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Abstract

This paper considers the asymptotic distribution of the covariance of a nonstationary frac-
tionally integrated process with the stationary increments of another such process �possibly,
itself. Questions of interest include the relationship between the harmonic representation of
these random variables, which we have analysed in a previous paper, and the construction
derived from moving average representations in the time domain. The limiting integrals are
shown to be expressible in terms of functionals of Itô integrals with respect to two distinct
Brownian motions. Their mean is nonetheless shown to match that of the harmonic rep-
resentation, and they satisfy the required integration by parts rule. The advantages of our
approach over the harmonic analysis include the facts that our formulae are valid for the full
range of the long memory parameters, and extend to non-Gaussian processes.
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1 Introduction

Let xt and yt be linear processes having the MA(1) forms

xt =
1X
j=0

bjut�j ; yt =
1X
j=0

cjwt�j (1.1)

where ut, wt are zero mean, independently and identically distributed processes, and the coef-
�cient sequences fbjg and fcjg decay hyperbolically. If Xn and Yn denote suitably normalized
partial sum processes on the unit interval for a sample of size n, it is known under fairly general

assumptions that (Xn; Yn)
d! (X;Y ) where the limit processes are fractional Brownian motions,

as de�ned by Mandelbrot and van Ness (1968). For exemplar case X, the well-known formula is

X(�) =
1

� (dY + 1)

�Z �

0
(� � �)dX dU (�) +

Z 0

�1

�
(� � �)dX � (��)dX

�
dU (�)

�
(1.2)

where U is regular Brownian motion on R. Fractional noise processes are a well-known simple
case, in which

bj =
�(j + dX)

�(dX)�(j + 1)
cj =

�(j + dY )

�(dY )�(j + 1)
(1.3)

for �1
2 < dX ; dY <

1
2 . In this case,

Xn(�) = n�1=2�dX
[n�]X
t=1

xt; Yn(�) = n�1=2�dY
[n�]X
t=1

yt (1.4)

for 0 � � � 1, where [x] denotes the largest integer not exceeding x. Considerably greater
generality will be permitted, although parameters dX and dY , subject to these constraints, will
in all cases index the rate of lag decay. The best general conditions currently known for these
results are given by Davidson and de Jong (2000) (henceforth, DDJ).

In this paper, our concern is the limiting distribution of the random variable

Gn =
1

K(n)

n�1X
t=1

tX
s=1

xsyt+1 (1.5)

whereK(n) is a function of sample size which, for the case of (1.3) at least, can be set as n1+dX+dY .
Expressions with the form of Gn arise in the theory of cointegration. For example, in the case
xt = yt they appear in the formulae for the Dickey-Fuller statistic. In a cointegrating regression
they appear in error-of-estimate formulae, with yt having the interpretation of a stationary error
term and xt the di¤erence of the stochastically trending regressor. In applications we should often
wish xt and yt to be respectively column and row vectors, and hence Gn to be a vector or matrix.
However, this is notationally burdensome and it is more convenient to derive the main results for
the scalar case. The required extensions are obtainable by very straightforward generalizations.

A limit distribution for (1.5) has been derived from the harmonic representations of the
variables, where de�ned. In the fractional noise case these are

xt =

Z �

��
eit�(i�)�dXWu(d�); yt =

Z �

��
eit�(i�)�dYWw(d�) (1.6)

where i is the imaginary unit and (Wu;Ww) is a vector of complex-valued Gaussian random
measures with the properties (for j; k = w; u) Wj(�d�) =Wj(d�), EWj(d�) = 0 and

EWj(d�)Wk(d�) =

�
!jkd�; � = �
0; otherwise.

2



Chan and Terrin (1995) is a well-known study that analyses the weak convergence of fractionally
integrated processes under the harmonic representation. The model these authors analyse is
di¤erent from the usual �causal� (backward-looking) model considered here, but Davidson and
Hashimzade (2008) have extended their analysis and apply it to the causul model in particular.
The weak limits of the partial sum processes (1.4) take the form

X(�) =
1p
2�

Z 1

�1

ei�� � 1
i�

(i�)�dXWu(d�)

Y (�) =
1p
2�

Z 1

�1

ei�� � 1
i�

(i�)�dYWw(d�)

and Gn has the weak limitZ 1

0
XdY =

1

2�

Z 1

0

�Z 1

�1

ei�r � 1
i�

(i�)�dXWu (d�)

Z 1

�1
ei�r(i�)�dYWw (d�)

�
dr: (1.8)

For the case dX + dY > 0, the expected value of this random variable is derived as

E

Z 1

0
XdY =

!uw
2�

Z 1

0

Z 1

�1

1� e�i�r
i�

j�j�dX�dY e�i�(dX�dY ) sgn(�)d�dr

=
!uw� (1� dX � dY )

�(1 + dX + dY )(dX + dY )
sin�dY : (1.9)

In this paper, we explore the counterpart of this solution in the time domain. There are
several reasons why this alternative approach provides an essential extension. The general weak
convergence proofs given by Davidson and Hashimzade (2008) are restricted to the case dX +
dY > 0, and the �standard�case dX = dY = 0 is especially intractable, because the harmonic
representation of the integral breaks down (with unde�ned expectation) when the processes have
summable covariances. While there is no di¢ culty in constructing more general dependence
models than the fractional noise example given, the harmonic representation requires Gaussian,
identically distributed shocks �a restrictive requirement for econometric modelling. Working in
the time domain allows all these limitations to be relaxed.

The speci�c assumptions to be adopted are as follows.

Assumption 1 The collection fut; wt; t 2 Zg are identically and independently distributed with
zero mean and covariance matrix

E

�
ut
wt

� �
ut wt

�
= 
 =

�
!uu !uw
!uw !ww

�
(1.10)

and �4uw = E(u2tw
2
t ) <1. ut = wt is an admissible case.

These random variables de�ne the �ltered probability space on which our processes live, denoted
(
;F ; P;F ) where

F = fFt; t 2 Z; Ft � F all t, and Ft � Fs i¤ t � sg: (1.11)

The pair (ut; wt) are adapted to Ft, and in this setup we may also use the notation Fn(r) = F[nr]
for 0 � r � 1 where n is sample size. Further, letting F(r) represent the limiting case as n!1,
(X(r); Y (r)) are measurable with respect to F(r) and accordingly will be called F -adapted:
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Assumption 2 The sequences fbjg10 and fcjg10 depend on parameters dX 2 (�1
2 ;
1
2) and dY 2

(�1
2 ;
1
2), respectively, and sequences fLX(j)g and fLY (j)g that are at most slowly varying at

in�nity. These sequences satisfy one of the following conditions, stated for fbjg as exemplar
case:

(a) If 0 < dX < 1
2 then bj = �(dX)

�1(j + 1)dX�1LX(j).

(b) If dX = 0 then 0 <
���P1

j=0 bj

��� <1, and bj = O(j�1��) for � > 0:

(c) If �1
2 < dX < 0 then b0 = a0 and bj = aj � aj�1 for j > 0 where aj = �(1 + dX)

�1(j +
1)dXLX(j).

Under these assumptions, we set K(n) = n1+dX+dY LX(n)LY (n) in (1.5). While the �pure
fractional�cases represented by (1.3) satisfy Assumption 2, the assumption only controls the tail
behaviour of the sequences, and allows arbitrary forms for a �nite number of the lag coe¢ cients.
In particular, the xt and yt processes may be stable invertible ARFIMA(p; d; q) processes. Suppose
more generally that xt = (1 � L)�dX�(L)ut where �(L) is any lag polynomial with absolutely
summable coe¢ cients, speci�cally, where �j = O(j�1��) for � > 0. Letting for dX > 0 the
identity a(L) = (1 � L)�dX de�ne the coe¢ cients aj , such that1 aj s �(dX)

�1jdX�1, note the
following result.

Proposition 1.1 The sequence fbjg de�ned by b(L) = a(L)�(L) satis�es bj s �(1)�(dX)
�1jdX�1

as j !1:

(All proofs are given in the Appendix.) The slowly varying component can be de�ned to represent
the ratio of bj to the approximating sequence. Also, since 
 is unrestricted, we could impose the
normalization �(1) = 1, if desired, with no loss of generality.

The cases dX = 0 and dY = 0 are deliberately restricted under Assumption 2(b) to rule out
the �knife-edge� non-summable case, to avoid complications of doubtful relevance. Be careful
to note that � is not a fractional di¤erencing coe¢ cient in this case. Also note that the pure
fractional model, represented by (1.3) has b0 = 1 and bj = 0 for j > 0, in the case dX = 0. The
case dX < 0 under Assumption 2(c) has the �overdi¤erenced�property, implying in particular
that j

Pj
k=0 bkj = O(jdX ). In the pure fractional case, note that bj < 0 for all j > 0 in this

instance.
A multivariate analysis would typically invoke a vector Wold representation of the form (in

the bivariate case)�
xt
yt

�
=

�
(1� L)�dX 0

0 (1� L)�dY

� �
�XX(L) �XY (L)
�Y X(L) �Y Y (L)

� �
ut
wt

�
:

VARFIMAmodels are a popular example. However, extending our results to general linear models
of this type is a simple application of the continuous mapping theorem to the limit distributions
we explore in this paper. In the case shown, xt and yt are represented as the sums of two terms
of the type (1.1), involving futg and fwtg respectively. Accordingly, (1.5) becomes a sum of
four terms involving respectively the driving pairs fut; utg, fut; wtg, fwt; utg and fwt; wtg. Our
analysis can be applied to each of these cases in turn, with suitable rede�nition of symbols.

