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Abstract

Few issues are more important for finance practice than the computation of market betas.

Existing approaches compute market betas using historical data. While these approaches differ

in terms of statistical sophistication and the modeling of the time-variation in the betas, they are

all backward-looking. This paper introduces a radically different approach to estimating market

betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we

employ the information embedded in the prices of individual stock options and index options to

compute our forward-looking market beta at the daily frequency. This beta can be computed

using option data for a single day, and is able to reflect sudden changes in the structure of

the underlying company. Based on an empirical investigation of daily cross-sections of option

contracts on thirty underlying companies, we conclude that these forward-looking betas contain

information relevant for forecasting future betas that is not contained in historical betas.
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1 Introduction

Few concepts are more important for finance practice than the simple idea of market beta, which

captures the covariation of the return on an individual security with the return on the market

portfolio, as approximated by a broad market index. Accurate measurement of market betas is

critical for important issues such as cost of capital estimation, performance measurement and the

detection of abnormal returns.

Existing techniques for beta estimation use historical data. These methods use past data to

estimate betas and thus assume that the future will be sufficiently similar to the past to justify

simple extrapolation of current or lagged betas. There is widespread agreement that betas are

time-varying, and historical methods can easily allow for this. One popular approach uses a rolling

window of historical returns to capture time-variation, while other approaches model the time-

variation in historical betas more explicitly and in a more sophisticated fashion. However, no

matter how sophisticated the modeling of the time-variation in the betas, a historical method may

not perform well if historical patterns in the data are unstable.

This paper takes a very different approach. We estimate forward-looking betas by extracting

information from prices on equity and index options. The appeal of this procedure is that these

option prices are inherently forward-looking, and therefore incorporate information on future betas

as opposed to lagged betas. We compare the empirical performance of this beta estimate with

that of more traditional historical estimates, and we find that the forward-looking betas contain

information that is not contained in historical betas and vice versa.

A key strength of our approach is that betas can be computed using closing prices of options

observed only on a single day. This may be an important advantage when a company experiences

major changes in its operating environment or capital structure, in which case historical return

data do not constitute a reliable source for estimating betas. Examples include firms undergoing

large mergers or acquisitions, reorganized firms emerging from Chapter 11, firms undertaking IPOs

or SEOs, firms undertaking large-scale expansions and major changes in the composition of debt

and equity.

The approach in this paper is partly inspired by recent developments in the literature on volatil-

ity forecasting. For the purpose of volatility forecasting, one can compute a historical estimate

using a simple historical standard deviation or a more sophisticated approach such as a GARCH

model. Regardless of the level of statistical sophistication, such estimates are all historical and

backward-looking. Alternatively, one can compute the implied volatility based on option contracts,

which is forward-looking and incorporates the market’s expectations. Intuitively one would ex-

pect a measure that incorporates market expectations to contain information that is different from

historical methods, and sometimes outperform historical methods. Many studies confirm this intu-
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ition.1 The method proposed in this paper is inspired by the same intuition: one would expect a

forward-looking method for estimating beta to contain information not encompassed by historical

beta. The main difference with the literature on volatility forecasting is that at a technical level,

forward-looking betas are more difficult to compute than implied volatilities, which may explain

why this idea has not yet been explored more in the academic literature and/or adopted into

industry practice.

We are not the first to propose extracting market beta from options. French, Groth and Kolari

(1983) combine forward-looking volatility with historical correlation to improve the measurement of

betas. However this approach relies on conventional correlation estimates from historical returns.

McNulty et al (2002) emphasize the problems with historical beta when computing the cost of

capital, and propose as an alternative the forward-looking market-derived capital pricing model

(MCPM), which uses option data to assess equity risk. Siegel (1995) notes the advantage of a beta

based on forward-looking option data, and proceeds to propose the creation of a new derivative,

called an exchange option, which would allow for the computation of what he refers to as “implicit”

betas. Unfortunately the exchange options discussed by Siegel (1995) are not yet traded, and

therefore his method cannot be used in practice to compute forward-looking betas.

We show that market betas can be computed without using historical correlation estimates

and without the creation of a new derivative, by using prices on existing equity options and index

options. Our proposed beta is computed using forward-looking estimates of variance and skewness,

which can be computed using the methods proposed by Bakshi and Madan (2000), Bakshi, Kapadia

and Madan (2003), Britten-Jones and Neuberger (2000), Carr and Madan (2001) and developed

further in Jiang and Tian (2005). See also Jackwerth and Rubinstein (1996).2 These methods allow

us to retrieve the moments of the underlying distributions for index options and stock options from

the cross-section of option prices. We then use a traditional one-factor model and express the

forward-looking beta as a function of the variance and the skewness of the underlying distributions.

We implement this model using option contracts for the thirty components of the Dow Jones

index as well as data on S&P500 options. Daily option data are obtained from the Ivy DB database

over the period 1996-2003. We compare the performance of the forward-looking beta with that of

the historical beta. We find that the performance of the historical beta critically depends on the

estimation window, with longer estimation windows leading to poorer results. The forecasting

performance of the forward-looking beta is better than that of the best-performing historical beta

1See studies by Blair, Poon and Taylor (2001), Busch, Christensen, and Nielsen (2006), Canina and Figlewski

(1993), Christensen and Prabhala (1998), Day and Lewis (1992), Ederington and Guan (2002), Figlewski (1997),

Fleming (1998), Jorion (1995), Lamoureux and Lastrapes (1993) and Pong, Shackleton, Taylor and Xu (2004). See

Poon and Granger (2003) and Granger and Poon (2005) for surveys.
2Most studies refer to these moments as model-free moments. We refer to them as forward-looking moments, in

order to maintain consistency with the terminology “forward-looking beta”.
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in about half the cases. In some cases an equally weighted average of historical and forward-looking

beta outperforms either method, even when both methods have significant predictive power.

The empirical findings in this paper are related to some of the results in the growing literature

on the pricing of equity options, and more specifically to results on the differential pricing of

equity and index options. Dennis and Mayhew (2002) and Duan and Wei (2007) find that firms

with high historical market betas have higher negatively skewed risk-neutral distributions. This

paper demonstrates that this result is to be expected if historical betas have some predictive power

for forward-looking betas, because forward-looking betas are higher if the underlying risk-neutral

distribution is more negatively skewed. We also demonstrate that a stock’s forward-looking beta is

partly determined by the difference between the skew of the stock’s risk-neutral distribution and

the skew of the index’s risk-neutral distribution. Bakshi, Kapadia and Madan (2003) document

differences between the skew of stock and index options. Driessen, Maenhout and Vilkov (2005)

use equity options to obtain correlations between stocks in a parametric setup.

The remainder of this paper is organized as follows. Section 2 discusses the derivation of forward-

looking betas using option data. Section 3 describes the data and elaborates on the empirical

implementation. Section 4 presents a case study of our method, using the empirical results for

three Dow Jones components. Section 5 summarizes the empirical results for the thirty components

of the Dow Jones index, and Section 6 presents a number of robustness checks and provides more

discussion of the results. Section 7 concludes.

2 Methodology

2.1 Factor Models and Beta Estimation

Factor betas capture the covariation between the return on an individual security and the return on

a factor. Accurate measurement of betas is critically important, because it is a basic requirement

for the meaningful implementation of factor models, which have become popular with practitioners

as well as academics. Factor models and betas are used by practitioners for a number of reasons.

First, they provide a benchmark for performance measurement, because they indicate the return

a portfolio manager ought to have made given the risk present in his portfolio.3 Second, factor

models provide a benchmark for the detection of abnormal returns, as is for instance done in event

studies.4 Third, factor models can be used to determine the required cost of capital.5

There is an ongoing discussion on the appropriate choice of factor model and the empirical

3See Jensen (1968, 1969), Sharpe (1966) and Treynor (1966) for early applications to performance measurement.

See Christopherson, Ferson and Glassman (1998), Farnsworth, Ferson, Jackson and Todd (2002) and Ferson and

Schadt (1996) for more recent contributions. See also Lintner (1965) and Markowitz (1952).
4See MacKinlay (1997), chapter 2 in Campbell, Lo, MacKinlay (1997), and the references therein.
5See for instance Fama and French (2004) for a review of this literature.
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performance of alternative factor models. This debate is relevant for this paper because we derive

our results in the context of a particular factor model, the Capital Asset Pricing Model (CAPM).

There is evidence in the literature that some multifactor models can improve on the performance

of the CAPM, but this issue remains hotly debated.6 We merely note that the academic literature

remains divided about the performance of the CAPM, and that the CAPM is still the factor model

most often used in financial practice. In our empirical application, the CAPM performs relatively

well.

The computation of betas for the CAPM is an issue that is just as hotly debated as the choice

of factor model. In several classic applications of the CAPM, betas were computed by running

a regression of stock returns on market returns, using returns for the past sixty months.7 This

technique is still used in many academic and practitioner approaches to beta estimation. The

choice of sixty lagged returns reflects the tension implicit in using historical returns to compute

betas: on the one hand one would like to use as long a history as possible to obtain more precise

estimates, but on the other hand one does not want to use older returns data because it is likely

that the beta changes over time.

Over the last two decades, the modeling of the time-variation in the market beta has taken center

stage in the CAPM literature. There is by now widespread consensus that beta is time-varying,

although it is less clear how much this time-variation helps the model’s empirical performance out-

of-sample. A number of different econometric techniques are available to model the time-variation

in the beta.8

While modeling the time-variation in the beta is helpful, it does not address the criticism that

this type of measurement is backward-looking, much like the simple regressions that use sixty

months of lagged returns. Many applications of factor models, such as the cost of capital, are

inherently forward-looking. Ideally we want an estimate of the future beta. The computation of

a historical beta, regardless of whether it is time-varying or not, is a second-best solution that

we resort to because the computation of genuinely forward-looking betas is thought to be difficult

or impossible. This paper takes a different approach: we argue that it is possible to compute

forward-looking betas, using the forward-looking information embedded in option prices.

6See Campbell, Lo and MacKinlay (1997), Cochrane (2001), Jagannathan and McGratten (1995), Fama (1991),

Ferson (1995, 2004), and the references therein for an overview of this extensive debate. See also Ferson and Korajczyk

(1995) and MacKinlay (1995).
7See for instance Black, Jensen and Scholes (1972), Fama and MacBeth (1973) and Fama and French (1992, 1993,

1996).
8On modeling time-variation in betas, see Bollerslev, Engle and Wooldridge (1988), Blume (1971, 1975), Bos and

Newbold (1984), Cochrane (2001), Ferson (1995, 2004), Ferson and Harvey (1999), Ferson, Kandel and Stambaugh

(1987), Ghysels (1998), Harvey (1989) and Jagannathan and Wang (1996). Companies such as BARRA provide

investors and risk managers with time varying estimates of market betas.
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2.2 Estimation of Market Betas

Following Bakshi, Kapadia and Madan (2003) we assume that the log-return on stock i follows a

single factor model of the form

Ri = αi + βiRm + εi (1)

where the market return Rm has mean μm. The idiosyncratic shock εi has zero mean and is assumed

to be independent of the market return Rm.

The standard estimates of beta from historical returns on the market and on the individual

equity estimates beta as

βi =
COVi,m
V ARm

= CORRi,m

µ
V ARi

V ARm

¶1/2
where the moments are computed from times series of historical returns.

French, Groth and Kolari (1983) suggest introducing option information in a hybrid estimation

method where the correlation between equity and market return, CORRi,m, is estimated from

historical returns but where the variances are implied from options. We can write

βi = CORRi,m

µ
V ARFL

i

V ARFL
m

¶1/2
where V ARFL

i and V ARFL
m are the forward-looking variances implied from option prices on indi-

vidual equity options and on index options.

Note however, that the hybrid estimator still requires historical data and so cannot be used

for firms where little or no history is available. It is also problematic to use it when the nature

of the firm has changed dramatically, for example following a merger or a major reorganization or

expansion when the correlation between firm and market is likely to change. McNulty et al (2002)

cite the sensitivity of the correlation estimates from historical data as a key detractor for corporate

practitioners when using the CAPM for cost of capital computations.

Siegel (1995) circumvents the computation of historical correlations by assuming the existence

of an option to exchange shares in firm i for units of the market index. From the accounting identity

dollars per share = (dollars per index unit) times (index units per share), on can derive the beta

of firm i as follows

βi =
V ARFL

i + V ARFL
m − V ARFL

X

2V ARFL
m

where V ARFL
X is the forward-looking variance implied from the option to exchange index units

for equity shares. Note that this is the method used to imply covariance estimates from range-

based volatility estimates in currency markets in Brandt and Diebold (2006). Unfortunately, since

exchange options are not yet traded, the implicit beta cannot be computed in practice.

