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Abstract

We develop the asymptotic theory for the realised power variation of the processes
X = ¢ o G, where G is a Gaussian process with stationary increments. More specifically,
under some mild assumptions on the variance function of the increments of G and certain
regularity condition on the path of the process ¢ we prove the convergence in probability
for the properly normalised realised power variation. Moreover, under a further assumption
on the Holder index of the path of ¢, we show an associated stable central limit theorem.
The main tool is a general central limit theorem, due essentially to Hu & Nualart (2005),
Nualart & Peccati (2005) and Peccati & Tudor (2005), for sequences of random variables

which admit a chaos representation.
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1 Introduction

This paper establishes results on convergence in probability and in law stably for (properly
normalised) realised power variations of processes of the form X = ¢eG. Here G is a Gausssian
process with stationary increments whose increments have a variance function that satisfies
certain regularity conditions, and G and the process ¢ are defined on one and the same filtered
probability space. The special case of ¢ @ G where ¢ is a constant and G is itself stationary
was treated in an early paper [17].

In general, processes of type ¢ e G are not semimartingales and the proofs of the limit
results use the theory of isonormal processes and techniques developed in [15] for deriving
similar limit results for processes ¢ ¢ B¥ where B denotes fractional Brownian motion. For
Itd6 semimartingales, both one- and multi-dimensional, an extensive theory of realised power
and multipower variations is available. For discussions of this theory and its applications, see
2], 3], [5],[6], [7], 8], [9], [10], [19], [21], [29] and [30]. General and sharp criteria for when a
process of the form ¢ e G is a semimartingale are available in [11] and [12].

Section 2 sets up the problem and exemplifies the kind of processes G to which the theory
applies, and the convergence in probability and central limit results for processes ¢ e G are
given in Sections 3 and 5, respectively. Section 4 derives a multivariate central limit theorem
(via chaos expansions) which should be of wide general interest. In particular it covers in-
fill asymptotics (or triangular array schemes). The main building blocks in the theorem are
contained in the recent papers [18], [24] and [26]. The concluding Section 6 indicates lines for

further research. Most of the proofs are relegated to an Appendix.

2 The setting

We start with a Gaussian process (G¢):i>o defined on a filtered complete probability space
(Q, F, (Ft)t=0, P), which has centered and stationary increments. We define R as the variance

function of the increments of G, i.e.
R(t) = E[|Gsyt — GsJ] t>0. (2.1)

In this paper we consider a process of the form

t
Xy = Xo+ / b, dGy (2.2)
0

defined on the same probability space as GG, which is assumed to be observed at time points i/n,
i=0,1,...,[nt]. We are interested in the asymptotic behaviour of the (properly normalized)

realised power variation

]
> lAarxpP, (2.3)
i=1
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with A?X = X: — Xi1, for p > 0.

Before we p:oceed ;Lvith the asymptotic results for the functionals defined in (2.3) we need
to ensure that the integral in (2.2) is well-defined in a suitable sense. For this purpose we use
the concept of a pathwise Riemann-Stieltjes integral.

Recall that for a real-valued function f : [0,¢] — IR the r-variation is defined as

n 1/r
var, (f310,4)) = sup (Y2 1f(t) = ft-n)l") " (2.4)
T =1
where the supremum is taken over all partitions 7 = {0 =t < t; < ... < t,, = t}. Trivially,

when f is a-Holder continuous it has finite 1/a-variation on any compact interval. In this case

we set
Iflle= sup =T (25)
o<s<u<t |5 —ul
In [31] it is shown that the Riemann-Stieltjes integral f(f f(s)dg(s) exists if f and ¢ have finite
g-variation and r-variation, respectively, in the interval [0, ], where 1/r 4+ 1/g > 1, and these
functions have no common discontinuities.
In order to give a statement about r-variation of the Gaussian process G we require the

following assumption on the behaviour of the function R defined in (2.1).

(A1) R(t) = tPLy(t) for some B € (0,2) and some positive slowly varying (at 0) function

Ly, which is continuous on (0, 00).