1The symbol �s�here denotes that the ratio of the connected sequences converges to 1 as j !1:
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2 Some Properties of Gn

The key step is the following decomposition of expression (1.5). First, expand by substitution
from (1.1), as

Gn =
1

K(n)

n�1X
t=1

tX
s=1

1X
j=0

1X
k=0

bkcjus�kwt+1�j :

Decompose this sum as Gn = G1n +G2n +G3n where

G1n =
1

K(n)

n�1X
t=1

tX
s=1

1X
k=0

k+t�sX
j=0

bkcjus�kwt+1�j

=
1

K(n)

n�1X
t=1

tX
s=1

1X
j=0

1X
k=maxf0;j+s�tg

bkcjus�kwt+1�j (2.1)

G2n =
1

K(n)

n�1X
t=1

tX
s=1

1X
k=0

bkck+t�s+1us�kws�k (2.2)

and

G3n =
1

K(n)

n�1X
t=1

tX
s=1

1X
k=0

1X
j=k+t�s+2

bkcjus�kwt+1�j : (2.3)

Thus, G1n contains those terms, and only those terms, in which s � k 6 t � j, so that the time
indices of w strictly exceed those of u; and hence E(G1n) = 0. In G2n, s � k = t + 1 � j such
that the time indices of u and w match. In G3n, s� k > t+ 1� j such that the indices of u lead
those of w, and E(G3n) = 0.

In this section we consider the behaviour of the sequence G2n. Broadly speaking, its properties
depend on the sign of dX + dY , and we consider the various cases in turn.

Proposition 2.1 If dX + dY > 0 then E(G2n)! �XY where

�XY =
!uw

�(dX + 1)�(dY + 1) (dX + dY )

�
dY

(1 + dX + dY )
+Z 1

0

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY )(1 + �)dY �dX

i
d�

�
(2.4)

Letting �Y X denote the same limit with xt and yt interchanged, also note that

�XY + �Y X =
!uw

�(dX + 1)�(dY + 1)
��

1

(1 + dX + dY )
+

Z 1

0

�
(1 + �)dX � �dX

��
(1 + �)dY � �dY

�
d�

�
=  XY (2.5)

where

 XY = lim
n!1

1

K(n)
E

� nX
t=1

xt

nX
t=1

yt

�
: (2.6)

This is the o¤-diagonal element of 	, the long-run covariance matrix of the processes, according
to equation (3.12) of DDJ. Considering the decomposition

E

� nX
t=1

xt

nX
t=1

yt

�
=

nX
t=1

E(xtyt) +

n�1X
t=1

tX
s=1

E(xsyt+1) +

n�1X
t=1

tX
s=1

E(ysxt+1) (2.7)
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where the second term on the right corresponds to K(n)E(Gn), note that

E(xtyt) = �XY = !uw

1X
j=0

bjcj <1: (2.8)

The �rst right-hand side term in (2.7) is O(n), and hence this term is of small order under the
normalization K(n). The other two terms converge to �XY and �Y X respectively under the same
normalization, as indicated by (2.5). Observe that �XY depends only on dX , dY and !uw since
any short-run parameters have been absorbed into the functions LX and LY ; compare Lemma
1.1 for example. The sign of �XY matches that of dY , and if dY = 0, then �XY = 0. When
dX > 0, the cases where yt is i.i.d., (cj = 0 for j > 0) and is merely weakly dependent (dY = 0),
are equivalent asymptotically.

We give these results in the easily interpretable form of (2.4) but for computational purposes,
a closed-form expression is more useful, as follows.

Proposition 2.2 �XY =
!uw�(1� dX � dY )

� (1 + dX + dY ) (dX + dY )
sin�dY :

This formula matches (1.9), indicating that the harmonic and moving average approaches to
constructing fractional processes yield equivalent results, at least in mean. The closed form of
(2.5)

 XY =
!uw�(1� dX � dY )
(1 + dX + dY )

�
sin�dY + sin�dX

�(dY + dX)

�
(2.9)

follows directly.
Next, consider the cases where dX+dY is zero or negative. In the latter case, E(G2n) diverges.

Proposition 2.3 If dX + dY � 0 and !wu 6= 0, then E(G2n) = O(n=K(n)):

In this instance there is no decomposition of  Y X into components of the form �XY , and the
three terms in (2.7) are each of O(n). We may write n�1

Pn
t=1E(xtyt) = �XY and also

1

n

n�1X
t=1

tX
s=1

E(xsyt+1)! ��XY

1

n

n�1X
t=1

tX
s=1

E(ysxt+1)! ��Y X :

These limits are �nite constants depending on summable sequences of weights, hence necessarily
di¤erent from �XY and �Y X . Note that E(

Pn
t=1 xt)

2 = O(n2dX+1) and E(
Pn
t=1 yt)

2 = O(n2dY +1)
(compare DDJ Lemmas 3.1 and 3.3). For dX + dY < 0 the left-hand side of (2.7) is therefore
necessarily o(n), by the Cauchy-Schwarz inequality, and so �XY +��XY +�

�
Y X = 0. Formula (2.9)

is nonetheless well de�ned for dX + dY � 0. Under the normalization n the covariance vanishes,
but under normalization K(n) the limit in (2.6) is well-de�ned and equal to (2.5) (equivalently,
to (2.9)) as shown in DDJ Lemma 3.3. These conclusions assume !uw 6= 0, but if ut and wt
are contemporaneously uncorrelated, implying under Assumption 1 that the cross-correlogram is
zero at all orders, then each of the terms in (2.7) is zero identically. Then (2.5) holds trivially
whatever the sign of dX + dY , since �XY = �Y X = 0.

The following result shows that G2n is a consistent estimator of the mean, albeit not a feasible
one.

Theorem 2.1 If Assumptions 1 and 2 hold, G2n � E(G2n)
L2! 0:
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The important implication is that the limit distribution of G1n +G3n matches that of the mean
deviation of Gn, not forgetting that the mean diverges under the given normalization when
dX + dY < 0:

One further result concerning the behaviour of the contemporaneous covariance term is gen-
erally needed for the analysis of regression models.

Theorem 2.2 Let Assumptions 1 and 2 hold.

(i) n�1
Pn
t=1 xtyt

L2! �XY :

(ii) If !uw = 0, �1
2 < dY � 0 and �1

2 < dX � 0, then n�1=2
Pn
t=1 xtyt

d! N (0; V ) where
V <1:

3 Stochastic Integrals

In this section we use heuristic arguments to construct limiting forms for the terms G1n and
G3n, to be denoted respectively by �1;XY and �3;XY . Letting �XY = �1;XY + �3;XY , we shall

subsequently show that Gn � E(Gn)
d! �XY where

d! denotes convergence in distribution.
Consider G1n �rst. Replacing the summation over j in (2.1) by the summation over m =

t+ 1� j, and the summation over k by the summation over i = s� k, rewrite G1n as

G1n =
1

K(n)

n�1X
t=1

tX
s=1

tX
m=�1

minfs;mgX
i=�1

bs�ict�muiwm+1

=
1

K(n)

n�1X
m=�1

wm+1

mX
i=�1

ui

n�1X
t=maxf1;mg

ct�m

0@ tX
s=maxf1;ig

bs�i

1A
=
1

n

n�1X
m=�1

qnmwm+1 (3.1)

where qnm =
Pm
i=�1 animui and

anim =
n

K(n)

n�1�mX
t=maxf1�m;0g

ct

0@ t+m�iX
s=maxf1�i;0g

bs

1A (3.2)

Lemma 3.1 For real-valued indices r; p with �1 < p � r � 1, an[np][nr] = AXY (r; p) + o(1) as
n!1, where

AXY (r; p) =

(r � p)dX (1� r)dY F
�
�dX ; dY ; 1 + dY ;�

1� r
r � p

�
�(1 + dX)�(1 + dY )

� 1fr<0g
(r � p)dX (�r)dY F

�
�dX ; dY ; 1 + dY ;�

�r
r � p

�
�(1 + dX)�(1 + dY )

� 1fp<0g
(�p)dX

�
(1� r)dY � 1fr<0g(�r)dY

�
�(1 + dX)�(1 + dY )

: (3.3)
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and

F (a; b; c; z) =
�(c)

�(a)�(b)

1X
j=0

�(a+ j)�(b+ j)

�(c+ j)j!
(�z)j

represents the hypergeometric function.

