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Abstract

We develop the asymptotic theory for the realised power variation of the processes

X = � � G, where G is a Gaussian process with stationary increments. More speci�cally,

under some mild assumptions on the variance function of the increments of G and certain

regularity condition on the path of the process � we prove the convergence in probability

for the properly normalised realised power variation. Moreover, under a further assumption

on the Hölder index of the path of �, we show an associated stable central limit theorem.

The main tool is a general central limit theorem, due essentially to Hu & Nualart (2005),

Nualart & Peccati (2005) and Peccati & Tudor (2005), for sequences of random variables

which admit a chaos representation.
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1 Introduction

This paper establishes results on convergence in probability and in law stably for (properly

normalised) realised power variations of processes of the form X = ��G. Here G is a Gausssian
process with stationary increments whose increments have a variance function that satis�es

certain regularity conditions, and G and the process � are de�ned on one and the same �ltered

probability space. The special case of � � G where � is a constant and G is itself stationary

was treated in an early paper [17].

In general, processes of type � � G are not semimartingales and the proofs of the limit

results use the theory of isonormal processes and techniques developed in [15] for deriving

similar limit results for processes � � BH where BH denotes fractional Brownian motion. For

Itô semimartingales, both one- and multi-dimensional, an extensive theory of realised power

and multipower variations is available. For discussions of this theory and its applications, see

[2], [3], [5],[6], [7], [8], [9], [10], [19], [21], [29] and [30]. General and sharp criteria for when a

process of the form � �G is a semimartingale are available in [11] and [12].
Section 2 sets up the problem and exempli�es the kind of processes G to which the theory

applies, and the convergence in probability and central limit results for processes � � G are

given in Sections 3 and 5, respectively. Section 4 derives a multivariate central limit theorem

(via chaos expansions) which should be of wide general interest. In particular it covers in-

�ll asymptotics (or triangular array schemes). The main building blocks in the theorem are

contained in the recent papers [18], [24] and [26]. The concluding Section 6 indicates lines for

further research. Most of the proofs are relegated to an Appendix.

2 The setting

We start with a Gaussian process (Gt)t�0 de�ned on a �ltered complete probability space

(
;F ; (Ft)t�0; P ), which has centered and stationary increments. We de�ne R as the variance
function of the increments of G, i.e.

R(t) = E[jGs+t �Gsj2] ; t � 0: (2.1)

In this paper we consider a process of the form

Xt = X0 +

Z t

0
�s dGs ; (2.2)

de�ned on the same probability space as G, which is assumed to be observed at time points i=n,

i = 0; 1; : : : ; [nt]. We are interested in the asymptotic behaviour of the (properly normalized)

realised power variation
[nt]X
i=1

j�ni Xjp ; (2.3)
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with 4n
i X = X i

n
�X i�1

n
, for p > 0.

Before we proceed with the asymptotic results for the functionals de�ned in (2.3) we need

to ensure that the integral in (2.2) is well-de�ned in a suitable sense. For this purpose we use

the concept of a pathwise Riemann-Stieltjes integral.

Recall that for a real-valued function f : [0; t]! IR the r-variation is de�ned as

varr(f ; [0; t]) = sup
�

� nX
i=1

jf(ti)� f(ti�1)jr
�1=r

; (2.4)

where the supremum is taken over all partitions � = f0 = t0 < t1 < : : : < tn = tg. Trivially,
when f is �-Hölder continuous it has �nite 1=�-variation on any compact interval. In this case

we set

jjf jj� = sup
0�s<u�t

jf(s)� f(u)j
js� uj� : (2.5)

In [31] it is shown that the Riemann-Stieltjes integral
R t
0 f(s)dg(s) exists if f and g have �nite

q-variation and r-variation, respectively, in the interval [0; t], where 1=r + 1=q > 1, and these

functions have no common discontinuities.

In order to give a statement about r-variation of the Gaussian process G we require the

following assumption on the behaviour of the function R de�ned in (2.1).

(A1) R(t) = t�L0(t) for some � 2 (0; 2) and some positive slowly varying (at 0) function

L0, which is continuous on (0;1).

Recall that a function L : (0;1)! IR is called slowly varying at 0 when the identity

lim
x&0

L(tx)

L(x)
= 1 (2.6)

holds for any �xed t > 0. Provided L is continuous on (0;1), we have

jL(x)j � Cx�� ; x 2 (0; t] (2.7)

for any � > 0 and any t > 0 (where the constant C > 0 depends on � and t). See [14] (Page 16)

for similar properties of slowly varying functions at 1. Assumption (A1) implies the identity

E[jGt �Gsj2] = jt� sj�L0(jt� sj) ; (2.8)

from which we deduce (by (2.7)) that the trajectories of G are (�=2 � �)-Hölder continuous
(almost surely) for any � 2 (0; �=2). Clearly, G has �nite r-variation for any r > 2=� and

varr(G; [a; b]) � Cjb� aj1=r a.s. (2.9)

for any 0 � a < b � t and for some constant C which depends on t and r. Consequently, the

integral in (2.2) is well-de�ned (as a pathwise Riemann-Stieltjes integral) for any stochastic

process � of �nite q-variation with q < 1
1��=2 .
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In the following we study the asymptotic properties of the process

V (X; p)nt =
1

n�pn

[nt]X
i=1

j�ni Xjp ; (2.10)

where �2n = R(
1
n) = E[j�

n
i Gj2] and p > 0.

3 Convergence in probability

In this section we prove the convergence in probability for the quantity V (X; p)nt . For this

purpose we require the following additional assumptions on the variance function R:

(A2) R00(t) = t��2L2(t) for some slowly varying function L2, which is continuous on (0;1).

