dx+dy)'

To complete the proof, substitute this expression into (2.4) and rearrange using the identities
B(z,y) =T(x)I'(y)/T(z+y), I'(1 —2)I'(z) = n/sinmz and I'(z + 1) = 2T'(x):

Axy = Wuw X
XY T T dx + )T (dy + 1) (dx + dy)
dy dy sin wdy
— +(dx +dy)B(dx +1,dy +1) =
<1—‘rdx—|-dy dx +dy +1 ( X Y) ( X Y )Sln7r<dx+dy)>
Wyw Sinﬂ'dy
— B(dx +1,dy +1)—
Fdx+1)T (dy +1) (dx Y )s1n7r(dx+dy)

B Wauw sin rdy
T (2 +dx + dy) sin 7 (dX + dy)
B Wy '(1 —dx — dy)
- m(1+dx +dy) (dx +dy)

sin tdy . ]

6.4 Proof of Proposition 2.3
In this case, note that if a,; is defined by (6.5) then

ant—s(t/n,0)csp1 = O(SdX+dY_1Lx(S)Ly(S))

so that these terms are summable by assumption. Considering expression (6.4), the lemma follows

since
n—1t—1

Y ang-s(t/n,0)cer = O(n)

t=1 s=0

and
n—1 oo

Z Z ant—s(t/m,0)csp1 = o(n). |

t=1 s=t
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6.5 Proof of Theorem 2.1
Setting i = s — k, rewrite (2.2) as

n—1 t oo
GQTl - E(GQH = ZZ bkck+t s+1 us kWs—k — wuw)
t=1 s=1 k=0
n—1 t
Pts
t=1 s=1

(say) where

P = 5 bs—ict—i-l—i(uiwi - Wuw)-

1=—00

Hence note that

(GZn - E(GQn)) >~ K(n)2 Z Z Z Z E(Ptspt—m,s—k)~

where, setting j = s — 4 in the third member and letting C' denote a generic finite constant,

2 s—k
E(PtsPt—m,s—k) = 'L%}U((TW Z bs—ibs—k—iCtr1—iCt—m41—i
Z*—OO
_ :uiw B WQ

Miw  —uw § b:b; . .
= —kCt+1— Ct— 1—
K(n)g = Y3 +1—s+j m+1—s+j

%0
= n2(1+dC;(+dy ZJdX Yg—k) x4+t +1—s) 4+t —m4+1—s)dt
=k
< ey T b =) (kg 1 )
Hence,
n—1 t .
E(Gan — E(Ga))* < 2(1+dx+dy) ; Zl 1)2x (¢ 4 1 — 51 Zo(t T
5 m=

These sums can be bounded by conventional summation arguments (Davidson 1994, Thm 2.27)
as follows, also applying Lemma A.1 of DDJ in the case dx < 0.

Case dy > 0:
n—1 t
2 2d 1 2d
E(ng—E(G2n>) < n2(1+dx+dy ZZ t—l—l Y~ ( 1) X
t=1 s=1
=0(n™).
Case dy < 0:
n—1 t
E(GQn - E(GQn))2 = m Z Z t+ 1-— dY_l(S — 1)2dX
t=1 s=1
[ O logn), dy =
Tl O, dy <0 !
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6.6 Proof of Theorem 2.2
First note that

1 n o0 o0 o0 o0
E| - Ty — oxy | = bibicic;
S ST IR 55 9 3) ST
t=1 k=0 j=0 i=0 [=
n—1ln—1

X B (e pwr—jusws—) — B(up_pws_;)E(ug_jws_;)].  (6.11)
t=1 s=1

Under the assumptions,

E(up—pwi—jus_qws—;) — E(u—pwi—j) E(us—_jws—;)

k= w2 t—k=s—-Il=t—j=s—1
wuuwww—w%w t—k=s—landt—j=s—1

0 otherwise.

Collecting these terms, letting sums over an empty index set equal zero, yields

2
1< - -
E (n Z Ty — ny> _ Muw uw Z bk 2 Duuww = Yy WuuWww uw Z b2 Z o2
t=1 Jj=
= O(nil).

