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Abstract

We consider a class of vector nonlinear error correction models
where the transfer function (or loadings) of the stationary relation-
ships is nonlinear. This includes in particular the smooth transition
models.
A general representation theorem is given which establishes the

dynamic properties of the process in terms of stochastic and deter-
ministic trends as well as stationary components. In particular, the
behaviour of the cointegrating relations is described in terms of geo-
metric ergodicity. Despite the fact that no deterministic terms are
included, the process will have both stochastic trends and a linear
trend in general.
Gaussian likelihood-based estimators are considered for the long-

run cointegration parameters, and the short-run parameters. Asymp-
totic theory is provided for these and it is discussed to what extend
asymptotic normality and mixed normaity can be found. A simulation
study reveals that cointegration vectors and the shape of the adjust-
ment are quite accurately estimated by maximum likelihood, while
at the same time there is very little information about some of the
individual parameters entering the adjustment function.
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1 Introduction

In this paper we study likelihood-based estimation of the parameters of a
class of multivariate, or vector, nonlinear error-correction models (ECMs).
Our main contribution is to give a full asymptotic theory for the likelihood
estimators, including the cointegrating relationships and vector error cor-
rection (or adjustment) parameters. The much applied smooth transition
error correction model (STECM) �originating from Granger and Teräsvirta
(1993) and for which the vector version is discussed in van Dijk, Teräsvirta
and Franses (2002) �is particularly included in our class of models consid-
ered, and a simulation-based study of the properties of the estimators for
such models is included.
Nonlinear ECMs have recently been applied to account for non-linear ad-

justment of key macroeconomic and �nancial time series to stable, or cointe-
grated, relationships, which are linear combinations of the included variables.
See for example the term-structure studies in Anderson (1997), Balke and
Fomby (1997), Bec and Rahbek (2004), Corradi, Swanson and White (2000),
Hansen and Seo (2002) and Seo (2003) where the (speed of) adjustment is
parametrized as a function of interest rate spreads, and similarly, for exam-
ple, Kapetanios, Shin and Snell (2006) and Psaradakis, Sola and Spagnolo
(2004) for studies of asset prices and dividends. See also Escribano (2004)
and references therein.
With p�dimensional observations Xt; t = 1; :::; T , we consider the maxi-

mum likelihood estimator (MLE) of the parameter vector � = (�; �) based on
the Gaussian likelihood function. With � is a (p� r)-dimensional matrix, �
parametrizes the r < p; �long-run�cointegration vectors, while � is the �short-
run�parameter vector, which parametrizes the nonlinear adjustment of �Xt

to the stable relationships �0Xt�1 and lagged di¤erences, �Xt�i; i = 1; :::; k.
When deriving the asymptotic properties of the ML estimator of � =

(�; �) ; �̂; we �rst study the dynamic properties of the model. In particular,
we show that similar to the linear case, the process Xt can be decomposed
into (i) stationary, geometrically ergodic components, (ii) a linear trend due
to the nonlinearity term in the conditional mean, and (iii) stochastic trend
components asymptotically equivalent to random walks. That is, correctly
normalized the stochastic trend components satisfy an invariance principle
or functional central limit theorem. These �ndings are closely related to
the results in Bec and Rahbek (2004) and Saikkonen (2005, 2006), see also
Corradi et al (2000) for the Markov case (k = 0).
Next we provide a detailed study of the asymptotic behaviour of the score

function, observed information and third order di¤erentials of the likelihood
function. Consistency of �̂ and the joint asymptotic distributions of the
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adjustment and cointegration parameter estimators, �̂ and �̂ can be found
from the likelihood theory provided in Lemma 7 and 8 in the appendix.
In general we �nd that the MLE of the cointegrating vectors � are super-

consistent in all directions but one in which it is T 3=2-consistent, while the
short-run parameters are consistent at the usual

p
T -rate. The higher rate

in one direction re�ects the fact that despite no deterministic terms in the
model, a linear trend is induced in the process. It correponds to the case
of a linear ECM model with an unrestricted constant, where the constant
aggregates to a linear trend, see Johansen (1996). Also we �nd that short-run
and long-run parameters are not asymptotically orthogonal, or uncorrelated,
with � as in the linear ECMs. Moreover, the cointegrating relationships turn
out not to be asymptotically mixed Gaussian, unless certain quite restrictive
regularity conditions hold as discussed below. From our simulation study of
the STECM, we conclude that � is quite accurately estimated and likewise
the adjustment function itself show little empirical variation, while � has
quite a large empirical variation.
While asymptotic likelihood inference for nonlinear vector error correction

models has not been considered elsewhere, inference was studied in de Jong
(2001, 2002) for the single equation, or partial model, case. In single equa-
tion nonlinear error-correction models, the p-dimensional observations Xt are
decomposed as Xt = (Yt; Z

0
t)
0; with Yt univariate and Zt (p� 1)-dimensional.

Under the assumption that Zt is an I(1) explanatory variable satisfying some
invariance principle and the assumption of a single cointegrating relation, de
Jong (2001, 2002) studies asymptotic inference for the parameters of the sin-
gle equation model of Yt given Zt; as well as lags of these. In de Jong (2001)
the cointegration relation is assumed super-consistently estimated from else-
where, while in de Jong (2002) it is estimated in the single equation nonlinear
regression. In accordance with our results on the joint distribution of �̂; de
Jong (2001, 2002) �nd that the short-run parameters are not asymptotically
Gaussian. Further discussion of the results are given after Theorem 5.
With the focus of deriving tests for �stationarity-ergodicity�, that is cointe-

gration in Markovian nonlinear error correction models, Corradi et al (2000)
�nds asymptotic properties of the linear OLS estimator in the case of a single
cointegration vector, when the data generating process is a nonlinear error
correction model. Likewise, Kapetanios and Shin (2006) and Seo (2006)
study test statistics for cointegration in single equation nonlinear error cor-
rection models. Pitarakis and Gonzalo (2006, 2007) study threshold error
correction models and testing.
The remains of the paper are organised as follows: In Section 2, we intro-

duce the model and then proceed to establish the dynamic properties of the
process under regularity conditions in Section 3. We propose estimators of
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the unknown parameters in Section 4, and derive their asymptotic properties
under additional conditions. Section 5 contains the results of a simulation
study. We conclude in Section 6. All proofs have been relegated to Appendix
A, while Appendix B and C contain lemmas, and auxiliary results respec-
tively. Finally Appendix D and E contain Figures 1�12 and Tables 1 and 2
respectively.
Some notation has been used throughout: With � a (p� r) dimensional

matrix of rank r < p, �? is the (p� (p� r)) dimensional matrix of rank p� r
for which �0�? = 0. Also �� = � (�0�)�1 ; such that I = ���0 + ��?�

0
?. We use

c to denote a generic constant.

2 The Model

Consider the class of discrete time vector process fXtg, Xt 2 Rp, solving

�Xt = g (Zt�1; ) + �1�Xt�1 + :::+ �k�Xt�k + "t; (1)

with Zt = �0Xt, f"tg an i.i.d. error process which satisfy,

E ["t] = 0; 
 � E ["t"
0
t] <1; (2)

and t = 1; :::; T: The parameters to be estimated are given by the �long-
run�cointegration parameter matrix � 2 Rp�r; the �short-run�parameters
 2 G �Rd and �i 2 Rp�p parametrizing the nonlinear adjustment in g (�)
and the lagged di¤erences respectively. Finally, 
 is a p-dimensional positive
de�nite covariance matrix: The nonlinear error correction function g; is a
possibly nonlinear function speci�ed as g : Rr � G 7! Rp.
As mentioned a key example is given by the smooth transition error cor-

rection model (STECM) in Granger and Teräsvirta (1993) and van Dijk,
Teräsvirta and Franses (2002). A general vector version of the STECMwhich
allows for more than one cointegration relation can be represented in terms
of the nonlinear error correction, or response, function g, given by

g (z; ) = ( (z) ~�+ �) z: (3)

Here � and ~� are (p� r)�dimensional matrices, while  (�) is a general
function for which  (z) = o (1) as kzk ! 1. A key example is the logistic
speci�cation, where

 (z) =
�
1 + exp

�
(z � !)0A (z � !)

	��1
; (4)

withA a positive de�nite (r�r)-dimensional matrix while ! is an r-dimensional
vector. The parameter  is in this case given by

 = (vec (�)0 ; vec (~�)0 ; !; vec (A)0)0 2 Rd
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with d = r(2p+ r + 1).

3 Properties of the Process

We make the following assumptions:

A.1 The sequence f"tg is i.i.d. mean-zero random variables on Rp with
positive de�nite covariance matrix 
. The marginal distribution is
given by a continuous density f" > 0 satisfying (2) and E

�
k"tk2s

�
<1

for some s > 1.