(A3) There exists b 2 (0; 1) with

K = lim sup
x!0

sup
y2[x;xb]

���L2(y)
L0(x)

��� <1:
We start with proving the weak law of large numbers for the sequence V (G; p)nt . Throughout

this paper we write Y n
ucp�! Y when supt2[0;T ] jY nt � Ytj

P�! 0 for any T > 0.

Proposition 1 Assume that conditions (A1)-(A3) are satis�ed. Then we have

V (G; p)nt
ucp�! �pt ; (3.1)

where �p = E[jU jp], U � N(0; 1).

Proof: see Appendix.

Remark 1 The rather technical condition (A3) can be replaced by the following (weaker) as-

sumption: ���R( j+1n ) +R( j�1n )� 2R( jn)
2R( 1n)

��� � r(j) ; 1

n

nX
j=1

r2(j)! 0 ; (3.2)

for some sequence r(j) (see Lemma 1 and the proof of Theorem 1 in the Appendix).

The main result of this section is the following theorem.

Theorem 2 Assume that conditions (A1)-(A3) are satis�ed and the process (�t)t�0 has �nite

q-variation with q < 1
1��=2 . Then we have

V (X; p)nt
ucp�! �p

Z t

0
j�sjp ds: (3.3)

Proof: see Appendix.
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Example 3 (Cauchy class) For modelling purposes, an interesting and �exible class of processes

is given by (G�;), where G�;�s are stationary centered Gaussian processes with variance 1 and

the autocorrelation function

h(t) = (1 + jtj�)�=�:

Here the parameters have to satisfy � 2 (0; 2] and  > 0 (see [16]). With �h(t) = 1 � h(t) we
�nd, for t > 0,

�h(t) = t�L0(t)

with

L0(t) =
(1 + t�)=� � 1
t�(1 + t�)=�

Further,
�h0(t) = t��1(1 + t�)�=��1

and
�h00(t) = t��2L2(t) ; L2(t) = �(( + 1)t� � (�� 1))(1 + t�)�=��2:

Both L0 and L2 are slowly varying. Now,

L02(t) = ��t��1(1 + t�)�=��3 [ + 1 + (�� 1) (=�+ 2)� ( + 1)(=�+ 1)t�]

showing that L2(t) is decreasing or increasing in a neighbourhood of 0 depending on whether

� is greater or smaller than c where c denotes the positive root of the equation  + 1 +

(�� 1) (=�+ 2) = 0. In any case,

sup
y2[x;xb]

����L2(y)L0(x)

����! j�� 1j� <1 ;

as x ! 0, for any b 2 (0; 1). Thus conditions (A1)-(A3) are ful�lled for any � 2 (0; 2) and
 > 0, and Proposition 1 and Theorem 2 apply to the class (G�;)�2(0;2);>0.

4 A general multivariate central limit theorem via chaos ex-

pansion

In this section we present a multivariate central limit theorem for a sequence of random variables

which admit a chaos representation. This result is based on the theory for multiple stochastic

integrals developed in [24], [26] and [18] (and it appears implicitly in [15]). The central limit

theorem will be used to show the weak convergence of the process V (G; p)nt . However, the limit

results of this section might be of interest for many other applications.

Let us recall the basic notions of the theory of multiple stochastic integrals. Consider a

separable Hilbert space IH. For any m � 1, we de�ne IH
m to be the mth tensor product of

IH and we write IH�m for the mth symmetric tensor product of IH, which is endowed with the

4
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modi�ed norm
p
m!jj � jjIH
m . A centered Gaussian family B = fB(h)j h 2 IHg, de�ned on the

probability space (
;F ; P ), is called an isornormal process on IH when

E[B(h)B(g)] =< h; g >IH ; 8 h; g 2 IH:

In this section we assume that F is generated by B. For m � 1, we denote by Hm the

mth Wiener chaos associated with B, i.e. the closed subspace of L2(
;F ; P ) generated by
the random variables Hm(B(h)), where h 2 IH with jjhjjIH = 1 and Hm is the mth Hermite

polynomial. Recall that the Hermite polynomials (Hm)m�0 are de�ned as follows:

H0(x) = 1 ;

Hm(x) = (�1)me
x2

2
dm

dxm
(e�

x2

2 ) ; m � 1:

The �rst three Hermite polynomials are H1(x) = x, H2(x) = x2 � 1 and H3(x) = x3 � 3x. By
Im we denote the linear isometry between the symmetric tensor product IH�m, equipped with

the norm
p
m! k�kIH
m , and the mth Wiener chaos that is de�ned by

Im(h

m) = Hm(B(h))

(see, for instance, Chapter 1 in [23] for more details).

For any h = h1 
 � � � 
 hm and g = g1 
 � � � 
 gm 2 IH
m, we de�ne the pth contraction of

h and g, denoted by h
p g, as the element of IH
2(m�p) given by

h
p g =< hm�p+1; g1 >IH � � � < hm; gp >IH h1 
 � � � 
 hm�p 
 gp+1 
 � � � 
 gm:

This can be extended by linearity to any element of IH
m. Note that if h and g belong to

IH�m; h
p g does not necessarily belong to IH�(2m�p): For any h = h1
 � � � 
 hm 2 IH
m, we

denote by ~h 2 IH�m the symmetrization of h, i.e.

~h =
1

m!

X
�2Sm

h�(1) 
 � � � 
 h�(m) ;

where Sm is the group of permutations of f1; : : : ;mg. Moreover, we write he
pg for the sym-
metrization of h
p g.