The conditions of part (ii) overlap with those of part (i), but ensure that the sequences {by}
and {c;} are absolutely summable. In this case,

TR SRS ) UL () TR 1
t=1 j=0 k=0 t=1
4, beci Z(j.k) = ¢ (6.12)

j=0 k=0

(say) where the Z(j, k) are N(0,wyuwww) random variables by the application of the standard
CLT. Note that Z(j,k) = Z(j', k') if j—k=j — K and E(Z(j,k)Z(j', k') =0if j—k # 5 — kK
Hence ( is normally distributed with zero mean and finite variance. I

6.7 Proof of Lemma 3.1
A preliminary lemma is needed as follows.

Lemma 6.1 For 0 < a < % and a >b >0, and Lx(n) slowly varying,

[na]

2 ) e e

s=1+[nb]
Proof First, note that
S R CIE N SR
s=1+[nb] Lx(n) s=1+[nb]
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SEE
NH
8,
N
[V2)
3|+
—
N——
o
L
|
/N
Slw
N—
Q
|
T

s=1+[nb] L

[na]

=n"“ Z [(s+ ot - safl]

s=1+[nb]
[na]

= S ()2, s<sT<s+l,
B s=1+[nb]

B O(n=®), b=0,
{ Oo(n=1), b>o0.

where the result for b = 0 follows directly since the sum converges, and if b > 0 the tail sum is of
order n® 1. g

Considering the components of equation (3.2), define ¢ and u by t —m = [nq] and s —i = [nul].
If dx > 0, write
B () + 1)/ Ly ()
ndx Ly(n) nl (dx) Lx(n)

Note by Lemma 6.1 that in this case,

[ng]+[nr]—[np]

1 Z b 1 /q+r—p dx—1gy + )
_ s — ———— u U o

(g +7r=p)™ = Loy (—p)™¥
- T(1+dy) +oll).

The actual order of magnitude depends on the average rate of Ly (nu)/L(n) — 1, but the lemma
shows it is bounded by O(n~9X) in the case p > 0.
If dx < 0, use part (c) of Assumption 2 to write

b _ (] 1)
nix Lx(n) I'(1+dx)
for [nu] > 0 where by = Lx(0), and hence, as before,
[nq] d d
1 7= p)?X — 1 (—p)
Z bs—np) = tr=p) {p<0}( ?) +o(1). (6.13)

ndx Lx(n) [(1+dx)

s=max{1,[np|}

In the case dx = 0, under part (b) of Assumption 2, note that

[nq] 0(1) p>0
bs—fnp) =

2.

s=max{1,[np]}



which is formally equivalent to (6.13) when Lx(n) is defined as a constant not depending on
n. Moreover, the sum can be assigned the limiting value 1 — 14,y by choice of normalization,
without loss of generality.

Proceeding similarly, for the case dy > 0 we may now write

g _ (([ng] +1)/m)™ " Lx(nq)
nd Lx(n) nl (dy) Lx(n)

and hence, from (3.2), apnpjjnr) = Axy (7, p) + 0o(1) where

1 e dy —1 d d
[+ d) T (&) /max{o’r}q [(q ) (p<0}(—D) } r

1 e dy —1 d
= +7r— X dr
F(1+dx) T (dy) /max{o,_T} @ latrop)

ey ()P [ =) =1y (=) ]

Axy(r,p) = Il

6.14
F(1+dx)T(1+dy) (6.14)
To verify that this formula matches ((3.3) see Abramovitz and Stegun (1972), 15.3.1.
In the case dy < 0, on the other hand,
Clng] (([ng] +1)/m)™ — ([ng] +1/n)%

= 1 1

n Lx (n) I (dy) oll) (6.15)
_ (fng) + 2/

+o(1), 0<A<I1.
I (1+dy) @ -
The approximation in (3.3) may be applied as before in respect of the first and second terms.
However, since the integral of the increments in (6.15) diverges at 0, the terms with factor 14,0}
in (3.3) have to be constructed as the limiting case of

n—1—[nr] dx v
) 3 (=1 = )™ ~ Ayl

L (m) et =
n® Lx (n) t=max{1—[nr],0} r (1 N dY)

The expression in (6.14) nonetheless continues to apply. i

6.8 Proof of Lemma 3.2

By arguments closely paralleling those of Lemma 3.1 applied to the formula in (3.4), we arrive at

1 1-p
E = dx—l 1 _ dY i B dY
X (P = R ) /m o) [( r® —(ut+p—r) } du
- 1 — ) (1 - p)dx — / i1 _ady

ey (0 o~ [t g )

