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Abstract

This paper presents a generalized pre-averaging approach for estimating the inte-
grated volatility. This approach also provides consistent estimators of other powers of
volatility – in particular, it gives feasible ways to consistently estimate the asymptotic
variance of the estimator of the integrated volatility. We show that our approach,
which possess an intuitive transparency, can generate rate optimal estimators (with
convergence rate n−1/4).

Keywords: consistency, continuity, discrete observation, Itô process, leverage ef-
fect, pre-averaging, quarticity, realized volatility, stable convergence.
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1 Introduction

The recent years have seen a revolution in the statistics of high frequency data. On the
one hand, such data is increasingly available and needs to be analysed. This is particularly
the case for market prices of stocks, currencies, and other financial instruments. On the
other hand, the technology for the analysis of such data has grown rapidly. The emblematic
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problem is the question of how to estimate daily volatility for financial prices (in stochastic
process terms, the quadratic variation of log prices).

The early theory was developed in the context of stochastic calculus, before the finan-
cial application was apparent. The sum of squared returns was shown to be consistent
for the quadratic variation in Meyer (1967). A limit theory was then developed in Jacod
(1994) and Jacod and Protter (1998), and later in Jacod (2006).

Meanwhile, these concepts were introduced to econometrics in Foster and Nelson (1996)
and Andersen and Bollerslev (1997, 1998). A limit theory was developed in Barndorff-
Nielsen and Shephard (2002), and Zhang (2001). Further early econometric literature
includes, in particular, Andersen et al. (2000, 2001, 2003), Barndorff-Nielsen and Shephard
(2004), Chernov and Ghysels (2000), Dacorogna et al. (2001), Engle (2000), and Gallant
et al. (1999). The setting of confidence intervals using bootstrapping has been considered
by Goncalves and Meddahi (2005) and Kalnina and Linton (2007).

The direct application to data of results from stochastic calculus have, however, run
into the problem of microstructure. No-arbitrage based characterizations of securities
prices (as in Delbaen and Schachermayer (1994)) suggest that these must normally be
semimartingales. Econometric evidence, however, suggests that there is additional noise
in the prices. This goes back to Roll (1984) and Hasbrouck (1993). In the nonparametric
setting, the deviation from semimartigales is most clearly seen through the signature plots
of Andersen et al. (2000), see also the discussion in Mykland and Zhang (2005).

Statistical and econometric research has for this reason gravitated towards the concept
that the price (and log price) semimartingale is latent rather than observed. Research
goes back to the work on rounding by Jacod (1996) and Delattre and Jacod (1997).
Additive noise is studied in Gloter and Jacod (2001), and a consistent estimator in the
nonparametric setting is found in Zhang et al. (2005). Issues of bias-variance tradeoff
are discussed in Bandi and Russell (2006b). In the nonparametric case, rate optimal
estimators are found in Zhang (2006), Podolskij and Vetter (2006) and Barndorff-Nielsen
et al. (2006). A development for low frequency data is given in Aı̈t-Sahalia et al. (2005).

There are currently three main approaches to estimation in the nonparametric case:
linear combination of realised volatilities obtained by subsampling (Zhang et al. (2005),
Zhang (2006)), and linear combination of autocovariances (Barndorff-Nielsen et al. (2006)).
The purpose of this paper is to give more insight to the third approach of pre-averaging,
which was introduced in Podolskij and Vetter (2006). The idea is as follows. We suppose
that the (say) log securities price Xt is a continuous semimartingale (of the form (2.1)
below). The observations are recorded prices at transaction times ti = i∆n, and what is
observed is not Xti , but rather Zti , given by

Zti = Xti + ǫti . (1.1)

The noise ǫti can be independent of the X process, or have a more complex structure,
involving for example some rounding. The idea is now that if one averages K of these
Zti ’s, one is closer to the latent process. Define Z̆ti as the average of Zti+j , j = 0, ...,K−1.

The variance of the noise in Z̆i is now reduced by a factor of about 1/K. If one calculates
the realised volatility on the basis of Z̆0, Z̆t1 , Z̆t2 , ..., the estimate is therefore closer to
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being based on the true underlying semimartingale. The scheme is particularly appealing
since it is obviously robust to a wide variety of structures of the noise ǫ.

The paper provides a way of implementing this idea. There are several issues that
have to be tackled in the process. First of all, while the local averaging does reduce
the impact of the noise ǫ, it adds noise by time averaging the latent semimartingale X.
The pre-averaged realised volatility

∑
i(Z̆t(2i+1)K

− Z̆t2iK
)2 therefore has to be adjusted

by an additive term to eliminate the resulting bias. Second, one would not wish to only
average over differences from non-overlapping intervals, but rather use a moving window.
Finally, the estimator can be generalised by the use of a general weight function. Our
final estimator is thus on the form (3.6), where we note that the special case of simple
averaging is given in the example following Theorem 3.1. Note that in the notation of that
example, kn = 2K.

Like the subsampling and the autocovariance methods, the pre-averaging approach,
when well implemented, gives rise to rate optimal estimators (the convergence rate being
Op(n

−1/4)). This result, along with a central limit theorem for the estimator, is given as
our main result Theorem 3.1.

What is the use of a third approach to the estimation problem, when there already
are two that provide good convergence? There are at least three advantages of the pre-
averaging procedure:

(i) Transparency. It is natural to think of the latent process Xt as the average of obser-
vations in a small interval. Without this assumption, identifiability problems may arise,
as documented in Li and Mykland (2007). Our procedure implements estimation directly
based on this assumption. Also, as noted after the definition (3.6), the entire randomness
in the estimator is, to first order, concentrated in a single sum of squares.

(ii) Estimation of other powers of volatility. The pre-averaging approach also provides
straightforward consistent estimators of quarticity, thereby moving all the existing esti-
mators closer to the feasible setting of confidence intervals. See Podolskij and Vetter
(2006) for results in the case of independent noise.

(iii) Edge effects. The three classes of estimators are similar also in that they are based
on a weight or kernel function. To some approximation, one can rewrite all subsampling
estimators as autocovariance estimators, and vice versa. The estimators in this paper can
be rewritten, again to first order, as a class of subsampling or autocovariance estimators, cf.
Remark 1. The difference between the three classes of estimators (and what is concealed
by the term “to first order”) lies in the treatment of edge effects. The potential impact
of such effects can be considerable, cf. Bandi and Russell (2006a). In some cases, the
edge effects can even affect asymptotic properties. Because of the intuitive nature of our
estimator, edge effects are less likely to be a problem, and they certainly do not interfere
with the asymptotic results.

The plan of the paper is as follows. The mathematical model is defined in Section 2,
and results are stated in Section 3. Section 4 provides a simulation study. The proofs are
in Section 5.
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2 The setting

We have a 1-dimensional underlying continuous process X = (Xt)t≥0, and observation
times i∆n for all i = 0, 1, · · · , k, · · ·. We are in the context of high frequency data, that is
we are interested in the situation where the time lag ∆n is “small”, meaning that we look
at asymptotic properties as ∆n → 0. The process X is observed with an error: that is,
at stage n and instead of the values Xn

i = Xi∆n for i ≥ 0, we observe real variables Zni ,
which are somehow related to the Xn

i , in a way which is explained below.

Our aim is to estimate the integrated volatility of the process X, over a fixed time
interval [0, t], on the basis of the observations Zni for i = 0, 1, · · · , [t/∆n]. For this, we
need some assumptions on X and on the “noise”, and to begin with we need X to be a
continuous Itô semimartingale, so that the volatility is well defined. Being a continuous
Itô semimartingale means that the process X is defined on some filtered probability space

(Ω(0),F (0), (F (0)
t )t≥0,P

(0)) and takes the form

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs, (2.1)

where W = (Wt) is a standard Wiener process and b = (bt) and σ = (σt) are adapted
processes, such that the above integrals make sense. In fact, we will need some, relatively
weak, assumptions on these processes, which are gathered in the following assumption:

Assumption (H): We have (2.1) with two process b and σ which are adapted and càdlàg
(= “right-continuous with left limits” in time). 2

In this paper, we are interested in the estimation of the integrated volatility, that is
the process

Ct =

∫ t

0
σ2
sds. (2.2)

Next we turn to the description of the “noise”. Loosely speaking, we assume that,
conditionally on the whole process X, and for any given n, the observed values Zni are
independent, each one having a (conditional) law which possibly depends on the time and
on the outcome ω, in an ”adapted” way, and with conditional expectations Xn

i .