Making the substitutions dU(p) for u[np]=
p
n and dW (�) for w[n� ]=

p
n, the limit of the random

variable in (3.1) can be expressed heuristically in the form �1;XY =
R 1
�1Q(r)dW (r) where

Q(r) =
R r
�1AXY (r; p)dU(p). Note that when dY = 0, Q(r) = X(r) for r � 0 and 0 for r < 0,

and �1;XY reduces to the regular Itô integral of a fractional Brownian integrand, as analysed
in DDJ. In the general case, we ought to remark on the potential existence issue posed by a
functional of Brownian motion with in�nitely remote starting point. We shall show in the sequel
that these integrals can be constructed as the mean-square limits of integrals on the �nite intervals
[�N; r] and [�N; 1], respectively, as N ! 1. Of course, the fractional Brownian motion (1.2)
itself is well-de�ned on just the same basis.

Next, consider G3n. Proceeding in the same way as before, setting m = t+1�j and i = s�k,
we obtain from (2.3)

G3n =
1

K(n)

n�1X
t=1

tX
s=1

1X
k=0

1X
j=k+t�s+2

bkcjus�kwt+1�j

=
1

K(n)

n�1X
i=�1

ui

i�1X
m=�1

wm

n�1X
s=maxfi;1g

bs�i

n�1X
t=s

ct+1�m

=
1

K(n)

n�1X
i=�1

hi�1ui

where hi =
Pi
m=�1 enmiwm and

enmi =
n

K(n)

n�1�iX
s=maxf0;1�ig

bs

 
n�mX

t=s+i+1�m
ct

!
: (3.4)

Lemma 3.2 For real-valued indices r; p with �1 < r � p � 1, en[nr][np] = EXY (p; r) + o(1) as
n!1, where

EXY (p; r) =
1

�(dY + 1)�(dX + 1)

�
�
(1� p)dX

�
(1� r)dY � (p� r)dY F

�
�dY ; dX ; 1 + dX ;�

1� p
p� r

��
�1fp<0g(�p)dX

�
(1� r)dY � (p� r)dY F

�
�dY ; dX ; 1 + dX ;

�p
p� r

���
: (3.5)

This construction closely parallels the one in Lemma 3.1 except that in this case p � r. It allows
us to express the limit in the form �3;XY =

R 1
�1H(p)dU(p) where H(p) =

R p
�1EXY (p; r)dW (r).

Observe that EXY (p; r) = 0 for all p and r when dY = 0, so that this term arises only the case
of fractional integrator functions.

Notice the important fact that both �1;XY and �3;XY are stochastic integrals of F -adapted
Gaussian integrand processes with respect to F -adapted Brownian motions. Therefore, these
integrals are of Itô type. Subject to su¢ cient regularity conditions on the integrands, essentially
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those of �nite variances and almost sure continuity, plus the validity of mean-squared approxi-
mations by integrals with �nite domain of integration, they may be analysed in the conventional
fashion. Section 4 provides the requisite results.

Under assumptions such that both convergence results hold, in particular dX > 0 and dY > 0,
it appears natural to equate the random variable �XY + �XY with the one denoted

R 1
0 XdY in

(1.8). We have shown in Lemma 2.2 that the means match. To con�rm the representation as
an integral, however, we also need to establish that the formulae satisfy the integration by parts
rule. In Davidson and Hashimzade (2008), Corollary 4.1, this was shown to hold in expectation
for the harmonic representation. Here, we can go further and show the following result, which
does not depend on parameter sign restrictions.

Proposition 3.1 �XY + �Y X +  XY = X(1)Y (1).

4 Weak Convergence

Building on the results in Section 2 on the behaviour of the mean sequence, the general result to
be established in this section is the following.

Proposition 4.1 Let Assumptions 1 and 2 hold.

(i) If dX + dY > 0, then Gn
d! �XY + �XY :

(ii) If dX + dY = 0, then Gn
d! �XY + �

�
XY :

(iii) If dX + dY < 0 and ��XY 6= 0, then
K(n)

n
Gn

L2! ��XY .

(iv) If dX + dY < 0 and ��XY = 0, then Gn
d! �XY .

Note that case (iii) has already been established in Theorem 2.1, subject to the components G1n
and G3n being Op(1) while G2n = Op(n=K(n)).

De�ne cadlag processesXn = n�1=2�dXLX(n)
�1Pn

t=1 xt and Yn = n�1=2�dY LY (n)
�1Pn

t=1 yt.
Then, Proposition 4.1 will follow from Propositions 2.1 and 2.3 and Theorem 2.1 in combination
with the following result, which is the main concern of this section.

Theorem 4.1 Under Assumptions 1 and 2,

(Xn; Yn; Gn � E(Gn))
d! (X;Y;�XY ) (4.1)

where �XY = �1;XY + �3;XY , and
d! denotes joint weak convergence in DR2 [0; 1] � R where

DR2 [0; 1] denotes the space of cadlag pairs equipped with the Skorokhod topology.

The result for the �rst two members of (4.1) is shown in DDJ. Since the limit processes are
almost surely continuous, it is su¢ cient for joint convergence that arbitrary linear combinations
of (Xn; Yn; Gn � E(Gn)) converge to the corresponding combinations of the limit processes (see
Davidson 1994, Theorem 29.16). Since the process elements are all de�ned with respect to the

same �ltration, these requirements follow directly. In practice, we show (Xn; Yn; G1n; G3n)
d!

(X;Y;�1;XY ;�3;XY ) where the limit random variables �1;XY and �3;XY can be identi�ed with
the Itô integrals on the intervals (�1; 1]. The continuous mapping theorem then yields Theorem
4.1.
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A further rearrangement of (3.1) yields

G1n =
1

n

n�1X
m=�Nn

qNnmwm+1 +
1

n

n�1X
m=�Nn

(qnm � qNnm)wm+1 +
1

n

�NnX
m=�1

qnmwm+1 (4.2)

where qNnm =
Pm
i=�Nn animui, anim is de�ned in (3.2) and N > 0 is a �xed value to be chosen.

In the same way, write

G3n =
1

n

n�1X
i=�Nn

hNn;i�1ui +
1

n

n�1X
i=�Nn

(hn;i�1 � hNn;i�1)ui +
1

n

�NnX
i=�1

hn;i�1ui

where hNni =
Pi
m=�Nn enmiwm. The strategy of proof of Theorem 4.1 suggested by these decom-

positions involves three steps, which we describe for G1n as the exemplar case.

1. De�ne the cadlag arrays

QNn (r) =
1p
n

[nr]X
i=�Nn

ani[nr]ui; WN
n (r) =

1p
n

[nr]X
m=�Nn

wm

and show that QNn
d! QN , an almost surely continuous Gaussian process on the interval

[�N; 1]. Also, by standard arguments, WN
n

d! WN where WN is a Brownian motion on
the interval [�N; 1]. Since qNn;m�1 is a linear process in i.i.d. shocks, by Assumption 1,
Step 1 can be tackled by a minor extension of Theorem 3.1 of de Jong and Davidson (2000)
(henceforth, DJD).

2. (QN ;WN ) are adapted to a common �ltration F de�ned in (1.11), with respect to which
WN is a martingale. We therefore deduce by standard arguments that 

QNn ; W
N
n ;

1

n

nX
m=�Nn

qNn;m�1wm

!
d!
�
QN ; WN ;

Z 1

�N
QNdWN

�
: (4.3)

3. Show that by taking N large enough, the second and third terms of (4.2) can be made as
small as desired in L2 norm, allowing the limit random process to be formally represented
as �1;XY =

R 1
�1QdW .

The arguments to establish the validity of these steps are given for the case of G1n in Section 4.1.
The case of G3n is on similar lines, replacing a by e, A by E, Q by H, and exchanging w; u and
W;U in formulae. These results are given in Section 4.2.

4.1 The Case of G1n

We use Lemma 3.1 to show the following properties, invoking Assumptions 1 and 2 in each case.

Lemma 4.1 Let vanm = n�1
Pm
i=�1 a2nim for m 2 (�1; n):

(i) lim supn van;[nr] <1 for each �xed r 2 (�1; 1].

(ii) lim supn van;[nr] = O((�r)2dY +2dX�3) as r ! �1.

10



Lemma 4.2 sup
r2(�1;1]

lim sup
n

n�1
X[n(r+�)]

i=[nr]+1
a2ni[n(r+�)] = O(�minf1;2dX+1):

Lemma 4.3 sup
r2(�1;1]

lim sup
n

n�1
X[nr]

i=�1
(ani[n(r+�)] � ani[nr])2 = O(�2dX+1):

Step 1 is then implemented by means of the following result.

Theorem 4.2 (QNn ;W
N
n )! (QN ;WN ) where d! denotes weak convergence in the space of cad-

lag functions DR2 [�N; 1] endowed with the Skorokhod topology, and (QN ;WN ) are elements of
CR2 [�N; 1] a.s..