In this paper, we argue that betas similar in spirit to Siegel’s (1995) “implicit” betas can be

computed without the creation of a new derivative, by using prices on existing equity and index
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options. We will refer to these betas as “forward-looking” betas. Alternatively they could be

labeled “option-implied” betas, “implied” betas, or “implicit” betas. We will derive the forward-

looking beta in three steps below. First we derive an estimator of beta that relies on univariate

moments only. Second, we discuss how to derive the necessary moments from options data. The

third step simply combines the moment based beta with the options moments.

2.3 Computing Betas from the Moments of Stock and Index Returns

Consider the moments of the return distribution. To simplify notation, we do not provide time

subscripts for the moments, but empirically there will be a different estimate for the moments at

each point in time. Recall the single factor model from above

Ri = αi + βiRm + εi (2)

Consider now the conventional definition of skewness as the third central moment divided by the

standard deviation to the third power. Using the single factor return structure with an independent

idiosyncratic term we can write the skewness of Ri as

SKEWi =
E [αi + βiRm + εi −E [αi + βiRm + εi]]

3

V AR
3/2
i

(3)

=
β3iE [Rm − μm]

3 +E [εi]
3

V AR
3/2
i

=
β3iSKEWmV AR

3/2
m + SKEWε,iV AR

3/2
ε,i

V AR
3/2
i

From this we can write beta as

βi =

"µ
SKEWi

SKEWm

¶µ
V ARi

V ARm

¶3/2
−
µ
SKEWε,i

SKEWm

¶µ
V ARε,i

V ARm

¶3/2#1/3
(4)

In order to be able to implement an estimator using only moments of Ri and Rm we now make the

identifying assumption that the skewness of the idiosyncratic shock is zero, SKEWε,i = 0. We can

then solve for the market beta of stock i to be simply

βMM
i =

µ
SKEWi

SKEWm

¶1/3µ V ARi

V ARm

¶1/2
(5)

where the MM superscript indicates that the market beta is computed using the moments of the

return distribution. We discuss further the assumption of the zero idiosyncratic skew in Section 6.1

below. Duan and Wei (2007) make a similar assumption. Note that expression (5) indicates that

the skewness of the market return has to be non-zero for the market beta to be well-defined in this

setup.
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The formula for beta in (4) suggests a general relationship between return moments and beta.

Thus, even if the SKEWε,i = 0 assumption is violated, return moments may be useful for beta

estimation and forecasting. We consider this possibility in Section 6.2 below.9

At this point (5) is simply a method to compute a market beta. The moments can be computed

using either historical data or forward-looking option information. We now explain how to use

option prices to compute forward-looking moments, which will in turn allow us to compute forward-

looking betas.

2.4 Computing the Moments of Stock Returns from Option Prices

Expression (5) allows us to compute betas from the moments of the marginal distributions of the

stock and index returns. In this subsection we explain how to compute these moments using option

prices. We employ the methods of Carr and Madan (2001) as used in Bakshi, Kapadia and Madan

(2003).10 The key result is that any twice differentiable payoff function can be spanned by a

position in bonds, stocks and out-of-the-money options. A brief overview of this result is presented

in the Appendix.

Let q denote the probability distribution function under the risk-neutral measure. The variance

and skewness under the risk neutral measure are defined as

SKEW ≡
Eq
h
(R−Eq [R])3

i
V AR3/2

. (6)

V AR ≡ Eq
h
(R−Eq [R])2

i
Using the uncentered moments we can rewrite them as

SKEW =
Eq
£
R3
¤− 3Eq [R]Eq

£
R2
¤
+ 2Eq [R]3

V AR3/2
(7)

V AR = Eq
£
R2
¤−Eq [R]2

Following Bakshi, Kapadia and Madan (2003), we define the “Quad” and “Cubic” contracts as

having a payoff function equal to the squared return and cubed return respectively, for a given

horizon τ . The fair values of these contracts are

Quad = e−rτEq
£
R2
¤

Cubic = e−rτEq
£
R3
¤

9Note also that setting SKEWε,i = 0 is a sufficient but not neccesary condition for using option information in

beta estimation. If prior information is available about the value of SKEWε,i then this can be used to estimate beta

from (4) rather than (5).
10See also Bakshi and Madan (2000), Britten-Jones and Neuberger (2000), Derman and Kani (1998) and Rubinstein

(1994).
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Substituting these expressions into the variance and variance and skewness formulas in (7), we get

SKEW =
erτCubic− 3Eq [R] erτQuad+ 2Eq [R]3

V AR3/2
(8)

V AR = erτQuad−Eq [R]2 (9)

Bakshi, Kapadia and Madan (2003) show that under any martingale pricing measure, the Quad and

Cubic contract prices can be recovered from the market prices on portfolios of out-of-the-money

European calls C(τ ,K) and puts P (τ ,K), where K denotes the strike price and τ denotes the time

to maturity.

The price of the Quad contract is

Quad =

∞Z
S

2
¡
1− ln £KS ¤¢

K2
C(τ ,K)dK +

SZ
0

2
¡
1 + ln

£
S
K

¤¢
K2

P (τ ,K)dK. (10)

where S is the price of the underlying stock. The price of the Quad contract can be interpreted as

the forward price of volatility.11 The price of the Cubic contract is

Cubic =

∞Z
S

6 ln
¡
K
S

¢− 3 ln ¡KS ¢2
K2

C(τ ,K)dK −
SZ
0

6 ln
¡
S
K

¢
+ 3 ln

¡
S
K

¢2
K2

P (τ ,K)dK. (11)

Bakshi, Kapadia and Madan (2003) further show that using a third-order approximation the

risk-neutral log-return mean can be approximated by

Eq [R] = erτ − 1− erτ

2
Quad− erτ

6
Cubic. (12)

Because the Quad and Cubic contracts are computed using option prices, the resulting V AR

and SKEW in (8) are forward looking moments and will be written, V ARFL and SKEWFL below.

2.5 Computing Forward Looking Betas from Moments

We now have all the ingredients needed to compute the forward-looking beta of stock i using (5)

as well as option data on individual stocks and the index. We get

βFLi =

µ
SKEWFL

i

SKEWFL
m

¶1/3µ
V ARFL

i

V ARFL
m

¶1/2
(13)

11Volatilities derived in this fashion have been studied among others by Britten-Jones and Neuberger (2000), Carr

and Madan (2001), Carr and Wu (2003) and Jiang and Tian (2005). The terminology in these papers is “model-free”

moments. We use “forward-looking” moments, in order to maintain consistency with the terminology “forward-

looking beta”. Alternatively, one could use at-the-money implied Black-Scholes volatility as an estimate of volatility.

For our sample, the correlations between Black-Scholes implied volatility and forward-looking volatility are between

0.866 and 0.957.
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Recall from the conventional beta computations above that

βi = CORRi,m

µ
V ARi

V ARm

¶1/2
Therefore, in (13), the term

³
SKEWFL

i

SKEWFL
m

´1/3
captures the forward-looking correlation. As discussed

above, French, Groth and Kolari (1983) construct betas that combine forward-looking volatilities

with historical correlations in an effort to improve beta measurement. They have

βi = CORRi,m

µ
V ARFL

i

V ARFL
m

¶1/2
Our forward-looking beta can the thought of as a logical extension of their idea.

The moments computed from options data are risk-neutral moments. The question arises how

a risk-neutral beta computed from these moments is related to the physical beta.

Bakshi, Kapadia and Madan (2003) assumes a single factor model and argue that when restric-

tions are placed on the αi and βi parameters the single factor structure will also be well-defined

under the risk neutral measure (see their Theorem 3).12 Furthermore, one can demonstrate that

in the Merton continuous-time CAPM, the two betas are identical. The intuition for this result is

that the risk-neutral distribution is given by a mean shift of the physical distribution, leaving the

covariance matrix unchanged.

Even if the beta is different under the two measures, the risk-neutral beta estimates may be

useful for making assessments about beta in the physical world. This issue also arises in the

literature on volatility forecasting. We refer the reader to Britten-Jones and Neuberger (2000)

for further theoretical discussion. Even though the implied volatility from options is a risk-neutral

volatility measure, empirical researchers continue to use implied volatility for volatility estimation,

because its forecasting performance is very good. As an excellent recent example of this, Busch,

Christensen and Nielsen (2006) find that the forward-looking (or implied) volatility from options

works better for forecasting future realized volatility than the state-of-the-art model based on lagged

realized volatility (from intraday data) only. This is true in FX, equity and bond markets. This

strong empirical finding appears in spite of the fact that the presence of a stochastic volatility risk

premium theoretically ought to damage the forecasting performance of implied volatility.

We thus argue that the usefulness of the forward-looking beta is largely an empirical issue.

The (unobserved) differences between the risk-neutral and the physical beta will translate into

empirically measurable estimation and forecasting errors, and the size of these forecasting errors

will determine the method’s usefulness. Assessing the empirical performance is the topic to which

we now turn.
12Duan and Wei (2007) rely on this result as well.
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3 Data and Implementation Procedure

3.1 Data

We obtain option data from OptionMetrics. OptionMetrics’ Ivy DB database is a comprehensive

source of high-quality historical data for the US equity and index options markets. We extract the

security ID, date, expiration date, call or put identifier, strike price, best bid, best offer, and implied

volatility from the option price file. For European options, implied volatilities are calculated using

mid-quotes and the Black-Scholes formula. For American options, a binomial tree approach that

takes into account the early exercise premium is employed. In our empirical analysis, we focus

on the quotes of the components of the Dow Jones 30 (using its composition as of April 8, 2004)

and the S&P500 index for the period January 1, 1996 to December 31, 2003. Table 1 contains

the ticker symbols and company names for the options data. The equity options for the Dow

Jones components are traded on the Chicago Board Options Exchange (CBOE) and are American

options.

Interest rates are taken from the CRSP Zero Curve file and underlying security prices are

taken from the Securities Price file in the OptionMetrics database. As in Bakshi, Cao and Chen

(1997), Bakshi, Kapadia and Madan (2003) and Jiang and Tian (2005), we use the average of

the bid and ask quotes for each option contract, and we filter out average quotes that are less

than $3/8. We also filter out quotes that do not satisfy standard no-arbitrage conditions. Finally,

we eliminate in-the-money options because they are less liquid than out-of-the-money and at-the-

money options. We eliminate put options with strike prices of more than 103% of the underlying

asset price (K/S > 1.03), as well as call options with strike prices of less than 97% of the underlying

asset price (K/S < 0.97). Table 2 presents descriptive statistics by maturity for the options used

in the computations.

3.2 Implementing the Estimation of Moments and Betas

Moments are computed by integrating over moneyness. In practice, we do not have a continuum

of option prices across moneyness, and we therefore have to make a number of choices regarding

implementation. We follow Carr and Wu (2004) and Jiang and Tian (2005) in imposing structure

on implied volatilities. Our implementation is specifically designed to improve the quality of the

integration procedure. First, as mentioned above, we limit our attention to options on the thirty

Dow Jones components to maximize the availability of strike prices and the size of the integration

domain. Second, we only estimate the moments for days that have at least two out-of-the money

call prices and two out-of-the money put prices available. Third, as in Carr and Wu (2004) and

Jiang and Tian (2005), for each maturity we interpolate implied volatilities using a cubic spline

across moneyness levels (K/S) to obtain a continuum of implied volatilities. The cubic spline is
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only effective for interpolating between the maximum and minimum available strike price. For

moneyness levels below (above) the available moneyness level in the market, we use the implied

volatility of the lowest (highest) available strike price.

After implementing this interpolation-extrapolation technique we are able to extract a fine

grid of 1000 implied volatilities for moneyness levels between 0.01% and 300%. We then convert

these implied volatilities into call and put prices using the following rule: moneyness levels smaller

than 100% (K/S < 1) are used to generate put prices and moneyness levels larger than 100%

(K/S > 1) are used to generate call prices. This fine grid of option prices is then used to compute

the forward-looking moments by approximating the Quad and Cubic contracts using trapezoidal

numerical integration. It is important to note that this procedure does not assume that the Black-

Scholes model correctly prices options. It merely provides a translation between option prices and

implied volatilities. Also note that our implementation follows Jiang and Tian (2005) and is slightly

different from the one in Bakshi, Kapadia and Madan (2003) and Dennis and Mayhew (2002). We

document and discuss the benefits of our approach in more detail with the help of a Monte Carlo

experiment in Section 6.