Mathematically speaking, this can be realized as follows: for any t ≥ 0 we have a

transition probability Qt(ω
(0), dz) from (Ω(0),F (0)

t ) into R, which satisfies
∫
z Qt(ω

(0), dz) = Xt(ω
(0)). (2.3)

We endow the space Ω(1) = R[0,∞) with the product Borel σ-field F (1) and with the
probability Q(ω(0), dω(1)) which is the product ⊗t≥0 Qt(ω

(0), .). We also call (Zt)t≥0 the

”canonical process” on (Ω(1),F (1)) and the filtration F (1)
t = σ(Zs : s ≤ t). Then we

consider the filtered probability space (Ω,F , (Ft)t≥0,P) defined as follows:

Ω = Ω(0) × Ω(1), F = F (0) ×F (1), Ft = ∩s>t F (0)
s ×F (1)

s ,

P(dω(0), dω(1)) = P(0)(dω(0)) Q(ω(0), dω(1)).

}
(2.4)
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Any variable or process which is defined on either Ω(0) or Ω(1) can be considered in the
usual way as a variable or a process on Ω. By standard properties of extensions of spaces,
W is a Wiener process on (Ω,F , (Ft)t≥0,P), and Equation (2.1) holds on this extended
space as well.

In fact, here again we need a little bit more than what precedes:

Assumption (K): We have (2.3) and further the process

αt(ω
(0)) =

∫
z2Qt(ω

(0), dz) −Xt(ω
(0))2 = E((Zt)

2 | F (0))(ω(0)) −Xt(ω
(0))2 (2.5)

is càdlàg (necessarily (F (0)
t )-adapted), and

t 7→
∫
z8Qt(ω

(0), dz) is a locally bounded process. (2.6)

Taking the 8th moment in (2.6) is certainly not optimal, but this condition is in fact
quite mild (we need in any case the second moment to be locally bounded). The really
strong requirement above is the unbiasedness condition (2.3) of the noise. If this is not
satisfied, and if we denote by Yt the process Yt =

∫
z Qt(dz), then as explained in Li

and Mykland (2007) one cannot make inference on the process X itself, but only on the
process Y , which thus should be assumed to satisfy Assumption (H). This is still a strong
assumption on the noise, as we see in one of the following examples. If this is the case,
one could replace everywhere below the process X by the process Y : so in a sense it is
natural to assume Y = X.

Example 1) If Zni = Xn
i + εni , where the sequence (εni )i≥0 is i.i.d. centered with finite

8th moment and independent of X, then (K) is obviously satisfied. 2

Example 2) Let Zni = γ[(Xn
i +εni )/γ] for some γ > 0 and (εni ) as in the previous example.

This amounts to having an additive i.i.d. noise and then taking the rounded-off value with
lag γ, for example γ = 1 cent. Then as soon as the εni are uniform over [0, γ], or more
generally uniform over [−2iγ, (2i + 1)γ] for some integer i, (K) is satisfied. If the εni have
a C2 density, with further a finite 8th moment and a support containing an interval of
length γ, then (K) is not satisfied in general but the process Y introduced above is of the
form Y = f(X) for a C2 function f , and so everything goes through if we replace X by
Y below. 2

Example 3) Let Zni = γ[Xn
i /γ] for some γ > 0 (“pure rounding”). Then the errors

Zni −Xn
i are independent, conditionally on X, but (K) is not satisfied, and the process Y

is not an Itô semimartingale, and is not even càdlàg: so nothing of what follows applies.
In fact in this case, if we observe the whole process Zt = γ[Xt/γ] over some interval [0, T ],
we can derive the local times Lxt for t ∈ [0, T ] of the process X at each level x = iγ for
i ∈ Z, but nothing else, and in particular we cannot infer the values of the process Ct.
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3 The results

We need first some notation. We choose a sequence kn of integers and a number θ ∈ (0,∞)
satisfying

kn
√

∆n = θ + o(∆1/4
n ) (3.1)

(for example kn = [θ/
√

∆n]). We also choose a function g on [0, 1], which satisfies

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,
g(0) = g(1) = 0,

∫ 1
0 g(s)

2ds > 0.

}
(3.2)

We associate with g the following numbers and functions on R+:

gni = g(i/kn), hni = gni+1 − gni , (3.3)

s ∈ [0, 1] 7→ φ1(s) =
∫ 1
s g

′(u)g′(u− s) du, φ2(s) =
∫ 1
s g(u)g(u − s) du

s > 1 7→ φ1(s) = 0, φ2(s) = 0

i, j = 1, 2 ⇒ Φij =
∫ 1
0 φi(s)φj(s) ds, ψi = φi(0).





(3.4)

Next, with any process V = (Vt)t≥0 we associate the following random variables

V n
i = Vi∆n , ∆n

i V = V n
i − V n

i−1,

V
n
i =

∑kn−1
j=1 gnj ∆n

i+jV = −∑kn−1
j=0 hnj V

n
i+j

}
(3.5)

(the two versions of V
n
i are identical because g(0) = g(1) = 0).

Recall that in our setting, we do not observe the process X, but the process Z only,
and at times i∆n. So our estimator should be based on the values Zni only, and we propose
to take

Ĉnt =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

(Z
n
i )

2 − ψ1∆n

2θ2ψ2

[t/∆n]∑

i=1

(∆n
i Z)2. (3.6)

The last term above is here to remove the bias due to the noise, but apart from that it
plays no role in the central limit theorem given below.

As we will see, these estimators are asymptotically consistent and mixed normal, and
in order to use this asymptotic result we need an estimator for the asymptotic conditional
variance. Among many possible choices, here is an estimator:

Γnt =
4Φ22

3θψ4
2

[t/∆n]−kn+1∑

i=0

(Z
n
i )

4

+
4∆n

θ3

(Φ12

ψ3
2

− Φ22ψ1

ψ4
2

) [t/∆n]−2kn+1∑

i=0

(Z
n
i )

2
i+2kn−1∑

j=i+kn

(∆n
jZ)2

+
∆n

θ3

(Φ11

ψ2
2

− 2
Φ12ψ1

ψ3
2

+
Φ22ψ

2
1

ψ4
2

) [t/∆n]−2∑

i=1

(∆n
i Z)2(∆n

i+2Z)2. (3.7)
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Theorem 3.1 Assume (H) and (K). For any fixed t > 0 the sequence 1

∆
1/4
n

(Ĉnt − Ct)

converges stably in law to a limiting variable defined on an extension of the original space,
and which is of the form

Yt =

∫ t

0
γs dBs, (3.8)

where B is a standard Wiener process independent of F and γt is the square-root of

γ2
t =

4

ψ2
2

(
Φ22θσ

4
t + 2Φ12

σ2
tαt
θ

+ Φ11
α2
t

θ3

)
. (3.9)

Moreover

Γnt
P−→

∫ t

0
γ2
s ds, (3.10)

and therefore, for any t > 0, the sequence 1

∆
1/4
n

√
Γn

t

(Ĉn − C) converges stably in law to

an N (0, 1) variable, independent of F .

Example: The simplest function g is probably

g0(x) = x ∧ (1 − x). (3.11)

In this case we have

ψ1 = 1, ψ2 =
1

12
, Φ11 =

1

6
, Φ12 =

1

96
, Φ22 =

151

80 640
(3.12)

and also, with kn even, we have

Z
n
i =

1

kn

( kn−1∑

j=kn/2

Zni+j −
kn/2−1∑

j=0

Zni+j

)
. (3.13)

Remark 1: Our estimators are in fact essentially the same as the kernel estimators in
Barndorff-Nielsen et al. (2006). With our notation the “flat top” estimators of that paper
are

K
n
t =

[t/∆n]−kn+1∑

i=kn

(∆n
i Z)2+

∑

kn≤i≤[t/∆n]−kn+1, 1≤j≤kn

k
(j − 1

kn

)(
∆n
i Z ∆n

i+jZ+∆n
i Z ∆n

i−jZ
)
,

where k is some (smooth enough) weight function on [0, 1] having k(0) = 1 and k(1) = 0,
and also k′(0) = k′(1) = 0. Then we see that

Ĉnt = K
n
t (1 + O(

√
∆n)) −

ψ1∆n

2θ2ψ2

[t/∆n]∑

i=1

(∆n
i Z)2 + border terms,

provided we take k(s) = φ2(s)/ψ2, so there is a one-to-one correspondence between the
weight functions g and k. The “border terms” are terms arising near 0 and t, because
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the two sums in the definition of K
n
t do not involve exactly the same increments of Z.