Recall that a function L : (0,00) — IR is called slowly varying at 0 when the identity

lim L(t)

=1 (2.6)
holds for any fixed ¢t > 0. Provided L is continuous on (0, c0), we have
|L(z)| < Caz™¢ x € (0,t] (2.7)

for any @ > 0 and any ¢ > 0 (where the constant C' > 0 depends on « and t). See [14] (Page 16)

for similar properties of slowly varying functions at co. Assumption (A1) implies the identity
E(|G: = Gy = |t — s|"Lo(lt — s) , (2.8)

from which we deduce (by (2.7)) that the trajectories of G are (5/2 — €)-Holder continuous
(almost surely) for any e € (0,3/2). Clearly, G has finite r-variation for any r > 2/8 and

var,(G; [a,b]) < C|b — a|'/7 aus. (2.9)

for any 0 < a < b < t and for some constant C' which depends on ¢ and r. Consequently, the
integral in (2.2) is well-defined (as a pathwise Riemann-Stieltjes integral) for any stochastic

process ¢ of finite g-variation with ¢ < ﬁ
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In the following we study the asymptotic properties of the process

[nt)
V(X, o Z IATX P, (2.10)

where 72 = R(2) = E[|A?G|?] and p > 0.

3 Convergence in probability

In this section we prove the convergence in probability for the quantity V(X,p)y. For this

purpose we require the following additional assumptions on the variance function R:
(A2) R'(t) = t572Ly(t) for some slowly varying function Lo, which is continuous on (0,00).

(A3) There exists b € (0,1) with

La(y)
Lo(z)

K =limsup sup
=0 yelz,at)

‘<oo

We start with proving the weak law of large numbers for the sequence V (G, p)j. Throughout
this paper we write Y™ =% Y when supyepo, | Y7 — Vil 2,0 for any 7' > 0.

Proposition 1 Assume that conditions (A1)-(A3) are satisfied. Then we have
V(G,p)y =yt (3.1)
where p, = E[|UP], U ~ N(0,1).
Proof: see Appendix.

Remark 1 The rather technical condition (A3) can be replaced by the following (weaker) as-

sumption:

R(55) + R(%5) — 2R(3)

. IR
ST‘(]) ) 5272(]) —0 ) (32)
j=1
for some sequence r(j) (see Lemma 1 and the proof of Theorem 1 in the Appendix).

The main result of this section is the following theorem.

Theorem 2 Assume that conditions (A1)-(A3) are satisfied and the process (¢;)i>0 has finite

g-variation with q < 177}3/2 Then we have

VX)) / B,JP ds. (3.3)

Proof: see Appendix.
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Example 3 (Cauchy class) For modelling purposes, an interesting and flexible class of processes
is given by (Gq,), where Go s are stationary centered Gaussian processes with variance 1 and

the autocorrelation function

h(t) = (1+ [t*) 77/

Here the parameters have to satisfy o € (0,2] and v > 0 (see [16]). With h(t) = 1 — h(t) we
find, fort >0,

h(t) =t Lo(t)

with

(1 4t/ -1
Lo(t) = —————
o(®) ta(1 + ta)yr/a
Further,
B (t) = 4t 11 + @) /et
and

R'(t) =t*2Lo(t) ,  La(t) = —y((y + 1)t* — (a — 1)) (1 + t*) /o2,

Both Ly and Lo are slowly varying. Now,
Lh(t) = —ayt® M1+ 1) P [y + 14 (@ = 1) (v/a +2) — (v + 1) (v/a + 1)t°]

showing that La(t) is decreasing or increasing in a neighbourhood of 0 depending on whether
« 1is greater or smaller than c, where c, denotes the positive root of the equation v + 1 +
(= 1) (y/a+2) =0. In any case,

La(y)
Lo(x)

— |la—1la< oo,

USERY

as x — 0, for any b € (0,1). Thus conditions (A1)-(A3) are fulfilled for any o € (0,2) and
v >0, and Proposition 1 and Theorem 2 apply to the class (Ga,n)ac(0,2),7>0-

4 A general multivariate central limit theorem via chaos ex-

pansion

In this section we present a multivariate central limit theorem for a sequence of random variables
which admit a chaos representation. This result is based on the theory for multiple stochastic
integrals developed in [24], [26] and [18] (and it appears implicitly in [15]). The central limit
theorem will be used to show the weak convergence of the process V(G, p)}. However, the limit
results of this section might be of interest for many other applications.

Let us recall the basic notions of the theory of multiple stochastic integrals. Consider a
separable Hilbert space IH. For any m > 1, we define JH®™ to be the mth tensor product of

IH and we write JH®™ for the mth symmetric tensor product of JH, which is endowed with the
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modified norm vVm!|| - || grem. A centered Gaussian family B = {B(h)| h € IH}, defined on the

probability space (2, F, P), is called an isornormal process on IH when
E[B(h)B(g9)l =<h,g>m , VYhgeH.

In this section we assume that F is generated by B. For m > 1, we denote by H,, the
mth Wiener chaos associated with B, i.e. the closed subspace of £2(€, F, P) generated by
the random variables H,,(B(h)), where h € IH with ||h||zr = 1 and H,, is the mth Hermite

polynomial. Recall that the Hermite polynomials (H,,)m>0 are defined as follows:

Ho(.Z) = 1,

»

22 d™ «

Hy(z) = (=1)"e® dmm(€77) , m > 1.