A.2 The function g (�; ) : Rr 7! Rp satis�es

g (z; ) = �z + o (kzk) as kzk ! 1,

for some � 2 Rp�r.

A.3 With the characteristic polynomial A (z) de�ned by,

A (�) = Ip (1� �)� ��0��
kX
i=1

�i (1� �)�i; � 2 C;

assume that A (�) has exactly (p� r) roots at � = 1; while the remain-
ing roots satisfy j�j > 1.

Assumption A.1 implies that Xt can be embedded in a Markov chain
which is shown below to be geometrically ergodic. It is particularly satis�ed
if "t are assumed to be i.i.d. Gaussian, which is used when de�ning the
estimation function below.
Assumption A.2 states that for large values of the cointegrating relations,

the nonlinearity is vanishing. This assumption is satis�ed for many of existing
nonlinear error-correction models, such as in analyses of real exchange rates
or yield curve dynamics, see e.g. Dumas (1992) and Sercu et al.(1995) for
the former and Anderson (1997) for the latter.
Assumption A.3 is the well-known cointegration regularity condition from

linear vector autoregressive models. This assumption is, together with A.2,
cruical when establishing Theorem 1 below. Note that upon estimation, it
can be veri�ed by computation of the roots of A (�).
Assumptions A.2 and A.3, may be reformulated to allow for the case

where the linear adjustment coe¢ ecent � in A.2 is allowed to depend on the
direction of z and not the size alone. However, as shown in Saikkonen (2006)
this implies that the regularity condition involves the concept of generalized
spectral radius which is very di¢ cult to verify for practical purposes.
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Theorem 1 Assume that (A.1)-(A.3) hold.

(i) The process Yt =
�
X 0
t�;�X

0
t�?; :::; X

0
t�k�;�X

0
t�k�?

�0
is geometrically

ergodic. In particular, the initial value Y0 can be given an initial dis-
tribution such that Yt is stationary and ergodic, with E[kYtk2s] <1.

(ii) The process Xt has the representation

Xt = C

tX
i=1

si + C�t+ �t +D; (5)

where C = �?

�
�0?

�
I �

Pk
i=1�i

�
�?

��1
�0?, � = Eg (�0Xt; ), and

st = "t + g0 (�
0
0Xt�1))� �

is a stationary and also geometrically mixing sequence with E [st] = 0
and E[kstk2s] <1. Moreover, D is a constant which satis�es �0D = 0
and depends on initial values (X0;�X0; :::;�X�k+1) : Finally �t is a
stationary and geometrically mixing sequence.

Remark 2 (i) The process contains a linear trend term induced by � =
Eg (�0Xt; ) which in most cases will be non-zero. An important ex-
ception is the linear case, and also the case of STECM with � 6= ~� but
proportional such that �0?~� = 0; see also the discussions in Bec and
Rahbek (2004).

(ii) The random sequence fstg driving the stochastic trend is not necessarily
a Martingale Di¤erence. This will have important implications for the
asymptotic properties of the MLE in the general case as we shall see in
the next Section.

4 Likelihood-based Estimation of the Para-
meters

We here de�ne estimators of the unknown parameters , �,�1; :::;�k and 

based on the Gaussian likelihood. Let in the following 0 and �0 denote the
true parameter values, and likewise for the remaining parameters.
Before stating results on the asymptotic behaviour of the likelihood esti-

mators of  and �; we use the results in Theorem 1 to de�ne a normalized,
and hence identi�ed, version of �. With C, � and � de�ned in Theorem
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1 set � = C� 2 Rp; and � = (�; �)? 2 Rp�(p�r�1): Then using the co-
ordinate system (�0; �0; �0) we have by simple orthogonal projection that
� = �0 ��

0
0� + �0��

0
0� +

��0�
0
0� and hence, we can de�ne the normalized version

as ~� � �
�
��00�
��1
, with

~� � �0 = �0b� + ��0b� =
�
�0; ��0

�
b:

This de�nes the normalized cointegration matrix parameter,

b = (b0�; b�)
0 2 Rp�r�r: (6)

With � = [�1j:::j�k] 2 Rp�pk de�ne furthermore,

� = (; �) ; � = vec (�) 2 Rp2k: (7)

The parameters of interest for our asymptotic results are then given by

� = (�; b) (8)

in terms of (6) and (7). Various other normalizations on � exist in the
literature; the one chosen here is theoretically appealing as it means that our
results can be presented in a straightforward way, see Theorem 5 below.
Note that in the STECM model with g (z) = (�+ ~� (z)) z, where  is

given by (4), by a simple reparametrization in terms of A,  (�) is invariant
to the proposed normalisation, and so the same holds for the likelihood func-
tion de�ned below. It implies for example that the limiting distribution of
� normalized in some other way can be derived from ~� using simple Taylor
expansion arguments. Also the invariance implies that limiting distributions
of likelihood based test statistics can be found using the results for ~�.
Next, in terms of � the model we rewrite the general model as,

�Xt = g (Z0;t�1 + b0Z1;t�1; ) + �Z2;t�1 + "t;

where the right hand side Z variables are de�ned by,

Z0;t = �00Xt 2 Rr; (9)

Z1;t =
�
Z 0�;t; Z�;t

�0
= (X 0

t�0; t)
0 2 Rp�r and

Z2;t =
�
�X 0

t; :::;�X
0
t�k+1

�0 2 Rpk:
By Theorem 1, Z0;t and Z2;t are stationary regressors, while Z1;t is a non-
stationary regressor for which all coordinates but one, that is p�r�1; satisfy
an invariance principle, cf. Theorem 3 below. The last coordinate in Z1;t is
a linear deterministic trend.
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Assuming that the covariance matrix 
 is known, the negative Gaussian
log-likelihood function up to a constant and a scale is given by

LT (�) �
TX
t=1

"t (�)
0
�1"t (�) ; (10)

where
"t (�) = �Xt � g (Z0;t�1 + b0Z1;t�1; )� �Z2;t�1:

We de�ne the MLE as,
�̂ = argmin

�2�
LT (�) ;

where � = G�Rp2k�R(p�r)�r;G � Rd. Note that with 
 unknown, the MLE
is given by the residual sum of squares,


̂ =
1

T

TX
t=1

"t(�̂)"t(�̂)
0

and simple iterations maximizing over � and 
 (with 
 and � respectively
�xed) lead to the MLE of 
 and �. The asymptotics of 
̂ are standard, and
will not in�uence the asymptotics of �̂. We therefore treat it as known here
and in the following.
In order to derive the asymptotics of �̂, we need a set of additional regu-

larity conditions. De�ne g0 (z) = g (z; 0), that is, the g (�) function evaluated
at the true value. In terms of g0 de�ne the Jacobian matrices w.r.t. z and :

@zg0 (z) �
@g (z; )

@z

����
=0

2 Rp�r; @g0 (z) �
@g (z; )

@

����
=0

2 Rp�d (11)

Also, let

@2zi;zjg0 (z) �
@2g (z; )

@zi@zj

����
=0

2 Rp; @3zi;zj ;zkg0 (z) �
@3g (z; )

@zi@zj@zk

����
=0

2 Rp:

De�ne furthermore the processes ut 2 Rd+p
2k and vt 2 Rr by

ut =
�
u01;t; u

0
2;t

�0
=
�
@g0 (Z0;t�1) ; Z

0
2;t�1 
 Ip

�0

�1"; (12)

vt = @zg0 (Z0;t�1)
0
�1"t:

These will be in�uential in deriving the asymptotics of the MLE since both
the score and the observed information can be expressed in terms of these
together with Z1;t. We shall need the following assumptions:
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A.4 With ut and vt de�ned in (12), the covariance matrix,

Var
�
ut
vt

�
=

�
�uu �uv
�vu �vv

�
is positive de�nite.

A.5 The function g : Rr � G 7! Rp satis�es that all partial derivatives
with respect to z and  up to the third order derivatives are O(kzk)
uniformly over . For example,@jg (z; ) � c kzk ;

@2z;kg (z; ) � c kzk and@3i;j ;zg (z; ) � c kzk

where c does not depend on .