These border terms turn out to be of order ∆1/4, the same order than Ĉnt −Ct, although
they are asymptotically unbiased (but usually not asymptotically mixed normal). This
explains why our CLT is somehow simpler than the equivalent results in Barndorff-Nielsen
et al. (2006).

Remark 2: Suppose that Yt = σWt and that αt = α, where σ and α are positive
constants, and that t = 1. In this case there is an efficient parametric bound for the
asymptotic variance for estimating σ2, which is 8σ3√α, see e.g. Gloter and Jacod (2001).
On the other hand, the concrete estimators given in Barndorff-Nielsen et al. (2006) or
Podolskij and Vetter (2006) or Zhang (2006), in the i.i.d. additive noise case, have an
asymptotic variance ranging from 8.29σ3√α to 26σ3√α, upon using an “optimal” choice
of θ in (3.1). To compare with these results, here the “optimal” asymptotic variance in
the simple case (3.11), obtained for θ = 4.777

√
α /σ, is 8.545 σ3√α, quite close to the

efficient bound.

In practice we do not know how to choose θ in an optimal way (this is the drawback
of all previously quoted papers as well, and especially for the efficient estimator of Gloter
and Jacod (2001)). Moreover the existence of an “optimal” choice of θ is not even very
clear, since σ = σt and α = αt are usually random and time dependent. Nevertheless we
usually have an idea of the “average” sizes αave and σave of αt and σt: in this case one
should take θ close to 4.8

√
αave/σave.

4 Simulation results

In this section, we examine the performance of our estimator.

4.1 Simulation Design

We study the case when the weight function is taken to be g(x) = x∧ (1−x). We simulate
data for one day (t ∈ [0, 1]), and assume the data is observed once every second (n=23400).
The X processes and the market microstructure noise processes are generated from the
models below. 25000 iterations were run for each model.

Model 1 – the case of constant volatility & additive noise.

dXt = σdBt, Znti = Xn
ti + ǫnti

Parameters used: σ = 0.2/
√

252, ǫti ∼ i.i.d. N (0, 0.00052).

The observed sample path looks like this:
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Model 2 – the case of constant volatility & rounding plus error.

Xt = X0 + σWt, Uti = Uniform(0, log

(
γ⌈

exp(Xti
)

γ
⌉

γ⌊
exp(Xti

)

γ
⌋

)
), Zti = log(γ⌊ exp(Xti+Uti)

γ ⌋)

This model is similar as the two-stage contamination model studied in Li and Mykland
(2007), where the first stage of contamination is an additive error on the log prices, and
the second stage is rounding on the prices. The observed log price Zti ’s are the logarithm
of the rounded contaminated prices.

Parameters used: σ = 0.2/
√

252, X0 = log(9), γ = 0.01.

The observed log price process looks like this:
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Model 3 – Model 3 – the case of stochastic volatility & additive noise. The Heston
model (Heston (1993)) is used to generate the stochastic volatility process.

dXt = (µ− νt/2)dt + σtdBt, Zni = Xn
i + ǫni

and
dνt = κ(α− νt)dt + γν

1/2
t dWt,

where νt = σ2
t and we assume Corr(B,W ) = ρ.

Parameters used: µ = 0.05/252, κ = 5/252, α = 0.04/252, γ = 0.05/252, ρ = −0.5 and
ǫti ∼ i.i.d. N (0, 0.00052).

4.2 Simulation Results

Some initial simulations showed that our estimator is fairly robust to the choice of kn,
in other words, it performs reasonably well for a large range of kn. Since θ comes from
asymptotic statistics, it doesn’t give precise instruction about kn for small samples. On
the other hand, when computing the true asymptotic variance

∫ t
0 γ

2
sds, the θ we should

use is really kn
√

∆n. We decided to firstly fix kn to be close to the one suggested by
the optimal θ, and then re-define θ to be kn

√
∆n for further computations. In all our

simulations, we used kn = 51, which corresponds to a θ ≈ 1/3.

Table 1 reports the performance of the estimator Ĉnt and the variance estimator Γnt .
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Model 1 Model 2 Model 3

Small-sample bias

Avg(Ĉnt − C)
-1.390286e-06 -1.368032e-06 -1.329654e-06

Bias in the variance estimator

Avg(Γnt −
∫ t
0 γ

2
sds)

-1.520074e-10 -1.433976e-10 -1.385071e-10

As we will see later, the results in Model 1, where Ĉnt and Γnt are essentially normal
distributed, show the importance of a correction of these estimators, when dealing with
small sample sizes. We propose to replace the parameters ψi and φij by their finite sample
analogues, which are defined as follows:

ψkn
1 = kn

kn∑

j=1

(gnj+1 − gnj )2, ψkn
2 =

1

kn

kn−1∑

j=1

(gnj )2

φkn
1 (j) =

kn∑

j=i+1

(gni−1 − gni )(gni−j−1 − gni−j), φkn
2 (j) =

kn∑

j=i+1

gni g
n
i−j

Φkn
11 = kn

( kn−1∑

j=0

(φkn
1 (j))2 − 1

2
(φkn

1 (0))2
)

Φkn
12 =

1

kn

( kn−1∑

j=0

φkn
1 (j)φkn

2 (j) − 1

2
φkn

1 (0)φkn
2 (0))

)

Φkn
22 =

1

k3
n

( kn−1∑

j=0

(φkn
2 (j))2 − 1

2
(φkn

2 (0))2
)

As it can be seen in the proof, these parameters are the ”correct” ones, but each of them
converges at a smaller order than n−

1
4 and can therefore be replaced in the central limit

theorem. Nevertheless, for small sizes of kn the difference between each of the parameters
and its limit turns out to be substantial. A second adjustment regards the sums appearing
in the estimators. The numbers of summands are implicitly assumed to be ⌊t/∆n⌋ rather
than ⌊t/∆n⌋ − kn + 2, say. This doesn’t matter in the limit, but it is reasonable to scale
each sum by ⌊t/∆n⌋ divided by the actual number of summands to obtain better results.
However, this adjustment is of minor importance. The last step is a finite sample bias

correction due to the fact that
∑⌊t/∆n⌋

i=1 (∆n
jX)2 converges to Ct. Therefore, the latter

term in Ĉnt gives a small negative bias, which we dispose of by another scaling factor.
Summarized, the new statistics can be defined as follows:

Ĉn,adjt = (1−ψ
kn
1 ∆n

2θ2ψkn
2

)−1
( ⌊t/∆n⌋

√
∆n

(⌊t/∆n⌋ − kn + 2)θψ2
n

⌊t/∆n⌋−kn+1∑

i=0

(Z̄ni )2−ψ
kn
1 ∆n

2θ2ψkn
2

⌊t/∆n⌋∑

i=1

(∆n
jX)2

)

and

Γn,adjt = (1 − ψkn
1 ∆n

2θ2ψkn
2

)−2
( 4Φkn

22 ⌊t/∆n⌋
3θ(ψkn

2 )4(⌊t/∆n⌋ − kn + 2)

⌊t/∆n⌋−kn+1∑

i=0

(Z̄ni )4
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+
4∆n ⌊t/∆n⌋

θ3
(
⌊t/∆n⌋ − kn + 2)

(
Φkn

12

(ψkn
2 )3

− Φkn
22ψ

kn
1

(ψkn
2 )4

) ⌊t/∆n⌋−kn+1∑

i=0

(Z̄ni )2
i+2kn−1∑

j=i+kn

(∆n
jZ)2

+
∆n ⌊t/∆n⌋

θ3(⌊t/∆n⌋ − 2)

( Φkn
11

(ψkn
2 )2

− 2Φkn
12ψ

kn
1

(ψkn
2 )3

+
Φkn

22 (ψkn
1 )2

(ψkn
2 )4

) ⌊t/∆n⌋−2∑

i=1

(∆n
i Z)2(∆n

i+2Z)2
)

Table 2 reports the performance of the adjusted estimator Ĉn,adjt and the variance estima-

tor Γn,adjt .