We can in principle compute several forward-looking betas for every underlying asset, one for

each available option maturity. For each day, we linearly interpolate using the two contracts

nearest to the 180-day maturity to get the 180-day V AR and SKEW contracts, always using one

contract with maturity longer than 180 days and one contract with maturity less than 180 days.

Using these contracts, we obtain estimates of the 180-day forward-looking beta βFL using equation

(13) for each day t.

In implementing historical betas, a number of choices have to be made. For an overview see

for instance Damodaran (1999). For our purpose two important choices are the length of the

estimation period and the return interval. With respect to the choice of return interval, we are

constrained by the fact that we do not have an extensive time series of option data available. To

construct a powerful test of the forward-looking beta, we are therefore forced to use daily data in

our empirical analysis. Using weekly or monthly returns to compute betas is not a logical choice

when one uses a daily data frequency, and thus we estimate historical betas using daily returns.

With respect to the length of the estimation period, we implement historical beta in a number of

different ways. Because we use 180-day forward-looking beta βFL, the use of 180 daily returns to

compute historical beta is an obvious alternative. On the other hand, many academic studies of the

CAPM have followed the approach of Black, Jensen and Scholes (1972) and Fama and MacBeth

(1973) and computed historical betas using returns for the past sixty months. Industry providers

of betas typically use estimation periods between 2 and 5 years (see Damodaran (1999, p. 88)

and Bodie, Kane and Marcus (2007)). In order to investigate the robustness with respect to the

estimation window, we therefore investigate historical returns estimated using either five years, one
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year, or a half year (180 days) of daily returns.13

4 Three Case Studies

Figure 1 gives a first indication of our empirical results. It is reassuring that our measure of S&P

forward-looking volatility in Panel B is very highly correlated with the VIX in Panel A.14 The

average of the forward-looking volatility for the thirty Dow Jones stocks in Panel C is also highly

correlated with the VIX. From Panels D and E we can draw some conclusions regarding skew-

ness. First, the S&P500 forward-looking skewness exceeds the average forward-looking skewness

of the thirty Dow Jones firms. This finding is consistent with the results in Bakshi, Kapadia and

Madan (2003). Note that here and in the rest of the paper, we refer to more negative skewness

as higher skewness. Second, the correlation between forward-looking skewness and forward-looking

volatility for the S&P500 is -0.102, and the correlation between the average forward-looking skew-

ness and average forward-looking volatility for the Dow components is -0.396. Finally, while the

forward-looking volatility for the S&P500 is very highly correlated with the average forward-looking

volatility for the Dow components (0.778), the correlation between the two skewness time series is

only 0.156.

We cannot discuss the results for all thirty Dow Jones components in detail because of space

constraints, but we provide a detailed discussion of the empirical results for three of the compo-

nents: Walt Disney Corporation, Exxon Mobil Corporation and Verizon Communications. In the

subsequent section, we discuss results for all thirty stocks and we provide more details about the

analysis.

Figure 2 plots the forward-looking skewness and volatility for these three companies. Com-

paring with Figure 1, it is clear that the volatility for all three companies is positively correlated

with S&P500 volatility. In fact, the correlations are 0.71, 0.75 and 0.44 respectively. Skewness

patterns are more complex and harder to relate to S&P500 skewness. Verizon skewness substan-

tially increases in the second half of 1998, at a time when S&P500 skewness is also large, but in

fact the overall correlation between the two series is -0.21. Disney skewness increases at the end of

1997 when S&P500 skewness increases, but the overall correlation is -0.14. It is difficult to visually

identify covariation patterns between Exxon and S&P500 skewness; the overall correlation is 0.07.

13The use of daily betas has some disadvantages, see for instance Scholes and Williams (1977). However, in the

event study literature daily data and short estimation windows have been used extensively. See MacKinlay (1997)

for a review. Several recent cross-sectional studies have also started using daily betas, typically constructed using

estimation windows shorter than five years. See for example Ang, Chen and Xing (2006) and Barberis, Shleifer and

Wurgler (2005).
14While the forward-looking beta is expressed in terms of variances, we present volatilities in our empirical results

because they are easier to interpret.
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Figure 3 presents the time path of betas for Disney. We compare the forward-looking beta

with our proxy for the ex post “realized” beta, which is computed as the covariance divided by

variance for ex-post daily returns over the 180-day period, depicted in Panel A of Figure 3. We

discuss realized beta in more detail below. There is substantial variation in the realized betas, and

both the forward-looking beta and the 180-day historical beta do an excellent job at capturing this

variation. The 180-day historical beta does slightly better overall. The 5-year historical beta is

much too smooth to capture the variation in the 180-day realized beta.

Figure 4 presents a similar analysis for Exxon. Once again the 5-year historical beta does

not perform well. The 180-day historical beta substantially outperforms the forward-looking beta.

However, closer inspection of the figures indicates that this result is largely due to the patterns in

realized beta during 2000 and 2001, when the realized beta becomes very small and even negative.

A negative beta is widely regarded as unrealistic, and therefore indicative of a problem with our

proxy for the ex post realized beta. In our opinion, our proxy is the best available one despite these

shortcomings. For the moment, we note that it is important to look beyond the simple correlation

between the realized beta and the forecasts. In the case of Exxon, the 180-day historical beta

substantially outperforms the forward-looking beta when judged by correlation, but that is only

because the 180-day historical beta is equivalent to a lagged realized beta, and therefore ends up

being unrealistically small or negative in the period 2000-2001. The time path for the forward-

looking betas is much more plausible.

Figure 5 presents our findings for Verizon Communications. In this case the forward-looking

beta substantially outperforms both historical betas. Note how the forward-looking beta nicely

captures the increase in the realized beta towards the end of the sample, even though it overshoots

in 2002.

The results from the three case studies encourage a full-scale investigation using the 30 Dow

Jones components. However, they also illustrate that the realized beta computed over a relatively

short period such as 180 days can produce questionable estimates of the true but unknown beta.

This caveat is important when interpreting the results below. The three case studies also illustrate

that the forward-looking betas contain a certain amount of high-frequency noise when estimated

from only one day of options data. We could reduce this noise by estimating the forward-looking

betas using several days of options. However, in order to be as transparent as possible all the

forward looking betas below are estimated using just one day of options data.
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5 Empirical Results

5.1 Estimates of Moments and Betas

We now present empirical results for all thirty Dow Jones components. Figures 6 and 7 present time

plots for the forward-looking volatility and skewness. The time averages of the moment estimates

are given in Table 3. Earlier, Figure 1 indicated that the skewness of the S&P500 exceeded the

average of the skewness of the Dow Jones components. Table 3 indicates that the time average of

the S&P500 skew (-1.417) is in fact larger than the time average of the most negatively skewed

stock (GE), which has an average skewness of -0.590. Figure 7 also indicates that the individual

stocks are positively skewed on some days, although not very often.15 These results confirm the

finding of Bakshi, Kapadia and Madan (2003) and Dennis and Mayhew (2002), who study the

1991-1995 period.

Table 3 also reports the average forward-looking beta (13) for each of the stocks and compares

it with the average historical betas. For each day, we compute historical betas using either five

years worth of daily data, or alternatively one year or half a year (180 days). Figure 8 presents time

plots of the forward-looking and historical betas for each of the thirty stocks and compares this

with the time path of the realized betas. We limit ourselves to 180-day historical betas to avoid

clutter. Clearly the estimates of forward-looking betas are very reasonable in all cases, and in fact

they are similar to the historical betas. Figure 9 graphically compares the average forward-looking

beta with the average historical beta. Each “x” marks the mean forward-looking beta and mean

historical beta for one of the Dow Jones components. The dashed line is the 45 degree line, and

the solid line represents the regression line of historical beta on forward-looking beta. Interestingly,

the solid line has a slope larger than one. On average, forward-looking betas are more centered

around one than are the historical betas. However, note that raw beta estimates are adjusted in

many applications of historical beta. See for instance Damodaran (1999, chapter 4), Bodie, Kane

and Marcus (2007, p. 284), and the references therein for more on the motivation for these types of

adjustments. One popular adjustment is to compute (2/3)estimated beta + (1/3). If we apply this

adjustment to the historical betas in Figure 9, the resulting historical and forward-looking betas

are even more strongly related, and the regression line is very close to the 45 degree line.

5.2 The Forecasting Performance of the Beta Estimates

To evaluate the relative informational content of the forward-looking and historical betas, we con-

struct a standard out-of-sample forecasting test. A typical forecasting regression regresses the

ex-post observed variable to be forecast on the forecasting variables. In our case, the ex-post

variable is not directly observed, but this is the case for many applications, such as for example

15These days are excluded when calculating forward-looking betas.
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volatility forecasting. We measure the ex-post beta using the realized betas proposed by Andersen

et al. (2006). While Andersen et al. use high-frequency data, we compute the average of the ratio

of the squared covariance and the squared market return variance, using daily returns data. This

implementation is inspired by Schwert’s (1987) construction of a measure of realized volatility.

Table 4 contains correlations between the ex-post realized beta and five predictors: the forward-

looking beta, the three historical betas, and a mixed beta, which is the simple average of the

forward-looking beta and the 180-day historical beta.16 The right-most column is the average

realized beta. We present three different sets of results. In Table 4A we forecast 180-day realized

beta. This is a logical choice as a proxy for ex-post beta, because the forward-looking beta is

computed using options with a maturity of 180 days. To avoid some of the problems with the

180-day realized beta, as illustrated for instance by the Exxon case in Figure 4, we also investigate

realized betas constructed over longer horizons as proxies for ex-post beta in Tables 4B and 4C.

Table 4B uses 365 days, and Table 4C uses 730 days.

First consider Table 4A. For each stock, the predictor with the highest correlation is indicated

in bold. The forward-looking beta outperforms the other methods ten times, and the same is true

for the 180-day historical beta. The mixed beta is the best performer in seven cases, and the

1-year historical beta in three cases. The 5-year historical beta is always outperformed by at least

one other method, and it often ranks last. The 180-day historical beta clearly dominates the two

other historical methods.

When does the forward-looking beta perform poorly? While we do not have an all-encompassing

explanation, it is noteworthy that the forward-looking beta does poorly in a few cases where the

average realized beta is either very low or very high. For example, the average realized beta

estimates for Johnson and Johnson (JNJ) and Altria (MO), and Procter and Gamble (PG) are

0.676, 0.544 and 0.612 respectively, and the forward-looking betas are negatively correlated with

the realized betas in these cases. Table 4A indicates that another case in which the forward-looking

method underperforms is Citigroup (C), with an average historical beta of 1.431. Remember from

Figure 9 that the forward-looking beta was more centered around one than the historical beta.

Perhaps the forward-looking technique has difficulty estimating very large and very small betas.

Alternatively, the realized beta estimate may be poor for these stocks.

While there is no obvious pattern among the cases for which the forward-looking betas perform

very well, it is interesting that the method often performs well for technology companies, such as

Intel (INTC), IBM, Microsoft (MSFT) and Hewlett-Packard (HPQ). Whether this is due to dis-

tinctive patterns in the return distribution and/or whether there is a more structural interpretation,

such as more rapid change in these companies, is an interesting topic for further research.

16An investigation of the optimal weights on historical and option-implied betas from a forecasting perspective is

beyond the scope of this study. In the volatility forecasting literature, a 50-50 mix between historical and implied

volatility often improves on methods with more sophisticated weights (see for example Poon and Granger (2003)).
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We now turn to the results in Tables 4B and 4C, which are obtained using realized betas

constructed with longer horizons. Somewhat unexpectedly, the performance of the forward-looking

beta compared to that of the 180-day historical beta is much better in Table 4B than in Table 4A,

and this conclusion carries over to Table 4C. The mixed beta also perform well. It is perhaps not

surprising that the performance of the 180-day historical beta in Tables 4B and 4C is poorer than in

Table 4A, because the horizons used in the construction of realized betas are no longer equal to 180

days. What is harder to explain is why the correlation between realized beta and forward-looking

beta is in many cases higher in Tables 4B and 4C than in Table 4A. Finally, it is also interesting

that the 1-year and 5-year historical betas do not perform well in Tables 4B and 4C. In summary,

in Table 4B either the forward-looking beta or the mixed beta is the best performer in nineteen

out of thirty cases. In Table 4C this the case twenty-two times out of thirty.