Note that in A.4; �uu 2 R(d+p
2k)�(d+p2k), �vv 2 Rr�r and�uv 2 R(d+p

2k)�r

are given by,

�uu = E
h�
@g0 (Z0;t�1) ; Z

0
2;t�1 
 Ip

�0

�1

�
@g0 (Z0;t�1) ; Z

0
2;t�1 
 Ip

�i

�vv = E
�
@zg0 (Z0;t�1)

0
�1@zg0 (Z0;t�1)
�
; and

�uv = E
h�
@g0 (Z0;t�1) ; Z

0
2;t�1 
 Ip

�0

�1@zg0 (Z0;t�1)

i
:

A.4 then in particular implies that �uu and �vv are positive de�nite.
Note also that in the linear case where g (z; ) = �z;  = vec (�) ; then

condition A.4 (as well as A.5) trivially holds. Also that as is easily checked,
the boundedness assumptions in A.5 hold in particular for the initial STECM
example in (3).
Note furthermore that A.5 is implied by the partial derivatives being of

order kzks for some integer s > 1 together with s order moments of "t, c.f.
Theorem 1 (i).

Theorem 3 With ut and vt de�ned in (12), and with Z�;t de�ned in (9),
then under Assumptions A.1-A.4 with r 2 [0; 1], the following joint weak
convergence holds on D[0; 1]d+p+p

2k,0@ 1p
T

[Tr]X
t=1

u0t;
1p
T

[Tr]X
t=1

v0t;
1p
T
Z 0�;[Tr]

1A D! (B0
u (r) ; B

0
v (r) ; B

0
� (r))
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Here B � (B0
u; B

0
v; B

0
�)
0 is a (d+ p2k + p� 1)-dimensional Brownian motion

with covariance matrix,

� =

24 �uu �uv �u�
�vu �vv �v�
��u ��v ���

35 ;
see A4. Furthermore,

� = �(0) +

1X
h=1

(�(h) + �(h)0) , �(h) = Cov((ut; vt; �t) ; (ut+h; vt+h; �t+h)),

(13)
where �t = �00C0st with st given in Theorem 1.

Remark 4 In contrast to the standard FCLT for linear ECM models: The
covariance matrices �uv and ��v are not zero in general. This is a conse-
quence of (i) the nonlinearities in g and (ii) �t = �00C0st not being a MGD.
By de�nition of �t in Theorem 3 and vt in (12), then �v� = 0 is equivalent
to

E
�
@zg0 (Z0;t�1)

0��? = 0.
To express the asymptotic distribution of the ML estimators, we de�ne

the following normalization matrix containing their convergence rates:

VT = T

0@ Id+p2k 0 0
0 TIp�r�1 0
0 0 T 2

1A . (14)

Theorem 5 Assume that Assumptions A.1-A.5 hold. Then there exists a
consistent estimator �̂ = (�̂; b̂) of � = (�; b) as de�ned in (6)-(8). As T !1;
�̂ satis�es:

V
1=2
T

�
�̂ � �0

vec(b̂� b0)

�
D! H�1S; (15)

for a random matrix H and vector S.
With F (�) = (B0

� (�) ; �)
0 2 Rp�r, and with B�, Bv and Bu de�ned in

Theorem 3, these are given by:

H �
 

�uu
R 1
0
F (r)0 dr 
 �uvR 1

0
F (r) ds
 �vu

R 1
0
F (r)F (r)0 dr 
 �vv

!
; (16)

and

S �
 
Bu (1) ; vec

�Z 1

0

FdB0
v

�0!0
: (17)
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Remark 6 (i) The �short-run� parameters are
p
T -consistent, while the

�long-run�cointegration vectors are super- or T -consistent in all direc-
tions but one, which is T 3=2�consistent. This re�ects the presence of
the linear trend given in Theorem 1.

Corradi et al (2000, p.47) also notes the general presence of a linear
trend induced by nonlinearities in Markov processes, and the thereby
implied increased rate of convergence for their OLS based estimator of
a single equation cointegration vector.

This di¤ers from the results for the partial model in de Jong (2002), as
the linear trend is assumed not to be there by assumption: There, Xt =
(yt; Z

0
t)
0 with yt univariate while Zt satis�es an invariance principle.

(ii) If � = Eg0 (Z0t) = 0, then the linear trend vanishes, c.f. Theorem 1,
and all directions of � will be super-consistent as in the linear cointe-
grated ECM. This will not necessarily hold in general though.

(iii) From the limit of the observed information as given by H in (16), it
follows that the �long-run� parameters and the �short-run� parameters
are not asymptotically orthogonal since �uv 6= 0 in general. In par-
ticular, we observe that �̂ is not asymptotically Gaussian, and b̂ not
asymptotically mixed Gaussian, implying that usual �2 inference is not
possible. This generalizes the �ndings for the single-equation analysis
de Jong (2001, 2002).

The orthogonality condition in de Jong (2002) is equivalent to the suf-
�cient condition here that �uv = 0; see Assumption A.4 for the de�ni-
tion.

Note that even of �uv = 0 then b̂ will still not be asymptotically mixed
Gaussian unless �kv = 0 as well. In this respect, one can observe that
in the linear case where g (z; ) = �; and � = vec(�); then the long-run
parameters in b and the short-run parrameters in � are orthogonal as
�uv = 0. But also B� and Bv will be independent, and hence in this
case b̂ has a mixed Gaussian distribution. In the STECM case with
g (�) in (3), then

E
�
@zg0 (Z0;t�1)

0��? = E
�
 (Z0;t�1) + @z (Z0;t�1)Z

0
0;t�1

�
~�0�?;

with @z (Z0;t�1)) the derivative of  (�) with respect to z evaluated in
Z0;t�1. Hence �v� = 0 is implied by proportionality of the adjustments.

(iv) At the same time, de Jong (2002) �nds that the parameters can be or-
thogonalized by using Xt = (Yt; Z

0
t)
0, see (i) above, corrected for their
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empirical average, or demeaned, prior to the statistical calculations.
Similarly here: if we replace the observations Xt by Xt corrected for em-
pirical mean, F (�) in Theorem 3, would be replaced by F (�)�

R 1
0
F (s) ds

with integral zero asymptotic normality of the short-run parameters. As
already noted this does not imply mixed normality of the long-run pa-
rameters though. Also observe that one could also detrend as well as
demean the observations prior to the analysis, in which case b̂ would be
super consistent in all directions as in this case the linear trend would
vanish.

(v) A consistent estimator of the scale or information H in (16) is given
by the observed information, that is the second order derivatives com-
puted in the appendix. Also the covarianc matrix of (Bu; Bv; B�) can
be estimated consistently based on the �HAC� estimator, cf. de Jong
(2002, Theorem 3).

5 A Simulation Study

We here investigate some �nite-sample properties of the proposed estimator
for the smooth transition error correction model (STECM) described in Sec-
tion 2. For the implementation of the MLE, split the parameters � = (�1; �2)
into �1 := (~�; �;�) 2 R2r+pk�p and �2 := (�;A; !). We can then write the
model on a more compact form,

�Xt = �01Wt�1 (�2) + "t;

where

Wt (�2) =
�
 (�0Xt�1;A; c)X

0
t�1�;X

0
t�1�; Z

0
2;t�1

�0 2 R2r+pk
such that the pro�le estimator of �1 and 
 is given by standard OLS,

�̂1 (�2) =
�XT

t=1
Wt (�2)Wt (�2)

��1 �XT

t=1
�XtWt (�2)

�
;


̂ (�2) =
1

T

TX
t=1

"̂t (�2) "̂
0
t (�2) ; "̂t (�2) = �Xt � �̂01Wt�1 (�2) :

Given these pro�le estimators, we can in turn estimate �2 by

�̂2 = argmin
�2
log(j
̂ (�2) j):
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In the simulation study, we consider the simplest possible case of a bivariate
system (p = 2), with one cointegrating relation (r = 1) and k = 1 lagged
di¤erence entering. In this case A 2 R, ! 2 R, and � 2 R2; Furthermore, we
choose the normalization �1 = 1. We consider three di¤erent sample sizes,
T = 250; 500 and 1000. For each sample size, we simulate 1000 sample paths
for a set of given parameter values and then estimate these using the MLE for
both the correctly speci�ed non-linear model, and the incorrectly speci�ed
linear model (i.e. with ~� = 0 but with the inclusion of a constant term
�; say). Empirical bias, standard deviation (std) and resulting root-mean-
square error (RMSE) of the MLE�s for the non-linear and linear model are
presented in Table 1 and 2 respectively, see Appendix E. We do not report
the results for 6 � and 
 here, and only note that these are estimated with
very high precision of the same order as � when using the correctly speci�ed
STECM, while they are severely biased when using the misspeci�ed linear
ECM.
Regarding �, we observe that the MLE for the STECM is very precise in

the sense that it has both a low empirical bias and std. This is consistent with
our theoretical results which states that �̂ is super consistent. In comparison,
the MLE of � based on the linear ECM su¤ers from additional biases and
variances.1 As also can be seen from Tables 1 and 2, in �nite sample the
misspeci�ed MLE leads to less precise estimates. And so, there seems to be
a considerable loss in using the linear MLE compared to using the correctly
speci�ed MLE.
The performance of the MLE�s of the individual short-run parameters

based on the STECM are highly imprecise with empirical bias and std of
an order of magnitude of 105. In fact, the MLE based on a linear ECM
deliver more precise estimates of the individual parameters despite a high
bias. However, when the set of short-run parameter estimates are combined
to compute the resulting estimator of g (z; ) = (g1 (z; ) ; g2 (z; )), the MLE
based on the STECM give good results as shown in Figure 1, 3, 5, 7, 9 and 11
in Appendix D: Here, we plot the empirical mean and the pointwise 95% em-
pirical con�dence intervals of g1(z; ̂) and g2(z; ̂) together with g1(z; 0) and
g2(z; 0). From these, we see that the estimates have small empirical biases
and their empirical variances are of a much lower order than the individual
parameter estimates. So the results reported in Table 1 for the short-run
parameter estimates appear to be due to problems of identi�cation of the
individual parameters in g; the likelihood has no problems identifying the