Model 1 Model 2 Model 3

Small-sample bias

Avg(Ĉn,adjt − C)
-4.641224e-08 -1.278064e-07 1.390028e-08

Bias in the variance estimator

Avg(Γn,adjt −
∫ t
0 γ

2
sds)

5.631088e-12 1.54554e-13 2.012485e-11

Histogram of adj_C_hat

adj_C_hat
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Histogram of Ĉn,adjt , for Model 1.

We test the normality of the statistics Nn
t =

Ĉn
t −C

∆
1/4
n

√
Γn

t

and Nn,adj
t =

Ĉn,adj
t −C

∆
1/4
n

q

Γn,adj
t

, whose

quantiles are compared with the N (0, 1) quantiles:

Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

Model 1 Nn
t -0.22 1.04 1.26% 4.72% 8.32% 96.86% 98.56% 99.82%

Model 1 Nn,adj
t -0.05 1.02 0.82% 3.20% 6.08% 95.55% 97.94% 99.68%

Model 2 Nn
t -0.22 1.05 1.49% 4.96% 8.28% 97.13% 98.75% 99.87%

Model 2 Nn,adj
t -0.06 1.03 1.00% 3.65% 6.38% 95.94% 98.20% 99.80%

Model 3 Nn
t -0.21 1.05 1.32% 4.86% 8.41% 96.8% 98.66% 99.82%

Model 3 Nn,adj
t -0.05 1.03 0.84% 3.42% 6.24% 95.58% 97.99% 99.73%
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Normal Q-Q plot of Nn,adj
t for Model 1.

One of the reasons that the above quantiles don’t look good enough is that there is a
(small) positive correlation between the estimator Ĉnt and Γnt . One can adjust this effect

by using a first order Taylor expansion of Γ: expanding Γnt or Γn,adjt around the theoretical

asymptotic variance Γ0 ( 1√
Γ0

≈ 1√
Γn

t

− Γ0−Γn
t

2Γ0
3/2 ):

N0nt := Nn
t − (Γ0 − Γnt )(Ĉ

n
t − C)

2∆
1/4
n Γ

3/2
0

and

N0n,adjt := Nn,adj
t − (Γ0 − Γn,adjt )(Ĉn,adjt − C)

2∆
1/4
n Γ

3/2
0

.

The quantiles of N0nt and N0n,adjt are compared with the N (0, 1) quantiles:

Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

Model 1 N0nt -0.17 1.03 0.64% 3.27% 6.75% 95.75% 97.70% 99.47%

Model 1 N0n,adjt -0.01 1.04 0.40% 2.21% 4.81% 94.26% 96.78% 99.16%

Model 2 N0nt -0.17 1.02 0.78% 3.70% 6.91% 95.90% 97.87% 99.52%

Model 2 N0n,adjt -0.02 1.03 0.55% 2.64% 5.16% 94.46% 96.99% 99.24%

Model 3 N0nt -0.16 1.04 0.65% 3.50% 6.85% 95.71% 97.79% 99.53%

Model 3 N0n,adjt 0.00084 1.05 0.38% 2.40% 4.94% 94.06% 96.76% 99.16%
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Normal Q-Q plot of N0n,adjt for Model 1.

5 The proof

To begin with, we introduce a strengthened version of our assumptions (H) and (K):

Assumption (L): We have (H) and (K), and further the processes b, σ,
∫
z8Qt(dz) and

X itself are bounded (uniformly in (ω, t)) (then α is also bounded). 2

Then a standard localization procedure explained in details in Jacod (2006) for example
shows that for proving Theorem 3.1 it is no restriction to assume that (L) holds. Below,
we assume these stronger assumptions without further mention.

There are two separate parts in the proof. One consists in replacing in (3.6) the
observed process Z by the unobserved X, at the cost of additional terms which involve
the quadratic mean error process α of (2.5). The other part amounts to a central limit
theorem for the sums of the variables (X

n
i )

2. This is not completely standard because
(X

n
i )

2 and (X
n
j )

2 are strongly dependent when |i − j| < kn, since they involve some

common variables Xn
l , whereas kn → ∞. So for this we split the sum

∑[t/∆n]−kn+1
i=0 (X

n
i )

2

into “big” blocks of length pkn, with p eventually going to ∞, separated by “small” blocks
of length kn, which are eventually negligible but ensure the conditional independence
between the big blocks which we need for the central limit theorem.

Obviously, this scheme asks for somehow involved notation, which we present all to-
gether in the next subsection.
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5.1 Some notation.

First, K denotes a constant which changes from line to line and may depend on the bounds
of the various processes in (L), and also on supn k

2
n∆n (recall (3.1)), and is written Kr if

it depends on an additional parameter r. We also write Ou(x) for a (possibly random)
quantity smaller than Kx for some constant K as above.

In the following, and unless otherwise stated, p ≥ 1 denotes an integer and q > 0 a
real. For each n we introduce the function

gn(s) =

kn−1∑

j=1

gnj 1((j−1)∆n,j∆n](s), (5.1)

which vanishes for s > (kn − 1)∆n and s ≤ 0 and is bounded uniformly in n. We then
introduce the processes

X(n, s)t =
∫ t
0 bugn(u− s)du+

∫ t
0 σugn(u− s)dWu

C(n, s)t =
∫ t
0 σ

2
u gn(u− s)2 du.

}
(5.2)

These processes vanish for t ≤ s, and are constant in time for t ≥ s+ (kn − 1)∆n, and

X
n
i = X(n, i∆n)(i+kn)∆n

, cni :=

kn−1∑

j=1

(gnj )2∆n
i+jC = C(n, i∆n)(i+kn)∆n

. (5.3)

Next, we set

Ani,j =

i∧j+kn−1∑

m=i∨j
hnm−i h

n
m−j α

n
m, Ani = Ani,i =

kn−1∑

m=0

(hnm)2αni+m. (5.4)

Z̃ ′n
i = (Z

n
i )

2 −Ani − cni , ζ(Z, p)ni =

i+pkn−1∑

j=i

Z̃ ′n
j , (5.5)

ζ(X, p)ni =

i+pkn−1∑

j=i

(
(X

n
j )

2 − cnj

)
, ζ(W,p)ni =

i+pkn−1∑

j=i

(
(σni W

n
j )

2 − cnj

)
, (5.6)

(note the differences in the definition of ζ(V, p)ni when V = Z or V = X or V = W ).
Moreover for any process V we set

ζ ′(V, p)ni =
∑

(j,m): i≤j<m≤i+pkn−1

V
n
j V

n
m φ1

(m− j

kn

)
, (5.7)

ζ ′′(V )ni = (V
n
i )

2
i+2kn−1∑

j=i+kn

(∆n
j V )2. (5.8)
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Next we consider the discrete time filtrations Fn
j = F (0)

j∆n
⊗F (1)

j∆n− (that is, generated by

all F (0)
j∆n

-measurable variables plus all variables Zs for s < j∆n and F ′n
j = F (0) ⊗ F (1)

j∆n−
and G(p)nj = Fn

j(p+1)kn
and G′(p)nj = Fn

j(p+1)kn+pkn
, for j ∈ N, and we introduce the

variables

η(p)nj =
√

∆n

θψ2
ζ(Z, p)nj(p+1)kn

, η(p)nj = E(η(p)nj | G(p)nj )

η′(p)nj =
√

∆n

θψ2
ζ(Z, 1)nj(p+1)kn+pkn

, η′(p)nj = E(η′(p)nj | G′(p)nj ).



 (5.9)

Then jn(p, t) =
[

t+∆n
(p+1)kn∆n

]
− 1 is the maximal number of pairs of “blocks” of respective

sizes pkn and kn that can be accommodated without using data after time t, and we set

F (p)nt =
∑jn(p,t)

j=0 η(p)nj , M(p)nt =
∑jn(p,t)

j=0 (η(p)nj − η(p)nj )

F ′(p)nt =
∑jn(p,t)

j=0 η′(p)nj , M ′(p)nt =
∑jn(p,t)

j=0 (η′(p)nj − η′(p)nj ),



 (5.10)

With the notation in(p, t) = (jn(p, t)+1)(p+1)kn, we also have three “residual” processes:

Ĉ(p)nt =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=in(p,t)

Z̃ ′n
i , (5.11)

Ĉ ′(p)nt =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

Ani −
ψ1∆n

2θ2ψ2

[t/∆n]∑

i=1

(∆n
i Z)2, (5.12)

Ĉ ′′n
t =

√
∆n

θψ2

[t/∆n]−kn+1∑

i=0

cni − Ct. (5.13)

The key point of all this notation is the following identity, valid for all p ≥ 1:

Ĉnt − Ct = M(p)nt +M ′(p)nt + F (p)nt + F ′(p)nt + Ĉ(p)nt + Ĉ ′(p)nt + Ĉ ′′n
t . (5.14)

We end this subsection with some miscellaneous notation:

β(p)ni = sups,t∈[i∆n,(i+(p+2)kn)∆n]

(
|bs − bt| + |σs − σt| + |αs − αt|

)

χ(p)ni = ∆
1/4
n +

√
E((β(p)ni )

2 | Fn
i ).



