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Abstract

Most recent empirical option valuation studies build on the affine square root (SQR) stochastic

volatility model. The SQR model is a convenient choice, because it yields closed-form solutions

for option prices. However, relatively little is known about the resulting biases. We investigate

alternatives to the SQR model, by comparing its empirical performance with that of five different

but equally parsimonious stochastic volatility models. We provide empirical evidence from three

different sources. We first use realized volatilities to assess the properties of the SQR model

and to guide us in the search for alternative specifications. We then estimate the models using

maximum likelihood on S&P500 returns. Finally, we employ nonlinear least squares on a panel

of option data. In comparison with earlier studies that explicitly solve the filtering problem, we

analyze a more comprehensive option data set. The scope of our analysis is feasible because of

our use of the particle filter. The three sources of data we employ all point to the same conclusion:

the SQR model is misspecified. Overall, the best of the alternative volatility specifications is a

model with linear rather than square root diffusion for variance which we refer to as the VAR

model. This model captures the stylized facts in realized volatilities, it performs well in fitting

various samples of index returns, and it has the lowest option implied volatility mean squared

errors in- and out-of-sample.
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1 Introduction

Following the �nding that Black-Scholes (1973) model prices systematically di¤er from market

prices, the literature on option valuation has formulated a number of theoretical models designed

to capture these empirical biases. One particularly popular modeling approach has attempted to

correct the Black-Scholes biases by modifying the assumption that volatility is constant across

maturity and moneyness. Estimates from returns data and options data indicate that return

volatility is time-varying, and modeling volatility clustering leads to signi�cant improvements in

the performance of option pricing models. It has also been demonstrated that it is necessary to

model a leverage e¤ect. The leverage e¤ect captures the negative correlation between returns and

volatility, and thus generates negative skewness in the distribution of the underlying asset return.1

The existing literature has almost exclusively modeled volatility clustering and the leverage

e¤ect within an a¢ ne or �square root� structure. In particular, the Heston (1993) model, which

accounts for time-varying volatility and a leverage e¤ect, has been implemented in a large number

of empirical studies. Henceforth, we will refer to this model as the SQR model. The SQR model is

convenient because it leads to (quasi) closed-form solutions for prices of European equity options.

It is not surprising that the choice of model is partly driven by convenience: the estimation of op-

tion valuation models using large cross-sections of option contracts is computationally burdensome

because of the need to �lter the latent stochastic volatility. As the solution to the Heston (1993)

SQR model relies on univariate numerical integration, it is relatively easier to estimate than many

other models.

It is well recognized that the SQR model cannot capture important stylized facts. In order to

address the limitations of the square root structure, the model is often combined with models of

jumps in returns and/or volatility.2 However, relatively few studies analyze non-a¢ ne stochastic

volatility models, and therefore much less is known about the empirical biases that result from

imposing the a¢ ne square root structure on the stochastic volatility dynamic in the �rst place.

Notable exceptions that investigate option valuation using non-a¢ ne stochastic volatility models

are Aït-Sahalia and Kimmel (2007), Jones (2003) and Benzoni (2002). The non-a¢ ne model in

Benzoni (2002) does not improve on the performance of the Heston (1993) model. Jones (2003)

analyzes the more general constant elasticity of variance (CEV) model using a bivariate time series

of returns and an at-the-money short maturity option, and a number of his speci�cation tests

favor the non-a¢ ne constant elasticity of substitution model over the SQR model. Aït-Sahalia and

Kimmel (2007) also estimate di¤erent models using joint time series of the underlying return and

1The leverage e¤ect was �rst characterized in Black (1976). For empirical studies that emphasize the importance

of volatility clustering and the leverage e¤ect for option valuation see among others Benzoni (2002), Chernov and

Ghysels (2000), Eraker (2004), Heston and Nandi (2000), and Pan (2002).
2For empirical studies that implement the Heston (1993) model by itself or in combination with di¤erent types

of jump processes, see for example Andersen, Benzoni and Lund (2002), Bakshi, Cao and Chen (1997), Bates (1996,

2000), Broadie, Chernov and Johannes (2007), Benzoni (2002), Chernov and Ghysels (2000), Huang and Wu (2004),

Pan (2002), Eraker (2004) and Eraker, Johannes and Polson (2003).
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a short-dated at-the-money option price or implied volatility. They also �nd that the SQR model

is misspeci�ed, but the nature of the misspeci�cation and the empirical evidence are di¤erent from

Jones (2003).

A number of papers estimate the SQR and alternative stochastic volatility speci�cations on

returns data. These studies �nd strong evidence against the SQR speci�cation, see for example

Chacko and Viceira (2003) and Chernov, Gallant, Ghysels and Tauchen (2003). Similarly, the

realized volatility literature seems to strongly favor logarithmic, non-a¢ ne SV speci�cations. See

for example, Andersen, Bollerslev, Diebold and Ebens (2001). Yet state-of-the-art option pricing

papers, such as for example Broadie, Chernov and Johannes (2007), continue employing the SQR

model as a building block.