1This �nding is consistent with the results of Corradi et al (2000) where it is demon-
strated that OLS estimation of � based on the (incorrectly speci�ed) linear ECM will
remain consistent for our class of models.
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function g itself. Seemingly, the STECM speci�cation is not very attractive
from this point of view. The nonlinear component of g is pinned down by
the �extreme�observations of �0Xt�1 lying out in tails of g; since we only
have relatively few observations in these regions, the con�dence bands tend
to grow wider as we move away from the empirical mean of �0Xt�1. In par-
ticular, for smaller sample sizes (here, T = 250), the empirical con�dence
bands are so wide that it appears likely that a linear speci�cation would be
accepted when tested against the correct non-linear speci�cation.
As expected, the estimates of the transfer function g (z) = �1z based on

the MLE in the linear ECM are highly biased but exhibit small variance as
can be seen from Figures 2, 4, 6, 8, 10 and 12. So while the MLE of � based
on the linear ECM yield acceptable estimates, the ones of the short-term
parameters are highly unsatisfactory and give very misleading pictures of
the shape of the transfer functions.

6 Conclusions

The results here contain the estimation theory for the di¤erentiable class
of error-correction functions, g. It is also of interest to extend the results
in this paper to the case of regime switching models. In the survey Lange
and Rahbek (2007) make a distinction between �observation-switching�(OS)
and �Markov-switching�(MS) error correction models. In MS models, such
as in Krolzig et al (2002), the switching between regimes is determined by a
latent Markov process. In OS models, such as in Bec and Rahbek (2004), the
swicthing process is endogenously modelled with the probability of switching
a function of the observed data, or cointegrating relations. The extention
to both MS and OS error correction models is of much interest. Also by
de�nition, here threshold error correction models as applied in for example
Hansen and Seo (2002), are included if the threshold parameters are assumed
known. Non-likelihood based extensions to the case of unknown threshold
have been considered by Seo (2007), where a smooth estimating function
(�smooth least squares�) is used to circumvent the non-di¤erentiability of the
likelihood function.
The presented asymptotic theory implies as discussed, that even simple

hypothesis testing in most cases can not be based on standard �2 distrib-
utions, see also de Jong (2002). On top of this is the problem that a key
hypothesis of interest is the one of linearity which introduces the additional
well-known identi�cation problem as in Hansen and Seo (2002) testing for
linearity in a threshold error correction model.
Our set-up assumes that the cointegrating relations are linear combina-

14



tions of the variables. Also this assumption can be challenged, see for example
Bae and de Jong (2006) where non-linear cointegrating relations are stud-
ied. In fact, a rich literature exist on estimation and testing in the case of
nonlinear cointegration, see e.g. Park and Phillips (2001), Chang and Park
(2003), Choi and Saikkonen (2004), Saikkonen and Choi (2004) and Karlsen,
Myklebust and Tjøstheim (2007).
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A Proofs

Proof of Theorem 1: The proof mimics the proof of Theorem 2 in Bec and
Rahbek (2004), and is similar in structure to also Saikkonen (2005, proof of
Theorem 2).
We set without loss of generality k = 1 and � = �1 :

�Xt = g (�0Xt�1; ) + ��Xt�1 + "t

= ��0Xt�1 + (g (�
0Xt�1; )� ��0Xt�1) + ��Xt�1 + "t

= ��0Xt�1 + ��Xt�1 + �t + "t;

where �t = g (�0Xt�1; )� ��0Xt�1: With zt = �0Xt and wt = �0?�Xt, then

Yt =
�
z0t; w

0
t; z

0
t�1; w

0
t�1
�0

solves
Yt = AYt�1 +B (zt�1) + �t

where using the projection identity I = ��?�
0
? +

���0;

A =

0BB@
Ir + �0�+ �0��� �0���? ��0��� 0
�0?�+ �0?�

�� �0?�
�� ��0?��� 0

Ir 0 0 0
0 Ip�r 0 0

1CCA (18)

B (zt�1) = (�
0
t�; �

0
t�?; 0; 0)

0 and �t = ("0t�; "
0
t�?; 0; 0)

0

This is a time-homogenous Markov chain on R2p. By Assumption A.1, the 2
(in general k + 1) step transition density for Yt is positive and bounded on
compact sets in R2p�R2p. This implies that the Markov chain is irreducible,
aperiodic and compact sets are �small�, and the drift criterion as stated in
Meyn and Tweedie (1993, Theorem 15.0.1(iii)) can be applied.
Consider a drift function proposed in Feigin and Tweedie (1985) which

implies existence of second order moments of Yt �and hence of zt and wt:

V (y) = 1 + y0Dy � 1; D = �1j=0A
j0Aj

where A is de�ned in (18). This choice of the drift function is well-de�ned as
� (A
A) < 1; where � (�) is the spectral radius. That this holds, is implied
by Assumption A.3 since � (A) < 1 is equivalent to the condition on the
roots of the characteristic polynomial in A.3.
It follows that with y = (z01; w

0
1; z

0
2; w

0
2)
0 ;

E(V (Yt)jYt�1 = y) =

1 + trfD�g+ y0(D� I)y +B (z1)0DB (z1) + 2B (z1)0DAy
(19)
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Next,

E(V (Yt)jYt�1 = y) = V (y)
�
1�

h
y0y�tr(�D)�B(z1)0DB(z1)�2B(z1)0DAy

V (y)

i�
De�ne for some � > 1 the compact set

K =
�
y 2 R2p

�� y0Dy � �
	

On complement of K; Kc; it holds by de�nition that

V (y) = 1 + y0Dy � y0Dy
�
1 + 1

�

�
� 2y0Dy

and thereforeh
y0y�tr(�D)�B(z1)0DB(z1)�2B(z1)0DAy

V (y)

i
� 1

2
inf( y

0y
y0Dy )� (

tr(�D)
V (y)

� B(z1)
0DB(z1)+2B(z1)

0DAy
V (y)

)

� 1
2�(D)

� ( tr(�D)
V (y)

� B(z1)
0DB(z1)+2B(z1)

0DAy
V (y)

).

First, note that
tr(�D)
V (y)

� tr(�D)
1+�

! 0 as �!1.

Next, by de�nition V (y) = O(kyk2). Next as B (z1) = o (kz1k) also B (z1) =
o (kyk) and therefore

B(z1)
0DB(z1)+2B(z1)

0DAy
V (y)

! 0 as kyk ! 1.

In other words, for �c large enough,

E(V (Yt)jYt�1 = y) � (1� )V (y)

where 1
2�(D)

>  > 0.
On K, E(V (Yt)jYt�1 = y) is bounded by a continuous function and

hence bounded on the compact set K. We conclude that Yt is geometrically
ergodic with �nite second order moment.
To address higher order moments the proof is similar. For the case of

fourth order moments, de�ne

�Yt = Yt 
Yt, �A = A
A and �B (z1) = B (z1)
B (z1) .

As before note that, �( �A
 �A) < 1 and therefore the p2� p2 positive de�nite
matrix �D as well as the drift function �V are well-de�ned, where

�D =
P1

i=0
�Ai0 �Ai and �V (y) = 1 + �y0 �D�y with �y = (y 
 y). (20)

The rest is then as before, using inequalities in Feigin and Tweedie (1985).
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To derive the representation in (5) rewrite the process as,

A(L)Xt = �t + "t:

Note that by Assumption A.3, by Johansen (1996, Theorem 4.2) the following
algebraic identity holds for � 6= 1;

A(�)�1 = C
1

1� �
+ C(�); (21)

where C = �?(�
0
?(Ip �

Pk�1
i=1 �i)�?)