 (5.15)

Ξij = −
∫ 1

0
sφi(s)φj(s) ds. (5.16)

5.2 Estimates for the Wiener process.

This subsection is devoted to proving the following result about the Wiener process:
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Lemma 5.1 We have

E((ζ(W,p)ni )
2 | Fn

i ) = 4(pΦ22 + Ξ22) k
4
n∆

2
n(σ

n
i )4 + Ou(p

2χ(p)ni ), (5.17)

E

(
ζ ′(W,p)ni | Fn

i

)
= (pΦ12 + Ξ12)k

3
n∆n + Ou(p∆

−1/4
n ). (5.18)

Proof. 1) Since g(0) = g(1) = 0 we have
∫ 1
0 g

′(s)ds = 0. We introduce the process

Ut = −
∫ 1

0
g′(s)Wt+sds = −

∫ t+1

t
g′(s− t)Wsds = −

∫ 1

0
g′(s)(Wt+s −Wt)ds, (5.19)

which is stationary centered Gaussian with covariance E(UtUt+s) = φ2(s), as given by
(3.4). The scaling property of W and (3.5) and g(0) = g(1) = 0 imply that

(
W

n
i

)
i≥1

L
=


−

√
kn∆n

kn−1∑

j=0

(
g
(j + 1

kn

)
− g
( j
kn

))
W(i+j)/kn



i≥1

.

Then (3.2) and the fact that E(supu∈[0,s] |Wt+u−Wt|q) ≤ Kqs
q/2, plus a standard approx-

imation of an integral by Riemann sums, yield

(
W

n
i

)
i≥1

L
=
(√

kn∆n Ui/kn
+Rni

)

j≥0
, E(|Rni |q) ≤ Kq∆

q/2
n . (5.20)

where the last estimate holds for all q > 0. Then in view of (3.1) we get for j ≥ i:

E

(
W

n
iW

n
j | Fn

i

)
= kn∆nφ2

(
j−i
kn

)
+ Ou(∆

3/4
n )

E

(
(W

n
i )

4 | Fn
i

)
= 3k2

n∆
2
nψ

2
2 + Ou(∆

5/4
n ).



 (5.21)

At this stage, (5.18) is obvious.

2) We have

(ζ(W,p)ni )
2 = (σni )4Vn(i, p)

2 + V ′
n(i, p)

2 − 2(σni )2Vn(i, p)V
′
n(i, p), (5.22)

where

Vn(i, p) =

i+pkn−1∑

j=i

(W
n
j )

2, V ′
n(i, p) =

i+pkn−1∑

j=i

cnj .

On the one hand, we deduce from (5.3) that if i ≤ j ≤ i+ (p+ 1)kn,

cnj = ψ2kn∆n(σ
n
i )2 + Ou(∆n +

√
∆n β(p)ni ). (5.23)

Then obviously

V ′
n(i, p) = ψ2(σ

n
i )2pk2

n∆n + Ou(p
√

∆n + p β(p)ni ). (5.24)
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On the other hand, another application of (5.20) and of the approximation of an
integral by Riemann sums, plus the fact that E(supu∈[0,s] |Ut+u−Ut|q) ≤ Kqs

q (this easily
follows from (5.19)), yield for any p ≥ 1:

Vn(i, p)
L
= k2

n∆n

∫ p

0
(Us)

2ds+R(p)ni , E(|R(p)ni |q) ≤ Kqp
q∆q/4

n . (5.25)

Since E(UtUt+s) = φ2(s), that for p ≥ 2 the variable Up =
∫ p
0 (Us)

2ds satisfies

E(Up) = pψ2, E(U
2
p) = p2ψ2

2 + 4pΦ22 + 4Ξ22.

Then (5.25) yields

E(Vn(i, p) | Fn
i ) = pk2

n∆nψ2 + Ou(p∆
1/4
n )

E(Vn(i, p)
2 | Fn

i ) = (p2ψ2
2 + 4pΦ22 + 4Ξ22) k

4
n∆

2
n + Ou(p

2∆
1/4
n ).



 (5.26)

Combining (5.24) and (5.26) with (5.22), we immediately get (5.17). 2

5.3 Estimates for the process X.

Here we give estimates on the process X. The assumption (L) implies that for all s, t ≥ 0
and q > 0,

E

(
supu,v∈[t,t+s] |Xu −Xv|q | Ft

)
≤ Kq s

q/2

∣∣∣E(Xt+s −Xt | Ft)
∣∣∣ ≤ Ks.



 (5.27)

Then, since |hnj | ≤ K/kn and
∑kn−1

j=0 hnj = 0 for the second inequality below, we have

E

(
|∆n

i+1X|q | Fn
i

)
≤ Kq∆

q/2
n , E

(
|Xn

i |q | Fn
i

)
≤ Kq∆

q/4
n . (5.28)

An elementary consequence is the following set of inequalities (use also |cni | ≤ K
√

∆n for
the first one):

E

(
(ζ(X, p)ni )

4 | Fn
i

)
≤ Kp, E

(
ζ ′′(X)ni | Fn

i

)
≤ K∆n. (5.29)

Here and below, as mentioned before, the constant Kp depends on p, and it typically goes
to ∞ as p → ∞ (in this particular instance, we have Kp = Kp4); what is important is
that it does not depend on n, nor on i.

(5.29) is not enough, and we need more precise estimates on ζ(X, p)ni and ζ ′(X, p)ni ,
given in the following two lemmas.

Lemma 5.2 We have
∣∣∣E(ζ(X, p)ni | Fn

i )
∣∣∣ ≤ Kp∆1/4

n χ(p)ni . (5.30)
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Proof. Observe that, similar to (5.27),

E

(
sup
t≥0

|X(n, s)t|q | Fs
)

≤ Kq∆
q/4
n ,

∣∣∣E(X(n, s)t | Fs)
∣∣∣ ≤ K

√
∆n. (5.31)

Let us define the processes

M(n, s)t = 2
∫ t
0 X(n, s)u σu gn(u− s) dWu,

B(n, s)t = 2
∫ t
0 X(n, s)u bu gn(u− s)du.

}

Then M(n, s) is a martingale, and by Itô’s formula X(n, s)2 = B(n, s)+C(n, s)+M(n, s).
Hence, since E(χ(1)nj | Fn

i ) ≤ χ(p)ni when i ≤ j ≤ i+ (p+ 1)kn, (5.30) is implied by

∣∣∣E(B(n, j∆n)(i+kn)∆n
| Fn

j )
∣∣∣ ≤ K∆3/4

n χ(1)nj .

For this we write B(n, i∆n)(i+kn)∆n
= Un + Vn, where

Un = bnj

∫ (j+kn)∆n

j∆n

X(n, j∆n)u gn(u− j∆n) du,

Vn =

∫ (j+kn)∆n

j∆n

X(n, j∆n)u (bu − bnj ) gn(u− i∆n) du.

On the one hand, the second part of (5.31) yields that
∣∣∣E(Un | Fn

j )
∣∣∣ ≤ K∆n ≤ K∆

3/4
n χ(p)nj .

On the other hand, we have |Vn| ≤ K
√

∆n β(1)ni supt≥0 |X(n, j∆n)t|, hence the first part

of (5.31) and Cauchy-Schwarz inequality yield E(|Vn| | Fn
j ) ≤ K∆

3/4
n χ(1)nj , and the result

follows. 2

Lemma 5.3 We have
∣∣∣E
(
(ζ(X, p)ni )

2 | Fn
i

)
− 4(pΦ22 + Ξ22) k

4
n∆

2
n(σ

n
i )4
∣∣∣ ≤ Kpχ(p)ni∣∣∣E

(
ζ ′(p,X)ni | Fn

i

)
− (pΦ12 + Ξ12)k

3
n∆n(σ

n
i )2
∣∣∣ ≤ Kp∆

−1/2
n χ(p)ni ).