This yields the stated result by routine manipulation and application of Abramowitz and Stegun
(1972), 15.3.1. &
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6.9 Proof of Proposition 3.1

For a function F' and fractional Brownian motion X as in (1.2), let the notation [ F6X be defined
by

1
[ F6X = F(XmH)/ F(r) [ = 1) — Loy ()| dU(7) (6.16)

so that in particular, [§X = X(1). Define [ F§Y similarly. Observe that

(1 =7 = 1gcqp (=)™ ] [(1 = p)™ = Ljpeoy(—p)*X]
F(dy + 1)F(dX + 1)

AXY(T)p) + EYX(T’ p) =

with the corresponding identity for Ay x(p,7) + Exy (p,r). Therefore, defining processes

t

X0 = iy | [0 = e (=0 v ()

(dX + 1) o0
% — 1 ! _ #\dx _ _+\dx
) = ey | [0 = e (-0 ] awo).
note that ) )

Also note that X (1) = X(t) + X(t) for any t < 1 and Y (1) = Y (7) 4+ Y (7) for any 7 < 1 where,
for example,

F(Xm+1) [ = 7)¥dU (r) t>0
Xo=9 ( = myiau (7 ) o
PEFDN 4L (0= = (] av (=) |
with a complementary expression for 17(7) Therefore,
2X(1)Y(1) = Exy + Zyx + [ XY + [ VX, (6.19)

Next observe that, since E(X(1)Y (1)) = ¢ xy while E(Exy) = E(Eyx) =0, (6.19) implies
E([X0Y)+ E([YX) = 2t xy- (6.20)
Next, using (6.18) and (6.16) write

[ XY = r(dyl+1) </01 (1— )% X(0)dW (£) + /0 (=™ — (o] X(aw (t)>

1 1o ) - )
:F(dx+1)F(dy+1)/0 (/t (1—7) dU(T)) (1—t)W dw (t)

0 0
T T dx + 1)1F (dy + 1) /_oo (/t {(1 - - (_T)dx} u m)
X [(1 ) (—t)dY} dw (1) (6.21)
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1 T
:E(fXéY)+F(dX+1)1F(dY+1)/O </0 (1—t)deW(t)> (1= 7Y0xqu (7)

T (dx + 1)1r (dy + 1) </io [(1 — ) - (_t)dy] dw (t)) (/01(1 _ )X qu (T)>

0 T
7 (dx + 1)1r (dy + 1) /_Oo (/_oo [(1 -t - (_t)dy} aw (t)>
X [(1 _ )i (—T)dx} U (7). (6.22)

Note how the last equality re-writes the integral in the form that separates the non-stochastic and
(zero mean) stochastic components. The second term and fourth term of (6.22) are It6 integrals
with respect to dU(7) of F(7)-measurable processes, while the third term is the product of terms
defined on (—o0,0] and (0,£] respectively. Since each of these terms have mean 0, E( [ X3Y)
must appear explicitly in (6.22).

Finally, consider the expression obtained by taking (6.21) and interchanging the pairs (X,Y),
(U,W), and (¢,7). Note that the sum of this expression and (6.22) is X (1)Y (1) + E([ X6Y).
Clearly, the same equality holds if all the arguments are interchanged. This implies that the two
means in (6.20) are equal to each other, and hence to ¢ xy-, so

[X6Y 4+ [Y6X = X(1)Y (1) + ¥ yy- (6.23)
Equation (6.23) in combination with (6.19) yields the required formula. I
6.10 Proof of Lemmas 4.1 and 4.4
The following preliminary lemmas are needed.
Lemma 6.2 |Ayy(r,p)| < Axy(r,p) where Axy (r,p) is defined in (3.3) and

(L =) = 1o (=)™ | [(g — p)™ — Lgpeop(—p) ]|

AXY(ra p) =

where
] 1, dx>00rdx <0,p<O
9=V r dx <0, p>o0.