�1�0? and C(�) =
P1

i=0Ci�
i with expo-

nentially decreasing coe¢ cients Ci. This gives,

Xt = C
tX
i=1

(�i + "i) + C(L) (�t + "t) +D = C
tX
i=1

(�i + "i) + �t +D; (22)

whereD depends on initial valuesX0;�X0; :::;�X�k+1 and satis�es �0D = 0.
Note that �t+ "t is a (measurable) function of Yt. This implies in particular
that �t + "t and hence �t = C(L) (�t + "t) are stationary, as C(�) has expo-
nentially decreasing coe¢ cients. Next, by (22) and the de�nition of C; then
with st = "t + g (�0Xt�1; )� �; where � = E [g (�0Xt�1; )] ;

C
tX
i=1

(�i + "i) = C
tX
i=1

si + C�t.

�

Proof of Theorem 3: Note initially by Theorem 1,0@ 1p
T

[Ts]X
t=1

u0t;
1p
T

[Ts]X
t=1

v0t;
1p
T
X 0
[Ts]�

1A =
1p
T

[Ts]X
t=1

(u0t; v
0
t; s

0
tC

0�) + oP (1)

� 1p
T

[Ts]X
t=1

w0t + oP (1) ;

where wt = (u0t; v
0
t; s

0
tC

0�)0 2 Rd+p�1: Next, recall from the proof of Theorem
1 that st = "t + g (�0Xt�1; ) � �; where � = E [g (�0Xt�1; )]. Hence by
de�nition, see also (12), wt = f ("t;Yt�1) with in an obvious notation,

f (e; y) =
�
(@zg0 (y0) ; y

0
2 
 Ip)

0

�1e; (e+ g0 (y0)� �)0 �

�0
21



and
�
"0t;Y

0
t�1
�0
is a geometrically ergodic Markov chain. Geometric ergodicity

holds as in the proof of Theorem 1, using that the (2 + k)-step transition
density sati�es the regularity conditions there and replacing the drift function
�V (y) in (20) by ~V (e; y) = �e0�e+ �V (y), �e = (e
 e).
With ("0t;Y

0
t)
0 geometrically ergodic, the FCLT in Meyn and Tweedie

(1993, Theorem 17.4.2 and 17.4.4) can be applied to wt = f ("t;Yt�1). This
again holds under the assumptions that kfk2 � ~V and the long run variance
� de�ned in (13) is positive de�nite. It follows that

kfk2 � c
�
k@zg0k2 kek2 + kg0k2 + kek2 + 1

�
� c

�
k@zg0k4 + kek4 + kg0k2 + 1

�
� c

�
ky0k4 + kek4 + 1

�
� c ~V

for some generic constant c > 0. The second last inequality holds by As-
sumptions A.2 and A.4. �

Proof of Theorem 5. To prove consistency, we verify the conditions of
Lemma 10 with UT = 1

T
VT and QT (�) = 1

T
LT (�), where VT is given in (14).

We have that (C.1) holds by (A.1) while (C.2)-(C.3) follow by Lemmas 7, 8
and 9:

dQT (�0;U
�1=2
T d�) = dLT (�0;V

�1=2
T d�)=

p
T = oP (1) ;

d2QT (�0;U
�1=2
T d�; U

�1=2
T d��) = d2LT (�0;V

�1=2
T d�; V

�1=2
T d��)

D! H1
�
d�; d��

�
;

d3QT (�;U
�1=2
T d�; U

�1=2
T d��; U

�1=2
T d~�) = T 1=2d3LT (�;V

�1=2
T d�; V

�1=2
T d��; V

�1=2
T d~�)

= OP (jjd�jjjjd��jjjjd~�jj):

The asymptotic distribution will follow from Lemma 11 with vT = T , such
that vTUT = VT , if we can verify the additional condition (C.4) in Appendix
C. But this follows from Lemma 7 since

dQT (�0; v
�1=2
T U

�1=2
T d�) = dLT (�0;V

�1=2
T d�)

D! S1 (d�) :

We conclude that V 1=2
T (�̂T��0)

D! �1; where �1 sati�es S1 (d�) = H1 (d�; �1)
for all directions d� with S1 (d�) and H1 (d�; �1) given in Lemma 7 and 8
respectively. This implies the result stated in Theorem 5. �
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B Lemmas

Recall the de�nitions of @zg0 (z) and @g0 (z) in (11). We then introduce the
�rst order di¤erentials in the directions of z and  as given by dg (z; ; dz) =
@zg (z; ) dz and dg (z; ; d) = @g (z; ) d. The second and third order
di¤erentials are written as d2g (z; ; da; db) and d3g (z; ; da; db; dc), where
da; db; dc 2 fdz; dg. When evaluated at the true value 0 we write d2g0 (z; �)
and d3g0 (z; �). Note that in the case r = 1; then for example d2g0 (z; dz1; dz2)
reduces to @2zg0 (z) dz1dz2; where @

2
zg0 (z) = @2g (z) =@z2 is the second order

derivative.

Lemma 7 Assume that A.1-A.4 hold. Then for the -2log-likelihood function
LT (�;
) de�ned in (10) and with d� = (d�; db) ; db = (db0�; db

0
�)
0 the following

hold:
dLT (�0;V

�1=2
T d�) = ST (�0;V

�1=2
T d�)

D! S1 (d�) ;

where VT is de�ned in (14) and

S1 (d�) = �
�Z 1

0

dB0
u (s) dsd� + tr(db0

Z 1

0

FdB0
v)

�
;

with B = (B0
u; B

0
v; B

0
�)
0 de�ned in Theorem 3 and F (s) = (B0

� (s) ; s)
0.

Proof. The �rst order di¤erential of LT (�) is given by

ST (�;V
�1=2
T d�) = T�1=2S�;T (�; d�) + T�1S�;T (�; db�) + T�3=2S�;T (�; db�)

where

S�;T (�; d) = �
TX
t=1

�
@g (Z0;t�1 + b0Z1;t�1) d +

�
Z 02;t�1 
 Ip

�
d�
�0

�1"t (�) ;

S�;T (�; db�) = �
TX
t=1

Z 0�;t�1db�@zg (Z0;t�1 + b0Z1;t�1)
0

�1"t (�)

S�;T (�; db�) = �
TX
t=1

Z�;t�1db�@zg (Z0;t�1 + b0Z1;t�1)
0

�1"t (�)

Evaluated at the true parameter value �0 = (�0; 0), we get

S�;T (�0; d�) = �d�0
TX
t=1

ut; S�;T (�0; db�) = �
TX
t=1

Z 0�;t�1db�vt;

S�;T (�0; db�) = �
TX
t=1

Z�;t�1db�vt;
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where ut 2 Rd+p
2k and vt 2 Rr are de�ned in Theorem 3. From this theorem,

T�1=2S;T (�0; d) = �T�1=2d�0
TX
t=1

ut
D! �d�0

Z 1

0

dBu (s) = �d�0Bu (1) :

By Hansen (1992, Theorem 2.1), as joint convergence holds by Theorem 3,

T�1S�;T (�0; db�) = �T�1
TX
t=1

�
Z 0�;t�1db�

�
vt

D! �
Z 1

0

(B0
� (s) db�) dBv (s) :

Finally, by yet another application of Theorem 3,

T�3=2S�;T (�0; db�) = �T�2
TX
t=1

�
Z 0�;t�1db�

�
vt

D! � (db�)
Z 1

0

sdBv (s) :

The three convergence results above hold simultaneously since the conver-
gence in Theorem 3 does. By collecting terms, the desired result is obtained.
�

Lemma 8 Assume that A.1-A.4 hold. With d� = (d�; db) ; db = (db0�; db
0
�)
0 ;

then for the -2log-likelihood function LT (�) de�ned in (10) satis�es

d2LT (�0;V
�1=2
T d�; V

�1=2
T d~�) = HT (�0;V

�1=2
T d�; V

�1=2
T d~�)

w! H1(d�; d~�);

where H1(d�; d~�) > 0 a.s. is given by

H1(d�; d~�) = d�0�uud~� + trfd~b0
Z 1

0

F (s)F 0 (s) dsdb�vvg

+

Z 1

0

F (s)0 dsdb�vud~ + d0�uvdb
0
Z 1

0

F (s) ds

with � and B = (B0
u; B

0
v; B

0
�)
0 de�ned in Theorem 3 and F (s) = (B0

� (s) ; s)
0.