 (5.32)

Proof. The method is rather different from the previous lemma, and based upon the
property that for i∆n ≤ t ≤ s ≤ (i+ (p+ 2)kn)∆n we have

E

(
sup

u,v∈[t,t+s]

∣∣∣Xu −Xv − σt(Wu −Wv)
∣∣∣
q
| Fn

i

)
≤ Kp,qs

q/2
(
sq/2 + E((β(p)ni )

q | Fn
i )
)
.

We deduce that for i ≤ j, l ≤ i+ (p+ 2)kn we have

E

(∣∣∣Xn
j −Xn

l − σt(W
n
j −W n

l )
∣∣∣
q
| Fn

i

)
≤ Kp,q ∆q/4

n

(
∆q/4
n + E((β(p)ni )

q | Fn
i )
)
. (5.33)

Now, V
n
j =

∑kn−1
l=0 hnl (V

n
j+l− V n

j ) and |hnj | ≤ K/kn, by using Hölder inequality and (5.28)
we get for s a positive integer

E

(∣∣∣(Xn
j )
s − (σni W

n
j )
s
∣∣∣
q
| Fn

i

)
≤ Kp,q,s ∆sq/4

n

(
∆q/4
n + E((β(p)ni )

q | Fn
i )
)
. (5.34)
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By (5.7), this for s = 1 and q = 2, plus (5.28) and Cauchy-Schwarz inequality, yield

E
(∣∣∣ζ ′(X, p)ni − (σni )2ζ ′(W,p)ni

∣∣∣ | Fn
i

)
≤ Kp ∆−1/2

n χ(p)ni .

In a similar way, and in view of (5.6), we apply (5.34) with s = 2 and q = 2 to get

E

(∣∣∣ζ(X, p)ni − ζ(W,p)ni

∣∣∣
2
| Fn

i

)
≤ Kp (χ(p)ni )

2, (5.35)

which yields (use (5.29) and Cauchy-Schwarz inequality):

E

(∣∣∣(ζ(X, p)ni )2 − (ζ(W,p)ni )
2
∣∣∣ | Fn

i

)
≤ Kp χ(p)ni .

At this stage, the result readily follows from Lemma 5.1. 2

5.4 Estimates for the process Z.

Now we turn to the observed process Z, and relate the moments of the variables Z
n
j ,

conditional on F (0), with the corresponding powers of X
n
j . To begin with, and since

|hnj | ≤ K/kn and α is bounded, and by the rate of approximation of the integral of a
piecewise Lipschitz function by Riemann sums, the following properties are obvious:

|Ani,j| ≤ K
√

∆n

|j − i| ≥ kn ⇒ Ani,j = 0

i ≤ j ≤ m ≤ i+ (p+ 1)kn ⇒
Anj,m = αni

1
kn

φ1

(
m−j
kn

)
+ Ou(p∆n +

√
∆n β(p)ni )

∑
(j,m): i≤j<m≤i+pkn−1(A

n
j,m)2 = (αni )

2(pΦ11 + Ξ11) + Ou

(
p3
√

∆n + pβ(p)ni

)
.





(5.36)

Next, we give estimates for the F (0)-conditional expectations of various functions of Z.
Because of the F (0)-conditional independence of the variables Zt −Xt for different values

of t, and because of (2.3), the conditional expectation E((Zt−Xt)(Zs−Xs) | F (0) ⊗F (1)
s− )

vanishes if s < t and equals αt if s = t. Then, recalling (2.5) and (5.4),

E

(
Z
n
i −X

n
i | F ′n

i

)
= 0

E

(
(Z

n
i −X

n
i )(Z

n
j −X

n
j ) | F ′n

i∧j

)
= Ani,j.



 (5.37)

More generally, E

(
Πq
m=1h

n
jm

(Zni+jm −Xn
i+jm

) | Fn
i+j1

)
= 0 as soon as there is one jm which

is different from all the others, and moreover |hnj | ≤ K
√

∆n, whereas the moments (2.6)

are bounded for q ≤ 8. Then if we write (Z
n
i −X

n
i )
q as the sum of Πq

m=1h
n
jm

(Zni+jm−Xn
i+jm

)
over all choices of integers jl between 0 and kn − 1, we see that for r, q integers we have

E

(
(Z

n
i −X

n
i )
q(Z

n
j−X

n
j )
r | F ′n

i∧j
)

=





Ou(∆n) if q + r = 3

Ani A
n
j + 2(Ani,j)

2 + Ou(∆
3/2
n ) if q = r = 2

Ou(∆
2
n) if q + r = 8.

(5.38)
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Now, if we expand the first members of (5.38), and in view of (5.36) and (5.5) and of
|cni | ≤ K

√
∆n, we deduce from (5.37) and (5.38) that for j ≥ i:

E

(
Z̃ ′n
i | F ′n

i

)
= (X

n
i )

2 − cni , E

(
|Z̃ ′n
i | | F ′n

i

)
= (X

n
i )

2 + Ou(
√

∆n)

E

(
Z̃ ′n
i Z̃

′n
j | F (0)

)
= ((X

n
i )

2 − cni )((X
n
j )

2 − cnj ) + 4X
n
i X

n
jA

n
i,j + 2(Ani,j)

2

+Ou

(
∆

3/2
n + ∆n|Xn

i | + ∆n|Xn
j |
)

E

(
(Z̃ ′n

i )4 | Fn
i

)
≤ K(∆2

n + |Xn
i |8),





(5.39)

Then obviously this, combined with (5.28) and (5.30), yields

E(ζ(Z, p)ni | F ′n
i ) = ζ(X, p)ni

E((ζ(Z, p)ni )
4 | Fn

i ) ≤ Kp∣∣∣E(ζ(Z, p)ni | F ′n
i )
∣∣∣ ≤ Kp∆

1/4
n χ(p)ni .





(5.40)

and also, in view of (5.36),

E((ζ(Z, p)ni )
2 | F ′n

i ) = (ζ(X, p)ni )
2 +

8

kn
αni ζ

′(X, p)ni + 4(αni )
2(pΦ11 + Ξ11)

+p3Ou

((√
∆n + β(p)ni

)(
1 +

i+pkn−1∑

j=i

|Xn
j |2
))
.

Then, using (5.28) again and (5.32) and Hölder inequality, we get
∣∣∣E((ζ(Z, p)ni )

2 | Fn
i ) − 4(pΦ22 + Ξ22)k

4
n∆

2
n(σ

n
i )4

−8αni (σ
n
i )2(pΦ12 + Ξ12)k

2
n∆n − 4(αni )

2(pΦ11 + Ξ11)
∣∣∣ ≤ Kp χ(p)ni . (5.41)

We need some other estimates. Exactly as for (5.39) one sees that

E

(
(Z

n
i )

4 | F ′n
i

)
= (X

n
i )

4 + 6(X
n
i )

2Ani + 3(Ani )
2 + Ou

(
∆

3/2
n + ∆n|Xn

i |
)

E

(
(Z

n
i )

8 | F ′n
i

)
≤ K(∆2

n + |Xn
i |8)



 (5.42)

and (using the boundedness of X)

E

(
ζ ′′(Z)ni | F ′n

i

)
= ζ ′′(X)ni +Ani

∑i+2kn
j=i+kn+1(∆

n
jX)2

+((X
n
i )

2 +Ani )
∑i+2kn

j=i+kn+1(α
n
j−1 + αnj ),

E

(
(ζ ′′(Z)ni )

2 | F ′n
i

)
≤ K.





(5.43)

Therefore, using (5.28), (5.29), (5.36), (5.21), and (5.34) with s = 2, we obtain

∣∣∣E((Z
n
i )

4 | Fn
i ) − 3k2

n∆
2
nψ

2
2(σ

n
i )4 − 6∆n(σ

n
i )2αni ψ1ψ2 −

3

k2
n

(αni )
2ψ2

1

∣∣∣ ≤ K∆nχ(1)ni (5.44)

∣∣∣E(ζ ′′(Z)ni | Fn
i ) − 2αni (ψ1α

n
i + ψ2k

2
n∆n(σ

n
i )2αni )

∣∣∣ ≤ Kχ(1)ni . (5.45)
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Finally, the following is obtained in the same way, but it is much simpler:

E((∆n
i+1Z)2 | F ′n

i ) = (∆n
i+1X)2 + αni + αni+1∣∣∣E((∆n

i+1Z)2(∆n
i+3Z)2 | Fn

i ) − 4(αni )
2
∣∣∣ ≤ Kχ(1)ni

E((∆n
i+1Z)4(∆n

i+3Z)4 | Fn
i ) ≤ K.