This paper further investigates the empirical implications of adopting a square root stochastic

volatility model for option valuation. We compare the empirical performance of the Heston (1993)

square root stochastic volatility model with that of �ve alternatives. In contrast with Aït-Sahalia

and Kimmel (2007) and Jones (2003), who compare the SQR model with more richly parameterized

stochastic volatility models, we deliberately choose alternative speci�cations with the same number

of parameters as the SQR model. This approach also di¤ers from several other studies that enrich

the SQR model by adding for example jumps to the basic model, which also increases the number

of model parameters. We deliberately ask a very di¤erent question: is the SQR model the best

possible stochastic volatility model to build upon? If not, what are the empirical de�ciencies?

Part of our motivation for keeping the number of parameters constant is our desire to make the

in-sample comparison between models as meaningful as possible. It is well known that in-sample

model comparisons favor relatively richly parameterized models, but that these in-sample model

rankings will often be reversed in out-of-sample experiments.

We provide evidence on the six stochastic volatility speci�cations from three di¤erent sources.

First, we use realized volatilities to assess the properties of the SQR model and to guide us in

the search for alternative speci�cations. Subsequently, we estimate the model parameters using

maximum likelihood on returns only, and �nally we employ nonlinear least squares on a time

series of cross-sections of option data with extensive cross-sectional variation across moneyness and

maturity.

Our estimation on option contracts uses a rich panel of data. It therefore critically di¤ers from

Aït-Sahalia and Kimmel (2007) and Jones (2003), who estimate model parameters using a bivariate

time series. Indeed, to the best of our knowledge our analysis of the SQR model uses substantially

larger cross-sections of option contracts than any other available study that explicitly solve the

�ltering problem. Existing studies either solve the �ltering problem and use a small cross-section

of option data, or use a large cross-section and do not explicitly solves the �ltering problem. For

example, Aït-Sahalia and Kimmel (2007), Chernov and Ghysels (2000), Eraker (2004) and Jones

(2003) explicitly solve the �ltering problem using a relatively limited cross-section of option data.

Studies that investigate a wider cross-section are for example Bakshi, Cao and Chen (1997), who
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estimate one cross-section at a time, and Bates (2000) and Huang and Wu (2004), who estimate a

separate volatility parameter for each cross-section. Our estimation on a rich option data set while

explicitly solving the �ltering problem is a non-trivial contribution, because one can arguably only

reliably estimate the parameters that determine the model smirk when using such a wide range of

option contracts.

We are able to estimate a large number of stochastic volatility models using comprehensive

cross-sections of options data thanks to our use of the particle �lter. This methodology is exten-

sively used in the engineering literature, and has also recently been used for �nancial applications.3

Particle �ltering provides a convenient tool for the analysis of latent factor models such as stochas-

tic volatility models. It is easy to implement, and it can be adapted to provide the best possible �t

to any objective function and any model of interest. In our opinion, the trade-o¤ with other empir-

ical methods is a very favorable one in the context of computationally intensive option valuation

problems.

The three sources of data we employ all point to the same conclusion: the SQR model is

misspeci�ed. Overall, the best of the alternative volatility speci�cations is a model we refer to as

the VAR model, which is of the GARCH di¤usion type. This model captures the stylized facts

in realized volatilities, it performs well in �tting a long sample of index returns, and it has the

lowest option price mean squared errors in- and out-of-sample. However, when the crash of 1987

is included in the data, the VAR model is outperformed in return �tting by a model with a higher

variance of variance.

The paper proceeds as follows. In Section 2 we discuss the benchmark Heston (1993) model in

light of the evidence from realized volatilities. We also use the realized volatilities to help guide the

search for alternative speci�cations. Section 3 discusses particle �lter based estimation on index

returns and index options. Section 4 presents the empirical results obtained using return and

options data. Section 5 concludes.

2 Stochastic Volatility Speci�cations

This section discusses alternatives to the square root volatility speci�cation in Heston (1993), which

has become the standard building block for more elaborate models in the option valuation literature.

Note that it is relatively straightforward to write down more heavily parameterized models that

outperform the square root model. Trivially, a more heavily parameterized model will always

outperform a simpler nested model in-sample. Moreover, Bates (2003) points out that even in

short-horizon out-of-sample experiments, the richer models may outperform nested models because

the �smile� pattern in option prices is very persistent. This �nding is more likely if the models

are re-estimated frequently, say daily as in the classic study by Bakshi, Cao and Chen (1997) for

3See Gordon, Salmond and Smith (1993) and Pitt and Shepherd (1999). See Johannes, Polson and Stroud (2002)

for an application to returns data.
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example.