Proof From (3.2),

n n—1—[nr] t4-[nr]—[np]
oo = oy | 2 @ > b
t=max{1—[nr],0} s=max{1—[np],0}
n n—lz—[W] T +[7§ [np]
< ¢ max by
K<n) t=max{1—[nr],0} max{1-[nr],0}<r<n—1 s=max{1—[np],0}

(1 =7)% = Loy (=)W | L (g — p)™ — Loy (—p) ™|

F(dX + 1)F(dy + 1)

+o(1) (6.24)

as n — 00, using the same arguments as in the proof of Lemma 3.1. When dx > 0, (g — p)dX is
monotone nondecreasing in g, and is maximized over [0,1] at g = 1. When dx < 0, (g — p)®¥ is
monotone decreasing. If p > 0, so that » > 0, the maximum in (6.24) is achieved at g = r. On
the other hand, if p < 0 then }(g —p)ix — 1{p<0}(—p)dx‘ is maximized at g = 1, as indicated. @
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Lemma 6.3 |Exy(p,7)| < Exy(p,r) where Exy (p,r) is defined in (3.5) and

- @ =)™ =1y ()| (1 =)D = 1oy (=) |
Exy(p.r) = T(dx + )I(dy + 1)

Proof From (3.4)

n n—1—[np] n—[nr)
‘en[nﬂ[np]’ = K(n) Z bs Z Ct
s=max{0,1—[np|} t=s+[np|+1—[nr]
n nlz[np} nir}
< by max ct
K(n) s=max{0,1—[np|} max{0,1-[npl}<z<n—1 t=z+[np]+1—[nr]

|(1 —p)dx — 1{p<0}(_p)dX | max{%,lg}xgggl |(1 — ) — (g — r)dY}

F(dx + 1)F(dy + 1)
asn — oo. First, suppose p > 0. When dy > 0 then (1—7)% —(g—r)% > 0 and is maximized over
[p,1] at g = p, noting that r < p in this case. When dy < 0, (1 — )% — (g —r)¥ < 0 and is
minimized at g = p. In the case p < 0 the same considerations apply, but the extremum over
[0,1] is at g = 0 in each case. The proof is completed by noting that for any p € [ r, 1], and dy
of either sign,

+to(1)  (6.25)

(1= )% — (max{p,0} — r)¥

< | =n® = 1= |.

|
To prove Lemma 4.1, first suppose m > 0. Break the sum nv?,, into components Z?;Bl a%im

and Z;:l_oo a?, . where the first term is 0 if m = 0. Note that if m = [nr] for 0 < r < 1, then
since i = [np] > 0, applying Lemma 6.2,
1 m—1 ro
lim Supﬁ Z a%im < \/O AXY(T, p)2dp
" i=0
(1 _ T)Qdy—‘,—?dx-l—l

dx >
(2dx + )I(dx + 1)20(dy + 1)2° "X~ 0

(1 _ T)Zdy r2dx+1
(2dX + 1)F(dX + 1)2F(dy + 1)2’

< 00

dx <0

whereas

1 <& 0
- Z aizmg/ AXY(Tvp)de
n. = o
(1_7,)2dy /oo J J 2

= 1+ p)ix —pix| 4

T+ dx)20(1 + dy )2 J, [( o)™ =P | dp

< 00

noting that [;° [(1+ p)? — pd]2 dp < oo for |d| < 3. (See for example Davidson and Hashimzade
(2008), Lemma 5.1.) Finally, if m < 0 and hence r < 0, by Lemma 6.2 there exists n large enough
that

T

1 & _
~ D> G < / Axy (r,p)*dp
i=—00 -0
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IA

(=) —(n)™)* «_ pix]?
F(1+dx)2F( T dy1)? /_ (rn =

O(( )2dy+2dx 3)

The argument for Lemma 4.4 is very similar. Letting ¢ = [np], applying Lemma 6.3 leads to

hmsup Z mm_/ v (p,)2dr

(=)™ = 1peqy(=p))* (1 = p)* !
B (2dy + 1)T'(dx + 1)2T(dy + 1)2

< 00

whereas

and for 7 < 0,

P _
2, < / By (p.r)2dr = O((—p)* +2ix-3)

S|

follow exactly as for the proof of Lemma 6.2.

6.11 Proof of Lemmas 4.2 and 4.5

In principle there are three cases to consider, depending on the respective signs of r and r 4 6.
However, if r < 0 and r 4+ ¢ > 0 then the interval may be split into subintervals of widths —r < §
and 0 + r respectively, and treated separately. Showing the cases r > 0 and r < r+ 9§ < 0 is
therefore sufficient. The bounding arguments here are essentially the same as those in the proofs
of Lemmas 4.1 and 4.4.