(5.46)

5.5 Proof of the theorem.

We begin the proof of Theorem 3.1 with an auxiliary technical result.

Lemma 5.4 For any p ≥ 1 we have

E

(√
∆n

∑jn(p,t)
j=0

√
E((β(p)nj(p+1)kn

)2 | Fn
j(p+1)kn

)
)

→ 0

E

(√
∆n

∑jn(p,t)
j=0 (β(p)nj(p+1)kn

)2
)

→ 0.



 (5.47)

Proof. We have jn(p, t) ≤ Kpt/
√

∆n. Then the first expression in (5.47) is smaller than
a constant times the square-root of the second expression, and thus for (5.47) it suffices
to prove that

E

(√
∆n

jn(p,t)∑

j=0

(β(p)nj(p+1)kn
)2
)

→ 0. (5.48)

Let ε > 0 and denote by N(ε)t the number of jumps of any of the three processes b, σ or
α, with size bigger than ε, over the interval [0, t], and set ρ(ε, t, η) to be the supremum of
|bs − br| + |σs − σr| + |αs − αr| over all pairs (s, r) such that s ≤ r ≤ s + η ≤ t and such
that the interval (s, r] contains no jump of b, σ or α of size bigger than ε. Then obviously,
since all three processes b, σ, α are bounded,

√
∆n

jn(p,t)∑

j=0

(β(p)nj(p+1)kn
)2 ≤

(
KN(ε)t

√
∆n

)
∧ (Kpt) +Kp t ρ(ε, t, (p + 1)kn∆n)

2.

Moreover lim supη→0 ρ(ε, t, η) ≤ 3ε. Then Fatou’s lemma yields that the lim sup of the
left side of (5.48) is smaller than Kptε

2, and the result follows. 2

The proof of the first part of the theorem is based on the identity (5.14), valid for all
integers p ≥ 1. The right side of this decomposition contains two “main” terms M(p)nt
and M ′(p)nt , and all others are taken care of in Lemmas 5.5 and 5.6 below:

Lemma 5.5 For any fixed p ≥ 1 we have:

∆−1/4
n F (p)nt

P−→ 0 (5.49)

∆−1/4
n F ′(p)nt

P−→ 0 (5.50)

∆−1/4
n Ĉ(p)nt

P−→ 0 (5.51)

∆−1/4
n Ĉ ′′n

t
P−→ 0. (5.52)
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Proof. In view of (5.9) and (5.10), the proof of both (5.49) and (5.50) is a trivial
consequence of (5.40) and of Lemmas 5.2 and 5.4. Since the right side of (5.11) contains

at most Kp/
√

∆n summands, each one having expectation less than K∆
1/2
n by the last

part of (5.39) and (5.28), we immediately get (5.51).

In view of (5.3), and with the notation an =
∑kn−1

j=1 (gnj )2, we see that

[t/∆n]−kn+1∑

i=0

cni =

[t/∆n]−kn+1∑

i=0

i+kn−1∑

l=i+1

(gnl−i)
2∆n

l C

=

[t/∆n]∑

l=1

∆n
l C

l∧(kn−1)∑

j=1∨(l+kn−1−[t/∆n])

(gnj )2 = an

[t/∆n]−kn+2∑

l=kn−1

∆n
l C + Ou(1).

It follows that Ĉ ′n
t =

(√
∆n

θψ2
an − 1

)
+ Ou(

√
∆n). Since by Riemann approximation we

have an = knψ2 + Ou(1), we readily deduce (5.52) from (3.1). 2

Lemma 5.6 For any fixed p ≥ 1 we have ∆
−1/4
n Ĉ ′(p)nt

P−→ 0.

Proof. Let ζni = (∆n
i Z)2−(αni−1+αni ). We get by (5.28) and (5.46), and for 1 ≤ i ≤ j−2:

E(ζni ) = E((∆n
i X)2) = Ou(∆n), E(ζni ζ

n
j ) = E((∆n

i X)2(∆n
jX)2) = Ou(∆

2
n),

and also E(|ζni |2) ≤ K. Then obviously E
((∑[t/∆n]

i=1 ζni

)2)
≤ K/∆n, and it follows that

Gn :=
ψ1∆

3/4
n

2θ2ψ2

[t/∆n]∑

i=1

ζni
P−→ 0.

It is then enough to prove that 1

∆
1/4
n

Ĉ ′(p)nt +Gn
P−→ 0. Observe that by an elementary

calculation, 1

∆
1/4
n

Ĉ ′(p)nt +Gn = Un + Vn, where

Un =

(
∆

1/4
n

θψ2

( kn−1∑

l=0

(hnl )
2
)
− ψ1∆

3/4
n

θ2ψ2

) ( in(p,t)−1∑

i=kn

αni

)
,

Vn =
∆

1/4
n

θψ2



kn−1∑

i=0

αni

i∑

l=0

(hnl )
2 +

in(p,t)+kn−2∑

i=in(p,t)

αni

kn−1∑

l=i+1−in(p,t)

(hnl )
2




−ψ1∆
3/4
n

2θ2ψ2


αn0 + 2

kn−1∑

i=1

αni + 2

[t/∆n]−1∑

i=in(p,t)

αni + αn[t/∆n]


 .

On the one hand, since αt is bounded and |hnl | ≤ K
√

∆n it is obvious that |Vn| ≤
K∆

1/4
n . On the other hand,

∑kn−1
l=0 (hnl )

2 = ψ1

kn
+O(∆n), whereas

∑in(p,t)−1
i=kn

αni ≤ K/∆n,
so by (3.1)), we see that Un → 0 pointwise. Then it finishes the proof. 2
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Now we study the main terms M(p)nt and M ′(p)nt in (5.14). Those terms are (dis-
cretised) sums of martingale differences (note that η(p)nj and η′(p)nj ) are measurable with
respect to G(p)nj+1 and G′(p)nj+1 respectively).

By Doob’s inequality we have

E

(
sup
s≤t

|M ′(p)ns |2
)

≤ 4

jn(p,t)∑

j=0

E(|η′(p)nj |2).

Now, (5.41) for p = 1 and the boundedness of χ(1)ni imply E(|η′(p)nj |2) ≤ K∆n, and thus

(recall jn(p, t) ≤ Kt/p
√

∆n):

E

(
sup
s≤t

|M ′(p)ns |2
)

≤ Kt

p

√
∆n. (5.53)

Lemma 5.7 For any fixed p ≥ 2, the sequence 1

∆
1/4
n

M(p)n of processes converges stably

in law to

Y (p)t =

∫ t

0
γ(p)sdBs, (5.54)

where B is like in Theorem 3.1 and γ(p)t is the square root of

γ(p)2t =
4

ψ2
2

(( p

p+ 1
Φ22 +

1

p+ 1
Ψ22

)
θσ4

t + 2
( p

p+ 1
Φ12 +

1

p+ 1
Ψ12

)σ2
t αt
θ

+
( p

p+ 1
Φ11 +

1

p+ 1
Ψ11

)α2
t

θ3

)
(5.55)

Proof. 1) In view of a standard limit theorem for triangular arrays of martingale differ-
ences, it suffices to prove the following three convergences:

1√
∆n

jn(p,t)∑

j=0

(
E((η(p)nj )

2 | G(p)nj ) − (η(p)nj )
2
)

P−→
∫ t

0
γ(p)2s ds, (5.56)

1

∆n

jn(p,t)∑

j=0

E((η(p)nj )
4 | G(p)nj )

P−→ 0, (5.57)

1

∆
1/4
n

jn(p,t)∑

j=0

E(η(p)nj ∆(N, p)nj | G(p)nj )
P−→ 0, (5.58)

where ∆(V, p)nj = Vj(p+1)kn∆n
−V(j−1)(p+2)kn∆n

for any process V , and where (5.58) should
hold for all bounded martingales N which are orthogonal to W , and also for N = W . The
last property is as stated as in Jacod and Shiryaev (2003). However, a look at the proof
in Jacod and Shiryaev (2003) shows that it is enough to have it for N = W , and for all N
in a set N of bounded martingales which are orthogonal to W and such that the family
(N∞ : N ∈ N ) is total in the space L1(Ω,F ,P). A suitable such set N will be described
later.
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2) Since jn(p, t) ≤ Kt/p
√

∆n, (5.57) trivially follows from (5.40), whereas (5.56) is an
immediate consequence of (5.41) and of a Riemann sums argument.