Thus, we deliberately con�ne attention to models that have the same number of parameters as

Heston�s SQR model, and we estimate on a long sample of data. The models we consider can be

thought of as alternative building blocks for more elaborate models containing jumps in returns

and volatility as well as multiple volatility factors. However, such extensions are beyond the scope

of this paper. In our paper, the objective is to establish a well-speci�ed volatility dynamic, which in

our opinion ought to precede the development of more elaborate versions of a possibly misspeci�ed

basic model.

2.1 Realized Variance: Implications for the Square Root Model

The Heston (1993) square root (SQR) model assumes that the instantaneous change in variance,

V , has the following dynamics

SQR: dV = �(� � V )dt+ �
p
V dw (1)

where � denotes the speed of mean reversion, � is the unconditional variance, and � determines the

variance of variance. The variance innovation dw is a Brownian motion, and we have corr(dz; dw) =

�, where dz is the innovation in the underlying spot price, given by

dS = �Sdt+
p
V Sdz: (2)

We will use the return speci�cation (2) in each of the volatility models considered below.

In order to explore the implications of the SQR speci�cation, consider the instantaneous volatil-

ity dynamic implied by the model. Using Ito�s lemma, we can write

SQR: d
p
V = �(V )dt+

1

2
�dw (3)

where the volatility drift �(V ) is a function of the variance level. Note that the SQR model implies

that the instantaneous change in volatility should be Gaussian and homoskedastic: V does not

show up in any way in the di¤usion term for d
p
V . This is a strong implication, which can be quite

easily evaluated empirically.

As a �rst piece of empirical evidence, we construct daily realized variances, RVt, from intraday

returns. We obtain intraday S&P500 quotes for 1996 through 2004 from which we construct a grid

of two-minute returns. From these two-minute returns we construct robust realized variances using

the two-scale estimator from Zhang, Mykland, and Aït-Sahalia (2005).4 The two-scale estimator

is de�ned as

RV TSt = RV Avrt � 0:0614RV Allt

where RV Avrt is the average of all the possible low-frequency RV estimates that use (in our case)

30-minute squared returns on the two-minute grid, and where RV Allt is the high-frequency estimator

4We scale up the open-to-close realized variance estimates to match the overall variance in close-to-close daily

returns for the sample period.
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summing over all the available two-minute squared returns.5 The coe¢ cient on RV Allt depends on

the frequency of the sparse estimators (30 minutes here) and of the high-frequency estimator (2

minute here). Zhang, Mykland, and Aït-Sahalia (2005) show that even in the presence of market

microstructure noise this estimator converges to the true integrated variance de�ned by
R t
t�1 V�d� .

Consider now the left-hand panels of Figure 1. Using daily realized volatilities from 1996

through 2004, the top-left panel of Figure 1 shows a quantile-quantile (QQ) plot of the daily

realized volatility changes compared with the Gaussian distribution. The deviation of the data

points from the straight line indicates that the Gaussian distribution is not a good assumption for

daily changes in volatility. The observed tails (both left and right) are considerably fatter than the

normal distribution would suggest. Now consider the middle-left panel in Figure 1, which scatter

plots the daily volatility changes against the daily volatility level. According to the SQR model, this

scatter plot should not display any systematic patterns. However, as the volatility level increases

on the horizontal axis, a cone-shaped pattern in the daily volatility changes on the vertical axis

is apparent. The bottom-left panel of Figure 1 con�rms this �nding: it scatter plots the absolute

daily volatility changes against the daily volatility level. A simple OLS regression line is shown for

reference. Notice the apparent positive relationship between the volatility level and the magnitude

of the volatility changes. This pattern is in con�ict with the homoskedastic volatility implication

of the SQR model.

Using Ito�s lemma, the dynamics for log variance in the SQR model can be written as

SQR: d ln(V ) = �(V )dt+ �
1p
V
dw (4)

The right-hand panels of Figure 1 summarize the empirics of the logarithms of the realized variances.

The top panel shows that daily changes in the realized log variances follow the Gaussian distribution

quite closely. The result clearly di¤ers from the corresponding top left panel for the daily volatility

changes. Furthermore, the scatter of daily log variance changes against the log variance level in the

middle-right panel of Figure 1 does not reveal a cone-shaped pattern. The bottom-right panel in

Figure 1 con�rms this result: it shows a virtually horizontal line when regressing absolute changes

in log variance on log variance levels. The absence of a clear relationship between changes in the

log variances and the log variance level in Figure 1 casts further doubt on the SQR speci�cation,

for which the instantaneous changes in log variances are heteroskedastic, as is evident from (4).