First, for Lemma 4.2,

[n(r+6)]

Bmsup— Y a0
" i=[nr]+1

5
< / Axy(r+6,p)*dp

1—7‘—5dy_1r - —T—(de2 s )
= [( F(l) + dX){QI—"—(‘Sl j_}ilY)Q ) ] /T [(g —p)dX _ 1{p<0}(_p)dx] dp

where Axy (r,p), and g, are defined in Lemma 6.2.
Case: r > 0. If dx > 0, then g =1 and

r+0 _ 2dx+1 _ o 2dx+1

2dx + 1

otherwise g = r 4+ § and
§2dx+1

r+0 04
d— Xd _—
/T (r+6—p)™dp =3 R
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Case: r <7+ d <0. In this case g = 1 and

r+0 r+d r+§
/ : (1= p)™X — (—p)*X]2dp < / (—p)2dxdp+/ (1—p)*™>dp
— 0(6)

since dx > —2i. These bounds are independent of 7, and hold uniformly with respect to r €

2
(—o0, 1].
The proof of Lemma 4.5 is very similar, noting that

. 1 [n(p+9)] ) p+0 9
hmsupﬁ Z Crmn(p+8)] = / Exy(p+0,r)%dp
" m=[np]+1 p
2
[ =p =)™ — 1y 500y (—p — 0)%X]
I(dx + 1)2F(dy + 1)2

2

p+o
[ 0= 1ot ar
= 0(0). ]

6.12 Proof of Lemmas 4.3 and 4.6
First, for case Lemma 4.3, note that

An[npl[n(r+6)] = Anlnp]nr]
n—1—[n(r+4)] t+[n(r+38)]—[np]

:K?n) > }O}Ct( > bs)

t=max{1—[n(r+J) s=max{1—[np],0}

n n—1—[nr] t+[nr]—[np]
B K(n) Z “ Z bs

t=max{1—[nr],0} s=max{—[np],0}

n n—1—[nr] t+[nr]—[np]
= ———F: C bS
K(n) ; ' 2

t=n—[n(r+4 s=max{—[np],0}

n n—1—[n(r+9)] t+[n(r+0)]—[np]
+ 7K(TL) Z Ct Z bs

t=max{1—[nr],0} s=t+[nr]—[np)

" max{1—[nr],0}—1 t+[n(r+9)]—[np]
CED e\

t=max{1—[n(r+9),0 s=max{—[np],0}
= DY, (r,0,p) + D3,(r,0,p) + Dgn(rv d,p)

defining DY, , DS, D$ ) where an empty sum takes the value 0 by convention, so that D§ =0
g Uin 2n 3n 3n

for r > 0. Now define

(L= = (1 =r=&)M[[(1 = p)™ = Lgpey(—p)™|
(14 dx)I'(1+ dy)
(1= =)™ — 1y (=)™ ||(r + 0 = p)™ — (r — p)™¥]
L(1+dx)T(1+dy)

D{(r,8,p) =

D3 (r,8,p) =
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. B (=) = (=r =)™ [](6 = p)™ = (=p)™]
D3(T‘,(5,p) - 1{7‘<0} F(l +dx)r(1 —i—dy) .

If dx > 0, dy > 0 then, using Assumption 2 and Lemma 6.1,

| D1y (r, 0, p)]|

1 n—[nr] D Ly ()
~ n2[(dx)D(dy) 2 <n> Ly (n)

t=n—[n(r+4)]+1

t+nr)—[npl +1

s\dx—1 Lx(t)
Z n Lx(n)

s=max{—[np],0}+1
R e E S N R S E
F(dX)F(dY) nt:n—[n(r—&—é)}-i-l " nszmax{—[np],O}—i—l "
= D{(r,8,p) + O(nmx{~dx=dv}y,

dx—1

IN

| D5, (r, 6, p)l
n—[n(r+9)

B 1 £\ 1 Ly (1) t+[n(r+0)]—[np]+1 sydx—1 Ly ()
~ 2T (dx)T(dy) 2 (n> Ly(n)( 2 (ﬁ) Lx(n)

t=max{1—[nr],0}+1 s=t+[nr]—[np]+1

R n—[§+5)] t dy —1 (r+8)=lrwl g
F(dx)r(dy) n n

) > ()
t=max{1—[nr],0}+1

s=[nr][np]
D3 (r,6,p) + O(n~%);

IN
S

| D3, (r, 6, p)|

- 1{r—<o} 1—Z[7ir] <t>dy1 Ly (1) t+[n(r+0)]—[np]+1 (f)dx_l Lx(t)
TLQF(dX)F(dY) t=—max{1—[n(r+9),0]4+1 " Ly(’l’l) s=1—[np] n LX(n)

S 0 [

AT o ey N b

= D3(r,8,p) + O(n~%).