Be careful to note that the topological space DR2 [�N; 1] is di¤erent from DR[�N; 1]�DR[�N; 1].
In the former case, the jump times are assumed to be synchronized in the component spaces so
that the Skorokhod distances can be de�ned in terms of a common change-of-time function, while
in the latter case they are not. Since the jumps are always the result of discrete observation dates
in our applications, the jump times match by default, and there is no problem about satisfying
this requirement in practice.

Given these results, we can proceed directly to Step 2, as follows.

Theorem 4.3 The convergence in (4.3) holds where d! denotes weak convergence in the space
DR2 [�N; 1]� R endowed with the Skorokhod topology.

Theorem 4.3 is a special case of Theorem 2.2 of Kurtz and Protter (1991), see also Theorem 7.42 of
Kurtz and Protter (1995). These results are given for stochastic processes I on [0;1) de�ned by
I(�) =

R �
0 H(r)dX(r), where H is F -adapted and left-continuous, and Y is a F -semimartingale

satisfying a condition of uniformly controlled variations (UCV). This latter condition is directly
satis�ed by WN

n since this is a partial sum of independent and identically distributed shocks with
�nite variance, and our processes are de�ned on a compact interval. There is no di¢ culty about
considering the interval [0; N + 1], and then re-locating the initial date from 0 to �N .

We cannot apply the Kurtz-Protter results in full generality, without modi�cation, because in
our case the integrands correspond to a family of functionals QN (r; �), and

R �
�N Q

N (r; �)dW (r)

does not have the form of I(�). However, replacing QN (r; �) by QN (r; 1) de�nes an integrand
process in the appropriate class, and then extracting the pointwise implication for the case � = 1
yields the desired distribution. Since QN is a.s. continuous according to Lemma 4.2, there is no
problem in meeting the left-continuity requirement.

Moving on to Step 3, we show the limiting negligibility of the remainders as follows.

Theorem 4.4 If Assumptions 1 and 2 hold,

(i) limn!1E

�
1

n

Xn�1

m=�Nn
(qnm � qNnm)wm+1

�2
= O(NdX+dY �2)

(ii) limn!1E

�
1

n

X�Nn

m=�1
qnmwm+1

�2
= O(NdX+dY �3):

2This theorem is numbered 34 in an alternate version of these notes posted on the internet.
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4.2 The Case of G3n

In this section the arguments are e¤ectively the same as those in Section 4.1, although the
results di¤er in formulae and in the details of proofs. We simply state the counterpart results, in
abbreviated form where appropriate. The proofs of these results based on the representation in
Lemma 3.2, are treated jointly those of Section 4.1 in the Appendix.

Lemma 4.4 Let veni = n�1
Pi
m=�1 e2nmi for i 2 (�1; n). Then,

(i) lim supn ven;[np] <1 for each �xed p 2 (�1; 1].

(ii) lim supn ven;[np] = O((�p)2dY +2dX�3) as p! �1.

Lemma 4.5 sup
p2(�1;1]

lim sup
n

n�1
X[n(p+�)]

m=[np]+1
e2nm[n(p+�)] = O(�minf1;2dX+1) :

Lemma 4.6 sup
p2(�1;1]

lim sup
n

n�1
X[np]

m=�1
(enm[n(p+�)] � enm[np])2 = O(�2dX+1):

Theorem 4.5 (HN
n ; U

N
n )

d! (HN ; UN ) 2 CR2 [�N; 1] a.s.

Theorem 4.6
�
HN
n ; U

N
n ;

1

n

Xn

m=�Nn
um h

N
n;m�1

�
d!
�
HN ; UN ;

Z 1

�N
HNdUN

�
:

Theorem 4.7

(i) limn!1E

�
1

n

Xn�1

m=�Nn
(hnm � hNnm)um+1

�2
= O(NdX+dY �2)

(ii) limn!1E

�
1

n

X�Nn

m=�1
hnmum+1

�2
= O(NdX+dY �3):

5 Discussion

There exists quite an extensive mathematical literature on the properties of integrals with respect
to fractional Brownian motion. See, inter alia, Lin (1995), Dai and Heyde (1996), Zähle (1998),
Decreusefond and Üstünel (1999), Decreusefond (2001), Pipiras and Taqqu (2000, 2001, 2002),
and the references therein, Duncan et. al (2000a, 2000b) and Bender (2003). This literature is
chie�y concerned with representation and existence questions for general classes of deterministic
and non-adapted integrand. These fractional integrals have been variously represented, applying
the Wiener-Ito chaos decomposition of the fractional processes, either as the Skorokhod integrals
de�ned in the Malliavin calculus (see e.g. Øksendal 1997) or as the limits of Riemann sums
of the Wick products of the integrand and increments of the integrator process (Duncan et al.,
2000a). An important issue in this research, particularly for pricing applications in mathematical
�nance, has been to �nd a counterpart of the Itô integral (featuring zero mean, in particular) for
fractional Brownian integrators.

However, there has been comparatively little emphasis on deriving these random variables as
the weak limits of normalized discrete sums. In this context our results appear to have some
novel and interesting features. For the special case of a fractional Brownian motion integrand,
we may think of the random variable �XY + �XY de�ned here, with dX + dY > 0, as an integral
of Stratonovich type, the counterpart of that derived in the harmonic representation (1.8). The
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zero-mean component �XY is evidently the counterpart of the Wick integral. We must leave it
to future work to establish the relationship between these representations in detail. However, the
fact that the latter variable decomposes into a pair of Itô-type terms in which the �integrator�
and �integrand�processes change places, so that the forcing processes of both �integrator�and
�integrand�play the role of Brownian integrators is, we suggest, a potentially illuminating way to
view the implications of an integrator process that is not a semimartingale.

We have noted that reliance on the results due to Kurtz and Protter (1991, 1995) has limited
us to considering the pointwise case of integral convergence. A useful goal would be to extend
our results to the stochastic process case on [0; 1], for example to show that

G1n =
1

n

P[n�]
m=�1 qn;m�1(�)wm

d!
R �
�1Q(�)dW:

Our formulae would be unchanged except for the replacement of 1 by � 2 [0; 1] and n by [n�],
where required, also noting that E(Gn(�)) ! �XY �

1+dX+dY . As remarked above, dependence
of the integrands Q and H on � prevent us from applying the cited results directly. A possible
way to achieve the extension from pointwise convergence might be to show tightness using (e.g.)
Billingsley (1968) Theorem 12.3. However, we must leave this extension also for future work.

6 Appendix: Proofs

6.1 Proof of Proposition 1.1

The coe¢ cient of Lj in the expansion of b(L) = �(L)a(L) is

bj =

jX
i=0

�iaj�i s
1

�(dX)

j�1X
i=0

�i(j � i)dX�1: (6.1)

Therefore, for any � > 1 note that

bj s
jdX�1

�(dX)

�j � j1=�
j

�dX�1 j�1X
i=0

�i

� j � i
j � j1=�

�dX�1
: (6.2)

Write
j�1X
i=0

�i

� j � i
j � j1=�

�dX�1
= A(j) +B(j)

where

A(j) =

[j1=� ]�1X
i=0

�i

� j � i
j � j1=�

�dX�1
and

B(j) =

j�1X
i=[j1=� ]

�i

� j � i
j � j1=�

�dX�1
:

Since the �j are summable and
j

j � j1=�
! 1
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it is clear that A(j) ! �(1) as j ! 1: To show that B(j) ! 0, de�ne k = j � i. since
�i = O(i�1��) for � > 0 by assumption,

B(j) �
j�1X

i=[j1=� ]

j�ij
� j � i
j � j1=�

�dX�1

= O

�
(j � j1=�)1�dX j�(1+�)=�

j�[j1=� ]X
k=1

�j � k
j1=�

��1��
kdX�1

�
= O((j � j1=�)j�(1+�)=�)

in view of the fact that j � k � j1=� for all the k. Since � > 1 is arbitrary, pick � < 1 + � to
complete the proof.