2.2 Alternative Speci�cations for Variance Dynamics

The evidence in Figure 1 suggests specifying the variance dynamic as follows

VAR: dV = �(� � V )dt+ �V dw (5)

5See Aït-Sahalia, Mykland and Zhang (2005) for a discussion of the optimal sampling frequency.
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which has the property that ln(V ) is homoskedastic.6

d ln(V ) = �(V )dt+ �dw, where

�(V ) =
�
1
V � (� � V )�

1
2�

2
�

Heston (1997) and Lewis (2000) suggest another alternative to the SQR model: the so-called �three

halves�model de�ned by

3/2N: dV = �V (� � V )dt+ �V 3=2dw (6)

In addition to a di¤erent power on V in the di¤usion term, the 3/2N model has the interesting

implication that the variance drift is nonlinear in the level of the variance. We highlight this feature

by denoting the model �3/2N�. Another way to view the drift speci�cation is that the variance

mean reversion is a function of the level of V . The larger the level of variance in the market, the

faster the speed of mean reversion �V to the unconditional level �. This allows for a potentially fast

mean-reversion following unusually large volatility spikes, such as October 1987, and slow mean-

reversion during prolonged low volatility episodes, such as the mid 1990s. The 3/2N model also

leads to a closed-form solution for European call option prices (see Lewis (2000)), even though to

the best of our knowledge the model has not yet been implemented using this solution.

So far we have considered three di¤erent speci�cations of the di¤usion and two di¤erent speci-

�cations for the drift of V . We can think of the three models considered so far as belonging to the

class

dV = �V a(� � V )dt+ �V bdw, for a = f0; 1g and b = f1=2; 1; 3=2g (7)

Although we will focus our discussion on the SQR, VAR and 3/2N models, this framework encom-

passes a total of six models, which we denote

a b Name

0 1/2 SQR

1 1/2 SQRN

0 1 VAR

1 1 VARN

0 3/2 3/2

1 3/2 3/2N

All of these models will be estimated below.

The literature contains several good discussions of the properties of stochastic di¤erential equa-

tions. See for instance Karlin and Taylor (1981). Aït-Sahalia (1996) contains a discussion of

the properties of general interest rate processes and Lewis (2000) contains a treatment of certain

variance processes. Jones (2000) provides an excellent discussion of the CEV stochastic variance

6Although it would seem natural from the realized variance analysis above, we do not consider the homoskedastic

log SV model where d ln(V ) = � (� � ln(V )) + �dw, because it typically performs very similar to�but slightly worse
than�the VAR model.
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process. He shows that for a model with a = 0 and b > 1, zero and plus in�nity are unattainable

values for the stochastic variance. He also shows that a solution to the variance SDE exists and is

unique, and that the stationary distribution exists. Thus Jones (2003) covers the model we refer to

as 3/2. Similar arguments can be used to show that these results hold also for the VAR model, the

VARN model and the 3/2N model. For the SQRN model, all but the existence of the stationary

distribution can be shown using similar arguments as well.

2.3 Volatility Risk Premia

In order to compute option prices, which depend on the price of volatility risk, we need to specify a

volatility risk premium relationship for each of the above six models. Heston (1993) assumes that

the volatility risk premium �(S; V; t) is equal to �V , so that the risk neutral dynamic for the SQR

model is

SQR: dS = rSdt+
p
V Sz� (8)

dV = (�(� � V ) + �V ) dt+ �
p
V dw� (9)

= (�� �)(��=(�� �)� V )dt+ �
p
V dw�

with corr(dz�; dw�) = �: Notice that the variance dynamic takes the same form under the physical

and risk neutral measures.

By analogy with Heston�s (1993) variance risk premium speci�cation in the SQR model, we use

the following functional form for the variance risk premium

�(S; V; t) = �V a+1 (10)

This speci�cation ensures that the variance dynamic takes the same form under the two measures,

as is the case in the Heston (1993) SQR model. Under the risk neutral measure, we have

dS = rSdt+
p
V Sz� (11)

dV = (�� �)V a(��=(�� �)� V )dt+ �V bdw�

with corr(dz�; dw�) = �:

In all six models the risk-neutralization can be obtained using a no-arbitrage argument. A

utility-based argument behind the risk neutralization can be explicitly characterized for some cases

when assuming log-utility. See Lewis (2000) for a thorough discussion of these issues.

2.4 Computing Option Prices

Heston (1993) demonstrates that the SQR model admits a closed form solution for option prices,

which can be written as

C(Vt) = SP1;t �Ke�r(T�t)P2;t (12)
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where P1;t and P2;t are computed using numerical integration of the conditional characteristic

function.

Heston (1997) and Lewis (2000) show that for the 3/2N model a similar closed form solution

is available, however, in this case the characteristic function involves the gamma and con�uent

hypergeometric function with complex arguments. To the best of our knowledge this solution is

numerically very intensive and has not yet been implemented empirically. Barone-Adesi, Rasmussen

and Ravanelli (2003) and Sabanis (2003) develop approximate analytical solutions for the VAR

model, but an exact solution does not appear to have been found.

In order to ensure that di¤erences across models are not driven by a particular numerical

technique, we compute all model option prices using Monte Carlo. Thus the call option prices are

computed via the Monte Carlo sample analogue of the discounted expectation

C(Vt) = e
�r(T�t)E�t [ST �K; 0] (13)

where the expectation is calculated using the risk neutral measure.