The cases having dy < 0 and/or dx < 0 require modification of these formulae on the lines of

equation (6.13). Terms of the form (%)dy*l and (%)dx ! are replaced respectively with terms of
the form (%)dy - (%)dy and (s:—l)dx - (%)dx . The approximation error rates are modified in
the same manner, with —1 — dy replacing —dy when dy < 0 and —1 — dx replacing —dx when
dx < 0. However, note that although the signs of the sums depend on the signs of dy and dx,

the indicated bounds hold in all cases. We therefore have that there exists n large enough that
|@ninplin(r+8)) = @nfnplinr)| < D1(r,0,p) + D5(r, 8, p) + D3(r, 9, p).

Therefore,

< / D (r.5,p)%dp + / DS (r. 5. p))2dp + / DS (r, 5, p))2dp
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where

r —r dy _ —r— dy \2 r
/—oo D%(T’ 5,p)2dp = : F(l)—|- dx)(;T(l T d(z/))Q ) /_OO [(1 - p)dX - 1{p<0}(_p)dx]2 dp
— o)

T —r—=8§€% —_1{r —r)dy 2
/_mDS(T’é’p))QdPS = r(léj)u dX)2lf[(1i(21};f()2 "~ /_oo [(7‘+5—p)dx —(T—p)dxrdp

_ 0(52dx+1)

and if r < 0,

" —rdY——r—édY2 r
/oo D5 (r,9,p))dp < [é(l)—kdx)gl“(l—kc)ly)]? /oo {(5—1))‘”{ - (—p)dX]de

= O8> ),

These bounds are independent of 7, and hold uniformly with respect to r € (—o0, 1].
For Lemma 4.6, we have from (3.4)

Enlnr][n(p+6)] — Cnlnr][np]

n ”—1—§:(p+5>1 n—ir]
= bs Ct
Kn) n+e)0}  \t=s+ln(

s=max{1—[n(p+9)],0 p+0)]+1—[nr]

n—1—[np] n—[nr]

— K?n) Z bs ( Z Ct)
I} \t=s+l

s=max{0,1—[np np|+1—[nr]

n n—1—[np] n—z[%r]
= — bs Ct
B0 o o

n t=s-+[n(p-+0)|+1—[nr]

n—1—([n(p+96)] s+[n(p+8)]+1—[nr]

K?n) Z bs ( Z Ct)

s=max{0,1—[np|} t=s+[np|+1—[nr]

(] n—{nr)
+ 1{p<0} o Z bs Z Ct
K(n) 48] \t=s+|

s=max{0,1—[n n(p+9)]+1—[nr]
= Din(pv g, T) + Dgn(p7 g, T) + Dgn(pa d, T)-

Similarly to the previous case, there exists n large enough that

| Din(p,d,7) < Di(p,d,7)
\(1 p)X = (A —p=)H[|Q1 =)™ =1+ —r)"|
(14 dx)I(1+dy)

|D5,,(p,6,7)| < D5(p,d,r)
_ |0 =p =)™ — 1oy (=p)™ | [(max{p, 0} — & — 1) — (max{p,0} —r)*|
(1 +dx)I'(1+dy)
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and
| D5, (p, 0,7)] < D5(p, 6, 7)
_ [(=p)™ = (=p = )™ [|(1 =)D = (=r)¥]
= Lip<oy
'l +dx)I'(1+dy)

Therefore, similarly to the previous case,

: 1 &, 2 P e 2 P ne 2 b ne 2
hmnsupg Z (enm[n(eré)} _enm[np]) S/ Dl(pu g, T) dp+/ DZ(pa 5’T) dp/ DS(p’é)T) dp

— O((S2dy +1)
where the bound is independent of p, and holds uniformly in p € (—oo, 1]. I