In Tables 5-8 we investigate univariate as well as multivariate forecasting regressions of realized

beta on predicted beta. The univariate forecasting regressions are given by

βREALt,t+180 = θ1 + θ2β
HIST
t + ut (14)

βREALt,t+180 = θ1 + θ2β
FL
t + ut (15)

where βHIST
t denotes the historical beta. The multivariate forecasting regression is

βREALt,t+180 = θ1 + θ2β
FL
t + θ3β

HIST
t + ut (16)

Because of space constraints, the more detailed reporting on the univariate and multivariate

forecasting regressions in Tables 5-8 only reports on the best-performing historical beta, which is

the 180-day historical beta. Also because of space constraints, we limit ourselves to results for

forecasting 180-day realized beta.

Tables 5 and 6 report results for the univariate forecasting regressions. For an ideal forecast

the intercept in (14) and (15) is zero, and the slope is one. The R-square is the square of the cor-

responding correlation reported in Table 4A. While the R-squares indicate respectable explanatory

power in many cases, and the slope coefficients are usually significantly estimated, the constant is

quite large in most cases.17

The right-most columns in Tables 5-6 report the root mean squared errors (RMSEs) for the

forward-looking and historical betas, respectively. Note that the forward-looking betas perform

relatively better when using the R-squared (and thus correlation) metric than when using the

RMSE metric. The explanation for this finding is that while the forward-looking betas contain

substantial predictive information, they are relatively more biased than the historical betas. In

17All our t-tests are computed using Newey-West standard errors allowing for heteroskedasticity and autocorrela-

tion.
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the forecasting regression, this bias is captured by allowing the constant to be nonzero and the

slope to be different from one, but the bias shows up in the RMSE.

It is perhaps even more interesting to consider the multivariate forecasting results in Table 7.

The slope coefficients indicate that in most cases, the forward-looking beta carries information in

addition to the historical beta and vice versa. This result is consistent with the strong performance

of the mixed beta in Table 4. It is also noteworthy that the mixed beta in Table 4 often substantially

outperforms the historical and forward-looking betas in cases where the explanatory power of both

measures is high. This suggests that when both betas are good forecasts in isolation, they contain

different information.

Table 8 provides additional evidence on the incremental information in historical and forward-

looking forecasts. We report results from regressing the residuals of the univariate regressions on

the other predictor. In most cases, the slope coefficient in these regressions is highly significant,

confirming that the forward-looking beta carries information in addition to the historical beta and

vice versa.

5.3 The Cross-Sectional Performance of the Beta Estimates

The most important implications of factor models are cross-sectional. Our sample is far from ideal

to study the cross-section, and we therefore limit the scope of our cross-sectional analysis. We

regress average excess returns on average beta in the spirit of Black, Jensen and Scholes (1972).

Figure 9 presents the empirical results. For forward-looking beta the R2 is 0.22 and for historical

beta the R2 is 0.28.

It is not straightforward to relate our results to the available literature for a number of reasons.

First, we use a short sample because of the limited availability of option data. Second, we use

individual stock returns rather than portfolios.18 Third, we use daily returns while most of the

literature uses monthly returns. Fourth, we investigate a relatively small cross-sectional sample.

Fifth, our sample is limited to large cap stocks and therefore the cross-sectional application has

limited power to test a given model. For the purpose of this study, we merely conclude that the

forward-looking beta has significant explanatory power, even though the historical beta explains a

somewhat larger fraction of the cross-section of asset returns.

18 It is well-known that assessing the performance of the CAPM using individual stocks is subject to testing problems

related to measurement error in the betas. See Black, Jensen and Scholes (1972) for an early discussion of this problem.

We limit ourselves to thirty stocks because we want to use liquid option contracts.
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6 Discussion

In this section, we discuss some important aspects of our forward-looking beta calculations, namely

the assumption of a zero idiosyncratic skew, the forecasting power of forward-looking moments on

their own, and the accuracy of the forward-looking moment calculations from options.

6.1 The Idiosyncratic Skew

Recall that in order to derive beta to be

βMM
i =

µ
SKEWi

SKEWm

¶1/3µ V ARi

V ARm

¶1/2
(17)

we had to assume that the idiosyncratic return component has zero skewness in the general expres-

sion for beta

βi =

"µ
SKEWi

SKEWm

¶µ
V ARi

V ARm

¶3/2
−
µ
SKEWε,i

SKEWm

¶µ
V ARε,i

V ARm

¶3/2#1/3

=

"¡
βMM
i

¢3 −µSKEWε,i

SKEWm

¶µ
V ARε,i

V ARm

¶3/2#1/3

We would like to know the bias in βMM
i arising from the assumption that SKEWε,i = 0, if in

fact it is not.

Figure 11 quantifies the bias βMM
i − βi as a function of SKEWε,i. On the horizontal axis we

let SKEWε,i take values on a grid from -0.5 to +0.5. Motivated by the average of the empirical

values in Table 3 above, we set βi = 1, V ARm = .242, and SKEWm = −1.44. V ARε,i is set equal

to the difference between the average firm variance and the market variance which is roughly .242.

V ARi and SKEWi can then be computed from V ARi = β2iV ARm + V ARε,i and (3) which gives

the inputs needed for computing βMM
i in (17). Figure 11 shows that the bias amount to 10% of

the true beta when the idiosyncratic skewness is close to -0.5 or +0.5. The figure also shows that

the bias is roughly linear in the idiosyncratic skew. Assuming that SKEWm is negative, which is

the case empirically, then βMM
i will be biased downward if SKEWε,i is positive and vice versa.

It is difficult to verify the appropriateness of the SKEWε,i = 0 assumption using options data.

We note that if there is a systematic asymmetry pattern across the idiosyncratic distribution of

firms, we would expect the estimated forward-looking betas to be systematically higher or lower

than the historical betas. This is not the case. However, we did observe that forward-looking betas

were more centered around one than historical betas. This finding may be due to the assumption

of a symmetric idiosyncratic return component, if the idiosyncratic skew is negative for low beta

stocks and positive for high beta stocks.
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6.2 The Forecasting Performance of Forward-Looking Moments

Our forecasting analysis has thus far been focused on the performance of the forward-looking beta

(13). A natural question that arises is to what extent the functional form of the forward-looking

beta impacts on this forecasting performance. In other words, if forward-looking moments ought

to be important for forecasting beta, to what extent can we forecast betas better by using forward-

looking moments in a more flexible way? Table 9 addresses this question by reporting forecasting

regressions where the forward-looking moments are used as regressors.

We report on forecasting regressions that use various permutations of the forward-looking mo-

ments. In all cases coefficients of multiple correlation are reported.19 In order to investigate the

additional explanatory power of the historical beta, we also report on a forecasting regression that

includes all regressors used in the table as well as the 180-day historical beta.

The results in Table 9 are of substantial interest and allow for several conclusions. First, when

using all four forward-looking moments in forecasting (in the next to last column in Table 9), the

resulting coefficient of multiple correlation is often much higher than the correlation coefficient asso-

ciated with forward-looking beta (in the first column of Table 9).20 Second, the relative importance

of the forward-looking moments, as judged by the correlation coefficients for univariate regressions,

strongly differs between companies. Third, in the large majority of cases, the forecasting perfor-

mance of V ARi and SKEWi combined (in column 7) is better than that of V ARm and SKEWm

combined (in column 6). Fourth, even in cases where the coefficient of multiple correlation using

all four moments is very high (in column 8), adding the historical beta as a regressor improves fore-

casting performance. Finally, we also investigated alternative forecasting horizons (not reported).

Consistent with the results in Tables 4B and 4C, using 365-day and 730-day realized betas leads

to substantially higher coefficients of multiple correlation.

6.3 The Accuracy of the Moment Computations

As we do not have a continuum of option prices available to compute the moments, it is inevitable

that certain biases will be induced in the estimation. We conducted a number of Monte Carlo ex-

periments to determine the importance of these biases on the estimation of volatility and skewness,

and we used the results of these Monte-Carlo experiments to guide our empirical implementation.

There are four types of biases that are of particular concern in the estimation of volatility and

skewness: discretization of strike prices, truncation of the integration domain, asymmetry of the

integration domain and the position of the underlying stock price in the strike price interval. Jiang

19The conclusions do not change when using the square roots of the adjusted R-squares.
20Bakshi, Kapadia and Madan (2003, p.114) derive an expression for co-skewness as a function of the stock’s market

beta as well as moments of the distribution of the stock return and the market return. One possible interpretation

of these results is therefore that co-skewness is relevant for forecasting realized beta.
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and Tian (2005) examine the effects of discretization and truncation on the computation of forward-

looking volatility. We closely follow their setup and extend their analysis to the computation of

forward-looking skewness. We also include an analysis of asymmetry and the position of the un-

derlying stock in the strike price interval, which are biases that mainly affect the calculation of

skewness.

To examine the size of the approximation errors induced by these biases, we generate option

prices using Heston’s (1993) stochastic volatility model (HSV) with standard parameterization

based on the empirical results of Bakshi, Cao and Chen (1997): θ = 0.04, κ = 2, σv = 0.225 and

ρ = −0.5. We set the initial instantaneous variance (V ) to be equal to the long-run variance

V = θ = 0.04, the initial stock price equal to S0 = 100, and the risk-free rate equal to r = 0.05.

Because we are interested in a 180-day beta, we set the time to maturity equal to 180 days,

T = 180/365. To measure the variance and the skewness of the distribution implied by the HSV

parameterization we use the following approach. To ensure that we do not encounter negative stock

prices or negative variances we use Ito’s Lemma to convert the risk-neutral stochastic volatility

dynamics in HSV to d lnS and d lnV . Once we discretize the equations we get the following risk

neutral dynamics

ln(St+∆t) = ln(St) +

µ
r − 1

2
Vt

¶
∆t+

p
Vt
√
∆tεSt+∆t (18)

ln(Vt+∆t) = ln(Vt) +
1

Vt

µ
(κ+ λ)

µ
κθ

κ+ λ
− V

¶
− 1
2
σ2V

¶
∆t+

1√
Vt
σ
√
∆tεVt+∆t

εVt+∆t = ρεSt+∆t +
p
1− ρ2εt+∆t

where ∆t = 1/252 (assuming that there are 124 trading days in 180 calendar days). By iterating

through these equations 124 times, we can generate a 180-day stock price path. We repeat this

exercise 250, 000 times, calculate the log returns ln
³
ST
S0

´
of each path and compute volatility, which

is equal to 0.2037, and skewness, which is equal to−0.4610. To verify the accuracy of this simulation-
based approach, we compare the call price with strike K = 100 obtained using simulation, CSIM ,

with the closed form solution CHEST . We find CHEST = 6.5905 and CSIM = 6.5780.

We now have benchmarks to evaluate the accuracy of our estimation procedure. The first

bias we investigate results from the discreteness of the strike prices. To compute the moments

arbitrarily precisely, we need a continuum of option prices from 0 to plus infinity, while in reality

we only have prices at fixed strike price levels. In the first part of this experiment we generate

HSV call and put prices with different discrete strike price intervals d ranging from d = 0.1 to d = 5

using the integration domain [Su−1, Su] with u = 2. The percentage approximation errors for the

volatility and skewness estimates are plotted in Figure 12 for both simple trapezoidal integration

using only observed prices (dotted line) and for the interpolation-extrapolation technique of Jiang
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and Tian (2005) described in Section 3 (solid line). We conclude that when using the interpolation-

extrapolation technique of Jiang and Tian, the bias is negligible for realistic discreteness.

We next investigate the bias resulting from the truncation of the integration domain. We keep

the strike price interval constant at d = 0.1 and we vary the width of the integration domain

[Su−1, Su] by changing u between 1.1 and 2. Figure 13 plots the percentage approximation errors
in the volatility and skewness estimation for simple trapezoidal integration using only observed

prices (dotted line) and for the interpolation-extrapolation technique (solid line). We see that it

is difficult to estimate skewness accurately when the width of the integration domain is small.

Therefore, as mentioned above, we choose a sample of stocks with liquid option data.

The other biases that we investigate are induced by the asymmetry of the integration domain

and the place of the underlying stock price in the strike price interval. These biases have not

been investigated in previous studies, perhaps because they have little effect on the measurement

of volatility, but they are important for the measurement of skewness because skewness in effect

compares the two sides of the distribution.

If the integration domain is asymmetric, there is more information about one side of the log

return distribution than about the other. To illustrate the bias resulting from this, we generate

HSV call and put prices with a constant strike price interval d = 0.1 and we vary the integration

domain from [Su−1L , SuH ] where u = 1.6, uL = u − du, uH = u + du and we vary du between

−0.3 and 0.3. Figure 14 plots the percentage approximation errors in the volatility and skewness
estimation for simple trapezoidal integration using only observed prices (dotted line) and for the

interpolation-extrapolation technique (solid line). For the interpolation-extrapolation technique

used the errors are very small for the relevant strike prices.