The first three Hermite polynomials are Hy(z) = z, Ha(z) = 22 — 1 and H3(z) = 2 — 3z. By
I,,, we denote the linear isometry between the symmetric tensor product IH®™, equipped with

the norm vm! ||-|| yom, and the mth Wiener chaos that is defined by
I (h®™) = Hyp(B(h))

(see, for instance, Chapter 1 in [23] for more details).
Forany h=h1 ® - Qhy and g =91 @ -+ @ g, € IH®™, we define the pth contraction of
h and g, denoted by h ®, g, as the element of H®2m=P) given by

h®pg:< hm—p—i—hgl >H <h’m7gp >H h1®®hm—p®gp+1®®gm

This can be extended by linearity to any element of JH®™. Note that if h and g belong to
H®™, h®, g does not necessarily belong to IHO?™~P). For any h = hy ® - -- ® hy,, € HE™, we
denote by h € HO™ the symmetrization of h, i.e.

where S, is the group of permutations of {1,...,m}. Moreover, we write hépg for the sym-
metrization of h ®,, g.
Now, we present a multivariate central limit theorem which is a straightforward consequence

of Theorem 1 and Proposition 2 in [26] (and the proofs therein).

Theorem 4 Consider a collection of natural numbers my < mg < --- < my and a collection

of elements
{(fas s S n =1}

such that f* € IHO™ and the following conditions are satisfied:
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(1) For any k,l=1,...,d we have constants Cy; such that
nlllgomk!HffH%{@mk = Ckk »
HILH;OE[Imk (f!f)[ml(frll)] =Cu , k 7é L,
and the matriz C = (Cy)i1<k,i<d is positive definite.
(2) For every k=1,...,d we have
nh_{go ||f7]f ®p fﬁ”%{m(mkw) =0
foranyp=1,...,mp — 1.
Then we obtain the central limit theorem
1 o\l D
(B (£ Img (£ 2 Na(0,C). (4.1)

Notice that Cj; in (1) of Theorem 4 is equal to 0 when my, # my, because I, and I, are
orthogonal by construction.

Finally, we consider a d-dimensional process Y;, = (V;},...,Y,!)T defined on (Q,F,P),

n

which has a chaos representation
o0
Yi=> ILa(fl,), k=1,....d, (4.2)
m=1

with f,’fln € IH®™. Notice that EY,, = 0. The following result provides a central limit theorem

for the sequence Y;,.
Theorem 5 Suppose that the following conditions hold:

(i) For any k =1,...,d we have

(o]
im limsup Z m!HffanH?Hng:O.

|
N=oo n—eo | THL
(i) For any m > 1, k,l=1,...,d we have constants C}} such that
lim m!||f}, | rem = Ch
n—oo

n—oo

and the matriz C™ = (C}})i<k,i<a is positive definite for all m.

(iii) Y00 C™ = C € R4,
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(iv) Foranym>1,k=1,...,dandp=1,...,m—1
: k k 2
nh—{go ||fm,n ®P fm7n||}]®2(m—p) =0.

Then we have

Proof: Define the "truncated" random variable Y;, v = (Y7117N, ey YgN)T by
N
YfﬁN:ZIm( /;L,n), k=1,...,d.
m=1

Since I, and I,, are orthogonal when m; # mg, Theorem 4 implies (under conditions (ii)

and (iv) of Theorem 5) that
N
Yoy 2 éx ~ Na(0, 3 ™)
m=1
for a fixed N. By assumption (iii) we obtain the convergence in distribution
e €~ Na(0,€)
as N — oo. Finally, condition (i) and the Markov inequality imply
im limsup P(||Y, N — Yalleo >0) =0

|
N—oo pn—ooo

for any 0 > 0 (here || - ||oo denotes the maximum norm). By standard arguments we obtain the
desired result. O
5 A stable central limit theorem for power variation

First, we present a functional central limit theorem for the sequence V(G, p)7. In the following

discussion we use the notation

H(z) = |2l — . (5.1)
Notice that the function H has the representation
o0
H(z) =Y ajHj(x) (5.2)

Jj=2

where ag > 0 and (Hj);j>0 are Hermite polynomials. Under a restriction on the parameter

we obtain the following result.
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Theorem 6 Assume that conditions (A1)-(A3) hold and 0 < 8 < 3. Then we obtain the weak
convergence (in the space D([0,T])? equipped with the Skorohod topology)

(G vV (Gp)F —t,)) = (Ge7Wi) . (5.3

where W is a Brownian motion that is defined on an extension of the filtered probability space
(2, F, (F)i>0, P) and is independent of F, and 72 is given by

j
oo o ((1—1)F =28+ (1+1)8
=) gladN, N =1+42) ( = ) . (5.4)
j=2 =1

Proof: see Appendix.