6.2 Proof of Proposition 2.1

Under the independence assumption,

E(G2n) =
1

K(n)

1X
k=0

bk

k+n�1X
j=k+1

cj

n�jX
i=1�k

E(uiwi)

=
!uw
K(n)

1X
k=0

bk

n�1X
t=1

(n� t)ck+t: (6.3)

where the second equality makes the substitution t = j � k. It can be veri�ed that

1X
k=0

bk

n�1X
t=1

(n� t)ck+t =
n�1X
t=1

t�1X
s=0

� sX
k=0

bk

�
cs+1 +

n�1X
t=1

1X
s=t

� sX
k=s�t+1

bk

�
cs+1

=

n�1X
t=1

t�1X
s=0

an;t�s(t=n; 0)cs+1 +
n�1X
t=1

1X
s=t

an;t�s(t=n; 0)cs+1 (6.4)

where the expression

ant(s; s
0) =

[ns]�tX
j=maxf0;[ns0]�t+1g

bj (6.5)

is de�ned in DDJ, equation (3.2). According to a straightforward extension of DDJ Lemma 3.1,

an;[ns]�[nx](s; 0) �

8>>><>>>:
LX(n)[nx]

dX

�(dX + 1)
; 0 � x � s

LX(n)
[nx]dX � ([nx]� [ns])dX

�(dX + 1)
; x > s:

In the case dX + dY > 0 we have, applying Assumption 2 and substituting dY =�(dY + 1) for
1=�(dY ),

1

K(n)

n�1X
t=1

t�1X
s=0

an;t�s(t=n; 0)cs+1 �
dY

n2�(dX + 1)�(dY + 1)

n�1X
t=1

tX
s=1

� s
n

�dX+dY �1

14



! dY
�(dX + 1)�(dY + 1)

Z 1

0

Z �

0
�dX+dY �1d�d�

=
dY

�(dX + 1)�(dY + 1)(dY + dX)(1 + dY + dX)
: (6.6)

Similarly,

1

K(n)

n�1X
t=1

1X
s=t

an;t�s(t=n; 0)cs+1

� dY
n2�(dX + 1)�(dY + 1)

n�1X
t=1

1X
s=0

 �
s+ t

n

�dX
�
� s
n

�dX!�s+ t
n

�dY �1
! dY
�(dX + 1)�(dY + 1)

Z 1

0

Z 1

0
((� + �)dX � �dX )(� + �)dY �1d�d�

=
1

�(dX + 1)�(dY + 1) (dX + dY )

�
Z 1

0
[dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX ]d�: (6.7)

Combining these two limits completes the �rst part of the proof for the cases with dY 6= 0. If
dY = 0, Assumption 2(b) does not permit the explicit representation used in (6.6) and (6.7).
However, summability of the cs coe¢ cients implies that

n�1X
t=1

1X
s=0

an;t�s(t=n; 0)cs+1 = o(n1+dXLX(n)) (6.8)

and E(G2n) vanishes in the limit. These expressions are therefore formally correct in all the
cases.

6.3 Proof of Proposition 2.2

Let

L(dX ; dY ) =
Z 1

0

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX

i
d� :

Denote the integrand by f(�). For 0 < dX;dY < 1=2; lim�!�1 f (�) = 0, lim�!0 f (�) = 1, and
the function is integrable for both positive and negative � . For �1=2 < dX;dY < 0, we have
lim�!�1 f (�) = 0, f (�) has a singularity at � = 0 with lim�!0 f (�) ��(dX+dY ) = 1, and f(�) is
integrable for � � 0. It also has a singularity at � = �1 with lim�!�1 f (�) (� + 1)�(dX+dY ) = 1,
and so is also integrable.

Consider an auxiliary integral L�(dX ; dY ) =
R1
�1 f(�) d�:Changing the variable of integration,

� + 1 = �t, we obtain:

L�(dX ; dY ) =
Z 1

�1

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX

i
d�

=

Z 1

�1

h
dY (�t)dX+dY + dX (�t� 1)dX+dY � (dX + dY ) (�t)dY (�t� 1)dX

i
dt

= (�1)(dX+dY )
Z 1

�1

h
dY t

dX+dY + dX (t+ 1)
dX+dY � (dX + dY ) tdY (t+ 1)dX

i
dt

= (�1)dX+dY L�(dY ; dX):
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Note that by interchanging dX and dY we obtain

L�(dX ; dY ) = (�1)dX+dY L�(dY ; dX)
= (�1)2(dX+dY ) L�(dX ; dY ) = 0

and hence also L�(dX ; dY ) = 0 unless dX + dY = 0;�1;�2; : : :.
Next, divide the range of integration in L�(dY ; dX) into (�1;�1), (�1; 0), and (0;1). For

the �rst interval change of variables � = �t� 1 givesZ �1

�1

h
dY t

dX+dY + dX (t+ 1)
dX+dY � (dX + dY ) tdY (t+ 1)dX

i
dt

=

Z 1

0

h
dY (�1� �)dX+dY + dX (��)dX+dY � (dX + dY ) (�1� �)dY (��)dX

i
d�

= (�1)dX+dY
Z 1

0

h
dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX

i
d�

= (�1)dX+dY L(dX ; dY ):

For the second interval using � = �t we haveZ 0

�1

h
dY t

dX+dY + dX (t+ 1)
dX+dY � (dX + dY ) tdY (t+ 1)dX

i
dt

=

Z 1

0

h
(�1)dX+dY dY �dX+dY + dX (1� �)dX+dY � (�1)dY (dX + dY ) �dY (1� �)dX

i
d�

=
(�1)dX+dY dY
dX + dY + 1

(1� 0)� dX
dX + dY + 1

(0� 1)� (�1)dY (dX + dY )B(dX + 1; dY + 1)

=
(�1)dX+dY dY + dX

dX + dY + 1
� (�1)dY (dX + dY )B (dX + 1; dY + 1)

The integral over the third interval is simply L(dY ; dX). Adding the integrals over these three
intervals we obtain

L�(dY ; dX) = (�1)dX+dY L(dX ; dY ) +
(�1)dX+dY dY + dX

dX + dY + 1

� (�1)dY (dX + dY )B (dX + 1; dY + 1) + L(dY ; dX)
= 0: (6.9)

By symmetry,

L�(dX ; dY ) = (�1)dX+dY L(dY ; dX) +
(�1)dX+dY dX + dY

dX + dY + 1

� (�1)dX (dX + dY )B (dX + 1; dY + 1) + L(dX ; dY )
= 0: (6.10)

where we used B (x; y) = B (y; x). Now we multiply (6.9) by (�1)dX+dY and subtract from (6.10):

0 =
h
1� (�1)2(dX+dY )

i �
L(dX ; dY ) +

dY
dX + dY + 1

�
� (�1)dX

h
1� (�1)2dY

i
(dX + dY )B (dX + 1; dY + 1) :
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Therefore,

L(dX ; dY ) = �
dY

dX + dY + 1
+ (�1)dX 1� (�1)2dY

1� (�1)2(dX+dY )
(dX + dY )B (dX + 1; dY + 1) :

Finally, using (�1)x = ei�x we rewrite in the second term

(�1)dX 1� (�1)2dY

1� (�1)2(dX+dY )
= ei�dX

1� ei�2dY
1� ei�2(dX+dY )

= ei�dX
ei�dY

�
e�i�dY � ei�dY

�
ei�(dX+dY )

�
e�i�(dX+dY ) � ei�(dX+dY )

�
=

sin�dY
sin� (dX + dY )

and therefore

L(dX ; dY ) = �
dY

dX + dY + 1
+ (dX + dY )B (dX + 1; dY + 1)

sin�dY
sin� (dX + dY )

:

To complete the proof, substitute this expression into (2.4) and rearrange using the identities
B(x; y) = �(x)�(y)=�(x+ y), �(1� x)�(x) = �= sin�x and �(x+ 1) = x�(x):

�XY =
!uw

� (dX + 1)� (dY + 1) (dX + dY )
��

dY
1 + dX + dY

� dY
dX + dY + 1

+ (dX + dY )B (dX + 1; dY + 1)
sin�dY

sin� (dX + dY )

�
=

!uw
� (dX + 1)� (dY + 1)

B (dX + 1; dY + 1)
sin�dY

sin� (dX + dY )

=
!uw

� (2 + dX + dY )

sin�dY
sin� (dX + dY )

=
!uw�(1� dX � dY )

� (1 + dX + dY ) (dX + dY )
sin�dY :

6.4 Proof of Proposition 2.3

In this case, note that if ant is de�ned by (6.5) then

an;t�s(t=n; 0)cs+1 = O(sdX+dY �1LX(s)LY (s))

so that these terms are summable by assumption. Considering expression (6.4), the lemma follows
since

n�1X
t=1

t�1X
s=0

an;t�s(t=n; 0)cs+1 = O(n)

and
n�1X
t=1

1X
s=t

an;t�s(t=n; 0)cs+1 = o(n):
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6.5 Proof of Theorem 2.1

Setting i = s� k; rewrite (2.2) as

G2n � E(G2n) =
1

K(n)

n�1X
t=1

tX
s=1

1X
k=0

bkck+t�s+1(us�kws�k � !uw)

=
1

K(n)

n�1X
t=1

tX
s=1

Pts

(say) where

Pts =

sX
i=�1

bs�ict+1�i(uiwi � !uw):

Hence note that

E(G2n � E(G2n))2 �
2

K(n)2

n�1X
t=1

tX
s=1

t�sX
m=0

s�1X
k=0

E(PtsPt�m;s�k):

where, setting j = s� i in the third member and letting C denote a generic �nite constant,

E(PtsPt�m;s�k) =
�4uw � !2uw
K(n)2

s�kX
i=�1

bs�ibs�k�ict+1�ict�m+1�i

=
�4uw � !2uw
K(n)2

1X
j=k

bjbj�kct+1�s+jct�m+1�s+j

� C

n2(1+dX+dY )