Now, we present a multivariate central limit theorem which is a straightforward consequence

of Theorem 1 and Proposition 2 in [26] (and the proofs therein).

Theorem 4 Consider a collection of natural numbers m1 � m2 � � � � � md and a collection

of elements

f(f1n; : : : ; fdn)j n � 1g

such that fkn 2 IH�mk and the following conditions are satis�ed:

5
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(1) For any k; l = 1; : : : ; d we have constants Ckl such that

lim
n!1

mk!jjfkn jj2IH
mk = Ckk ;

lim
n!1

E[Imk
(fkn)Iml

(f ln)] = Ckl ; k 6= l ;

and the matrix C = (Ckl)1�k;l�d is positive de�nite.

(2) For every k = 1; : : : ; d we have

lim
n!1

jjfkn 
p fkn jj2IH
2(mk�p) = 0

for any p = 1; : : : ;mk � 1.

Then we obtain the central limit theorem�
Im1(f

1
n); : : : ; Imd

(fdn)
�T D�! Nd(0; C): (4.1)

Notice that Ckl in (1) of Theorem 4 is equal to 0 when mk 6= ml, because Imk
and Iml

are

orthogonal by construction.

Finally, we consider a d-dimensional process Yn = (Y 1n ; : : : ; Y
d
n )
T , de�ned on (
;F ; P ),

which has a chaos representation

Y kn =
1X
m=1

Im(f
k
m;n) ; k = 1; : : : ; d ; (4.2)

with fkm;n 2 IH�m. Notice that EYn = 0. The following result provides a central limit theorem

for the sequence Yn.

Theorem 5 Suppose that the following conditions hold:

(i) For any k = 1; : : : ; d we have

lim
N!1

lim sup
n!1

1X
m=N+1

m!jjfkm;njj2IH
m = 0:

(ii) For any m � 1, k; l = 1; : : : ; d we have constants Cmkl such that

lim
n!1

m!jjfkm;njj2IH
m = C
m
kk ;

lim
n!1

E[Im(f
k
m;n)Im(f

l
m;n)] = C

m
kl ; k 6= l ;

and the matrix Cm = (Cmkl )1�k;l�d is positive de�nite for all m.

(iii)
P1
m=1C

m = C 2 IRd�d.

6
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(iv) For any m � 1, k = 1; : : : ; d and p = 1; : : : ;m� 1

lim
n!1

jjfkm;n 
p fkm;njj2IH
2(m�p) = 0:

Then we have

Yn
D�! Nd(0; C): (4.3)

Proof: De�ne the "truncated" random variable Yn;N = (Y 1n;N ; : : : ; Y
d
n;N )

T by

Y kn;N =
NX
m=1

Im(f
k
m;n) ; k = 1; : : : ; d:

Since Im1 and Im2 are orthogonal when m1 6= m2, Theorem 4 implies (under conditions (ii)

and (iv) of Theorem 5) that

Yn;N
D�! �N � Nd

�
0;

NX
m=1

Cm
�

for a �xed N . By assumption (iii) we obtain the convergence in distribution

�N
D�! � � Nd

�
0; C

�
as N !1. Finally, condition (i) and the Markov inequality imply

lim
N!1

lim sup
n!1

P (jjYn;N � Ynjj1 � �) = 0

for any � > 0 (here jj � jj1 denotes the maximum norm). By standard arguments we obtain the

desired result. �

5 A stable central limit theorem for power variation

First, we present a functional central limit theorem for the sequence V (G; p)nt . In the following

discussion we use the notation

H(x) = jxjp � �p: (5.1)

Notice that the function H has the representation

H(x) =

1X
j=2

ajHj(x) ; (5.2)

where a2 > 0 and (Hj)j�0 are Hermite polynomials. Under a restriction on the parameter �

we obtain the following result.

7
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Theorem 6 Assume that conditions (A1)-(A3) hold and 0 < � < 3
2 . Then we obtain the weak

convergence (in the space D([0; T ])2 equipped with the Skorohod topology)�
Gt;

p
n(V (G; p)nt � t�p)

�
=)

�
Gt; �Wt

�
; (5.3)

where W is a Brownian motion that is de�ned on an extension of the �ltered probability space

(
;F ; (Ft)t�0; P ) and is independent of F , and �2 is given by

�2 =

1X
j=2

j!a2j�
2
j ; �2j = 1 + 2

1X
l=1

�
(l � 1)� � 2l� + (l + 1)�

�j
2j

: (5.4)

Proof: see Appendix.

Remark 2 Theorem 6 applies to the Cauchy class (G�;) (with  > 0 and � 2 (0; 2)) of

Gaussian processes that has been introduced in Example 3.

The proof of Theorem 6 relies on the central limit theorem presented in Theorem 5. In

[15] the result of Theorem 6 is shown (with the same limit) for the case of fractional Brownian

motion with Hurst parameterH 2 (0; 1) (the parameter � corresponds to 2H). Their derivation
relies on the selfsimilarity of the fractional Brownian motion. The asymptotic theory presented

in this section provides a natural extension of their work to general Gaussian processes with

stationary increments.

Remark 3 �

(i) A central limit theorem for the quantity V (G; p)n1 (i.e. for t = 1) was originally proved

in [17] under assumptions (A1)-(A3). For Theorem 6 the technical condition (A3) can

be replaced by the weaker assumption:���R( j+1n ) +R( j�1n )� 2R( jn)
2R( 1n)

��� � ~r(j) ; 1X
j=1

~r2(j) <1 ; (5.5)

for some sequence ~r(j). Notice that (5.5) implies the condition (3.2) in Remark 1 with

r(j) = ~r(j) for all j � 1. See Lemma 1 and the proof of Theorem 6 in the Appendix for

more details.