In order to calculate Monte Carlo prices, we use 1,000 simulated paths and a number of numerical

techniques to increase numerical e¢ ciency, namely the empirical martingale method of Duan and

Simonato (1998), strati�ed random numbers, antithetic variates and a Black-Scholes control variate

technique.

To assess the accuracy of our Monte Carlo setup we compute a set of analytical option prices

using Heston�s (1993) model for various strike prices, moneyness and maturities. We then compute

Monte Carlo option prices for the same options. Using the numerical example in Heston (1993),

the risk-neutral variance process is parameterized as follows

dV = 2(:01� V )dt+ :2
p
V dw� (14)

The correlation � is set to �0:5, and the risk-free rate is set to zero.
Figure 2 reports the results. The Monte Carlo prices, denoted by �+�, o¤er a very good ap-

proximation to the analytical prices, denoted by solid lines, in all cases. The �gure contains two

maturities: one month (left panels) and three months (right panels). The �gure considers three spot

variance levels: V0 = :005, which is half the unconditional variance (top panels), V0 = :01 which is

equal to the unconditional variance (middle panels), and V0 = :02 which is twice the unconditional

variance (bottom panels).

3 Estimation Using the Particle Filter

The SQR model has been investigated empirically in a large number of studies. It is often used

as a building block, together with models of jumps in return and volatility. For our purpose, it is

important to note that when estimating the model on option data, a number of di¤erent techniques

can be used. First, the model�s parameters can be estimated using a single cross-section of option
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prices as in Bakshi, Cao and Chen (1997). A second type of implementation of the SQR model

uses multiple cross-sections of option prices but does not use the information in the underlying

asset returns. Instead, for every cross-section a di¤erent initial volatility is estimated, leading to

a highly parameterized problem. This approach is taken for instance in Bates (2000) and Huang

and Wu (2004). A third group of papers provide a likelihood-based analysis of the stochastic

volatility model. See for example Aït-Sahalia and Kimmel (2007), Bates (2004), Jones (2003), and

Eraker (2004), who provides a Markov Chain Monte Carlo analysis. A likelihood-based approach

can combine information from the option data and the underlying returns, and impose consistency

between the physical and risk neutral dynamics in estimation. Both the return data and the option

data carry a certain weight in the objective function. Finally, Chernov and Ghysels (2000) use the

e¢ cient method of moments and Pan (2002) uses a method of moments technique as well. These

methods can also combine information in option data with the information in underlying returns.

The empirical challenge in all the stochastic volatility models is that the spot volatility Vt is

an unobserved latent factor. In order to estimate the parameters in the SV models we thus need

to apply a �ltering technique on observed index returns. The last two groups of papers discussed

above explicitly solve the �ltering problem. The �ltering problem is also explicitly considered in

some papers that use return data to estimate continuous-time stochastic volatility models, such as

Chernov, Gallant, Ghysels and Tauchen (2003).

Our implementation solves the �ltering problem using the particle �lter (PF) algorithm for the

six stochastic volatility models. As shown by Gordon, Salmond and Smith (1993) the PF o¤ers

a convenient �lter for non-linear models such as the stochastic volatility models we consider here.

Because the PF procedure is relatively new in �nance, we discuss the implementation of this method

in some detail.

We will be using the PF both for maximum likelihood (ML) estimation on returns and for

nonlinear least squares (NLS) estimation on option prices. Below we �rst describe the PF, then

the maximum likelihood importance sampling (MLIS) estimation methodology we use to estimate

using return data, and �nally the nonlinear least squares importance resampling (NLSIS) estimation

methodology we use to estimate using option data.

3.1 Volatility Discretization

Working with log returns, we can write the generic SV process as

d ln(S) =

�
�� 1

2
V

�
dt+

p
V dz (15)

dV = �V a(� � V )dt+ �V bdw

Note that the equations in (15) specify how the unobserved state is linked to observed stock prices.

This relationship allows us to infer the volatility path using the returns data. We �rst need to

discretize (15). There are di¤erent discretization methods and every scheme has certain advantages
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and drawbacks. We use the Euler scheme, which is easy to implement and has been found to work

well for this type of applications.7 Discretizing (15) gives

ln(St+1) = ln(St) +

�
�� 1

2
Vt

�
+
p
Vtzt+1 (16)

Vt+1 = Vt + �V
a
t (� � Vt) + �V bt wt+1 (17)

We implement the discretized model in (16) and (17) using daily returns, but all parameters will

be expressed in annual units below. We now describe the volatility �ltering step.