1X
j=k

jdX�1(j � k)dX�1(j + t+ 1� s)dY �1(j + t�m+ 1� s)dY �1

� C

n2(1+dX+dY )
k2dX�1(k + t+ 1� s)dY �1(k + t�m+ 1� s)dY �1:

Hence,

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1X
t=1

tX
s=1

(s� 1)2dX (t+ 1� s)dY �1
t�sX
m=0

(t�m+ 1� s)dY �1:

These sums can be bounded by conventional summation arguments (Davidson 1994, Thm 2.27)
as follows, also applying Lemma A.1 of DDJ in the case dX < 0.
Case dY > 0:

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1X
t=1

tX
s=1

(t+ 1� s)2dY �1(s� 1)2dX

= O(n�1):

Case dY � 0:

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1X
t=1

tX
s=1

(t+ 1� s)dY �1(s� 1)2dX

=

�
O(n�1 log n); dY = 0
O(n�1�2dY ); dY < 0

:
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6.6 Proof of Theorem 2.2

First note that

E

 
1

n

nX
t=1

xtyt � �XY

!2
=
1

n2

1X
k=0

1X
j=0

1X
i=0

1X
l=0

bkblcjci

�
n�1X
t=1

n�1X
s=1

[E(ut�kwt�jus�lws�i)� E(ut�kwt�j)E(us�lws�i)]: (6.11)

Under the assumptions,

E(ut�kwt�jus�lws�i)� E(ut�kwt�j)E(us�lws�i)

=

8<:
�4uw � !2uw t� k = s� l = t� j = s� i

!uu!ww � !2uw t� k = s� l and t� j = s� i
0 otherwise.

Collecting these terms, letting sums over an empty index set equal zero, yields

E

 
1

n

nX
t=1

xtyt � �XY

!2
=

�4uw � !2uw
n

1X
k=0

b2kc
2
k +

!uu!ww � !2uw
n

1X
k=0

b2k

1X
j=0

c2j

= O(n�1):

The conditions of part (ii) overlap with those of part (i), but ensure that the sequences fbkg
and fcjg are absolutely summable. In this case,

n�1=2
nX
t=1

xtyt =
1X
j=0

1X
k=0

bkcj

�
n�1=2

nX
t=1

ut�kwt�j

�
:

d!
1X
j=0

1X
k=0

bkcjZ(j; k) = � (6.12)

(say) where the Z(j; k) are N(0; !uu!ww) random variables by the application of the standard
CLT. Note that Z(j; k) = Z(j0; k0) if j � k = j0� k0 and E(Z(j; k)Z(j0; k0)) = 0 if j � k 6= j0� k0.
Hence � is normally distributed with zero mean and �nite variance.

6.7 Proof of Lemma 3.1

A preliminary lemma is needed as follows.

Lemma 6.1 For 0 < � < 1
2 and a > b � 0, and LX(n) slowly varying,������ 1n
[na]X

s=1+[nb]

� s
n

���1 LX(s)
LX(n)

�
Z a

b
u��1du

������ = o(1):

Proof First, note that

1

n

[na]X
s=1+[nb]

� s
n

���1 LX(s)
LX(n)

=
1

n

[na]X
s=1+[nb]

� s
n

���1
+ o(1):
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Next,

1

n

������
[na]X

s=1+[nb]

"� s
n

���1
� n

Z (s+1)=n

s=n
u��1du

#������ = 1

n

������
[na]X

s=1+[nb]

�� s
n

���1
� n

�

��
s+ 1

n

��
�
� s
n

����������
� 1

n

������
[na]X

s=1+[nb]

"�
s+ 1

n

���1
�
� s
n

���1#������
= n��

������
[na]X

s=1+[nb]

�
(s+ 1)��1 � s��1

�������
=

n��

�� 1

������
[na]X

s=1+[nb]

(s�)��2

������ ; s � s� � s+ 1;

=

(
O(n��); b = 0;

O(n�1); b > 0:

where the result for b = 0 follows directly since the sum converges, and if b > 0 the tail sum is of
order n��1.

Considering the components of equation (3.2), de�ne q and u by t�m = [nq] and s� i = [nu].
If dX > 0, write

b[nu]

ndXLX(n)
=
(([nu] + 1)=n)dX�1

n� (dX)

LX(nu)

LX(n)

Note by Lemma 6.1 that in this case,

1

ndXLX(n)

[nq]+[nr]�[np]X
s=maxf0;1�[np]g

bs =
1

�(dX)

Z q+r�p

maxf0;�pg
udX�1du+ o(1)

=
(q + r � p)dX � 1fp<0g(�p)dX

�(1 + dX)
+ o(1):

The actual order of magnitude depends on the average rate of LX(nu)=L(n)� 1, but the lemma
shows it is bounded by O(n�dX ) in the case p � 0.

If dX < 0, use part (c) of Assumption 2 to write

b[nu]

ndXLX(n)
=
(([nu] + 1)=n)dX � ([nu]=n)dX

� (1 + dX)
+ o(1)

for [nu] > 0 where b0 = LX(0), and hence, as before,

1

ndXLX(n)

[nq]X
s=maxf1;[np]g

bs�[np] =
(q + r � p)dX � 1fp<0g(�p)dX

� (1 + dX)
+ o(1): (6.13)

In the case dX = 0, under part (b) of Assumption 2, note that

[nq]X
s=maxf1;[np]g

bs�[np] =

(
O(1) p � 0

o(1) p < 0
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which is formally equivalent to (6.13) when LX(n) is de�ned as a constant not depending on
n. Moreover, the sum can be assigned the limiting value 1 � 1fp<0g by choice of normalization,
without loss of generality.

Proceeding similarly, for the case dY > 0 we may now write

c[nq]

ndY LX(n)
=
(([nq] + 1)=n)dY �1

n� (dY )

LX(nq)

LX(n)

and hence, from (3.2), an[np][nr] = AXY (r; p) + o(1) where

AXY (r; p) =
1

� (1 + dX) � (dY )

Z 1�r

maxf0;�rg
qdY �1

h
(q + r � p)dX � 1fp<0g(�p)dX

i
dr

=
1

� (1 + dX) � (dY )

Z 1�r

maxf0;�rg
qdY �1(q + r � p)dXdr

�
1fp<0g(�p)dX

�
(1� r)dY � 1fr<0g(�r)dY

�
� (1 + dX) � (1 + dY )

(6.14)

To verify that this formula matches ((3.3) see Abramovitz and Stegun (1972), 15.3.1.
In the case dY < 0, on the other hand,

c[nq]

ndY LX(n)
=
(([nq] + 1)=n)dY � ([nq] + 1=n)dY

� (dY )
+ o(1) (6.15)

=
(([nq] + �)=n)dY �1

� (1 + dY )
+ o(1); 0 � � � 1:

The approximation in (3.3) may be applied as before in respect of the �rst and second terms.
However, since the integral of the increments in (6.15) diverges at 0, the terms with factor 1fp<0g
in (3.3) have to be constructed as the limiting case of

1

ndY LX(n)

n�1�[nr]X
t=maxf1�[nr];0g

ct =
((n� 1� [nr])=n)dX � 1fr<0g(�[nr]=n)dY

� (1 + dY )
+ o(1):

The expression in (6.14) nonetheless continues to apply.

6.8 Proof of Lemma 3.2

By arguments closely paralleling those of Lemma 3.1 applied to the formula in (3.4), we arrive at

EXY (p; r) =
1

�(dY + 1)�(dX)

Z 1�p

maxf0;�pg
udX�1

h
(1� r)dY � (u+ p� r)dY

i
du

=
1

�(dY + 1)�(dX + 1)

�
(1� r)dY (1� p)dX � dX

Z 1�p

0
udX�1(u+ p� r)dY du

�1fp<0g
�
(1� r)dY (�p)dX � dX

Z �p

0
udX�1(u+ p� r)dY du

��
This yields the stated result by routine manipulation and application of Abramowitz and Stegun
(1972), 15.3.1.
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6.9 Proof of Proposition 3.1

For a function F and fractional Brownian motion X as in (1.2), let the notation
R
F�X be de�ned

by R
F�X =

1

�(dX + 1)

Z 1

�1
F (�)

h
(1� �)dX � 1f�<0g(��)dX

i
dU(�) (6.16)

so that in particular,
R
�X = X(1). De�ne

R
F�Y similarly: Observe that

AXY (r; p) + EY X(r; p) =

�
(1� r)dY � 1fr<0g(�r)dY

� �
(1� p)dX � 1fp<0g(�p)dX

�
�(dY + 1)�(dX + 1)

with the corresponding identity for AY X(p; r) + EXY (p; r). Therefore, de�ning processes

~X(t) =
1

�(dX + 1)

Z t

�1

h
(1� �)dX � 1f�<0g(��)dX

i
dU(�)

~Y (�) =
1

�(dY + 1)

Z �

�1

h
(1� t)dX � 1ft<0g(�t)dX

i
dW (t):

note that
�XY + �Y X =

R
~X�Y +

R
~Y �X: (6.17)