(ii) Furthermore, in [17] it is shown that the limit of the second component in (5.3) is an

element of the second Wiener chaos when G is a stationary Gaussian process with EGt =

0, EG2t = 1, and 3
2 < � < 2. For the covariance function ~R(t) = E[GsGs+t] they

assume the following conditions: 1� ~R(t) satis�es (A1), j ~R00j satis�es (A2) with L2(x) =
�(1 � �)L0(x)(1 + o(1)) near 0, j ~R00j is decreasing near 0 and (A3) holds. Under these
assumptions they have proved the convergence

n2��L0
� 1
n

�
(V (G; p)n1 � �p)

D�!
p�p
4
I2 ;

8
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where I2 is the Wiener-Itô integral

I2 =
Z
IR2

ei(x1+x2) � 1
i(x1 + x2)

f
1
2 (x1)f

1
2 (x2)W (dx1)W (dx2) ;

W is a Brownian motion and f is given by

f(x) = �
Z
IR
eitx ~R00(jtj)dt:

If � = 3
2 both limits can appear: when

~R00 is integrable near 0 we obtain an element

of the second Wiener chaos in the limit, whereas the limit is normal when ~R00 is not

integrable near 0 (although the convergence rate changes). However, functional central

limit theorems for 3
2 < � < 2 remain an unsolved problem.

Notice that the weak convergence in (5.3) is equivalent to the stable convergence (in

D([0; T ])2)
p
n(V (G; p)nt � t�p)

FG�st�! �Wt ; (5.6)

where FG denotes the �-algebra generated by the process G (see [1], [20] or [27] for more

details on stable convergence). The latter result is crucial for proving a functional central limit

theorem for the sequence V (X; p)nt for FG-measurable processes �.

Theorem 7 Suppose that � is FG-measurable and has Hölder continuous trajectories of order
a > 1=2(p ^ 1). When 0 < � < 3

2 and assumptions (A1)-(A3) hold we obtain the stable

convergence
p
n
�
V (X; p)nt � �p

Z t

0
j�sjp ds

�
FG�st�! �

Z t

0
j�sjp dWs (5.7)

in the space D([0; T ])2.

Proof: see Appendix.

Remark 4 Notice that if �t = f(Gt) for some smooth function f , the conditions of Theorem

7 imply that p > 1=� and � 2 (1; 32). This leads to a serious restriction on the parameters p
and �.

On the other hand, Theorem 7 remains valid when the process � is independent of G (this

follows from Theorem 6 if we replace the process G by �). In this case we only require the

condition a > 1=2(p ^ 1).

Applying the properties of stable convergence we can obtain a feasible version of Theorem

7. Since V (X; 2p)nt
P�! �2p

R t
0 �

2p
s ds, we deduce the following result.

Corollary 1 For any �xed t > 0, we have
p
n
�
V (X; p)nt � �p

R t
0 j�sj

p ds
�

q
��12p �

2V (X; 2p)nt

FG�st�! U ;

where U is independent of F and U � N(0; 1).

9
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6 Conclusion

The results derived in the present paper constitute a natural extension of earlier work on power

variation, as indicated in the Introduction. The possibility of further extension to bipower, and

more generally multipower, variations is under consideration. From another point of view,

the results provide a step in a larger project that aim to develop probabilistic and inferential

procedures for the study of volatility modulated Volterra processes, as de�ned in [4]. Finally,

closer links to Malliavin calculus, cf. [22] or [25], o¤er exciting prospects.

7 Appendix

In the following we denote all constants which do not depend on n by C. Throughout this

section we use the notation

rn(j) = Cov
��n1G
�n

;
�n1+jG

�n

�
; j � 0: (7.1)

By the triangular identity we know that

rn(j) =
R( j+1n ) +R(

j�1
n )� 2R(

j
n)

2R( 1n)
; j � 1 ; (7.2)

where the function R is given by (2.1). First, let us prove the following technical lemma which

extends Lemma 2 and 3 in [17].

Lemma 1 Suppose that conditions (A1)-(A3) hold. Let � > 0 with � < 2 � �. De�ne the
sequence r(j) by

r(j) = (j � 1)�+��2; j � 2 ; (7.3)

and r(0) = r(1) = 1. Then we obtain the following assertions:

(i) It holds that
1

n

nX
j=1

r2(j)! 0:

If, moreover, � + �� 2 < �1
2 it holds that

1X
j=1

r2(j) <1:

(ii) For any 0 < � < 2� � from (7.3) there exists a natural number n0(�) such that

jrn(j)j � Cr(j) ; j � 0

for all n � n0(�).

10
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(iii) Set �(0) = 1 and �(j) = 1
2

�
(j � 1)� � 2j� + (j + 1)�

�
for j � 1. Then it holds that

jrn(j)j ! �(j)

for any j � 0.

(iv) For 0 < � < 3
2 and any l � 2 we have that

n�1X
j=1

rln(j)!
1X
j=1

�l(j):

Proof of Lemma 1: Part (i) of Lemma 1 is trivial. By assumptions (A1) and (A2) we deduce

the identities

rn(1) = �1 + 2��1
L0(

2
n)

L0(
1
n)
;

rn(j) = �
1

2

�
j +

�nj
n

���2L2( j+�njn )

L0(
1
n)

; j � 2 ;

where �nj are some real numbers with j�nj j < 1. Recall assumption (A3) and set a = 1�b 2 (0; 1).
When n is large enough we have rn(1) < 1 (because L0 is a slowly varying function and

� 2 (0; 2)) and for 2 � j � [na] we obtain

jrn(j)j � C(j � 1)��2

by assumption (A3). For [na] � j � n we obtain by (2.7) the following approximation

jrn(j + 1)j � 1

2
j��2

L2(
j+�nj
n )

L0(
1
n)

� j��2+�n�a�
L2(

j+�nj
n )

L0(
1
n)

� Cj��2+�:

Thus, assertion (ii) follows.