3.2 Volatility Filtering

The particle �lter algorithm relies on the approximation of the true density of the state Vt+1 by

a set of N discrete points or particles that are updated iteratively through equations (16) and

(17). The �lter is implemented by deriving the empirical distribution
n
V jt+1;W

j
t+1

oN
j=1
of Vt+1,

conditional on knowledge of the empirical distribution
n
V jt ;W

j
t

oN
j=1
of Vt. This implementation

proceeds in three steps. Our particular implementation of the particle �lter is referred to as the

Sampling-Importance-Resampling (SIR) particle �lter. The three steps are as follows

3.2.1 Step 1: Simulating the state forward: Sampling

This is done by computing V jt+1 from the original set of particles {V jt }
N
j=1 assumed to be known at

time t using equation (17) and taking the correlation into account.8 First let

wjt+1 = �z
j
t+1 +

p
1� �2"jt+1 (18)

where corr(zjt+1; "
j
t+1) = 0. Substituting (18) and (16) into (17) we get

V jt+1 = V
j
t + �

�
V jt

�a �
� � V jt

�
+ �

�
V jt

�b0@� ln
�
St+1
St

�
�
�
�� 1

2V
j
t

�
q
V jt

+
p
1� �2"jt+1

1A (19)

This simulates N particles and thus provides a set of possible values of Vt+1.

3.2.2 Step 2: Computing and normalizing the weights: Importance Sampling

At this point, we have a vector of N possible values of Vt+1 and we know according to equation (16)

that given the other available information, Vt+1 is su¢ cient to generate ln(St+2): Therefore, equation

(16) o¤ers a simple way to evaluate the likelihood that the observation St+2 has been generated

7See for example Eraker (2001).
8We set the variance in the �rst period equal to the model-implied unconditional variance, that is, V j

0 = �, for

all j. In the returns-based MLIS estimation t = 0 is simply the �rst day of observed returns. In the options-based

NLSIS estimation, t = 0 is one year prior to the �rst available option quote.
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by Vt+1: Hence, we are able to compute the weight given to each particle (or the likelihood or

probability that the particle has generated St+2). The likelihood is computed as follows

W j
t+1 =

1q
V jt+1

exp

0B@�1
2

�
ln
�
St+2
St+1

�
�
�
�� 1

2V
j
t+1

��2
V jt+1

1CA (20)

for j = 1; ::; N: Finally, we have to normalize the weights by via W j
t+1 =

W j
t+1PN

j=1W
j
t+1

:

3.2.3 Step 3: Resampling

The motivation for this step is that we want to propagate high probability particles often. We use a

simple technique to resample the particles, eliminating the low probability particles and replicating

the high probability particles. To do so we construct a set of integer variables {�jt+1}
N
j=1 which can

be obtained in di¤erent ways. Our implementation uses the resampling scheme proposed by Pitt

(2002) which yields an objective function that is smooth in the parameters.

First, the adjusted weights obtained in Step 2, W j
t+1, are mapped into a set of integer variables

{�jt+1}
N
j=1, using an algorithm that takes into account that the weights are not multiples of 1=N: This

algorithm is based on the empirical CDF of V smoothed using linear interpolation as suggested by

Pitt (2002). The smoothing enables gradient based optimization and the computation of standard

errors using conventional �rst-order techniques.

Next, we construct the new set of particles {V (�)jt+1}
N
j=1 by replicating each particle in the

original set {V jt+1}
N
j=1 �

j
t+1 times. Therefore, the particles in the original set are either eliminated,

or included one or multiple times according to their adjusted weights {W j
t+1}

N
j=1: The higher the

weight, W j
t+1, the higher the integer variable �

j
t+1, and the more often the original particle V

j
t+1 is

included in the resampled set {V (�)jt+1}
N
j=1:

We now have a new set of N particles and weights {V (�)jt+1;W (�)
j
t+1}

N
j=1 which are implicitly

functions of the variable �t+1 and which all have weights 1=N . Steps 1, 2 and 3 are repeated for

t = 1; :::T .

Once the particles and weights have been computed for each date, we are ready to construct

the �ltered volatility path by

�Vt+1 =
NX
j=1

W j
t+1V

j
t+1 (21)

for each t. Conditional on a set of structural parameters, the PF thus delivers a time series of

�ltered volatilities.

3.3 Maximum Likelihood Estimation

Our �rst empirical strategy uses a long sample of daily S&P500 index returns to estimate each

of the SV models by maximizing the likelihood. To this end, we need an estimation methodology

which allows for models with a latent volatility factor.
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Pitt (2002) builds on Gordon, Salmond and Smith (1993) to show that the parameters of latent

factor models in general, and of the SV model in (16) and (17) in particular, can be estimated by

maximizing the Maximum Likelihood Importance Sampling criterion, which is simply de�ned by

MLIS (�; �; �; �; �) =
TX
t=1

ln

0@ 1

N

NX
j=1

W j
t

1A
As described in the previous section, the particle weights,W j

t , are determined via the conditional

likelihood of particle j at time t. These individual likelihoods in turn are given from the model

speci�cation in (16) and (17), taking into account the assumption that zt and wt are correlated

normal random variables. The MLIS criterion then simply averages the particle weights across

particles, takes logs, and sums over time to create a log likelihood function.