Remark 2 Theorem 6 applies to the Cauchy class (Gopy) (with v > 0 and o € (0,2)) of

Gaussian processes that has been introduced in Example 3.

The proof of Theorem 6 relies on the central limit theorem presented in Theorem 5. In
[15] the result of Theorem 6 is shown (with the same limit) for the case of fractional Brownian
motion with Hurst parameter H € (0, 1) (the parameter /3 corresponds to 2H ). Their derivation
relies on the selfsimilarity of the fractional Brownian motion. The asymptotic theory presented
in this section provides a natural extension of their work to general Gaussian processes with

stationary increments.

Remark 3 .

(i) A central limit theorem for the quantity V(G,p)} (i.e. fort = 1) was originally proved
in [17] under assumptions (A1)-(A3). For Theorem 6 the technical condition (A8) can
be replaced by the weaker assumption:

R(EH) + RO — 2R(3)
2R(+)

for some sequence 7(j). Notice that (5.5) implies the condition (3.2) in Remark 1 with

<P, Y P() <oo, (5.5)

o]
J=1

3 |=|S

r(j) = 7(j) for all j > 1. See Lemma 1 and the proof of Theorem 6 in the Appendix for

more details.

(ii) Furthermore, in [17] it is shown that the limit of the second component in (5.3) is an
element of the second Wiener chaos when G is a stationary Gaussian process with EGy =
0, EG? = 1, and % < B < 2. For the covariance function R(t) = E[GsGsyy] they
assume the following conditions: 1 — R(t) satisfies (A1), |R"| satisfies (A2) with Ly(z) =
B(1 — B)Lo(z)(1 + o(1)) near 0, |R"| is decreasing near 0 and (A83) holds. Under these

assumptions they have proved the convergence

_ 1 n D DU
W Lo( ) (VG — ) o ST
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where Iy is the Wiener-Ité integral

N

T et -1 2 (29) W (day )W (d
— 2
2= [ o P @ )W e W)
W is a Brownian motion and f is given by
f@) == [ R e
R

If g = % both limits can appear: when R" is integrable near 0 we obtain an element
of the second Wiener chaos in the limit, whereas the limit is normal when R is not
integrable near 0 (although the convergence rate changes). However, functional central

limit theorems for % < B < 2 remain an unsolved problem.

Notice that the weak convergence in (5.3) is equivalent to the stable convergence (in
D([0,7)?) )

ViV (Gop)i = ty) T W (5.6)

where FC denotes the o-algebra generated by the process G (see [1], [20] or [27] for more

details on stable convergence). The latter result is crucial for proving a functional central limit

theorem for the sequence V (X, p)P for F-measurable processes ¢.

Theorem 7 Suppose that ¢ is FC-measurable and has Hélder continuous trajectories of order
a > 1/2(pA1). When 0 < B < 3 and assumptions (A1)-(A3) hold we obtain the stable

convergence
n ¢ FC—st t
VAV =y [l ds) 7= o aw, (57)
in the space D([0,T])2.

Proof: see Appendix.

Remark 4 Notice that if ¢, = f(Gt) for some smooth function f, the conditions of Theorem
7 imply that p > 1/8 and 5 € (1, %) This leads to a serious restriction on the parameters p
and (3.

On the other hand, Theorem 7 remains valid when the process ¢ is independent of G (this
follows from Theorem 6 if we replace the process G by ¢). In this case we only require the

condition a > 1/2(p A 1).

Applying the properties of stable convergence we can obtain a feasible version of Theorem

7. Since V(X,2p)} - fhoyp fot $*ds, we deduce the following result.

Corollary 1 For any fized t > 0, we have
n ¢
Vi(VER)E =y Jy 1647 ds) o,
—> U

V1 TV (X, )7
where U is independent of F and U ~ N(0,1).
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6 Conclusion

The results derived in the present paper constitute a natural extension of earlier work on power
variation, as indicated in the Introduction. The possibility of further extension to bipower, and
more generally multipower, variations is under consideration. From another point of view,
the results provide a step in a larger project that aim to develop probabilistic and inferential
procedures for the study of volatility modulated Volterra processes, as defined in [4]. Finally,

closer links to Malliavin calculus, cf. [22] or [25], offer exciting prospects.