Next, by assumption (A1) and (7.2) we obtain the formula

rn(j) =
(j � 1)�L0( j�1n )� 2j

�L0(
j
n) + (j + 1)

�L0(
j+1
n )

2L0(
1
n)

; j � 1:

We can readily deduce part (iii), because the function L0 is slowly varying.

Next, assume that 0 < � < 3
2 . We use 0 < � < 3

2 � � in the de�nition (7.3). Since
� + �� 2 < �1

2 , we deduce that 1X
j=1

rl(j) <1

for any l � 2, by part (i). By parts (ii), (iii) and the dominated convergence theorem we obtain
(iv), and the proof is complete. �

11
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Proof of Proposition 1: We �rst show the pointwise convergence V (G; p)nt
P�! �pt. Recall

the identity

E[Hk(U1)Hl(U2)] = �k;l�
ll! ; (U1; U2) � N

 
0;

 
1 �

� 1

!!
; (7.4)

where �k;l denotes the Kronecker symbol. For any t > 0 we have

E[V (G; p)nt ] = �pt+O(n
�1) (7.5)

and by (7.4), (5.1) and (5.2) we obtain the identity

Var(V (G; p)nt ) =
(�2p � �2p)[nt]

n2
+
2

n2

[nt]�1X
j=1

([nt]� j)Cov
�����n1G

�n

���p; ����n1+jG
�n

���p�:
=

1X
l=2

l!a2l bln +O(n
�1) ;

where the coe¢ cients al are given by (5.2) and the constants bln are de�ned by

bln =
2

n2

[nt]�1X
j=1

([nt]� j)rln(j): (7.6)

By (i) and (ii) of Lemma 1 we deduce (for n � n0) that

jblnj �
2t

n

[nt]�1X
j=1

rl(j) � 2t

n

[nt]�1X
j=1

r2(j)! 0 ; (7.7)

for any l � 2. This implies the pointwise convergence

V (G; p)nt
P�! �pt:

The ucp convergence follows immediately, because V (G; p)nt is increasing in t and the limit

process �pt is continuous. �

Proof of Theorem 2: The basic idea behind the proof of Theorem 2 is the approximation

of the process (�t)t�0 by a sequence of step functions and the application of Proposition 1. In

[15] a proof of (3.3) is given for the case of fractional Brownian motion, and we will basically

follow their ideas.

Consider �rst the case p � 1. For any m � n, we obtain the decomposition

V (X; p)nt � �p
Z t

0
j�sjp ds = A

(m)
t +B

(n;m)
t + C

(n;m)
t +D

(n)
t ;

12
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where

A
(m)
t =

1

m�pm

[mt]X
i=1

�
j�mi Xjp � j� i�1

m
�mi Gjp

�
; (7.8)

B
(n;m)
t =

1

m�pm

� [mt]X
i=1

j� i�1
m
�mi Gjp �

[nt]X
j=1

j� j�1
n
jp
X

i2In(j)
j�mi Gjp

�
;

C
(n;m)
t =

1

m�pm

[nt]X
j=1

j� j�1
n
jp
X

i2In(j)
j�mi Gjp � �pn�1

[nt]X
j=1

j� j�1
n
jp ;

D
(n)
t = �p

�
n�1

[nt]X
j=1

j� j�1
n
jp �

Z t

0
j�sjp ds

�
;

and

In(j) =
n
ij i
m
2
�j � 1

n
;
j

n

io
; j � 1:

For any �xed n, C(n;m)t converges in probability to 0, uniformly in t, as m!1, i.e.

sup
0�t�T

jC(n;m)t j �
[nT ]X
j=1

j� j�1
n
jp
��� 1

m�pm

X
i2In(j)

j�mi Gjp � �pn�1
��� P�! 0

thanks to the uniform convergence V (G; p)mt
ucp�! �pt. Next, observe that the number of jumps

of j�tjp that are bigger than " is �nite (on compact intervals), because j�tjp is regulated. This
implies

sup
0�t�T

jD(n)t j � �pn�1
�
sup
0�t�T

j�tjp +
[nT ]X
j=1

sup
s2( j�1

n
; j
n
]

jj� j�1
n
jp � j�sjpj

�
P�! 0

as n! 0. For the term B
(n;m)
t we obtain the inequality

sup
0�t�T

jB(n;m)t j � 1

m�pm

[nT ]X
j=1

X
i2In(j)

jj� j�1
n
jp � j� i�1

m
jpjj�mi Gjp

+ sup
0�t�T

j�tjp sup
0�t�T

1

m�pm

X
mn�1[nt]�i�mn�1([nt]+1)

j�mi Gjp

� 1

m�pm

[nT ]X
j=1

sup
s2( j�2

n
; j
n
]

jj� j�1
n
jp � j�sjpj

X
i2In(j)

j�mi Gjp

+ sup
0�t�T

j�tjp sup
0�t�T

1

m�pm

X
mn�1[nt]�i�mn�1([nt]+1)

j�mi Gjp:

By Proposition 1, the latter expression converges in probability to

En = �pn
�1
�
sup
0�t�T

j�tjp +
[nT ]X
j=1

sup
s2( j�2

n
; j
n
]

jj� j�1
n
jp � j�sjpj

�

13
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as m!1. As above, we obtain En
P�! 0 as n!1.