3) The proof of (5.58) is much more involved, and we begin by proving that

∆1/4
n

jn(p,t)∑

j=0

anj
P−→ 0, where anj = E(ζ(W,p)nj(p+1)kn

∆(N, p)nj | G(p)nj ). (5.59)

We have ζ(W,p)ni = (σni )2Vn(i, p) − V ′
n(i, p) (see after (5.22)), and we set

δnj = E(Vn(j(p + 1)kn, p) ∆(N, p)nj | G(p)nj ),

δ′nj = E(V ′
n(j(p + 1)kn, p) ∆(N, p)nj | G(p)nj ).

When N = W , the variable δnj is the Fj(p+1)kn∆n
-conditional expectation of an odd

function of the increments of the process W after time j(p + 2)kn∆n, hence it vanishes.
Suppose now that N is a bounded martingale, orthogonal to W . By Itô’s formula we
see that (W

n
j )

2 is the sum of a constant (depending on n) and of a martingale which is
a stochastic integral with respect to W , on the interval [j∆n, (j + kn)∆n]. Hence δnj is
the sum of a constant plus a martingale which is a stochastic integral with respect to W ,
on the interval [j(p + 1)kn∆n, (j + 1)(p + 1)kn∆n]. Then the orthogonality of N and W
implies δnj = 0 again. Hence in both cases we have δnj = 0.

Since anj = (σnj(p+1)kn
)2δni − δ′ni , (5.59) will follow if we prove

∆1/4
n

jn(p,t)∑

j=0

|δ′nj | P−→ 0. (5.60)

For this we use (5.23). Since N is a martingale, we deduce (using Cauchy-Schwarz in-
equality) that

|δ′nj | ≤ Kp χ(p)nj(p+1)kn

√
E(∆(F, p)nj | G(p)nj ), (5.61)

where F = 〈N,N〉 (the predictable bracket of N). Then the expected value of the left
side of (5.60) is smaller than the square-root of

E(Ft) E

(√
∆n

jn(p,t)∑

j=0

E((β(p)nj(p+1)kn
)2
)
,

and we conclude by Lemma 5.4.

4) In this step we prove that

∆1/4
n

jn(p,t)∑

j=0

a′nj
P−→ 0, where a′nj = E(ζ(X, p)nj(p+2)kn

∆(N, p)nj | G(p)nj ). (5.62)

Then by Cauchy-Schwarz inequality and (5.35) we see that |a′nj − anj | satisfies the same
estimate than |δ′nj | in (5.61). Hence we deduce (5.62) from (5.59) like in the previous step.
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5) It remains to deduce (5.58) from (5.62), and for this we have to specify the set N .
This set N is the union of N 0 and N 1, where N 0 is the set of all bounded martingales

on (Ω(0),F (0), (F (0)
t ),P(0)), orthogonal to W , and N 1 is the set of all martingales having

N∞ = f(Zt1 , · · · , Ztq), where f is any Borel bounded on Rq and t1 < · · · < tq and q ≥ 1.

When N is either W or is in N 0, then by (5.40) the left sides of (5.58) and of (5.62)
agree, so in this case (5.58) holds. Next, suppose that N is in N 1, associated with the
integer q and the function f as above. In view of (2.4) it is easy to check that N takes the
following form (by convention t0 = 0 and tq+1 = ∞):

tl ≤ t < tl+1 ⇒ Nt = M(l;Zt1 , · · · , Ztl)t

for l = 0, · · · , q, and where M(l; z1, · · · , zl) is a version of the martingale

M(l; z1, · · · , zl)t = E(0)
(∫ q∏

r=l+1

Qtr(dzr)f(z1, · · · , zl, zl+1, · · · , zq) | F (0)
t )

(with obvious conventions when l = 0 and l = q), which is measurable in (z1, · · · , zl, ω(0)).
Then

E((ζ(Z, p)j(p+1)kn
− ζ(X, p)j(p+1)kn

) ∆(N, p)nj | G(p)nj )) = 0 (5.63)

by (5.40) when the interval (j(p + 1)kn∆n, (j(p + 1) + 1)kn∆n] contains no point tl. Fur-
thermore, the left side of (5.63) is always smaller in absolute value than Kp (use (5.29) and
(5.40) and the boundedness of N). Since we have only q intervals (j(p + 2)kn∆n, (j(p +
1) + 2)kn∆n] containing points tl, at most, we deduce from this fact and from (5.63) that

∣∣∣
θψ2

∆
1/4
n

jn(p,t)∑

j=0

E(η(p)nj ∆(N, p)nj | G(p)nj ) − ∆1/4
n

jn(p,t)∑

j=0

a′nj

∣∣∣ ≤ qKp∆
1/4
n ,

and (5.58) readily follows from (5.62). 2

Now we can proceed to the proof of the first claim of Theorem 3.1. We have

1

∆
1/4
n

(Ĉnt − Ct) =
1

∆
1/4
n

M(p)nt + V (p)nt ,

where

V (p)nt =
1

∆
1/4
n

(
M ′(p)nt + F (p)nt + F ′(p)nt + Ĉ(p)nt + Ĉ ′(p)nt + Ĉ ′′n

t

)
.

On the one hand, Lemmas 5.5, Lemma 5.6 and (5.53) yield

lim
p→∞

lim sup
n→∞

P

(
|V (p)nt | > ε

)
= 0

for all ε > 0. On the other hand, we fix the Brownian motion B, independent of F .
Since γ(p)t(ω) converges pointwise to γt(ω) and stays bounded by (5.55), it is obvious
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that Y (p)t
P−→ Yt (recall ((3.8) and (5.54) for Y and Y (p)). Then the result follows from

(5.54) in a standard way.

It remains to prove (3.10). We set for r = 1, 2, 3:

Γ(r)nt =
∑

i∈I(r,n,t)
u(r)ni , (5.64)

where

I(r, n, t) =





{0, 1, · · · , [t/∆n] − kn + 1} if r = 1
{0, 1, · · · , [t/∆n] − 2kn + 1} if r = 2
{0, 1, · · · , [t/∆n] − 3} if r = 3

and

u(1)ni = (Z
n
i )

4, u(2)ni = ∆nζ
′′(Z)ni , u(3)ni = ∆n(∆

n
i+1Z)2(∆n

i+3Z)2.

(Note the different summations ranges I(r, n, t), which ensure that we take into account
all variables ζ(r)ni which are observable up to time t, and not more.)

Then a simple computation shows that (3.10) is implied by

Γ(r)nt
P−→ Γ(r)t :=

∫ t

0
γ(r)sds (5.65)

for r = 1, 2, 3, where

γ(1)t = 3θ2ψ2
2σ

4
t + 6ψ1ψ2σ

2
t αt +

3

θ2
ψ2

1α
2
t

γ(2)t = 2θ2ψ2σ
2
t αt + 2ψ1α

2
t

γ(3)t = 4α2
t .

We set u′(r)ni = E(u(r)ni | Fn
i ), and we denote by Γ′(r)nt for r = 1, 2, 3 the processes

defined by (5.64), with u(r)ni substituted with u′(r)ni . Then we have Γ′(r)nt
P−→ Γ(r)t for

r = 1, 2, 3: this is a trivial consequence of (5.44), (5.45) and (5.46) and of an approximation

of an integral by Riemann sums. Hence it remains to prove that Γ(r)nt − Γ′(r)nt
P−→ 0, a

result obviously implied by the following convergence:

∑

i,j∈I(r,n,t)
v(r, n, i, j) → 0, where v(r, n, i, j) =

(
(u(r)ni −u′(r)ni )(u(r)nj −u′(r)nj )

)
. (5.66)

We have |v(r, n, i, j)| ≤ K∆2
n by (5.42) for r = 1, by (5.43) for r = 2 and by (5.46) for

r = 3. Further v(1, n, i, j) = 0 when |j − i| ≥ kn, and v(2, n, i, j) = 0 when |j − i| ≥ 2kn,
and v(3, n, i, j) = 0 when |j − i| ≥ 5, so (5.66) holds in all cases.
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