Proof. The second order di¤erential is given by,

HT (�;V
�1=2
T d�; V

�1=2
T d~�) = T�1H�;� + T�2H�;� + T�3H�;� + T�2 (H�;� +H�;�)

(23)

+ T�3=2 (H�;� +H�;�) + T�5=2 (H�;� +H�;�)
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where we have used the notation that H�;� = d2LT (�; d�; d~b�) and so forth.
If we can prove that the following six claims hold simultaneously, the proof
is complete:

Claim 1 : T�1H�;�
P! d�0�uud�;

Claim 2 : T�2H�;�
D! trf(db�)0

Z 1

0

B� (s)B� (s)
0 ds(d~b�)�vvg;

Claim 3 : T�3H�;�
D!
Z 1

0

s2ds (db�) �vv(d~b
0
�)

Claim 4 : T�2H�;�
D!
�Z 1

0

sds

�
db��vud~;

Claim 5 : T�3=2H�;�
D!
Z 1

0

B� (s)
0 dsdb��vud~:

Claim 6 : T�5=2H�;�
D! trfd~b�

Z 1

0

B� (s) sdsdb��vvg:

Proof of Claim 1: We have

H�;� = d0
TX
t=1

@g (Z0;t�1 + b0Z1;t�1)
0

�1@g (Z0;t�1 + b0Z1;t�1) d~

�
TX
t=1

d2g (Z0;t�1 + b0Z1;t�1; d; d~)
0

�1"t (�)

+ d�0
TX
t=1

(Z2;t�1 
 Ip)
0
�1 (Z2;t�1 
 Ip) d~�

+ d�0
TX
t=1

(Z2;t�1 
 Ip)
0
�1@g (Z0;t�1 + b0Z1;t�1) d~

+ d0
TX
t=1

@g (Z0;t�1 + b0Z1;t�1)
0

�1 (Z2;t�1 
 Ip) d~�

Evaluated at � = �0 = (0; 0), the result holds by the law of large numbers

for geometrically ergodic processes, H�;�
P! d�0�uud~�.
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Proof of Claim 2: The di¤erential H�;� takes the form

T�2H�;� = T�2trfd~b0�
TX
t=1

Z�;t�1Z
0
�;t�1db�@zg (Z0;t�1)

0
�1@zg (Z0;t�1)g (24)

� T�2
TX
t=1

"t
0
�1d2g(Z0;t�1; db

0
�Z�;t�1; d

~b0�Z�;t�1)

Rewrite the �rst term on the right hand side as

T�2db0�

TX
t=1

Z�;t�1Z
0
�;t�1d

~b��vv + T�2db0�

TX
t=1

Z�;t�1Z
0
�;t�1d

~b�wt�1 (25)

where,

wt�1 = @zg (Z0;t�1)
0
�1@zg (Z0;t�1)� �vv;

�vv = E
�
@zg (Z0;t�1)

0
�1@zg (Z0;t�1)
�
:

Note that by Theorem 3 and the CMT, that the �rst term in (25) converges
weakly to the trace of (db�)

0 R 1
0
B� (s)B� (s)

0 ds(d~b�)�vv. Next, Un[n�]
w! U;

where U (s) = B� (s)B� (s)
0 and with n = T; vb;t � et, Un;t � T�1Z�;t�1Z

0
�;t�1

and Ft = � (Z�;t; Z�;t�1; :::; Z�;0), Hansen (1992, Theorem 3.3) gives directly
that the second term in (25) tends to zero, provided

sup
t
E jE (wt�1j Ft�m)j ! 0, m!1: (26)

This holds by Lemma 12. Next turn to the second term in (24) which can
be rewritten as

� T�2
TX
t=1

"t
0
�1

�
Ip 
 Z 0�;t�1db�

�
(D2

zg0 (Z0;t�1))d
~b0�Z�;t�1

= �T�2
TX
t=1

trfvec
�
Ip 
 Z 0�;t�1db�

�
vec(Z 0�;t�1d

~b�)
0 �D2

zg0 (Z0;t�1)
0 
 "0t


�1�g;
with D2

zg0 (z) =
�
@2gi(z;0)
@zj@zk

�
i=1;:::;p;j;k=1;:::;r

, see Magnus and Neudecker (1988,

p.108). As before, the result now holds by Hansen (1992, Theorem 3.3) as
the process D2

zg0 (Z0;t�1)
0 
 "0t


�1 is a Martingale di¤erence sequence. We
conclude that

T�2H�;�
D! trf(db�)0

Z 1

0

B� (s)B� (s)
0 ds(d~b�)�vvg: (27)
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Proof of Claim 3: The di¤erential H�;� takes the form:

T�3H�;� = T�3db�

TX
t=1

Z2�;t�1@zg (Z0;t�1)
0
�1@zg (Z0;t�1) d~b

0
� (28)

� T�3
TX
t=1

"0t

�1d2g(Z0;t�1; db

0
�Z�;t�1; d

~b0�Z�;t�1)

Rewrite the �rst term on the right hand side as

T�3db�

TX
t=1

Z2�;t�1�vvd
~b0� + T

�3db�

TX
t=1

Z2�;t�1wt�1d
~b0�

D!
Z 1

0

s2ds (db�) �vv(d~b
0
�):

To see that the limit is given as above, observe that by Theorem 3 and the
CMT, the �rst term converges weakly to

R 1
0
s2ds (db�) �vv(d~b

0
�). With the

same notation as before, the process Un;t � T�2Z2�;t�1 satis�es Un[n�]
D! U;

where U (s) = s2. Hansen (1992, Theorem 3.3) then yields that the second
term tends to zero. Next turn to the second term in (28) which can be
rewritten as

� T�3
TX
t=1

"0t

�1 �Ip 
 Z 0�;t�1db�

�
(D2g (Z0;t�1))d~b

0
�Z�;t�1

= �T�3
TX
t=1

trfvec
�
Ip 
 Z 0�;t�1db�

�
vec(Z 0�;t�1d

~b�)
0 �D2g (Z0;t�1)

0 
 "0t

�1�g;

and by the same arguments as before, we conclude that this is oP (1).

Proof of Claim 4: The di¤erential H�;� takes the form:

T�2H0
�;� (29)

= T�2db�

TX
t=1

Z�;t�1@zg (Z0;t�1)
0
�1

h
@g (Z0;t�1) d~ +

�
Z 02;t�1 
 Ip

�
d~�
i
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+ T�2
TX
t=1

�
@g (Z0;t�1) d +

�
Z 02;t�1 
 Ip

�
d�
�0

�1@zg (Z0;t�1)Z

0
�;t�1d

~b0�

� T�2
TX
t=1

"0t

�1d2g(Z0;t�1; db

0
�Z�;t�1; d~)

� T�2
TX
t=1

"0t

�1d2g(Z0;t�1; d~b

0
�Z�;t�1; d)

We need here the second order di¤erential in terms of w = (z0; 0)0 2 Rr+d

D2
z;g0 (z) =

�
@2gi (w)

@wj@wk

�
i=1;:::;p;j;k=1;:::;r+d

�����
w=(z0;00)

0

Using this with 0d = (0; 0; :::; 0) of dimension d, we can write the second term
in (29) as

T�2
TX
t=1

"t
0
�1

�
Ip 


�
Z 0�;t�1db�; 0

0
d

��
(D2

z;g0 (Z0;t�1)) (0
0
r; d~

0)
0
= oP (1)

by similar arguments as before. The �rst term can be written as

T�2db�

TX
t=1

Z�;t�1@zg (Z0;t�1)
0
�1

h
@g (Z0;t�1) d~ + (Z2;t�1 
 Ip)

0 d~�
i

= T�2db�

TX
t=1

Z�;t�1�vud~� + T�2db�

TX
t=1

Z�;t�1wt�1d~�;

where

wt�1 = @zg (Z0;t�1)
0
�1

�
@g (Z0;t�1) ;

�
Z 02;t�1 
 Ip

��
� �vu

is a stationary mean-zero sequence. By Theorem 3,

T�2db�

TX
t=1

Z�;t�1�vud~�
D!
�Z 1

0

sds

�
db��vud~�;

while T�2db�
PT

t=1 Z�;t�1wt�1 = oP (1) by the same arguments used before.
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Proof of Claim 5: The di¤erential H�;� takes the form:

T�3=2H�;�

= T�3=2
TX
t=1

Z 0�;t�1db�@zg (Z0;t�1)
0
�1

h
@g (Z0;t�1) d~ +

�
Z 02;t�1 
 Ip

�
d~�
i

� T�3=2
TX
t=1

"0t

�1d2g (Z0;t�1; db

0
�Z�;t�1; d~) :

where the second term is

T�3=2
TX
t=1

"t
0
�1

�
Ip 


�
Z 0�;t�1db�; 0

0
d

��
(D2g (Z0;t�1)) (0

0
r; d~

0)
0
= oP (1)

by similar arguments as before. The �rst term can be written as

T�3=2
TX
t=1

Z 0�;t�1db�@zg (Z0;t�1)
0
�1

h
@g (Z0;t�1) d~ + (Z2;t�1 
 Ip)