7 Appendix

In the following we denote all constants which do not depend on n by C. Throughout this

section we use the notation

AMG ATLG
n(j) = Cov( ==, —7— i > 0. 7.1
mld) = Cov(SL5 20T s (r.)
By the triangular identity we know that
RN 4 R(EL) —2R(2)
W(j) = —n ” w1, 7.2
rn(J) 2R(1) j (7.2)

where the function R is given by (2.1). First, let us prove the following technical lemma which

extends Lemma 2 and 3 in [17].

Lemma 1 Suppose that conditions (A1)-(A3) hold. Let e > 0 with ¢ < 2 — 3. Define the
sequence r(j) by
r) == =2, (7.3)

and r(0) =r(1) = 1. Then we obtain the following assertions:

(i) It holds that

If, moreover, f+€—2 < —% it holds that
ZrQ(j) < 00.
j=1
(ii) For any 0 < e <2 —f3 from (7.8) there exists a natural number no(e) such that

()l <Cr@@), 720

for all m > ng(e).

10
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(iii) Set p(0) = 1 and p(j) = %((j —1)% — 20 + (j + 1)5) for j > 1. Then it holds that
ra(3)| — p(j)
for any 5 > 0.

(iv) For 0 << 3 and any | > 2 we have that

n—1 0o
Do) = > A)
i=1 i=1

Proof of Lemma 1: Part (i) of Lemma 1 is trivial. By assumptions (A1) and (A2) we deduce
the identities

L
rp(l) = —1 4 26-12%n/

—~
SI=S v
S—

o
—~
~—

67l

1/ 00\A2Ly(

<. ) 2(71)7 3227
Lo(3;)

where 67/ are some real numbers with |67 < 1. Recall assumption (A3) and set a = 1-b € (0,1).

n

When n is large enough we have r,(1) < 1 (because Ly is a slowly varying function and

B € (0,2)) and for 2 < j < [n?] we obtain
(i) < C( = 1)

by assumption (A3). For [n?] < j < n we obtain by (2.7) the following approximation

+67
1 5 o La()
O N e
" 2 Lo(%)
J+07
< jﬁ—2+en—aeL2( J) <Cj5—2+€.

Lo(3) ~
Thus, assertion (ii) follows.

Next, by assumption (A1) and (7.2) we obtain the formula

(j = 1)PLo(LL) — 257 Lo(2) + (j + 1)°Lo(ZE)

(+)+ .
, Jj=>1
2Lo(1)

Tn(j) =

We can readily deduce part (iii), because the function Ly is slowly varying.
Next, assume that 0 < 8 < 3. We use 0 < € < 3 — 3 in the definition (7.3). Since

B+ ¢e—2< —3, we deduce that

o0

> () < o0
=1

for any [ > 2, by part (i). By parts (ii), (iii) and the dominated convergence theorem we obtain

.

(iv), and the proof is complete. O

11
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Proof of Proposition 1: We first show the pointwise convergence V(G,p)} i ppt. Recall
the identity

E[Hk(Ul)Hl(UQ)] = (5k,lpll! , (U1,U3) ~ N (0, < ; [1) )) , (7.4)

where 6; denotes the Kronecker symbol. For any ¢t > 0 we have
EV(G,p)}] = npt +0(n™1) (7.5)

and by (7.4), (5.1) and (5.2) we obtain the identity

[ni] n
V(@ = 2B 25 g oA 2
j=1 "

n2 Tn

Z 'al bln + O )
1=2

where the coefficients a; are given by (5.2) and the constants by, are defined by

By (i) and (ii) of Lemma 1 we deduce (for n > ng) that

[nt]—1 [nt]—1

]
by | < o Z r(4) < % Z r2(j) — 0, (7.7)

Jj=1 J=1

for any [ > 2. This implies the pointwise convergence
n P
V(G,p)} — mpt.

The ucp convergence follows immediately, because V (G, p) is increasing in ¢ and the limit

process p,t is continuous. ]

Proof of Theorem 2: The basic idea behind the proof of Theorem 2 is the approximation
of the process (¢;):>0 by a sequence of step functions and the application of Proposition 1. In
[15] a proof of (3.3) is given for the case of fractional Brownian motion, and we will basically
follow their ideas.