6.13 Proof of Theorems 4.2 and 4.5

We argue for the exemplar case of QY. The proof for H is essentially identical, after swapping
H for ), w for u and e for a, and also substituting the lemmas from Section 4.2 for those of
Section 4.1

The proof follows the lines of Theorem 3.1 of Davidson and de Jong (2000) (henceforth, DDJ),
which in turn is based on Theorem 3.1 of DJD. Similarly to the DDJ theorem, the sample period
is changed from 1,...,K, to —Nmn,...,n. For the finite dimensional distributions, we apply
the CLT of de Jong (1997). Since the u; are assumed independent, this is simply a matter of
establishing a counterpart of the Lindeberg condition for the process ¢’ .

To translate the conditions of the present setup into those of the DDJ model, note that the
process in question has increments

[n(r+0)] [nr]
1 1
ery(r + 5) - QnN(T) = \/ﬁ E Ani[n(r+6)] Wi + \/ﬁ § (ani[n(rJrzS)] - am[nr])uz (626)
i=[nr]+1 i=—Nn

The notations of this paper and DDJ may be connected by making the equivalences ¢, £ and &
in DDJ with ¢, » + ¢ and r in this paper, respectively, and so noting that the quantities denoted
ant(€,€') in DDJ, equation (3.1), correspond in the present notation to a4+ for @ > [nr], and
t0 Gpifn(r+6)] — Gnifnr] for —00 < i < [nr] otherwise. Since the shocks u; are i.i.d by Assumption
1, bounds on the variances of the increments in (6.26) are found from Lemmas 4.1, 4.2 and 4.3.
The finite dimensional distributions of the variates QX (r) can be determined from Theorem 3.1
of DJD. Note that the variates denoted X,,; in that theorem scale correspond in the present case
to either n‘1/2am[n(T+5)]ui or to n‘1/2(am[n(r+5)} — pifnr] )i for —nN < < [n(r +6)] and, given
the conditions specified in our Assumptions 1 and 2, are sufficient for DJD’s Assumption 1. Note
further that r is fixed in each application of this theorem, that condition (3.2) in DJD holds
in the present case by Lemma 4.1, and that condition 3.3 in DJD holds in the present case by
Lemmas 4.2 and 4.3. Finally, to show the tightness of the sequence of measures the argument in
DDJ, Theorem 3.1, can be applied with appropriate substitutions. (See also the addendum to this
theorem in Davidson (2001)). Noting the equivalences set out above, the condition corresponding
to DDJ (B-35) follows directly from Lemmas 4.2 and 4.3. 1

6.14 Proof of Lemmas 4.4 and 4.7

First note that

1 n—1 2 1 n—1 —Nn 2
TL2E< Z (Qnm _erym)wm-‘rl) = 712E< Z Z uianimwm—I—l)

m=—Nn m=—Nn i=—0o0
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n—1 —Nn

= Wuuwww 2 E E anzm .

—Nni=—o0

Copying the argument from the proof of Lemma 4.1, note that

Z Z a2, = /_1N (/_;NAxy(r,p)de> dr +o(1)

—Nni=—o0

as n — oo where

/_IN </_;ON AXY(T,p)de) dr < /_1N (/_;ON AXY(T»p)de> dr

1
- r(1l+ dX)er(dY F1)2 /N ((1 — ) — <—7’)dy)2dr
x /Oo [(1 +p)™x —pd"rdp

—N

— O(deY+2dX_2).

Next,

1 —Nn 2 —Nn m
E( Z qnmme) —Wuuwww n2 Z Z a"mm

m=—0o0 m=—00 {=—00

—-N pr
—/ / Axy (r,p)*dpdr + o(1)

as n — 00, and by previous arguments, letting K denote a finite positive constant, we have

N —r N —r
/ < Axy(r, p)zdp> dr < / ( Axy(r, P)de) dr

—-N

= F(l + dX)er(dY + 1)2 /_oo ((1 — T’)dY - (_T)dy)2

X /oo [(1 +p)ydx —pdxr dpdr

'

K -N ) )
F(l + dX)QF(dY + 1)2 100 ((1 — r)dy _ (_,r)dy) (_T)2dX sz

O(NQdY+2dX_3).

IN

The case of Lemma 4.7 is essentially similar. i
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