A key challenge in the use of the MLIS for estimation and inference is that it is not gener-

ally smooth in the underlying parameters. However, as discussed above, Pitt�s (2002) ingenious

implementation of the particle �lter, where the resampling in Step 3 is done in a smooth fashion,

ensures that the MLIS criterion is smooth in the parameters. This smoothing drastically improves

the numerical optimization performance and it enables us to compute reliable parameter standard

errors using conventional �rst-order techniques.

3.4 Nonlinear Least Squares Estimation

Our second empirical strategy is to take a large panel of options traded on the S&P500 index and

estimate each of the SV models by minimizing the option pricing errors on this sample. For all

the SV models, our implementation uses the nonlinear least squares importance sampling (NLSIS)

estimation technique, which minimizes the following mean squared implied volatility error

IV MSE (�; �; �; �; �; �) =
1

NT

X
t;i

�
IVi;t �BS�1i

�
Ci( �Vt)

	�2
(22)

where IVi;t is the Black-Scholes implied volatility corresponding to the market price of option i

quoted on day t. Ci
�
�Vt
�
is the model price evaluated at the �ltered volatility, �Vt from (21), and

BS�1
�
Ci( �Vt)

	
denotes the Black-Scholes inversion of the model option price.9 The total number

of options in the sample is denoted by NT =
TP
t=1
Nt, where T denotes the total number of days

included in the options sample, and where Nt is the number of options with various strikes prices

and maturities included in the sample at date t.

Our setup that minimizes (22) is di¤erent from existing studies that estimate SV models from

option data while solving the �ltering problem. Most other studies are likelihood-based. One

advantage of our approach is that it is relatively straightforward and fast, which allows us to

9Notice that we could alternatively compute the model price as the weighted average of the option prices computed

for each particle. However, such an approach would be computationally very costly. Note that if the distribution of

particles is centered around the mean, the two approaches will yield very similar results.
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estimate using much more extensive cross-sections of options. In our opinion, estimation using (22)

has an additional advantage, because matching the objective function used in parameter estimation

with the function subsequently used to evaluate the models ensures the best possible performance

of the models in- and out-of-sample. This is motivated by the insights of Granger (1969), and

Weiss and Andersen (1984) who demonstrate that the choice of objective function (also labeled loss

function) is an integral part of model speci�cation. It follows that estimating a model using one

objective function and evaluating it using another one amounts to a suboptimal choice of objective

function. Christo¤ersen and Jacobs (2004) demonstrate that this issue is empirically relevant for

the estimation of the deterministic volatility functions in Dumas, Fleming and Whaley (1998). We

thus choose to implement the SV models in a way that is consistent with these insights. Notice

however that our use of the particle �ltering algorithm is completely general: we can apply this

technique to any volatility model and using any well-behaved loss function involving option prices

and underlying returns, including a likelihood function.

Our optimization algorithm minimizes (22) using an iterative procedure on the structural pa-

rameters. At each iteration, the volatility is �ltered through time using the information embedded

in observed returns and the structural parameters. Using the �ltered volatility and the structural

parameters, option prices are computed and the IVMSE is calculated. The procedure searches in

the structural parameter space until the optimum is reached.

3.5 Monte Carlo Experiment

In this section we assess the �nite sample performance of the relatively new MLIS estimation

procedure based on the particle �lter. Following Bates (2006), who introduces a new approximate

ML estimation procedure, we add the MLIS estimator to the large-scale Monte Carlo study in

Andersen, Chung and Sørensen (1999), henceforth ACS. ACS use the following simple SV model

as a data generating process

ln(St+1) = ln(St) +
p
Vtzt+1 (23)

ln (Vt+1) = ! + � ln (Vt) + �wt+1 (24)

where zt+1 and wt+1 are uncorrelated. They consider a large number of estimators including the

QML method from Harvey, Ruiz and Shephard (1994), the GMM from Andersen and Sørensen

(1996), MCMC from Jacquier, Polson and Rossi (1994), as well as the EMM implementation sug-

gested by ACS themselves. Table 1 reproduces the results from ACS and includes the approximate

maximum likelihood (AML) technique from Bates (2006). We of course also include the MLIS

estimation procedure from Pitt (2002) which is used in this paper. The various estimators are

compared to the benchmark (but of course unrealistic) case where the spot variance is observed

and standard ML estimation is straightforward. We report results for the sample size T = 2; 000

which is relevant for our subsequent empirical study.
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Table 1 reports parameter bias and root mean squared error (RMSE) for each estimator using

500 Monte Carlo replications. The MCMC estimator has the lowest absolute bias for the ! pa-

rameter followed by the AML and the MLIS. The MLIS, MCMC and AML estimators have the

lowest absolute biases for �. The AML, EMM and MCMC estimators have the lowest biases for

the � parameter followed by the MLIS. The MCMC and MLIS have the lowest RMSE for !; AML,

MCMC and MLIS have the lowest RMSE for �, and MCMC has the lowest RMSE for the � para-

meter followed by AML and MLIS. Overall, the MLIS estimator seems to perform well. The fact

that it is also easily implementable across a wide range of models and objective functions makes it

a very suitable estimation method in our large-scale empirical study below.