Consider first the case p < 1. For any m > n, we obtain the decomposition

V(X,p)} —up/|¢s|pds— ™4 Bt o 4 D

12
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where
[mt]
AP = Ty (AT - o ATGP) (78)
=1
1 [mt] [nt]
B = (T aarar -3 el 3 1arar),
=1 " ien.()
. [nt] [nt]
cmm e 2 L NV el LT N T Y Lo
MTm 5" ) =t "
[rt]
D - (*1Zr¢]1|p [ 1o as).
d
- NPT RS W .
Lo ={il o e (F=2]h . iz

For any fixed n, C’f"’m)

converges in probability to 0, uniformly in ¢, as m — o0, i.e.
[nT]
sw [0 < Z szt P )— ArGP — pn | Lo
1€l (j4)
thanks to the uniform convergence V (G, p)” P, ppt. Next, observe that the number of jumps
of |¢,|P that are bigger than ¢ is finite (on compact intervals), because |¢,|P is regulated. This
implies
[nT]

— P
sup (D17 < pn ™ swp 04 +3 swplusl” ~ |6, P1)

0<t<T <t<T o1 se(izl i

as n — 0. For the term Bt(n’m) we obtain the inequality
[nT]
sup [B""| < e e e
o=t=t ™ =Liel ()
1
£ swp (o swp — ) arGr
0st<T 0st<T m mn~1[nt]<i<mn—1([nt]+1)
TR
< — D sw s el Do [ATGP
™ j=1s€(5y i€l (j)
1
+ sup P sup AT'G|P.
0§t§T|¢t‘ 0<i<T mTfn Z | 7 ‘

mn~1[nt]<i<mn=1([nt]+1)
By Proposition 1, the latter expression converges in probability to

[nT]

En =gt (sup 0P+ 37 sup gl ~ 10,/

j=18€(5=,2]

13
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. P
as m — oo. As above, we obtain F, — 0 as n — oo.

For the term Agm), we deduce by Young’s inequality (for p < 1)

[mt]

(m) 1 } m m ‘
sup |A < su ATX P — |pi-i AT'GP
ogth’ el S meO<t£T Z<| | [ " |>

1 [mT]
< ‘Amx dia lAmG‘

mT] . . . ‘
= mCTm 2 ‘Var‘I((ﬁ’ <S ;Dvarl/w ><G5 <% %D‘p =cr,

=1

where 0 < € < /2. Next, we fix 6 > 0 and consider the decomposition

A s o 3 (e (g (e (5 D

ivary(¢;( 5t 1) >6

[mT)

1—1 1 P
o 2o (6 (5 )
me, m ' m

Observe that

[mT] . i
i ‘val"q(gb; (z ;@17%})"1 < |varg(;[0,T])|? < oo ;

consequently, the number of indexes i for which var, <¢, ( ml, mD > § is bounded by |var,(¢; [0,T7)]7/6.
Recalling (2.8) and (2.9) we obtain

FY s VaTQ(ffzr[%mw 1<im] a4 (G5 %1 )l
() L
* g 2 P (6 %%%W
e )]

Choose 0 < € < %, e<a< % — e and set 6 = m~ % By (2.7) we deduce that
FM Lo,

which completes the proof of Theorem 2 for p < 1.

14
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For p > 1 we use Minkowski’s inequality to obtain the approximation

[mi]
(V)" = (u, [ 10 a5)"| < ml}ﬂn(zl arx - siaral)”

[nt]
m1/pT (i > I u—qﬁ%)ﬁl‘nG\p)Up
™ j=14iel,(j)
[nt] p [nt]
1m1/p (Zm Y 1arar) - (u, —1Z|¢] 1|p) ’

1€ln(j)

[nt]

t
%/p‘(n—ljzlwwp)”p ([ 1o as)™]

By the same methods as presented above we obtain the assertion of Theorem 2 for p > 1. [

Proof of Theorem 6: We set
[nt]

%= 2 m(29). (79)
Step 1: Let us show the tightness of the sequence of processes (Gy, Z}'). For any t > s we have
1 [n1] AR 4
st -1y eSS (29)) ]

By Proposition 4.2 in [28] and part (iv) of Lemma 1 we know that, for any N > 1,

(S (89) ] <o) - (S o)’

=

Since the process G has stationary increments, we obtain
ns| |2
E|(Z — 7M)* <0‘ [ ]’ .

For any t1 <t < tg, the Cauchy-Schwarz inequality implies that

E((Zy, - Zt”)z(ZZl _ ZZ)Q] < C<[nt2] - [nt]) ([nt] -

. n["tl]) < Oty — 1)

The tightness of (G, Z}') follows now by Theorem 15.6 in [13]. O

Step 2: Finally, we need to prove the convergence of finite dimensional distributions of (G, Z}").
Define the vector Y, = (V;},...,Y,!)T by

n

[nby]
p 1 APG
vh=— [nEaka( - ) (7.10)
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where (ag, b, k = 1,...,d, are disjoint intervals contained in [0, 7]. Clearly, it suffices to prove
that

(Gbk - Gakayrf 3’ (Gbk - Gava(ka - Wak))

)1§k§d 1<k<d
where 7 is given by (5.4).