Also note that X(1) = ~X(t) + �X(t) for any t < 1 and Y (1) = ~Y (�) + �Y (�) for any � < 1 where,
for example,

�X(t) =

8>>>>><>>>>>:

1

� (dX + 1)

R 1
t (1� �)

dXdU (�) t � 0

1

� (dX + 1)

0@ R 1
0 (1� �)

dXdU (�)

+
R 0
t

�
(1� �)dX � (��)dX

�
dU (�)

1A t < 0:

(6.18)

with a complementary expression for �Y (�). Therefore,

2X(1)Y (1) = �XY + �Y X +
R
�X�Y +

R
�Y �X: (6.19)

Next observe that, since E(X(1)Y (1)) =  XY while E(�XY ) = E(�Y X) = 0, (6.19) implies

E(
R
�X�Y ) + E(

R
�Y �X) = 2 XY : (6.20)

Next, using (6.18) and (6.16) write

R
�X�Y =

1

� (dY + 1)

�Z 1

0
(1� t)dY �X(t)dW (t) +

Z 0

�1

h
(1� t)dY � (�t)dY

i
�X(t)dW (t)

�
=

1

� (dX + 1)� (dY + 1)

Z 1

0

�Z 1

t
(1� �)dXdU (�)

�
(1� t)dY dW (t)

+
1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z 1

0
(1� �)dXdU (�)

�h
(1� t)dY � (�t)dY

i
dW (t)

+
1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z 0

t

h
(1� �)dX � (��)dX

i
dU (�)

�
�
h
(1� t)dY � (�t)dY

i
dW (t) (6.21)
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= E(
R
�X�Y ) +

1

� (dX + 1)� (dY + 1)

Z 1

0

�Z �

0
(1� t)dY dW (t)

�
(1� �)dXdU (�)

+
1

� (dX + 1)� (dY + 1)

�Z 0

�1

h
(1� t)dY � (�t)dY

i
dW (t)

��Z 1

0
(1� �)dXdU (�)

�
+

1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z �

�1

h
(1� t)dY � (�t)dY

i
dW (t)

�
�
h
(1� �)dX � (��)dX

i
dU (�) : (6.22)

Note how the last equality re-writes the integral in the form that separates the non-stochastic and
(zero mean) stochastic components. The second term and fourth term of (6.22) are Itô integrals
with respect to dU(�) of F(�)-measurable processes, while the third term is the product of terms
de�ned on (�1; 0] and (0; �] respectively. Since each of these terms have mean 0, E(

R
�X�Y )

must appear explicitly in (6.22).
Finally, consider the expression obtained by taking (6.21) and interchanging the pairs (X;Y ),

(U;W ), and (t; �). Note that the sum of this expression and (6.22) is X(1)Y (1) + E(
R
�X�Y ).

Clearly, the same equality holds if all the arguments are interchanged. This implies that the two
means in (6.20) are equal to each other, and hence to  XY , soR

�X�Y +
R
�Y �X = X(1)Y (1) +  XY : (6.23)

Equation (6.23) in combination with (6.19) yields the required formula.

6.10 Proof of Lemmas 4.1 and 4.4

The following preliminary lemmas are needed.

Lemma 6.2 jAXY (r; p)j � �AXY (r; p) where AXY (r; p) is de�ned in (3.3) and

�AXY (r; p) =

��(1� r)dY � 1fr<0g(�r)dY �� ��(g � p)dX � 1fp<0g(�p)dX ��
�(dX + 1)�(dY + 1)

where

g =

�
1; dX � 0 or dX < 0; p < 0
r; dX < 0; p � 0:

Proof From (3.2),

��an[np][nr]�� = n

K(n)

������
n�1�[nr]X

t=maxf1�[nr];0g
ct

0@ t+[nr]�[np]X
s=maxf1�[np];0g

bs

1A������
� n

K(n)

������
n�1�[nr]X

t=maxf1�[nr];0g
ct

������ max
maxf1�[nr];0g���n�1

������
�+[nr]�[np]X

s=maxf1�[np];0g
bs

������
=

��(1� r)dY � 1fr<0g(�r)dY �� max
maxf0;rg�g�1

��(g � p)dX � 1fp<0g(�p)dX ��
�(dX + 1)�(dY + 1)

+ o(1) (6.24)

as n!1, using the same arguments as in the proof of Lemma 3.1. When dX � 0, (g � p)dX is
monotone nondecreasing in g, and is maximized over [0; 1] at g = 1. When dX < 0, (g � p)dX is
monotone decreasing. If p � 0, so that r � 0, the maximum in (6.24) is achieved at g = r. On
the other hand, if p < 0 then

��(g � p)dX � 1fp<0g(�p)dX �� is maximized at g = 1, as indicated.
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Lemma 6.3 jEXY (p; r)j � �EXY (p; r) where EXY (p; r) is de�ned in (3.5) and

�EXY (p; r) =

��(1� p)dX � 1fp<0g(�p)dX �� ��(1� r)dY � 1fr<0g(�r)dY ��
�(dX + 1)�(dY + 1)

Proof From (3.4)

��en[nr][np]�� = n

K(n)

������
n�1�[np]X

s=maxf0;1�[np]g
bs

0@ n�[nr]X
t=s+[np]+1�[nr]

ct

1A������
� n

K(n)

������
n�1�[np]X

s=maxf0;1�[np]g
bs

������ max
maxf0;1�[np]g�z�n�1

������
n�[nr]X

t=z+[np]+1�[nr]
ct

������
=

��(1� p)dX � 1fp<0g(�p)dX �� max
maxf0;pg�g�1

��(1� r)dY � (g � r)dY ��
�(dX + 1)�(dY + 1)

+ o(1) (6.25)

as n!1. First, suppose p � 0. When dY � 0 then (1�r)dY �(g�r)dY > 0 and is maximized over
[p; 1] at g = p, noting that r � p in this case. When dY < 0, (1 � r)dY � (g � r)dY < 0 and is
minimized at g = p: In the case p < 0 the same considerations apply, but the extremum over
[0; 1] is at g = 0 in each case. The proof is completed by noting that for any p 2 [ r; 1], and dY
of either sign, ���(1� r)dY � (maxfp; 0g � r)dY ��� � ���(1� r)dY � 1fr<0g(�r)dY ��� .

To prove Lemma 4.1, �rst suppose m � 0. Break the sum nvanm into components
Pm�1
i=0 a2nim

and
P�1
i=�1 a2nim where the �rst term is 0 if m = 0. Note that if m = [nr] for 0 � r � 1, then

since i = [np] � 0, applying Lemma 6.2,

lim sup
n

1

n

m�1X
i=0

a2nim �
Z r

0

�AXY (r; p)
2dp

=

8>>><>>>:
(1� r)2dY +2dX+1

(2dX + 1)�(dX + 1)2�(dY + 1)2
; dX � 0

(1� r)2dY r2dX+1
(2dX + 1)�(dX + 1)2�(dY + 1)2

; dX < 0

<1

whereas

1

n

0X
i=�1

a2nim �
Z 0

�1
�AXY (r; p)

2dp

=
(1� r)2dY

�(1 + dX)2�(1 + dY )2

Z 1

0

h
(1 + p)dX � pdX

i2
dp

<1

noting that
R1
0

�
(1 + p)d � pd

�2
dp <1 for jdj < 1

2 : (See for example Davidson and Hashimzade
(2008), Lemma 5.1.) Finally, if m < 0 and hence r < 0, by Lemma 6.2 there exists n large enough
that

1

n

mX
i=�1

a2nim �
Z r

�1
�AXY (r; p)

2dp
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�
�
(1� r)dY � (�r)dY

�2
�(1 + dX)2�(1 + dY 1)2

Z 1

�r

h
(1 + p)dX � pdX

i2
dp

= O((�r)2dY +2dX�3):

The argument for Lemma 4.4 is very similar. Letting i = [np], applying Lemma 6.3 leads to

lim sup
n

1

n

i�1X
m=0

e2nmi �
Z p

0

�EXY (p; r)
2dr

=

�
(1� p)dX � 1fp<0g(�p)dX

�2
(1� p)2dY +1

(2dY + 1)�(dX + 1)2�(dY + 1)2

<1

whereas
1

n

0X
m=�1

e2nmi �
Z 0

�1
�EXY (p; r)

2dr <1

and for i < 0,

1

n

iX
m=�1

e2nmi �
Z p

�1
�EXY (p; r)

2dr = O((�p)2dY +2dX�3)

follow exactly as for the proof of Lemma 6.2.

6.11 Proof of Lemmas 4.2 and 4.5

In principle there are three cases to consider, depending on the respective signs of r and r + �.
However, if r < 0 and r+ � > 0 then the interval may be split into subintervals of widths �r < �
and � + r respectively, and treated separately. Showing the cases r � 0 and r < r + � � 0 is
therefore su¢ cient. The bounding arguments here are essentially the same as those in the proofs
of Lemmas 4.1 and 4.4.