For the term A
(m)
t , we deduce by Young�s inequality (for p � 1)

sup
0�t�T

jA(m)t j � 1

m�pm
sup
0�t�T

��� [mt]X
i=1

�
j�mi Xjp � j� i�1

m
�mi Gjp

����
� 1

m�pm

[mT ]X
i=1

����mi X � � i�1
m
�mi G

���p

� C

m�pm

[mT ]X
i=1

���varq��;� i� 1
m

;
i

m

i�
var

1=(�
2
�")

�
G;
� i� 1
m

;
i

m

i����p = CF (m)T ;

where 0 < " < �=2. Next, we �x � > 0 and consider the decomposition

F
(m)
T � 1

m�pm

X
i:varq(�;( i�1m ; i

m
])>�

���varq��;� i� 1
m

;
i

m

i�
var

1=(�
2
�")

�
G;
� i� 1
m

;
i

m

i����p

+
�p

m�pm

[mT ]X
i=1

���var1=(�
2
�")

�
G;
� i� 1
m

;
i

m

i����p
Observe that

[mT ]X
i=1

���varq��;� i� 1
m

;
i

m

i����q � jvarq(�; [0; T ])jq <1 ;

consequently, the number of indexes i for which varq
�
�;
�
i�1
m ; im

i�
> � is bounded by jvarq(�; [0; T ])jq=�q.

Recalling (2.8) and (2.9) we obtain

F
(m)
T � jvarq(�; [0; T ])jq+p

m�pm�
q max

1�i�[mT ]

���var1=(�
2
�")

�
G;
� i� 1
m

;
i

m

i����p

+
�p

m�pm

[mT ]X
i=1

���var1=(�
2
�")

�
G;
� i� 1
m

;
i

m

i����p
� C

� jvarq(�; [0; T ])jq+p
m�pm�

q m�p(�
2
�") +

�p

�pm
m�p(�

2
�")
�
:

Choose 0 < " < 1
2p , " < � <

1
p � � and set � = m

��. By (2.7) we deduce that

F
(m)
T

P�! 0 ;

which completes the proof of Theorem 2 for p � 1.

14
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For p > 1 we use Minkowski�s inequality to obtain the approximation

����V (X; p)mt �1=p � ��p Z t

0
j�sjp ds

�1=p��� � 1

m1=p�m

� [mt]X
i=1

����mi X � � i�1
m
�mi G

���p�1=p

+
1

m1=p�m

� [nt]X
j=1

X
i2In(j)

j(� i�1
m
� � j�1

n
)�mi Gjp

�1=p

+
��� 1

m1=p�m

� [nt]X
j=1

j� j�1
n
jp
X

i2In(j)
j�mi Gjp

�1=p
�
�
�pn

�1
[nt]X
j=1

j� j�1
n
jp
�1=p���

+�1=pp

����n�1 [nt]X
j=1

j� j�1
n
jp
�1=p

�
�Z t

0
j�sjp ds

�1=p���:
By the same methods as presented above we obtain the assertion of Theorem 2 for p > 1. �

Proof of Theorem 6: We set

Znt =
1p
n

[nt]X
i=1

H
��ni G
�n

�
: (7.9)

Step 1: Let us show the tightness of the sequence of processes (Gt; Znt ). For any t > s we have

E[(Znt � Zns )4] =
1

n2
E
h� [nt]X

i=1

H
��ni G
�n

��4i
:

By Proposition 4.2 in [28] and part (iv) of Lemma 1 we know that, for any N � 1,

1

N2
E
h� NX

i=1

H
��ni G
�n

��4i
� C

� 1X
i=0

r2n(i)
�2
! C

� 1X
i=0

�2(i)
�2
:

Since the process G has stationary increments, we obtain

E[(Znt � Zns )4] � C
��� [nt]� [ns]

n

���2:
For any t1 � t � t2, the Cauchy-Schwarz inequality implies that

E[(Znt2 � Z
n
t )
2(Znt � Znt1)

2] � C
� [nt2]� [nt]

n

�� [nt]� [nt1]
n

�
� C(t2 � t1):

The tightness of (Gt; Znt ) follows now by Theorem 15.6 in [13]. �

Step 2: Finally, we need to prove the convergence of �nite dimensional distributions of (Gt; Znt ).

De�ne the vector Yn = (Y 1n ; : : : ; Y
d
n )
T by

Y kn =
1p
n

[nbk]X
i=[nak]+1

H
��ni G
�n

�
; (7.10)

15
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where (ak; bk], k = 1; : : : ; d, are disjoint intervals contained in [0; T ]. Clearly, it su¢ ces to prove

that �
Gbk �Gak ; Y kn

�
1�k�d

D�!
�
Gbk �Gak ; �(Wbk �Wak)

�
1�k�d

;

where � is given by (5.4).

Next, we want to apply Theorem 5. Let H1 be the �rst Wiener chaos associated with the
triangular array (�njG=�n)n�1;1�j�[nt], i.e the closed subspace of L

2(
;F ; P ) generated by the
random variables (�njG=�n)n�1;1�j�[nt]. Notice thatH1 can be seen as a separable Hilbert space
with a scalar product induced by the covariance function of the process (�njG=�n)n�1;1�j�[nt].

This means we can apply the theory of Section 4 with the canonical Hilbert space IH = H1.
Denote byHm themth Wiener chaos associated with the triangular array (�njG=�n)n�1;1�j�[nt]
and by Im the corresponding linear isometry between the symmetric tensor product H�m1
(equipped with the norm

p
m! k�kH
m

1
) and the mth Wiener chaos. Finally, we will denote by

Jm the projection operator on the mth Wiener chaos.