0 d~�
i

= T�3=2
TX
t=1

Z 0�;t�1db��vud~� + T�3=2
TX
t=1

Z 0�;t�1db�wt�1d~�;

where T�3=2
PT

t=1 Z
0
�;t�1db�wt�1 = oP (1) while

T�3=2
TX
t=1

Z 0�;t�1db��vud~�
D!
Z 1

0

B� (s)
0 dsdb��vud~�:

Proof of Claim 6: The di¤erential H�;� takes the form:

T�5=2H�;� = T�5=2db�

TX
t=1

Z�;t�1@zg (Z0;t�1)
0
�1@zg (Z0;t�1) d~b

0
�Z�;t�1

� T�5=2
TX
t=1

"0t

�1d2g(Z0;t�1; db

0
�Z�;t�1; d

~b0�Z�;t�1):

Write

T�5=2db�

TX
t=1

Z�;t�1@zg (Z0;t�1)
0
�1@zg (Z0;t�1) d~b

0
�Z�;t�1

= T�5=2trfd~b0�
TX
t=1

Z�;t�1Z�;t�1db��vvg+ T�5=2trfd~b0�
TX
t=1

Z�;t�1Z�;t�1db�wt�1g;
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where wt�1 has been rede�ned as

wt�1 = @zg (Z0;t�1)
0
�1@zg (Z0;t�1)� �vv:

The proof of the claim now follows along the same lines as before. �

Lemma 9 Under (A.1)-(A.5),

sup
�2NT (�0)

���T 1=2d3LT (�; V �1=2
T d�; V

�1=2
T d��; V

�1=2
T d~�)

��� = OP (jjd�jjjjd��jjjjd~�jj)

for a sequence of neighborhoods

NT (�0) =
n
� : jjT�1=2V 1=2

T (� � �0) jj < �
o

of �0 and with VT de�ned in (14).

Proof. Write the third order di¤erential as,

d3LT (�; d�; d��; d~�) =
X
i;j;k

G�i;�j ;�kd�id
��jd~�k.

Below we consider each of the terms G�i;�j ;�k normalized as indicated inp
Td3LT (�; V

�1=2
T d�; V

�1=2
T d��; V

�1=2
T d~�) and argue that they vanish as T !1

as desired. As the arguments, apart from normalization, are identical for the
individual derivatives, we state explicitly Gi;j ;k and give the argument in
detail for this derivative. The orders of magnitude and expressions for the
remaining derivaties are listed below. We here leave out derivatives w.r.t. �
since they are similar to the ones of .

Claim 1: T�1Gi;j ;k = OP (1).
The derivative is given by

Gi;j ;k =
TX
t=1

@2i;kg (Z0;t�1 + b0Z1;t�1)
0

�1@jg (Z0;t�1 + b0Z1;t�1)+ (30)

TX
t=1

@ig (Z0;t�1 + b0Z1;t�1)
0

�1@2j ;kg (Z0;t�1 + b0Z1;t�1)+

TX
t=1

@kg (Z0;t�1 + b0Z1;t�1)
0

�1@2ijg (Z0;t�1 + b0Z1;t�1)�

TX
t=1

"0t

�1@3ijkg (Z0;t�1 + b0Z1;t�1)

30



Next, note that with � 2 NT (�0); we can write,

b0 = (b0�; b�) =

�
1p
T
h0�;T ;

1

T
h�;T

�
(31)

where kh�;Tk < � and kh�;Tk < �. This way for example,

b0Z1;t =
1p
T
h0�;TZ�;t +

1

T
h�;TZ�;t:

Hence considering the �rst term in (30) and using A.5, then with c denoting
a generic constant: 1T

TX
t=1

@2i;kg (Z0;t�1 + b0Z1;t�1)
0

�1@jg (Z0;t�1 + b0Z1;t�1)

 (32)

� c
1

T

TX
t=1

�
kZ0;t�1k2 +

1

T
kZ�;t�1k2 +

1

T 2
kZ�;t�1k2

�
The �rst term in (32) is bounded by stationarity of Z0;t and E kZ0;t�1k2 <1
by Theorem 1 (ii). The second term is bounded using that by Theorem 2 the
FCLT applies to Z�;t, and the continuous mapping theorem applied to the
mapping x!

R 1
0
kxk2 du; where x 2 D[0; 1]. For the third term note simply

that 1
T 2
kZ�;t�1k2 = O (1).

The arguments are identical for the other terms in (30) apart from the
last term, which is given by:

TX
t=1

"0t

�1@3ijkg (Z0;t�1 + b0Z1;t�1)

=
TX
t=1

(�Xt � g (Z0;t�1 + b0Z1;t�1))
0

�1@3ijkg (Z0;t�1 + b0Z1;t�1)

Using again A.5, together with the inequality, kxk kyk � kxk2 + kyk2 ; we
make the following evaluations: 1T

TX
t=1

(�Xt � g (Z0;t�1 + b0Z1;t�1))
0

�1@3ijkg (Z0;t�1 + b0Z1;t�1)


� c

T

TX
t=1

k�Xtk2 +
c

T 2

TX
t=1

kZ�;t�1k2 +
c

T 3

TX
t=1

kZ�;t�1k2 +
c

T

TX
t=1

kZ0;t�1k2
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That the last expression is OP (1) follows by the arguments above.

Claim 2: T�3=2Gi;j ;b�;k = OP (1) and T�2Gi;j ;b� = OP (1) :
To see this note initially that with bk equal to either b�;k or b�,

Gi;j ;bk =

TX
t=1

@2j ;zg (Z0;t�1 + b0Z1;t�1)
0

�1@ig (Z0;t�1 + b0Z1;t�1)Z1;k;t�1

+

TX
t=1

@jg (Z0;t�1 + b0Z1;t�1)
0

�1@2j ;zg (Z0;t�1 + b0Z1;t�1)Z1;k;t�1

�
TX
t=1

"0t

�1@3i;j ;zg (Z0;t�1 + b0Z1;t�1)Z1;k;t�1

+
TX
t=1

@zg (Z0;t�1 + b0Z1;t�1)
0

�1@2i;jg (Z0;t�1 + b0Z1;t�1)Z1;k;t�1;

Hence the same arguments as for the proof of Claim 1 gives the desired.

Claim 3: T�2Gi;b�;j ;b�;k ; T
�5=2Gi;b�;j;b� ; T

�3Gi;b� ;b� are OP (1).
Similar to the previous with bk equal to either b�;k or b�;

Gi;bj ;bk =
TX
t=1

@2i;zg (Z0;t�1 + b0Z1;t�1) 

�1@zg (Z0;t�1 + b0Z1;t�1)Z1;j;t�1Z1;k;t�1

+
TX
t=1

@zg (Z0;t�1 + b0Z1;t�1) 

�1@2i;zg (Z0;t�1 + b0Z1;t�1)Z1;j;t�1Z1;k;t�1

�
TX
t=1

@ig (Z0;t�1 + b0Z1;t�1)
0

�1@2zg (Z0;t�1 + b0Z1;t�1)Z1;j;t�1Z1;k;t�1

�
TX
t=1

"0t

�1@3z;z;ig (Z0;t�1 + b0Z1;t�1)Z1;j;t�1Z1;k;t�1

Hence the same arguments as for the proof of Claim 1 gives the desired.

Claim 4: T�5=2Gb�;i;b�;j ;b�;k ; T
�3Gb�;i;b�;j ;b� ; T

�7=2Gb�;i;b� ;b� and T
�4Gb� ;b� ;b�

are OP (1).
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With bk equal to either b�;k or b�;

Gbi;bj ;bk;T (�) =
TX
t=1

@2z;zg (Z0;t�1 + b0Z1;t�1) 

�1@zg (Z0;t�1 + b0Z1;t�1)Z1;i;t�1Z1;j;t�1Z1;k;t�1

+

TX
t=1

@zg (Z0;t�1 + b0Z1;t�1)
0

�1@2z;zg (Z0;t�1 + b0Z1;t�1)Z1;i;t�1Z1;j;t�1Z1;k;t�1

�
TX
t=1

@zg (Z0;t�1 + b0Z1;t�1)
0

�1@2z;zg (Z0;t�1 + b0Z1;t�1)Z1;i;t�1Z1;j;t�1Z1;k;t�1

�
TX
t=1

"0t

�1@3z;z;zg (Z0;t�1 + b0Z1;t�1)Z1;i;t�1Z1;j;t�1Z1;k;t�1

As in the previous, arguments as for Claim 1 ends the proof. �

C Auxiliary Lemmas

Consider QT (�) which is a function of observations X1; :::; XT and the pa-
rameter � 2 � � Rd. Introduce furthermore �0, which is an interior point
of �. The proof is based on classic expansions of the likelihood function
similar to Jensen and Rahbek (2004). However, here the information is sto-
chastic in the limit and the arguments need be modi�ed as done below in
Lemma 10 and 11. This is well-known from the study of regression with
non-stationary variables in Saikkonen (1995), and also similarly to the use of
local (likelihood) expansions as in Boswijk (2002) and de Jong (2002).