First, for Lemma 4.2,

lim sup
n

1

n

[n(r+�)]X
i=[nr]+1

a2ni[n(r+�)]

�
Z r+�

r

�AXY (r + �; p)
2dp

=

�
(1� r � �)dY � 1fr+�<0g(�r � �)dY

�2
�(1 + dX)2�(1 + dY )2

Z r+�

r

h
(g � p)dX � 1fp<0g(�p)dX

i2
dp

where �AXY (r; p), and g, are de�ned in Lemma 6.2.
Case: r � 0. If dX > 0, then g = 1 andZ r+�

r
(1� p)2dXdp = (1� r)2dX+1 � (1� r � �)2dX+1

2dX + 1
= O(�)

otherwise g = r + � and Z r+�

r
(r + � � p)2dXdp = �2dX+1

2dX + 1
:

25



Case: r < r + � � 0. In this case g = 1 andZ r+�

r
[(1� p)dX � (�p)dX ]2dp �

Z r+�

r
(�p)2dXdp+

Z r+�

r
(1� p)2dXdp

= O(�)

since dX � �1
2 . These bounds are independent of r, and hold uniformly with respect to r 2

(�1; 1].
The proof of Lemma 4.5 is very similar, noting that

lim sup
n

1

n

[n(p+�)]X
m=[np]+1

e2nm[n(p+�)] �
Z p+�

p

�EXY (p+ �; r)
2dp

=

�
(1� p� �)dX � 1fp+�>0g(�p� �)dX

�2
�(dX + 1)2�(dY + 1)2Z p+�

p

h
(1� r)dY � 1fr<0g(�r)dY

i2
dr

= O(�).

6.12 Proof of Lemmas 4.3 and 4.6

First, for case Lemma 4.3, note that

an[np][n(r+�)] � an[np][nr]

=
n

K(n)

n�1�[n(r+�)]X
t=maxf1�[n(r+�)];0g

ct

0@ t+[n(r+�)]�[np]X
s=maxf1�[np];0g

bs

1A
� n

K(n)

n�1�[nr]X
t=maxf1�[nr];0g

ct

0@ t+[nr]�[np]X
s=maxf�[np];0g
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(de�ning Da
1n, D

a
2n, D

a
3n) where an empty sum takes the value 0 by convention, so that Da

3n = 0
for r � 0. Now de�ne

�Da
1(r; �; p) =

��(1� r)dY � (1� r � �)dY �� ��(1� p)dX � 1fp<0g(�p)dX ��
�(1 + dX)�(1 + dY )

�Da
2(r; �; p) =

��(1� r � �)dY � 1fr<0g(�r)dY �� ��(r + � � p)dX � (r � p)dX ��
�(1 + dX)�(1 + dY )
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�Da
3(r; �; p) = 1fr<0g

��(�r)dY � (�r � �)dY �� ��(� � p)dX � (�p)dX ��
�(1 + dX)�(1 + dY )

:

If dX > 0, dY > 0 then, using Assumption 2 and Lemma 6.1,
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������ 1n

n�[np]+1X
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�dX�1������
= �Da
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= �Da
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�dY ):

The cases having dY � 0 and/or dX � 0 require modi�cation of these formulae on the lines of
equation (6.13). Terms of the form

�
t
n

�dY �1 and � sn�dX�1 are replaced respectively with terms of
the form

�
t+1
n

�dY � � tn�dY and � s+1n �dX � � sn�dX . The approximation error rates are modi�ed in
the same manner, with �1� dY replacing �dY when dY < 0 and �1� dX replacing �dX when
dX < 0. However, note that although the signs of the sums depend on the signs of dY and dX ,
the indicated bounds hold in all cases. We therefore have that there exists n large enough that��an[np][n(r+�)] � an[np][nr]�� � �Da

1(r; �; p) +
�Da
2(r; �; p) +

�Da
3(r; �; p):

Therefore,

lim sup
n

1

n

[nr]X
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(ani[n(r+�)] � ani[nr])2

�
Z r

�1
�Da
1(r; �; p)

2dp+

Z r

�1
�Da
2(r; �; p))

2dp+

Z r

�1
�Da
3(r; �; p))

2dp
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whereZ r

�1
�Da
1(r; �; p)

2dp � (1� r)dY � (1� r � �)dY )2
�(1 + dX)2�(1 + dY )2

Z r

�1

h
(1� p)dX � 1fp<0g(�p)dX

i2
dp

= O(�2)

Z r

�1
�Da
2(r; �; p))

2dp �
�
(1� r � �)dY � 1fr < 0g(�r)dY

�2
�(1 + dX)2�(1 + dY )2

Z r

�1
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(r + � � p)dX � (r � p)dX

i2
dp

= O(�2dX+1)

and if r < 0,Z r

�1
�Da
3(r; �; p))

2dp �
�
(�r)dY � (�r � �)dY

�2
�(1 + dX)2�(1 + dY )2

Z r

�1

h
(� � p)dX � (�p)dX

i2
dp

= O(�2dX+3):

These bounds are independent of r, and hold uniformly with respect to r 2 (�1; 1].
For Lemma 4.6, we have from (3.4)
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Similarly to the previous case, there exists n large enough that

jDe
1n(p; �; r)j � �De

1(p; �; r)

=

��(1� p)dX � (1� p� �)dX �� ��(1� r)dY � (1 + � � r)dY ��
�(1 + dX)�(1 + dY )

jDe
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and

jDe
3n(p; �; r)j � �De

2(p; �; r)

= 1fp<0g

��(�p)dX � (�p� �)dX �� ��(1� r)dY � (�r)dY ��
�(1 + dX)�(1 + dY )

Therefore, similarly to the previous case,

lim sup
n

1

n

[np]X
m=�1

(enm[n(p+�)] � enm[np])2 �
Z p

�1
�De
1(p; �; r)

2dp+

Z p

�1
�De
2(p; �; r)

2dp

Z p

�1
�De
3(p; �; r)

2dp

= O(�2dY +1)

where the bound is independent of p, and holds uniformly in p 2 (�1; 1].

6.13 Proof of Theorems 4.2 and 4.5

We argue for the exemplar case of QNn . The proof for H
N
n is essentially identical, after swapping

H for Q, w for u and e for a, and also substituting the lemmas from Section 4.2 for those of
Section 4.1

The proof follows the lines of Theorem 3.1 of Davidson and de Jong (2000) (henceforth, DDJ),
which in turn is based on Theorem 3.1 of DJD. Similarly to the DDJ theorem, the sample period
is changed from 1; : : : ;Kn to �Nn; : : : ; n. For the �nite dimensional distributions, we apply
the CLT of de Jong (1997). Since the ui are assumed independent, this is simply a matter of
establishing a counterpart of the Lindeberg condition for the process qNnm.

To translate the conditions of the present setup into those of the DDJ model, note that the
process in question has increments

QNn (r + �)�QNn (r) =
1p
n

[n(r+�)]X
i=[nr]+1

ani[n(r+�)]ui +
1p
n

[nr]X
i=�Nn

(ani[n(r+�)] � ani[nr])ui: (6.26)

The notations of this paper and DDJ may be connected by making the equivalences t; � and �0

in DDJ with i, r + � and r in this paper, respectively, and so noting that the quantities denoted
ant(�; �

0) in DDJ, equation (3.1), correspond in the present notation to ani[n(r+�)] for i > [nr], and
to ani[n(r+�)] � ani[nr] for �1 < i � [nr] otherwise. Since the shocks ui are i.i.d by Assumption
1, bounds on the variances of the increments in (6.26) are found from Lemmas 4.1, 4.2 and 4.3.
The �nite dimensional distributions of the variates QNn (r) can be determined from Theorem 3.1
of DJD. Note that the variates denoted Xnt in that theorem scale correspond in the present case
to either n�1=2ani[n(r+�)]ui or to n�1=2(ani[n(r+�)]� ani[nr])ui for �nN � i � [n(r+ �)] and, given
the conditions speci�ed in our Assumptions 1 and 2, are su¢ cient for DJD�s Assumption 1. Note
further that r is �xed in each application of this theorem, that condition (3.2) in DJD holds
in the present case by Lemma 4.1, and that condition 3.3 in DJD holds in the present case by
Lemmas 4.2 and 4.3. Finally, to show the tightness of the sequence of measures the argument in
DDJ, Theorem 3.1, can be applied with appropriate substitutions. (See also the addendum to this
theorem in Davidson (2001)). Noting the equivalences set out above, the condition corresponding
to DDJ (B-35) follows directly from Lemmas 4.2 and 4.3.

6.14 Proof of Lemmas 4.4 and 4.7

First note that

1
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!2
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n2
E

 
n�1X

m=�Nn
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uianimwm+1

!2
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= !uu!ww
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Copying the argument from the proof of Lemma 4.1, note that
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Next,
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as n!1, and by previous arguments, letting K denote a �nite positive constant, we haveZ N
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The case of Lemma 4.7 is essentially similar.
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