Since

E[(Gbk �Gak)Y ln] = 0

for any 1 � k; l � d (because H is an even function), it is su¢ cient to check the following

conditions.

(i) For any m � 1 and k = 1; : : : ; d, the limit limn!1E[jJmY kn j2] = �2m;k exists andP1
m=1 supnE[jJmY kn j2] <1,

(ii) For any m � 1 and k 6= h, limn!1E[JmY kn JmY hn ] = 0,

(iii) For any m � 1, k = 1; : : : ; d and 1 � p � m� 1, we have that

lim
n!1

I�1m JmY
k
n 
p I�1m JmY

k
n = 0:

Under conditions (i)-(iii) we then obtain (by Theorem 5) the central limit theorem

Yn
D�! Nd

�
0; �2diag(b1 � a1; : : : ; bd � ad)

�
; (7.11)

where �2 is given by (5.4). Since the increments of the process G are stationary we will prove

part (i) and (iii) only for k = 1, a1 = 0 and b1 = 1.

(i) We have

JmY
1
n =

amp
n

nX
i=1

Hm

��ni G
�n

�
:

Hence, we obtain (see (7.4))

E[jJmY 1n j2] = m!a2m
�
1 + 2

n�1X
i=1

n� i
n
rmn (i)

�
16
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By part (iv) of Lemma 1 we deduce that

lim
n!1

E[jJmY 1n j2] = m!a2m
�
1 + 2

1X
i=1

�m(i)
�
;

and 1X
m=2

sup
n
E[jJmY 1n j2] <1:

Furthermore, we obtain that

lim
n!1

E
h� 1p

n

nX
i=1

H
��ni G
�n

��2i
= lim
n!1

1X
m=2

E[jJmY 1n j2] = �2:

(ii) For any 1 � k; h � d with bk � ah we have

E[JmY
k
n JmY

h
n ] =

m!a2m
n

[nbk]X
j=[nak]+1

[nbh]X
i=[nah]+1

rmn (i� j):

Assume w.l.o.g. that ak = 0, bk = ah = 1 and bh = 2 (the case bk < ah is much easier).

By part (ii) of Lemma 1 with 0 < � < 3
2 � � in the de�nition of r (see (7.3)) we obtain the

approximation

���E[JmY kn JmY hn ]��� � m!a2m� 1n
nX
j=1

jrm(j) +
n�1X
j=1

rm(n+ j)
�
:

It follows that rm(j) � (j � 1)�1�� for some � > 0 and for all m; j � 2. Hence, we obtain

E[JmY
k
n JmY

h
n ]! 0

as n!1.

(iii) Fix 1 � p � m� 1. We obtain the identity

I�1m JmY
1
n
e
pI�1m JmY

1
n =

1

n

X
1�j;i�n

��njG
�n

�
me
p��ni G
�n

�
m

=
1

n

X
1�j;i�n

rpn(jj � ij)
���njG

�n

�
(m�p)e
��ni G
�n

�
(m�p)�
;

where "�" denotes the symmetrization. Consequently, we need to prove that the quantity

n�2
X

1�j;l;h;k�n
rpn(jj � lj)rpn(jh� kj)

�
���njG

�n

�
(m�p)e
��nl G
�n

�
(m�p)
;
��nhG
�n

�
(m�p)e
��nkG
�n

�
(m�p)�
H
2(m�p)
1

17
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converges to zero as n!1. It su¢ ces to consider a term of the form

n�2
X

1�j;l;h;k�n
rpn(jj � lj)rpn(jh� kj)

�r�n(jj � hj)rm�p��n (jl � hj)rm�p��n (jj � kj)r�n(jl � kj);

where 0 � � � m� p. The latter term is smaller than

n�1
X

0�j;l;k�n�1
rpn(jj � lj)rpn(k)r�n(j)rm�p��n (l)rm�p��n (jj � kj)r�n(jl � kj):

Without any loss of generality we can assume that p = m � p = 1 and � = 0 or � = 1. For

� = 0 and any 0 < " < 1 we get

n�1
X

0�j�n�1

0@ X
0�l�n�1

rn(jj � lj)rn(l)

1A2 � n�1 X
0�j�[n"]

0@ X
0�l�n�1

rn(jj � lj)rn(l)

1A2

+2n�1
X

[n"]<j�n�1

0@ X
0�l�[n"=2]

rn(jj � lj)rn(l)

1A2 + 2n�1 X
[n"]<j�n�1

0@ X
[n"=2]<l�n�1

rn(jj � lj)rn(l)

1A2

� 2"

0@ X
0�l<n�1

rn(l)
2

1A2 + 6 X
0�l<n�1

rn(l)
2

X
[n"=2]<l<1

rn(l)
2

which converges to 2"
�P

0�l<1 �
2(l)
�2
as n!1 by Lemma 1. The desired result follows by

letting " tend to zero. This completes the proof of Theorem 6. �

Proof of Theorem 7: Theorem 7 is deduced from Theorem 6 by the same methods as pre-

sented in [15] (see Theorem 4 therein).