The bias resulting from the place of the underlying stock price in the strike price interval is best

explained through an example. If the current index value is 892 and the strike price interval is $5

(d = 5) then the first OTM put will have a strike of 890 and the first OTM call will have a strike of

895. Simply due to the fact that the largest mass of the function is in the middle of the integration

domain, the estimate will be negatively biased in this case. For this last experiment, we generate

HSV call and put prices with a constant discrete strike price interval d = 2.5 and integration

domain u = 2, but we generate these prices while varying the initial stock price according to

S0+dS where dS varies between −2.5 and 2.5. In this experiment the strike prices do not change,
only the initial stock price S0 changes. Figure 15 plots the percentage approximation errors in

volatility and skewness for simple trapezoidal integration using only observed prices (dotted line)

and for the interpolation-extrapolation technique (solid line). As seen in the figure, employing the

interpolation-extrapolation technique yields errors that are very small.

We conclude from these four experiments that the integration technique introduced by Jiang

and Tian (2005), described in Section 3, does a good job of mitigating potential biases. We therefore
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use this approach in our empirical implementation.

7 Concluding Remarks

Market betas are one of the most important concepts in the practice and theory of finance, and

for many interesting applications of market betas, such as computing the cost of capital, out-of-

sample performance is key. Currently, market betas are obtained by using regression techniques

on historical data. Many historical implementations still use a simple rolling regression approach,

while other approaches allow more explicitly for time-varying betas. However, no matter how

sophisticated the approach, historical betas implicitly assume that the past offers a good guide to

the future.

This paper presents a radically different approach that extracts betas from option data. Because

option data contains information about the future, this approach is inherently forward-looking.

The approach is inspired by the literature on volatility forecasting, where a number of authors have

compared the forecasting performance of implied volatility with that of more traditional historical

methods. The strength of our approach is that betas can be computed using a single cross-section

of option data, which may be an important advantage when a company experiences (potential)

changes in its operating environment or capital structure.

We test our method using a very conservative approach, by investigating how the method

compares with historical methods on average, including stable periods. We find that the forward-

looking estimates perform relatively well. Forward-looking betas that were extracted for equities

with liquid options often outperform the historical market beta in predicting the realized beta in

the following period. In some cases, combining historical betas with forward-looking betas further

improves results. The forward-looking betas also explain a sizeable amount of the cross-sectional

variation in expected returns.

Much remains to be done. The computation of the forward-looking beta uses moments extracted

from options data. While we have made full use of recent innovations in the implementation of these

procedures, and added some innovations ourselves, it may be that the out-of-sample performance

of the forward-looking betas can be improved through more efficient estimation of moments. Also,

we have not provided an explanation for the relatively poor performance of forward-looking betas

for stocks with very small realized betas. Another remaining question is if forward-looking beta

performs even better in situations and time periods that can a priori be labeled as inherently

unstable. It may also prove interesting to investigate the optimal combination of forward-looking

and historical betas, which is of course related to the previous question. Finally, we note that it

may be possible to compute forward-looking betas that are estimated for a particular purpose using

the relevant statistical loss function, for instance in a portfolio model (Granger (1969)).
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Our technique can be used for a variety of applications, such as the detection of abnormal

returns in event studies, and the uncovering of abnormal returns for portfolio management. The

very definition of the word “event” indicates that some aspects of the firm or the firm’s environment

change, and therefore it will prove interesting to contrast the results obtained using forward-looking

betas with those obtained using historical betas. One particularly promising application is the

computation of the cost of capital for newly merged companies.

The main focus in this paper has been on forecasting 180-day realized betas, which are relevant

for certain applications such as abnormal returns. For other applications, such as cost of capital

calculations, longer-horizon betas may be needed. We plan to investigate the performance of

forward-looking betas in this context by using LEAPS as well as option contracts with longer

maturities traded on non-U.S markets. Indeed, our forward looking beta approach allows for the

computation of a complete term structure of beta for each company so long as the options data is

available.

We compute forward-looking moments and forward-looking betas using option prices for a given

day. While this is the most obvious and transparent initial approach to investigating the method’s

merits, the performance of the forward-looking betas may be improved by adjusting these betas

using a pre-determined rule, or by smoothing betas and/or moments using information extracted

from option prices on other days. The optimal use and optimal smoothing of information contained

in option prices is certainly worthy of further study.

Finally, we have compared and combined the forward-looking betas with simple historical betas

from daily data. Forward looking beta could alternatively be compared and combined it with other

methods. Many alternatives exist including realized betas using intraday data as in Andersen et

al (2006), the GARCH betas in Bollerslev, Engle, and Wooldridge (1988), the hybrid option-based

beta in French et al (1983), the stochastic Bayesian beta in Jostova and Philipov (2005), simple

Bayesian adjustments to OLS such as Vasicek (1973), or commercial beta estimates such as those

from BARRA, Bloomberg and Ibbotson.

8 Appendix: Replicating Payoff Functions

Carr and Madan (2001) show that any twice continuously differentiable payoff function f(S) can

be replicated with bonds, the underlying stock and the cross section of out-of-the-money options.

For convenience, we replicate their argument here. The fundamental theorem of calculus implies
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that for any fixed F

f(S) = f(F ) + 1S>F

SZ
F

f 0(u)du− 1S<F
FZ
S

f 0(u)du

= f(F ) + 1S>F

SZ
F

⎡⎣f 0(F ) + uZ
F

f 00(v)dv

⎤⎦ du− 1S<F FZ
S

⎡⎣f 0(F ) + FZ
u

f 00(v)dv

⎤⎦ du
Because f 0(F ) is not a function of u we are able to apply Fubini’s theorem

f(S) = f(F ) + f 0(F )(S − F ) + 1S>F

SZ
F

SZ
v

f 00(v)dudv + 1S<F

FZ
S

vZ
S

f 00(v)dudv

Now integrate over u

f(S) = f(F ) + f 0(F )(S − F ) + 1S>F

SZ
F

f 00(v)(S − v)dv + 1S<F

FZ
S

f 00(v)(v − S)dv

= f(F ) + f 0(F )(S − F ) +

∞Z
F

f 00(v)(S − v)+dv +

FZ
0

f 00(v)(v − S)+dv

If we set F equal to the initial stock price, F = S0, and integrate over K instead of v, where K is

interpreted as the strike, we are left with the spanning equation

f(S) = [f(S0)− f 0(S0)S0] + f 0(S0)S +
∞Z
S0

f 00(K)(S −K)+dK +

S0Z
0

f 00(K)(K − S)+dK

From this equation we see that the payoff f(S) is spanned by a [f(S0)−f 0(S0)S0] position in bonds,
f 0(S0) position in shares of the stock and a f 00(K)dK position in out-of-the-money options.
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Figure 1. Forward-Looking Volatility and Skewness
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Notes to Figure: Panel A shows the value of the VIX index during 1996-2003. Panel B plots

the S&P 500 forward-looking volatility for the same period. Panel C plots the average of the

forward-looking volatility for the Dow Jones 30 components. Panel D plots S&P 500 forward-

looking skewness and Panel E plots the average of the forward-looking skewness for the Dow Jones

30 components.
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Figure 2. Forward-Looking Moments for Disney, Exxon and Verizon
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Notes to Figure: We plot the time series of the forward-looking moments needed for computing the

forward-looking beta for Walt Disney Corporation (DIS), Exxon Mobil Corporation (XOM) and

Verizon Communications (VZ). The other moments needed are the forward-looking volatility and

skewness for the S&P 500 in Figure 1. We use moments for 180-day returns in all cases. The

moments are calculated at a daily frequency for the period January 1, 1996 to December 31, 2003.
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Figure 3. Realized, Forward-Looking and Historical Betas for Disney
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Notes to Figure: We plot the time-series of different types of betas for Walt Disney Corporation

(DIS) for the period January 1, 1996 to December 31, 2003. Panel A plots the time series of

ex-post 180-day realized betas (βREAL). On each day a 180-day realized beta is computed using

the returns for the following 180 days. Panel B plots the time series of forward-looking betas.

On each day, a 180-day forward-looking beta (βFL) is computed. Panel C plots the time series of

180-day historical betas, computed using the previous 180 days of returns. Panel D plots the time

series of 5-year historical betas, computed using the previous 1800 days of returns.
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Figure 4. Realized, Forward-Looking and Historical Betas for Exxon
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Notes to Figure: We plot the time-series of different types of betas for Exxon Mobil Corporation

(XOM) for the period January 1, 1996 to December 31, 2003. Panel A plots the time series of

ex-post 180-day realized betas (βREAL). On each day a 180-day realized beta is computed using

the returns for the following 180 days. Panel B plots the time series of forward-looking betas.

On each day, a 180-day forward-looking beta (βFL) is computed. Panel C plots the time series of

180-day historical betas, computed using the previous 180 days of returns. Panel D plots the time

series of 5-year historical betas, computed using the previous 1800 days of returns.
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Figure 5. Realized, Forward-Looking and Historical Betas for Verizon
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Notes to Figure: We plot the time-series of different types of betas for Verizon Communications

(VZ) for the period January 1, 1996 to December 31, 2003. Panel A plots the time series of ex-post

realized betas (βREAL). On each day a 180-day realized beta is computed using the returns for the

following 180 days. Panel B plots the time series of forward-looking betas. On each day, a 180-day

forward-looking beta (βFL) is computed. Panel C plots the time series of 180-day historical betas,

computed using the previous 180 days of returns. Panel D plots the time series of 5-year historical

betas, computed using the previous 1800 days of returns.
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Figure 6. Forward-Looking Volatility for the Dow Jones 30 Components
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Notes to Figure: We plot the forward-looking volatility for each of the Dow Jones 30 components

at a daily frequency for the period January 1, 1996 to December 31, 2003.
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Figure 7. Forward-Looking Skewness for the Dow Jones 30 Components
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Notes to Figure: We plot the forward-looking skewness for each of the Dow Jones 30 components

at a daily frequency for the period January 1, 1996 to December 31, 2003.
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Figure 8. Beta Estimates for the Dow Jones 30 Components
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Notes to Figure: We plot three different betas for each of the Dow Jones 30 components for the

period January 1, 1996 to December 31, 2003. 180-day realized beta is plotted in solid black, 180-

day forward-looking beta is plotted in solid grey and 180-day historical beta is plotted in dotted

black. For realized beta, on each day the beta for the following 180 days is plotted.
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Figure 8 continued. Beta Estimates for the Dow Jones 30 Components
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Figure 9. Mean Historical Beta versus Mean Forward-Looking Beta
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Notes to Figure: We plot the average historical beta for the thirty Dow Jones components versus

the average forward-looking beta. The averages are computed for the period January 1, 1996

to December 31, 2003. The solid line is the regression line of mean historical beta on mean

forward-looking beta.
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Figure 10. Panel A: Mean Excess Return versus Mean Forward-Looking Beta
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Panel B: Mean Excess Return versus Mean Historical Beta
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Notes to Figure: We plot the average excess return for each of the thirty Dow Jones components

against the average forward-looking beta (Panel A) and the average historical 180-day beta (Panel

B). The averages are computed for the period January 1, 1996 to December 31, 2003. The solid

lines represent the regression of excess return on beta. The R2 of the regressions are 0.22 (Panel

A) and 0.28 (Panel B).
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Figure 11. Bias in the Moment-Based Beta Estimate
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Notes to Figure: We plot the bias βMM
i − βi as a function of SKEWε,i. Using the average of the

empirical values in Table 3, we set βi = 1, V ARm = .242, and SKEWm = −1.44. V ARε,i is set

equal to the difference between the average firm variance and the market variance which is roughly

.242. V ARi and SKEWi can then be computed from V ARi = β2iV ARm + V ARε,i and (3) which

gives the inputs needed for computing βMM
i in (17).
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Figure 12. Volatility and Skewness versus Strike Price Interval
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Notes to Figure: We plot the percentage approximation errors induced by the discretization of

strike prices (d = [0.1, 5]), for the simple integration approach (dotted) and the interpolation-

extrapolation (solid) technique of Jiang and Tian (2005). Heston stochastic volatility call and put

prices are generated with parameters (θ = 0.04, κ = 2, σv = 0.225, ρ = −0.5 and V = 0.04) for the

strike price range of K = [Su−1, Su] where u = 2. The approximation error is calculated as the

percent difference between the estimated moments and the actual moments. The actual moments

are obtained by generating 250, 000 Heston stochastic volatility 180-day log returns and computing

the sample standard deviation (0.2037) and skewness (−0.4610).
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Figure 13. Volatility and Skewness versus Width of Integration Domain
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Notes to Figure: We plot the percentage approximation errors induced by the width of the inte-

gration domain (u = [1.1, 2]), for the simple integration approach (dotted) and the interpolation-

extrapolation (solid) technique of Jiang and Tian (2005). Heston stochastic volatility call and

put prices are generated with parameters (θ = 0.04, κ = 2, σv = 0.225, ρ = −0.5 and V = 0.04)

for the strike price range of K = [Su−1, Su] with discrete strike price interval d = 0.1. The

approximation error is calculated as the percent difference between the estimated moments and

the actual moments. The actual moments are obtained by generating 250, 000 Heston stochastic

volatility 180-day log returns and computing the sample standard deviation (0.2037) and skewness