Lemma 10 Assume that:

C.1 QT (�) : Rd ! R is three times continuously di¤erentiable in �.

C.2 There exists a sequence of nonsingular diagonal matrices UT 2 Rd�d
such that U�1T ! 0 and�
dQT (�0;U

�1=2
T d�); d2QT (�0;U

�1=2
T d�; U

�1=2
T d��)

�
�=�0

D!
�
0; H1

�
d�; d��

��
.

where H1
�
d�; d��

�
> 0 a.s.

C.3 sup�2NT (�0)
���d3QT (�;U�1=2T d�; U

�1=2
T d��; U

�1=2
T d~�)

��� = OP (jjd�jjjjd��jjjjd~�jj)
over the sequence of local neighbourhoods

NT (�0) =
n
� : jjU1=2T (� � �0) jj < �

o
:
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Then with probability tending to one, there exists a unique minimum point
�̂ of QT (�) in NT (�0) which solves @QT (�̂)=@� = 0. It satis�es U

1=2
T (�̂��0) =

oP (1).

Proof of Lemma 10. Use a second order Taylor expansion to obtain for
any bounded sequence hT 2 Rd such that �0 + U

�1=2
T hT 2 NT (�0),

QT (�0+U
�1=2
T hT )�QT (�0) = dQT (�0;U

�1=2
T hT )+

1

2
d2QT (��;U

�1=2
T hT ; U

�1=2
T hT );

for some �� 2 [�0; �0 + U
�1=2
T hT ] 2 NT (�0). De�ne the bounded sequence

�hT = U
1=2
T

�
�� � �0

�
. Then, by another application of Taylor�s Theorem, there

exists ~� 2 [�0; ��] 2 NT (�0) such that���d2QT (��;U�1=2T hT ; U
�1=2
T hT )� d2QT (�0;U

�1=2
T hT ; U

�1=2
T hT )

���
=
���d3QT (~�;U�1=2T hT ; U

�1=2
T hT ; U

�1=2
T

�hT )
��� = OP

�
khTk2

�hT� = OP
�
�3
�
;

where we have used (C.3). Thus,

QT (�0 + U
�1=2
T hT )�QT (�0)

= dQT (�0;U
�1=2
T hT ) +

1

2
H1 (hT ; hT )

+
1

2

h
d2QT (�0;U

�1=2
T hT ; U

�1=2
T hT )�H1 (hT ; hT )

i
+OP

�
�3
�

=
1

2
H1 (hT ; hT ) +OP

�
�3
�
;

where the second equality follows by (C.2). By choosing � su¢ ciently small,
and as H1 (hT ; hT ) > 0 a.s., QT (�) is convex with probability tending to one
in the neighbourhood NT (�0). In particular, there exists a unique minimizer
�̂ = �0 + U

�1=2
T ĥT which solves the �rst-order condition, dQT (�̂; d�) = 0

for all d�. Since we can choose � arbitrarily small, ĥT = oP (1), and hence
U
1=2
T (�̂ � �0) = oP (1) as desired. �

Lemma 11 Assume that (C.1)-(C.3) holds and that

C.4 There exists a sequence of numbers vT 2 R+ such that v�1T ! 0 and�
dQT (�0; v

1=2
T U

�1=2
T d�); d2QT (�0;U

�1=2
T d�; U

�1=2
T d��)

�
D!
�
S1 (d�) ; H1

�
d�; d��

��
.
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Then v1=2T U
1=2
T (�̂ � �0)

D! H�1S; where H 2 Rd�d and S 2 Rd are given
through the following identities:

S1 (d�) = Sd�; d�0Hd�� = H1
�
d�; d��

�
:

Proof of Lemma 11. By Lemma 10, we know that �̂T is consistent and
solves the �rst order condition. A �rst order Taylor expansion of the score
and using (C.3) together with the same arguments as in the proof of Lemma
10 yields

dQT (�0; v
1=2
T U

�1=2
T d�) = d2QT (��;U

�1=2
T d�; U

�1=2
T v

1=2
T U

1=2
T (�̂ � �0))

= d2QT (�0;U
�1=2
T d�; U

�1=2
T v

1=2
T U

1=2
T (�̂ � �0)) + oP (1)

such that, by (C.4),

S1 (d�) = H1

�
d�; v

1=2
T U

1=2
T (�̂ � �0)

�
+ oP (1) :

This completes the proof. �

Lemma 12 Asssume that Zt is a stationary V-geometrically ergodic time-
homogenous Markov chain. Then for any function g � V such that E [g (Zt)] =
0;

sup
t
E jE (g (Zt)jZt�m; Zt�m�1; :::; Z0)j ! 0 as m!1:

Proof. From the Markov property,

E [g (Zt)jZt�m = z; Zt�m�1; :::; Z0] = E [g (Zt)jZt�m = z] :

Next, by de�nition of V -geometric ergodicity (Meyn and Tweedie, 1992,
pp.382),

sup
z

jE [g (Zt)jZt�m = z]j
V (z)

� sup
z
sup
jf j�V

jE [f (Zt)jZt�m = z]� E [f (Zt)]j
V (z)

(33)

= sup
z

kPm ( �j z)� �kV
V (z)

� c�m;
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where 0 < c <1 and 0 < � < 1. In total,

jE (g (Zt)jZt�m = z; Zt�m�1; :::; Z0)j � c�mV (z) .

Taking expectations and using that fZtg is stationary,

sup
t
E jE (g (Zt)jZt�m; Zt�m�1; :::; Z0)j � c�mEV (Z0) :

�
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Figure 1: MLE of g1 (z) in ST ECM, T = 1000 observations
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Figure 2: MLE of g1 (z) in linear ECM, T = 1000.
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Figure 3: MLE of g1 (z) in STECM, T = 500 observations
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Figure 4: MLE of g1 (z) in linear ECM, T = 500 observations
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Figure 5: MLE of g1 (z) in ST ECM, T = 250 observations
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Figure 6: MLE of g1 (z) in linear ECM, T = 250 observations
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Figure 7: MLE of g2 (z) in ST ECM, T = 1000 observations
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Figure 8: MLE of g2 (z) in linear ECM, T = 1000 observations
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Figure 9: MLE of g2 (z) in ST ECM, T = 500 observations
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Figure 10: MLE of g2 (z) in linear ECM, T = 500 observations
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Figure 11: MLE of g2 (z) in STECM, T = 250 observations
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Figure 12: MLE of g2 (z) in linear ECM, T = 250 observations
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E Tables

T = 250 T = 500 T = 1000
Bias Std RMSE Bias Std RMSE Bias Std RMSE

A (10�5�) -0.7000 1.7971 1.9284 -0.2383 0.9214 0.9518 -0.1070 0.5559 0.5661
! 0.6052 19.5887 19.5981 0.0858 4.3513 4.3512 -0.0127 0.2273 0.2276
�1 (10

5�) -2.1154 7.4716 7.7653 -1.1666 4.1769 4.3368 -0.2356 1.2099 1.2326
�2 (10

5�) 0.8364 2.907 3.0381 0.4671 1.7008 1.7638 0.0906 0.4600 0.4688
~�1 (10

5�) 1.0577 3.7358 3.8826 0.5833 2.0884 2.1684 0.1178 0.6049 0.6163
~�2 (10

5�) -0.4182 1.4603 1.5190 -0.2336 0.8504 0.8819 -0.0453 0.2300 0.2344
�2 0.0117 0.2309 0.2312 -0.0005 0.0703 0.0703 0.0016 0.0255 0.0256

Table 1: Bias, Std and root-MSE (RMSE) of MLE of STECM.

T = 250 T = 500 T = 1000
Bias Std RMSE Bias Std RMSE Bias Std RMSE

�1 (10
3�) 5.4177 0.0000 5.4177 5.4177 0.0000 5.4177 5.4177 0.0000 5.4177

�2 (10
3�) -0.3764 0.0000 -0.3764 -0.3764 0.0000 -0.3764 -0.3764 0.0000 -0.3764

�2 0.0787 4.2421 4.2428 0.0206 2.5716 2.5717 -0.0034 0.2249 0.2249
Table 2: Bias, Std and root-MSE of MLE of Linear ECM (�2 = 0).

True values: A = �9:6178�10�6, ! = �0:1554, � = 100�(�5:41177; 0:3764),
~� = 100� (2:7089;�0:1882), and �2 = �0:9519.
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