For any m � n we obtain the decomposition

p
m
�
V (X; p)mt � �p

Z t

0
j�sjp ds

�
=
p
m(A

(m)
t + ~B

(n;m)
t + C

(n;m)
t +D

(m)
t ) ;

where A(m)t , C(n;m)t and D(m)t are de�ned in (7.8) and ~B
(n;m)
t is given by

~B
(n;m)
t =

1

m�pm

[mt]X
i=1

j� i�1
m
�mi Gjp � �pm�1

[mt]X
i=1

j� i�1
m
jp

� 1

m�pm

[nt]X
j=1

j� j�1
n
jp
X

i2In(j)
j�mi Gjp + �pn�1

[nt]X
j=1

j� j�1
n
jp:

We �rst prove the stable convergence for the term
p
mC

(n;m)
t . De�ne

Y jn;m =
1p
m�pm

X
i2In(j)

j�mi Gjp �
p
m

n
�p:

18
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For any �xed n, we obtain by Theorem 6 and the properties of stable convergence�
j� j�1

n
jp; Y jn;m

�
1�j�[nt]

FG�st�!
�
j� j�1

n
jp; ��njW

�
1�j�[nt]

as m!1. Hence,
p
mC

(n;m)
t

FG�st�! �

[nt]X
j=1

j� j�1
n
jp�njW:

For the latter we have

�

[nt]X
j=1

j� j�1
n
jp�njW

ucp�! �

Z t

0
j�sjpdWs:

Now, we show that the other terms are negligible. Recalling that � is Hölder continuous of

order a we obtain the inequality

p
m sup
0�t�T

jD(m)t j �
�pp
m

�
sup
0�t�T

j�tjp +
[mT ]X
j=1

jj� j�1
m
jp � j�~tmj�1 j

pj
�

�
�pp
m

�
sup
0�t�T

j�tjp + (p _ 1) sup
0�t�T

j�tj(p�1)+
[mT ]X
j=1

j� j�1
m
� �~tmj�1 j

p^1
�

�
�pp
m

sup
0�t�T

j�tjp + �pT (p _ 1)jj�jjp^1a sup
0�t�T

j�tj(p�1)+m1=2�a(p^1) ;

where ~tmj�1 2 (
j�1
m ; jm). Hence p

m sup
0�t�T

jD(m)t j P�! 0 ;

because a(p ^ 1) > 1
2 .

For the term
p
m ~B

(n;m)
t we obtain the inequality

p
mj ~B(n;m)t j =

��� [nt]X
j=1

X
i2In(j)

j� i�1
m
jp
� 1p

m�pm
j�mi Gjp �

�pp
m

�

�
[nt]X
j=1

j� j�1
n
jp
� 1p

m�pm

X
i2In(j)

j�mi Gjp �
p
m

n
�p

�
+

[mt]X
i�m

n
[nt]

j� i�1
m
jp
� 1p

m�pm
j�mi Gjp �

�pp
m

����
�
��� [nt]X
j=1

j�~sjp
X

i2In(j)

� 1p
m�pm

j�mi Gjp �
�pp
m

�
�

[nt]X
j=1

j� j�1
n
jp
� 1p

m�pm

X
i2In(j)

j�mi Gjp �
p
m

n
�p

����
+ sup
0�t�T

[mt]X
i�m

n
[nt]

���j� i�1
m
jp
� 1p

m�pm
j�mi Gjp �

�pp
m

����
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�
[nT ]X
j=1

sup
s2( j�2

n
; j
n
]

jj�sjp � j� j�1
n
jpjjY jn;mj+

�pp
m

sup
0�t�T

j�tjp

+ sup
0�t�T

��� [mt]X
i�m

n
[nt]

j� i�1
m
jp
� 1p

m�pm
j�mi Gjp �

�pp
m

���� ;
where ~s 2 ( j�2n ;

j
n ]. Then, by Theorem 6, we obtain

lim sup
m!1

P (
p
m sup
0�t�T

j ~B(n;m)t j > �) � P
�
�

[nT ]X
j=1

sup
s2( j�2

n
; j
n
]

jj�sjp � j� j�1
n
jpjj�njW j

�

n
sup
0�t�T

j�tjp sup
0�t�T

jWt �W[nt]=nj > �
�

for any � > 0. Since � is Hölder continuous of order a with a(p ^ 1) > 1=2 it holds, for any

� > 0, that

[nT ]X
j=1

sup
s2( j�2

n
; j
n
]

jj�sjp � j� j�1
n
jpjj�njW j � (p _ 1)Cjj�jj(p^1)a sup

0�t�T
j�tj(p�1)+n�a(p^1)+1=2+� ;

which converges to 0 as n!1 if � is small enough. This implies that

lim
n!1

lim sup
m!1

P (
p
m sup
0�t�T

j ~B(n;m)t j > �):

Finally, let us show that
p
m sup0�t�T jA

(m)
t j P�! 0. We have

p
mjA(m)t j � 1p

m�pm
(p _ 1)2(p�2)+

[mt]X
j=1

j� j�1
m
�mj Gj(p�1)+

����mj X � � j�1
m
�mj G

���p^1

+
1p
m�pm

(p _ 1)2(p�2)+
[mt]X
j=1

����mj X � � j�1
m
�mj G

���p:
By (2.9) and Young�s inequality we deduce (as in Theorem 2)

p
m sup
0�t�T

jA(m)t j � Cp
m�pm

�
m�(�

2
��)(p�1)+ sup

0�t�T
j�tj(p�1)+

�
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���var1=a��;�j � 1m ;
j

m

i�
var

1=(�
2
��)

�
G;
�j � 1
m

;
j

m

i����p^1

+

[mT ]X
j=1

���var1=a��;�j � 1m ;
j

m

i�
var

1=(�
2
��)

�
G;
�j � 1
m

;
j

m

i����p�

� Cp
m�pm

�
m�(�

2
��)(p�1)+�(p^1)(�2��+a)+1 sup

0�t�T
j�tj(p�1)+ +m�p(�

2
��+a)+1

�
which converges to 0 as m!1, provided � < p�1(a(p ^ 1)� 1

2). This completes the proof. �
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