Next, we want to apply Theorem 5. Let H; be the first Wiener chaos associated with the
triangular array (A7G/Tn)n>1,1<j<[n), i-€ the closed subspace of L?(2, F, P) generated by the
random variables (A?G / Tn)n21,1§j§[m]. Notice that H; can be seen as a separable Hilbert space
with a scalar product induced by the covariance function of the process (A’]?G [Tn)n>1,1<j<[nt]-
This means we can apply the theory of Section 4 with the canonical Hilbert space IH = Hj.
Denote by H,,, the mth Wiener chaos associated with the triangular array (A;LG / Tn)n2171§j§[m§]
and by I,, the corresponding linear isometry between the symmetric tensor product H1®m
(equipped with the norm v/m! ||‘||Hi®m) and the mth Wiener chaos. Finally, we will denote by
Jm the projection operator on the mth Wiener chaos.

Since

E[<Gbk - Gllk)Ynl] =0

for any 1 < k,l < d (because H is an even function), it is sufficient to check the following

conditions.

(i) For any m > 1 and k = 1,...,d, the limit lim, .. E[|J,Y,*?] = Tfn’k exists and
>t 8Py, Bl Jn Y, %] < 00,

(ii) For any m > 1 and k # h, lim, e E[JnY,FJ Y, =0,
(iii) Forany m > 1, k=1,...,dand 1 < p <m — 1, we have that

lim I,,'J,Y,F @, ', YF = 0.

n—oo

Under conditions (i)-(iii) we then obtain (by Theorem 5) the central limit theorem
Y, 2. N, <0,Tzdiag(b1 oy, by — ad)) , (7.11)

where 72 is given by (5.4). Since the increments of the process G are stationary we will prove

part (i) and (iii) only for k =1, a3 = 0 and b; = 1.

(i) We have

T Y, = “7”% éHm(A:nG)

Hence, we obtain (see (7.4))

n

n—1 .
B[l JnY, ) = mia, (142" “—rin(i))
i=1

16
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By part (iv) of Lemma 1 we deduce that
o0
lim E[|J, Y% = m!afn<1 +23° pm(i)) :
n—00 —
and

Z supE [ Y12 <

m=2

Furthermore, we obtain that

PR (E0 STy S ST PRI

(ii) For any 1 < k, h < d with by < aj we have

9 [nbg] [nby]

E[Jer{CJmYnh]:% Z Z Z_J

j=[nag]+1i= [nahHl

Assume w.l.o.g. that ay = 0, by = ap, = 1 and by, = 2 (the case by < ap is much easier).
By part (ii) of Lemma 1 with 0 < € < 3 — 3 in the definition of 7 (see (7.3)) we obtain the

approximation

n—1

( Z]T‘ —I—ZTm(n—}-j)).

Jj=1

E[J,Yr1, v <

It follows that r™(j) < (j — 1)7'~° for some § > 0 and for all m, j > 2. Hence, we obtain
E[Jn Y, JnY,}] — 0

as n — oQo.

(iii) Fix 1 <p < m — 1. We obtain the identity

LAY @I T Y = % > (A5HG>®m®p(AfnG>®m
1<jji<n
- Tlllg%;gn o (|7 —il) ((AfnG>®(m—p)®<AfnG>®(m—p)> |

where "~" denotes the symmetrization. Consequently, we need to prove that the quantity

n? Y (g = ik — k)

1<l hk<n
" < (AfnG) ®(m—p) <§~© <A£;G> ®(m—P)’ (ATZRG) ®@(m—p) 5 (AT;C;G) ®(m—p) >H?2(mp)

17
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converges to zero as n — oo. It suffices to consider a term of the form

n= Y k(i = k(b - k)

1<4,l,h,k<n
xry (13 = h)ry =P (0= RDry P15 = kDo (1L = kD),
where 0 < a < m — p. The latter term is smaller than
nt ST (G — R (G O — ke (1 — E).
0<j,l,k<n—1

Without any loss of generality we can assume that p = m —p =1and @« =0 or « = 1. For
a=0and any 0 < e < 1 we get

2 2

O DR D DR A(FAEAUR IS Wi I WA (A0

0<j<n—1 \0<i<n-—1 0<j<[ne] \0<I<n—1

Lop1 Z (|7 = )ra(l) | + on ! Z Z (|7 = 1)ra(l)

[ne]<j<n—1 \0<i<[ne/2] [ne]<j<n—1 \[ne/2]<l<n—1
<2 | S m@%] 46 Y @ Y m)?
0<l<n-—1 0<l<n—1 [ne/2]<l<o0

2
which converges to 2¢ (Zogl oo p? (l)) as n — oo by Lemma 1. The desired result follows by
letting € tend to zero. This completes the proof of Theorem 6. O

Proof of Theorem 7: Theorem 7 is deduced from Theorem 6 by the same methods as pre-
sented in [15] (see Theorem 4 therein).