(−0.4610).
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Figure 14. Volatility and Skewness versus Asymmetry of Integration Domain
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Notes to Figure: We plot the percentage approximation errors induced by the asymmetry of the inte-

gration domain du = [−0.3, 0.3] for the simple integration approach (dotted) and the interpolation-
extrapolation (solid) technique of Jiang and Tian (2005). Heston stochastic volatility call and put

prices are generated with parameters (θ = 0.04, κ = 2, σv = 0.225, ρ = −0.5 and V = 0.04) for the

strike price range of K = [Su−1L , SuH ] where uL = u− du, uH = u+ du, u = 1.6 and discrete strike

price interval d = 0.1. The approximation error is calculated as the percent difference between

the estimated moments and the actual moments. The actual moments are obtained by generat-

ing 250, 000 Heston stochastic volatility 180-day log returns and computing the sample standard

deviation (0.2037) and skewness (−0.4610).
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Figure 15. Volatility and Skewness versus Stock Price Position in Strike Interval
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Notes to Figure: We plot the percentage approximation errors induced by the location of

the center of the stock price S + dS, where dS = [−2.5, 2.5] for the simple integration approach
(dotted) and the interpolation-extrapolation (solid) technique of Jiang and Tian (2005). Heston

stochastic volatility call and put prices are generated with parameters (θ = 0.04, κ = 2, σv = 0.225,

ρ = −0.5 and V = 0.04) for the strike price range of K = [Su−1, Su] where u = 2 and discrete

strike price interval d = 2.5. The approximation error is calculated as the percent difference

between the estimated moments and the actual moments. The actual moments are obtained

by generating 250, 000 Heston stochastic volatility 180-day log returns and computing the sample

standard deviation (0.2037) and skewness (−0.4610).
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Secids Tickers Company Name
101204 AA ALCOA INC
101375 AXP AMERICAN EXPRESS CO
101397 AIG AMERICAN INTL GROUP INC
102265 BA BOEING CO
102796 CAT CATERPILLAR INC DEL
102936 JPM J P MORGAN CHASE CO
103049 C CITIGROUP INC
103125 KO COCA COLA CO
103879 DIS DISNEY WALT CO
103969 DD DU PONT E I DE NEMOURS & CO
104533 XOM EXXON MOBIL CORP
105169 GE GENERAL ELEC CO
105175 GM GENERAL MTRS CORP
105700 HPQ HEWLETT PACKARD CO
105759 HD HOME DEPOT INC
105785 HON HONEYWELL INTL INC
106203 INTC INTEL CORP
106276 IBM INTERNATIONAL BUSINESS MACHS
106566 JNJ JOHNSON & JOHNSON
107318 MCD MCDONALDS CORP
107430 MRK MERCK & CO INC
107525 MSFT MICROSOFT CORP
107616 MMM 3M CO
108948 PFE PFIZER INC
108965 MO ALTRIA GROUP INC
109224 PG PROCTER & GAMBLE COMPANY
109775 SBC SBC COMMUNICATIONS INC
111459 UTX UNITED TECHNOLOGIES CORP
111668 VZ VERIZON  COMMUNICATIONS
111860 WMT WAL MART STORES INC

Table 1
Dow Jones 30 Components

Notes to Table: For each of the components of the Dow Jones 30, we give the ticker symbol and the 
optionmetrics security ID. We use the components of the Dow Jones 30 as of April, 8, 2004.



# of Mean Mean # of Mean Mean # of Mean Mean # of Mean Mean
Ticker Quotes Price Imp. Vol. Quotes Price Imp. Vol. Quotes Price Imp. Vol. Quotes Price Imp. Vol.
AA 15824 2.01 0.35 5679 2.91 0.33 16986 1.71 0.38 5505 2.48 0.36
AXP 21727 3.33 0.36 9240 5.74 0.34 26317 2.62 0.39 10633 4.03 0.37
AIG 20611 3.28 0.29 9472 5.78 0.28 25538 2.47 0.33 11092 4.01 0.32
BA 18550 1.97 0.33 11065 3.21 0.31 20384 1.65 0.34 10789 2.46 0.33
CAT 17400 2.08 0.32 7866 3.51 0.31 19721 1.86 0.35 9193 2.89 0.34
JPM 20309 2.58 0.36 9086 4.33 0.34 24524 2.12 0.39 11604 3.34 0.38
C 20065 2.01 0.35 9671 3.46 0.32 26117 1.61 0.39 11773 2.51 0.36
KO 16232 1.87 0.28 8635 3.04 0.27 17784 1.59 0.31 8867 2.37 0.29
DIS 15347 1.73 0.34 7159 2.89 0.33 14694 1.49 0.36 6838 2.12 0.36
DD 15002 1.96 0.29 7260 3.13 0.29 16431 1.74 0.31 7734 2.59 0.31
XOM 14809 1.93 0.24 7035 3.34 0.24 16838 1.67 0.27 8036 2.51 0.26
GE 20680 2.78 0.31 9942 4.50 0.30 27130 2.10 0.35 13062 2.99 0.33
GM 19183 2.09 0.34 9311 3.82 0.32 22007 1.93 0.38 10463 3.16 0.35
HPQ 23633 3.44 0.46 10202 5.91 0.43 23020 2.85 0.48 10052 4.39 0.44
HD 17992 1.96 0.36 9800 3.28 0.34 20122 1.58 0.39 10035 2.35 0.36

Table 2
Descriptive Statistics for Option Data

Calls Puts
8 < DTM < 181 180 < DTM < 366 8 < DTM < 181 180 < DTM < 366

Notes to Table: The sample contains call and put prices for the S&P 500 and the Dow Jones 30 components during the period January 1, 
1996 to December 31, 2003.  We apply the same moneyness and maturity filters used by Jiang and Tian (2005).  Prices and implied 
volatilies are extracted from the price file in the Ivy Options Database.



# of Mean Mean # of Mean Mean # of Mean Mean # of Mean Mean
Ticker Quotes Price Imp. Vol. Quotes Price Imp. Vol. Quotes Price Imp. Vol. Quotes Price Imp. Vol.
HON 18010 1.82 0.36 7574 3.18 0.33 19422 1.61 0.39 8837 2.39 0.35
INTC 28421 3.36 0.44 13988 5.76 0.42 30386 2.60 0.47 14034 3.96 0.45
IBM 33352 3.91 0.35 14386 7.24 0.32 40633 3.03 0.40 16812 4.94 0.37
JNJ 15846 2.39 0.27 8358 4.16 0.26 19085 1.90 0.30 10534 2.77 0.29
MCD 13983 1.58 0.30 7150 2.39 0.28 14367 1.31 0.32 7022 1.76 0.31
MRK 18864 2.69 0.29 9094 4.72 0.28 22407 2.21 0.32 10556 3.51 0.31
MSFT 28376 3.52 0.38 14846 5.69 0.37 34780 2.55 0.43 16780 3.80 0.40
MMM 21520 3.00 0.27 9087 5.59 0.26 25925 2.59 0.31 10944 4.23 0.29
PFE 21992 2.49 0.33 10216 4.22 0.31 24174 2.01 0.35 11725 2.96 0.34
MO 22847 1.79 0.34 11339 2.58 0.33 26429 1.71 0.35 12999 2.47 0.34
PG 18252 2.72 0.26 8736 4.56 0.26 22010 2.24 0.29 10822 3.40 0.28
SBC 10046 1.56 0.32 4972 2.43 0.32 11235 1.39 0.35 5492 2.04 0.34
UTX 19912 2.77 0.29 8101 4.87 0.28 24156 2.35 0.33 10104 3.71 0.31
VZ 13665 1.82 0.29 6823 2.92 0.28 15963 1.66 0.34 7346 2.63 0.32
WMT 17465 2.08 0.34 9509 3.60 0.32 22889 1.66 0.38 12038 2.53 0.36
SPX 124285 20.79 0.20 59812 42.68 0.19 175826 15.15 0.27 71561 31.85 0.26

Table 2 continued 
Descriptive Statistics for Option Data

Calls Puts
8 < DTM < 181 180 < DTM < 366 8 < DTM < 181 180 < DTM < 366



Tickers STDEV SKEW FLB
HISTB 

(180-day)
HISTB 
(1-year)

HISTB 
(5-year)

AA 0.361 -0.345 0.913 0.863 0.874 0.803
AXP 0.366 -0.421 0.987 1.330 1.340 1.289
AIG 0.311 -0.482 0.845 1.047 1.049 1.053
BA 0.344 -0.351 0.876 0.873 0.874 0.843
CAT 0.340 -0.332 0.821 0.922 0.934 0.937
JPM 0.386 -0.480 1.075 1.426 1.426 1.390
C 0.368 -0.514 1.034 1.477 1.501 1.557
KO 0.294 -0.467 0.829 0.678 0.703 0.833
DIS 0.352 -0.383 0.935 0.998 0.985 0.947
DD 0.314 -0.411 0.817 0.836 0.836 0.854
XOM 0.254 -0.438 0.698 0.621 0.633 0.626
GE 0.326 -0.590 1.008 1.235 1.244 1.194
GM 0.353 -0.427 0.940 0.929 0.933 0.963
HPQ 0.445 -0.272 1.065 1.383 1.387 1.328
HD 0.370 -0.443 1.027 1.209 1.212 1.250
HON 0.365 -0.324 0.889 1.102 1.099 1.032
INTC 0.454 -0.411 1.266 1.619 1.618 1.533
IBM 0.362 -0.578 1.102 1.118 1.124 1.085
JNJ 0.281 -0.543 0.838 0.702 0.707 0.831
MCD 0.308 -0.359 0.813 0.653 0.656 0.756
MRK 0.302 -0.436 0.821 0.811 0.814 0.913
MSFT 0.399 -0.494 1.174 1.356 1.358 1.352
MMM 0.283 -0.487 0.800 0.685 0.706 0.701
PFE 0.333 -0.415 0.875 0.891 0.888 0.991
MO 0.340 -0.425 0.893 0.567 0.572 0.711
PG 0.280 -0.515 0.757 0.636 0.652 0.821
SBC 0.346 -0.380 0.899 0.795 0.779 0.772
UTX 0.314 -0.368 0.823 0.949 0.943 0.895
VZ 0.319 -0.487 0.924 0.746 0.742 0.715
WMT 0.344 -0.450 0.909 1.032 1.032 1.108
SPX 0.246 -1.417

Table 3
Standard Deviation, Skewness, Forward-Looking and Historical Betas

Notes to Table: For each of the firms in the Dow Jones 30 and the S&P 500 index, we present 
descriptive statistics for moments and computed market betas.  We report the mean forward-looking 
standard deviation (STDEV), the mean forward-looking skew (SKEW), the mean 180-day forward-
looking beta (FLB) and the mean historical beta (HISTB) for three different estimation windows.