For any m > n we obtain the decomposition
t ~
Vin(V R = /0 0,17 ds) = vm(A{™ + B"™ + "™ + D™y

where Agm), C’t(n’m) and Dim) are defined in (7.8) and Bt(n’m) is given by

[mt] [mt]
H(n,m ]- m
By meZIngA GIF — pym 1Z|¢11|p
[nt] [nt]
m —1
= Zwﬁa P 3 TG T 3 [l
i€ln(j) j=1

We first prove the stable convergence for the term \/mct(”””). Define

Y’r{,m \/* Z |Az G‘p - Tlup'

’LGIn ])

18
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For any fixed n, we obtain by Theorem 6 and the properties of stable convergence

‘ » j —st n
(W%’ ’Yn’m>1§j§[nt} <|¢’ |7 TATW )1§j§[nt]
as m — oo. Hence,
[nt]
n,m s n
RC™ TS g AW,
j=1

For the latter we have
[nt]

t
3 |6i PATW 2L 5 / 6, PdW,.
=1

Now, we show that the other terms are negligible. Recalling that ¢ is Holder continuous of

order a we obtain the inequality

[mT]

m
Vm sup plm < 71’( sup |o,|P + bia P — |bm p)
o, D) = g 10+ D N6l = 1o P

N

[mT]

Fp 1)y Al
< —|( su +(pVvl1 su (p= i |P
< (e 1o+ (v 1) s 16 LR )
< —= sup Py Tpv1 P sup (p=1)+pp1/2=alpAl)
\ﬁ \<Z>t| T (p vV D0l oS |¢!
where t] 1 € (%,%) Hence
vVm sup |D£m)\ LO,
0<t<T
because a(p A1) > 1.
For the term Jﬁé?’m we obtain the inequality
(n.m) [f% 3 ( K )
VB = | s (= AT G - L2
J=l4el,(j) \/7 \/ﬁ
ot = ror-Thu)e 3 ocsb(pipiance - 22)
Yol (Y IATGE - Y)Y (o (——op lArGE - 1)
VT i€ o () " >mng VT vm

> larer - Y7,

i€ln(4)

[nt]
s\;wg\p 3 (\ﬁpwﬂG\p E) - Zm i (\ﬁpm

1€15(j)

[m

]
1 %

+ su ’ i A;ngp_ip ‘

ogth S iz 1’ (\/ngn‘ | \/m>
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[nT)
< sup  |¢y" — (@1 [P||Y | + —= sup [¢y|
lese(J 7]” s‘ ‘ Jn | || n,m| \/EOStST| t|
[mt] 8
—i—sup‘ ¢21 ( AT'G|P — p),
] 3 el (Gpisrer -
where § € (Z ; %] Then, by Theorem 6, we obtain
[nT]
limsup P(v/im sup. |B"m > o) <P(TZ sup |7 — [¢is [P AW
m—00 0< 186(%,% n
.

— sup |¢yf? Sup |Wt Wi/l >€)
N 0<¢<T 0<

for any € > 0. Since ¢ is Holder continuous of order a with a(p A 1) > 1/2 it holds, for any
d > 0, that

[nT]

> sup o~ 6 PIATWI < (pv DTGP sup o]0 emme A0/,

-2
i=15€(550

which converges to 0 as n — oo if § is small enough. This implies that

lim limsup P(y/m sup |l~3t(nm)\ > €).

n—00 m—o0 0<t<T

Finally, let us show that \/msupg<;<r |A§m)\ L., 0. We have

[mt]

> (p Vv 1)20- 2>+Z|¢] L ATG| P+

vmlA™| <

1
HIATX — AT

\/7 ¢] 1 G
p—2)4 m m

o 0V 1)2 E:‘AX 611 A G‘

By (2.9) and Young’s inequality we deduce (as in Theorem 2)

(m) ¢ —(Z-(p-1) (p—1)
S A < — 2 + s +
vin sup |47 < = (m s 16
]

S (1 2 g (2 2

)

(m,(g,e)(p,l) —AD(G e+ g |6 (=D |y p(5 e+a>+1)
0<t<T

[mT)

+ Z ‘Varl/a( <j —, i])varl/té—a (G; (% %}

< ¢
- mth,

which converges to 0 as m — oo, provided e < p~t(a(p A1) — 7) This completes the proof. [J
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