Tickers FLB
HISTB

(180-day) MIXB
HISTB
(1-year)

HISTB
(5-year)

AA 0.605 0.631 0.716 0.592 0.125 0.937
AXP -0.025 0.185 0.074 -0.021 0.029 1.308
AIG 0.131 0.547 0.427 0.403 -0.165 1.048
BA 0.372 0.323 0.461 0.250 -0.491 0.867
CAT 0.369 0.291 0.416 0.251 -0.267 0.922
JPM 0.279 0.011 0.206 -0.074 -0.141 1.410
C -0.418 0.472 -0.059 0.347 0.379 1.431
KO 0.087 0.746 0.731 0.747 0.567 0.640
DIS 0.545 0.568 0.662 0.536 0.080 1.025
DD 0.275 0.502 0.559 0.474 -0.023 0.841
XOM 0.089 0.600 0.553 0.443 -0.080 0.609
GE 0.464 0.395 0.531 0.233 -0.242 1.230
GM 0.524 0.175 0.457 0.322 -0.329 0.934
HPQ 0.514 0.416 0.515 0.335 -0.069 1.381
HD 0.016 -0.209 -0.124 -0.182 -0.206 1.215
HON 0.621 0.417 0.593 0.370 0.157 1.110
INTC 0.590 0.342 0.518 0.459 0.081 1.627
IBM 0.211 -0.281 0.018 -0.503 -0.347 1.095
JNJ -0.336 0.682 0.491 0.617 0.529 0.676
MCD 0.003 0.556 0.459 0.486 0.264 0.641
MRK -0.343 0.590 0.446 0.533 0.352 0.798
MSFT 0.210 -0.040 0.144 -0.022 -0.304 1.315
MMM 0.352 0.104 0.291 0.106 -0.097 0.695
PFE -0.475 0.601 0.447 0.495 0.137 0.894
MO -0.158 0.657 0.418 0.662 0.553 0.544
PG -0.445 0.686 0.553 0.611 0.581 0.612
SBC 0.097 0.195 0.196 0.203 -0.118 0.788
UTX 0.377 0.046 0.258 -0.041 -0.197 0.945
VZ 0.409 0.157 0.361 0.246 -0.128 0.726
WMT -0.382 0.494 0.072 0.378 -0.004 1.009

Notes to Table: For each of the firms in the Dow Jones 30, we present the correlation between on the 
one hand the realized 180-day beta (REALB), and on the other hand either 180-day forward-looking 
(FLB) beta, 180-day historical beta (HISTB 180-day), mixed equally weighted forward-looking and 
historical beta (MIXB), 1-year historical beta (HISTB 1-year) or 5-year historical beta (HISTB 5-
year).  We also report the average realized beta for each firm over this period.  The sample period is 
January 1, 1996 to December 31, 2003.

Table 4A
Correlation Between 180-day Realized Beta and Predictors

Correlation with REALB (180-day) Mean 
REALB



Tickers FLB
HISTB

(180-day) MIXB
HISTB
(1-year)

HISTB
(5-year)

AA 0.654 0.638 0.744 0.606 0.074 0.976
AXP -0.122 -0.045 -0.115 -0.234 -0.206 1.308
AIG 0.222 0.391 0.411 0.170 -0.401 1.063
BA 0.413 0.317 0.481 0.161 -0.676 0.878
CAT 0.538 0.290 0.524 0.237 -0.442 0.927
JPM 0.330 -0.087 0.204 -0.227 -0.365 1.414
C -0.441 0.350 -0.170 0.279 0.381 1.425
KO 0.117 0.750 0.747 0.728 0.508 0.633
DIS 0.655 0.556 0.708 0.441 -0.074 1.033
DD 0.417 0.429 0.592 0.373 -0.205 0.837
XOM 0.131 0.447 0.435 0.334 -0.274 0.616
GE 0.501 0.214 0.482 -0.003 -0.394 1.229
GM 0.620 0.418 0.622 0.487 -0.450 0.953
HPQ 0.519 0.343 0.476 0.208 -0.277 1.368
HD -0.142 -0.183 -0.218 -0.305 -0.615 1.198
HON 0.639 0.360 0.575 0.257 0.014 1.132
INTC 0.601 0.496 0.607 0.480 -0.014 1.622
IBM 0.185 -0.288 -0.005 -0.385 -0.439 1.088
JNJ -0.233 0.594 0.461 0.471 0.473 0.657
MCD 0.014 0.484 0.408 0.408 0.197 0.630
MRK -0.299 0.506 0.380 0.372 0.257 0.787
MSFT 0.256 -0.053 0.173 -0.055 -0.415 1.289
MMM 0.513 0.053 0.363 0.169 -0.253 0.705
PFE -0.338 0.479 0.383 0.313 0.017 0.897
MO -0.026 0.652 0.509 0.654 0.505 0.551
PG -0.424 0.652 0.524 0.608 0.565 0.608
SBC 0.232 0.244 0.321 0.032 -0.298 0.797
UTX 0.441 0.023 0.284 0.013 -0.246 0.945
VZ 0.582 0.212 0.510 0.199 -0.334 0.726
WMT -0.471 0.344 -0.127 0.242 -0.063 0.995

Notes to Table: For each of the firms in the Dow Jones 30, we present the correlation between on the 
one hand the realized 1-year beta (REALB), and on the other hand either 180-day forward-looking 
(FLB) beta, 180-day historical beta (HISTB 180-day), mixed equally weighted forward-looking and 
historical beta (MIXB), 1-year historical beta (HISTB 1-year) or 5-year historical beta (HISTB 5-
year).  We also report the average realized beta for each firm over this period.  The sample period is 
January 1, 1996 to December 31, 2003.

Table 4B
Correlation Between 1-year Realized Beta and Predictors

Correlation with REALB (1-year) Mean 
REALB



Tickers FLB
HISTB

(180-day) MIXB
HISTB
(1-year)

HISTB
(5-year)

AA 0.731 0.544 0.716 0.512 -0.066 1.015
AXP -0.213 -0.191 -0.258 -0.325 -0.444 1.302
AIG 0.421 -0.108 0.285 -0.339 -0.818 1.081
BA 0.520 0.179 0.443 0.010 -0.831 0.890
CAT 0.650 0.245 0.570 0.197 -0.540 0.954
JPM 0.269 -0.158 0.133 -0.252 -0.517 1.419
C -0.379 0.409 -0.068 0.287 0.492 1.388
KO 0.213 0.608 0.653 0.538 0.296 0.596
DIS 0.662 0.330 0.554 0.208 -0.366 1.048
DD 0.592 0.207 0.531 0.105 -0.505 0.842
XOM 0.245 0.236 0.294 0.148 -0.580 0.631
GE 0.388 0.025 0.313 -0.179 -0.421 1.214
GM 0.678 0.434 0.670 0.533 -0.466 0.998
HPQ 0.225 0.052 0.152 -0.115 -0.742 1.344
HD -0.538 -0.137 -0.466 -0.106 -0.802 1.203
HON 0.597 0.227 0.482 0.160 -0.149 1.142
INTC 0.299 0.301 0.331 0.227 -0.361 1.622
IBM 0.070 -0.110 -0.003 -0.304 -0.551 1.086
JNJ -0.007 0.334 0.331 0.263 0.322 0.619
MCD 0.259 0.309 0.443 0.190 0.039 0.627
MRK -0.054 0.197 0.181 0.091 0.061 0.755
MSFT -0.048 -0.150 -0.100 -0.173 -0.373 1.262
MMM 0.603 0.018 0.398 -0.001 -0.547 0.707
PFE -0.064 0.159 0.158 0.023 -0.201 0.877
MO 0.208 0.554 0.598 0.525 0.247 0.521
PG -0.327 0.576 0.496 0.514 0.400 0.571
SBC 0.523 -0.184 0.237 -0.333 -0.581 0.816
UTX 0.529 0.119 0.396 0.035 -0.252 0.953
VZ 0.659 0.034 0.488 -0.045 -0.603 0.744
WMT -0.602 0.107 -0.434 0.032 0.058 0.977

Notes to Table: For each of the firms in the Dow Jones 30, we present the correlation between on the 
one hand the realized 2-year beta (REALB), and on the other hand either 180-day forward-looking 
(FLB) beta, 180-day historical beta (HISTB 180-day), mixed equally weighted forward-looking and 
historical beta (MIXB), 1-year historical beta (HISTB 1-year) or 5-year historical beta (HISTB 5-
year).  We also report the average realized beta for each firm over this period.  The sample period is 
January 1, 1996 to December 31, 2003.

Table 4C
Correlation Between 2-year Realized Beta and Predictors

Correlation with REALB (2-year) Mean 
REALB



Tickers adj-Rsq RMSE
AA 0.101 (0.913) 0.916 (8.155) 0.366 0.339
AXP 1.326 (15.927) -0.018 (-0.242) 0.000 0.473
AIG 0.971 (16.645) 0.092 (1.324) 0.017 0.468
BA 0.477 (4.123) 0.445 (3.693) 0.138 0.355
CAT 0.620 (8.172) 0.368 (4.631) 0.136 0.302
JPM 1.243 (20.282) 0.154 (3.132) 0.078 0.540
C 1.774 (23.285) -0.331 (-5.160) 0.174 0.610
KO 0.479 (3.127) 0.195 (1.036) 0.007 0.467
DIS 0.305 (2.979) 0.770 (7.572) 0.296 0.288
DD 0.564 (6.115) 0.339 (3.630) 0.075 0.310
XOM 0.469 (3.712) 0.201 (1.078) 0.008 0.363
GE 0.969 (24.361) 0.260 (6.382) 0.215 0.338
GM 0.684 (19.138) 0.266 (9.145) 0.274 0.403
HPQ 0.822 (11.917) 0.525 (8.158) 0.264 0.448
HD 1.200 (14.085) 0.014 (0.165) 0.000 0.438
HON 0.657 (11.695) 0.509 (9.142) 0.386 0.364
INTC 0.992 (12.097) 0.501 (6.956) 0.347 0.491
IBM 0.936 (12.218) 0.145 (2.284) 0.044 0.352
JNJ 1.171 (10.179) -0.590 (-4.105) 0.113 0.554
MCD 0.638 (7.753) 0.004 (0.032) -0.001 0.387
MRK 1.361 (10.743) -0.685 (-3.931) 0.117 0.513
MSFT 1.210 (25.664) 0.090 (2.517) 0.044 0.463
MMM 0.414 (4.724) 0.351 (3.541) 0.124 0.308
PFE 1.701 (15.949) -0.923 (-7.893) 0.225 0.570
MO 0.699 (8.326) -0.174 (-2.001) 0.024 0.621
PG 1.207 (10.461) -0.787 (-5.860) 0.198 0.533
SBC 0.705 (8.263) 0.093 (0.874) 0.009 0.450
UTX 0.640 (9.781) 0.370 (4.133) 0.141 0.348
VZ 0.502 (12.260) 0.243 (5.467) 0.166 0.417
WMT 1.332 (17.486) -0.356 (-5.128) 0.145 0.398

Notes to Table: We report the results of the univariate regression of realized 180-day beta (REALB) 
on forward-looking 180-day beta (FLB).  For each regression, we present the regression coefficients 
and the adjusted R-squared.  The root mean squared error (RMSE) is also reported.  The regressions 
are performed on daily data for the period January 1, 1996 to December 31, 2003. T-statistics are 
presented in parentheses.

Table 5
Univariate Forecasting Regression of 180-day Realized Beta on 

180-day Forward-Looking Beta

Constant FLB



Tickers adj-Rsq RMSE
AA 0.364 (5.398) 0.664 (9.473) 0.398 0.363
AXP 1.046 (7.673) 0.197 (2.055) 0.034 0.247
AIG 0.478 (5.503) 0.545 (6.810) 0.299 0.247
BA 0.593 (7.204) 0.314 (4.242) 0.104 0.404
CAT 0.634 (7.256) 0.312 (3.573) 0.084 0.292
JPM 1.394 (9.736) 0.011 (0.111) 0.000 0.326
C 0.697 (5.426) 0.497 (5.682) 0.223 0.248
KO 0.150 (3.019) 0.724 (12.254) 0.556 0.295
DIS 0.457 (5.653) 0.569 (7.440) 0.322 0.299
DD 0.417 (4.925) 0.507 (5.824) 0.252 0.279
XOM 0.252 (4.032) 0.574 (7.624) 0.360 0.305
GE 0.735 (4.183) 0.401 (2.927) 0.156 0.175
GM 0.773 (9.566) 0.173 (2.272) 0.030 0.310
HPQ 0.817 (7.033) 0.408 (5.464) 0.173 0.355
HD 1.459 (11.682) -0.202 (-2.170) 0.043 0.419
HON 0.653 (5.646) 0.415 (4.192) 0.174 0.318
INTC 1.121 (6.329) 0.312 (2.705) 0.116 0.403
IBM 1.418 (11.945) -0.289 (-2.826) 0.079 0.351
JNJ 0.193 (3.314) 0.688 (10.850) 0.465 0.323
MCD 0.300 (6.413) 0.523 (8.015) 0.309 0.245
MRK 0.327 (4.353) 0.581 (7.992) 0.348 0.371
MSFT 1.358 (16.767) -0.032 (-0.562) 0.001 0.314
MMM 0.623 (11.778) 0.105 (1.512) 0.010 0.338
PFE 0.360 (4.749) 0.599 (9.700) 0.360 0.385
MO 0.177 (3.547) 0.646 (8.625) 0.432 0.296
PG 0.178 (3.432) 0.682 (10.485) 0.471 0.302
SBC 0.635 (7.521) 0.193 (2.032) 0.037 0.404
UTX 0.901 (11.760) 0.046 (0.798) 0.002 0.399
VZ 0.611 (6.906) 0.154 (1.353) 0.024 0.307
WMT 0.505 (4.757) 0.489 (4.329) 0.244 0.227

Notes to Table: We report the results of the univariate regression of realized 180-day beta (REALB) 
on 180-day historical beta (HISTB).  For each regression, we present the regression coefficients and 
the adjusted R-squared.  The root mean squared error (RMSE) is also reported.  The regressions are 
performed on daily data for the period January 1, 1996 to December 31, 2003. T-statistics are 
presented in parentheses.

Table 6
Univariate Forecasting Regression of 180-day Realized Beta on 

180-day Historical Beta

Constant HISTB (180-day)



Tickers adj-Rsq
AA -0.004 (-0.036) 0.592 (4.833) 0.464 (5.723) 0.514
AXP 1.072 (7.107) -0.050 (-0.706) 0.214 (2.450) 0.038
AIG 0.388 (3.447) 0.102 (1.700) 0.549 (6.612) 0.319
BA 0.268 (2.380) 0.407 (3.404) 0.277 (3.593) 0.218
CAT 0.461 (4.692) 0.313 (3.569) 0.221 (2.278) 0.175
JPM 1.508 (11.425) 0.232 (4.352) -0.244 (-2.514) 0.114
C 1.088 (7.009) -0.236 (-3.886) 0.398 (4.735) 0.302
KO -0.075 (-0.657) 0.267 (2.229) 0.728 (12.997) 0.570
DIS 0.111 (0.951) 0.533 (4.871) 0.417 (5.392) 0.441
DD 0.149 (1.428) 0.331 (3.703) 0.504 (6.078) 0.323
XOM 0.282 (2.994) -0.045 (-0.294) 0.578 (7.183) 0.360
GE 0.670 (4.872) 0.211 (4.317) 0.281 (2.227) 0.284
GM 0.777 (9.641) 0.303 (8.139) -0.137 (-1.379) 0.288
HPQ 0.716 (7.401) 0.426 (4.357) 0.153 (1.490) 0.278
HD 1.430 (10.236) 0.032 (0.388) -0.205 (-2.184) 0.044
HON 0.605 (6.488) 0.471 (7.473) 0.078 (0.822) 0.390
INTC 1.043 (6.855) 0.537 (7.220) -0.060 (-0.506) 0.349
IBM 1.277 (10.542) 0.204 (3.510) -0.363 (-3.767) 0.161
JNJ 0.444 (4.018) -0.263 (-2.160) 0.644 (10.408) 0.486
MCD 0.199 (2.341) 0.110 (1.394) 0.540 (8.030) 0.320
MRK 0.619 (4.493) -0.303 (-2.099) 0.527 (7.267) 0.368
MSFT 1.330 (17.095) 0.112 (2.807) -0.107 (-1.789) 0.060
MMM 0.403 (4.432) 0.346 (3.331) 0.022 (0.273) 0.124
PFE 0.748 (4.013) -0.337 (-2.569) 0.494 (6.420) 0.379
MO 0.241 (2.931) -0.066 (-0.815) 0.637 (8.609) 0.435
PG 0.239 (1.777) -0.062 (-0.578) 0.661 (8.655) 0.471
SBC 0.574 (4.756) 0.075 (0.763) 0.185 (1.997) 0.043
UTX 0.708 (11.566) 0.406 (3.643) -0.103 (-1.151) 0.150
VZ 0.525 (6.898) 0.257 (5.039) -0.048 (-0.433) 0.168
WMT 0.802 (5.139) -0.243 (-3.450) 0.414 (3.562) 0.305

Notes to Table: We report the results of the multivariate regression of realized 180-day beta 
(REALB) on forward-looking beta (FLB) and 180-day historical beta (HISTB).  For each firm, we 
present the regression coefficients (bolded when significant at the 5% level) and the adjusted R-
squared.  The regressions are performed on daily data for the period January 1, 1996 to December 
31, 2003. T-statistics are presented in parentheses.

Table 7
Bivariate Forecasting Regression of 180-day Realized Beta on
180-day Forward-Looking Beta and 180-day Historical Beta

Constant FLB HISTB (180-day)



Tickers adj-Rsq adj-Rsq
AA -0.413 (-3.758) 0.452 (4.215) 0.148 -0.306 (-4.276) 0.355 (4.945) 0.179
AXP 0.047 (0.563) -0.047 (-0.649) 0.004 -0.271 (-2.009) 0.203 (2.145) 0.036
AIG -0.086 (-1.589) 0.102 (1.710) 0.029 -0.574 (-6.452) 0.549 (6.679) 0.308
BA -0.352 (-3.337) 0.402 (3.434) 0.126 -0.239 (-3.132) 0.274 (3.637) 0.092
CAT -0.238 (-3.135) 0.290 (3.495) 0.092 -0.189 (-2.084) 0.205 (2.241) 0.042
JPM -0.162 (-2.648) 0.151 (3.061) 0.074 0.227 (1.670) -0.159 (-1.742) 0.025
C 0.220 (2.972) -0.212 (-3.474) 0.092 -0.528 (-4.278) 0.358 (4.343) 0.139
KO -0.221 (-2.044) 0.266 (2.225) 0.031 -0.493 (-10.261) 0.727 (12.822) 0.566
DIS -0.417 (-3.771) 0.446 (3.919) 0.146 -0.348 (-4.249) 0.349 (4.390) 0.172
DD -0.270 (-3.241) 0.331 (3.710) 0.095 -0.421 (-5.297) 0.504 (6.093) 0.268
XOM 0.030 (0.314) -0.044 (-0.314) 0.000 -0.347 (-5.399) 0.559 (7.216) 0.344
GE -0.192 (-4.990) 0.191 (4.686) 0.137 -0.314 (-2.279) 0.254 (2.366) 0.079
GM -0.206 (-5.255) 0.219 (6.306) 0.192 0.092 (1.164) -0.100 (-1.321) 0.013
HPQ -0.277 (-3.874) 0.260 (3.843) 0.078 -0.129 (-1.288) 0.093 (1.340) 0.012
HD -0.033 (-0.383) 0.032 (0.388) 0.001 0.246 (1.972) -0.203 (-2.186) 0.044
HON -0.274 (-4.583) 0.308 (5.296) 0.171 -0.056 (-0.610) 0.051 (0.634) 0.004
INTC -0.398 (-4.495) 0.314 (4.162) 0.154 0.056 (0.367) -0.035 (-0.341) 0.002
IBM -0.211 (-2.934) 0.192 (3.308) 0.085 0.382 (3.404) -0.341 (-3.549) 0.115
JNJ 0.201 (2.035) -0.240 (-1.951) 0.035 -0.414 (-7.285) 0.589 (9.012) 0.384
MCD -0.087 (-1.364) 0.107 (1.374) 0.014 -0.342 (-7.313) 0.523 (8.025) 0.310
MRK 0.217 (2.042) -0.264 (-1.880) 0.026 -0.373 (-5.395) 0.460 (6.589) 0.248
MSFT -0.113 (-2.396) 0.096 (2.704) 0.050 0.125 (1.622) -0.092 (-1.763) 0.014
MMM -0.261 (-2.930) 0.326 (3.250) 0.108 -0.014 (-0.245) 0.021 (0.272) 0.000
PFE 0.185 (1.743) -0.211 (-1.901) 0.018 -0.276 (-3.446) 0.310 (4.682) 0.124
MO 0.057 (0.752) -0.064 (-0.779) 0.005 -0.353 (-7.022) 0.623 (8.125) 0.411
PG 0.029 (0.333) -0.039 (-0.408) 0.000 -0.260 (-5.185) 0.409 (6.453) 0.211
SBC -0.067 (-0.777) 0.074 (0.746) 0.006 -0.146 (-1.672) 0.183 (1.944) 0.034
UTX -0.291 (-4.402) 0.354 (3.908) 0.130 0.085 (1.125) -0.089 (-1.486) 0.009
VZ -0.183 (-4.425) 0.198 (4.557) 0.114 0.028 (0.349) -0.037 (-0.379) 0.001
WMT 0.202 (3.085) -0.222 (-3.657) 0.075 -0.391 (-3.942) 0.379 (3.592) 0.172

Notes to Table: We report the results of regressing the residuals from the univariate regressions on the 
other predictor. For each firm, we present the regression coefficients (bolded when significant at the 5% 
level) and the adjusted R-squared.  The regressions are performed on daily data for the period January 1, 
1996 to December 31, 2003. T-statistics are presented in parentheses.

Table 8
Regression of Univariate Residuals on Betas

Residuals from HISTB regressed on FLB Residuals from FLB regressed on HISTB
Constant Coefficient Constant Coefficient



Tickers FLB Varm Skewm Vari Skewi

Varm + 
Skewm

Vari +      
Skewi

Varm + 
Skewm + 
Vari +      
Skewi

Varm + 
Skewm + 
Vari +      
Skewi + 
HIST

AA 0.605 0.137 0.479 0.112 0.525 0.481 0.526 0.693 0.751
AXP 0.025 0.393 0.049 0.364 0.160 0.396 0.427 0.476 0.479
AIG 0.131 0.310 0.200 0.219 0.217 0.337 0.262 0.429 0.678
BA 0.372 0.337 0.514 0.133 0.237 0.566 0.317 0.632 0.692
CAT 0.369 0.264 0.335 0.234 0.305 0.392 0.377 0.487 0.500
JPM 0.279 0.274 0.015 0.384 0.185 0.285 0.385 0.390 0.434
C 0.418 0.072 0.131 0.104 0.476 0.169 0.476 0.477 0.584
KO 0.087 0.254 0.076 0.383 0.037 0.289 0.399 0.410 0.785
DIS 0.545 0.126 0.430 0.128 0.356 0.431 0.398 0.579 0.712
DD 0.275 0.226 0.345 0.533 0.382 0.378 0.650 0.743 0.746
XOM 0.089 0.291 0.223 0.393 0.116 0.334 0.459 0.545 0.736
GE 0.464 0.176 0.249 0.129 0.270 0.278 0.271 0.440 0.524
GM 0.524 0.162 0.338 0.419 0.512 0.419 0.526 0.581 0.587
HPQ 0.514 0.281 0.425 0.516 0.019 0.467 0.520 0.686 0.688
HD 0.016 0.005 0.067 0.117 0.174 0.068 0.216 0.262 0.433
HON 0.621 0.215 0.594 0.344 0.407 0.600 0.454 0.692 0.699
INTC 0.590 0.031 0.228 0.565 0.441 0.243 0.629 0.673 0.683
IBM 0.211 0.038 0.284 0.271 0.043 0.302 0.286 0.380 0.514
JNJ 0.336 0.154 0.230 0.389 0.218 0.308 0.399 0.422 0.762
MCD 0.003 0.018 0.213 0.280 0.128 0.227 0.331 0.432 0.628
MRK 0.343 0.087 0.266 0.473 0.002 0.304 0.486 0.589 0.749
MSFT 0.210 0.012 0.075 0.105 0.229 0.075 0.231 0.276 0.294
MMM 0.352 0.358 0.251 0.237 0.199 0.398 0.323 0.452 0.454
PFE 0.475 0.007 0.303 0.329 0.116 0.309 0.346 0.601 0.746
MO 0.158 0.172 0.125 0.431 0.069 0.238 0.451 0.465 0.706
PG 0.445 0.128 0.259 0.489 0.235 0.320 0.543 0.651 0.775
SBC 0.097 0.325 0.215 0.106 0.438 0.354 0.446 0.587 0.612
UTX 0.377 0.062 0.234 0.193 0.267 0.234 0.288 0.345 0.349
VZ 0.409 0.174 0.049 0.361 0.484 0.194 0.495 0.504 0.512
WMT 0.382 0.443 0.504 0.042 0.078 0.607 0.085 0.674 0.703

Table 9
Coefficients of Multiple Correlation for Regressing 180-day Realized Beta on Model-Free Moments

Notes to Table: For each of the firms in the Dow Jones 30, we present the coefficient of multiple correlation for the 
regression of the realized 180-day beta (REALB) on various combinations of the forward looking moments: the 
market variance Varm, the market skewness Skewm, the firm variance Vari, and the firm skewness Skewi. We also 
present results for a regression on the four moments and the 180-day historical beta, as well as for a regression on 
forward-looking beta. The sample period is January 1, 1996, to December 31, 2003.
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