4 Empirical Results

This section presents our empirical results obtained using returns and options data. First, we

discuss the return-based MLIS estimation results and di¤erences in volatility sample paths. Sub-

sequently, we provide plots of conditional moments. We then introduce the option data set and

estimate the models using NLSIS estimation. Finally we analyze the patterns in the option valua-

tion errors.

4.1 MLIS Estimation Results from Index Returns

As mentioned above, our �rst empirical strategy uses a long sample of daily S&P500 index returns

and estimates each of the SV models by maximizing the model �t for this sample. First, recall the

SV model speci�cations we consider

dV = �V a(� � V )dt+ �V bdw, for a = f0; 1g and b = f1=2; 1; 3=2g:

We use daily S&P500 returns from CRSP and estimate the physical parameters by maximizing

MLIS (�; �; �; �) =
TX
t=1

ln

0@ 1

N

NX
j=1

W j
t

1A
Prior to MLIS optimization the return drift, � is �xed at the sample average daily return in all

models. The optimal parameters as well as the MLIS optimum values and the volatility properties

for each model are given in Table 2. Consider �rst the MLIS objective values. We report three

sets of values. First, we present results for 1996-2004, which matches the sample period we will use

in the subsequent option estimation analysis. Second, we present results for 1989-2004, which is a

longer sample period that does not include the 1987 crash, and �nally results for 1985-2004, which

includes the crash. Note �rst that the ranking of models is very stable across the various samples.

The VAR (a = 0; b = 1) model or the 3/2N (a = 1; b = 3=2) model is always best or second best.

The SQR (a = 0; b = 1=2) model is ranked 4th or 5th and the SQRN speci�cation (a = 1; b = 1=2)

is always worst. While we do not have inference procedures for these MLIS objective values for
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non-nested models, recall that in standard LR tests, adding one parameter to a model is signi�cant

at the 5% level if the log-likelihood increases by approximately two points. The di¤erences in

objective values across these models that have identical number of parameters therefore appear to

be quite large.

Table 2 also contains the parameter estimates for the 1996-2004 sample period. The steady-

state annualized variance is given by � which ranges from 0.0352 in the SQR model to 0.0837 in

the 3/2N model. These numbers correspond to an annualized steady state volatility of 18.8% to

28.9%. The rightmost four columns of Table 2 provide the �rst four sample moments of the �ltered

volatility. Note that the mean �ltered volatility across models is much closer together than the

population values inferred from �. The � parameter captures annualized variance persistence in

the models. Note that the � parameters are not directly comparable between linear (a = 0) and

nonlinear (a = 1) drift speci�cations. Figure 3 therefore plots the drift function for all models

(solid lines) as a function of the level of variance. The linear drift speci�cations are given in the

left-hand panels and the nonlinear drifts in the right-hand panels. The square root di¤usions are

in the top row, the linear di¤usions in the middle row and the 3/2N di¤usions in the bottom row.

The di¤erences between linear and nonlinear drift speci�cation are most evident for large values of

the spot variance where the mean-reversion in the nonlinear models is much stronger.

The di¤usion parameter � is comparable within a given di¤usion speci�cation (i.e. for a given

value of b), but not across di¤usion speci�cations. In order to facilitate comparisons of the models,

Figure 3 shows the di¤usion functions (dashed lines) plotted against the value of the spot variance

V . Notice that the SQR speci�cations (b = 1=2) in the top row enable much less di¤usion in the

variance when the variance level is large, when comparing with the VAR di¤usion speci�cation

(b = 1) in the middle row and the 3/2 speci�cations (b = 3=2) in the bottom row. The distribution

of the annualized �ltered volatility can also be gauged from the standard deviation, skewness, and

kurtosis of the
p
�Vt paths provided in Table 2. Note that not only is the standard deviation of

volatility di¤erent across models, the VAR, 3/2 and 3/2N models also have much larger skewness

and kurtosis of volatility than does the SQR model.

The �nal parameter estimate is that of � which captures the correlation between the shocks to

return and variance. Ranging from �0.7876 to �0.7411, the estimate of � is stable across models

and relatively large in magnitude. However, recent studies including Jones (2003) and Aït-Sahalia

and Kimmel (2007) have obtained similarly large correlation estimates.

4.2 Conditional Moment Dynamics

We now present some more empirical evidence on the di¤erences in models over time. We �rst

plot the �ltered volatility over time, subsequently we de�ne and plot the conditional leverage e¤ect

which determines conditional skewness, and then we de�ne and plot the conditional volatility of

variance which drives conditional kurtosis.

Figure 4 plots the �ltered volatility paths
p
�Vt for each model during the 1996 to 2004 sample
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period. All volatility paths are shown on the same scale going form zero to 70 percent volatility

in annual terms. Naturally, the overall pattern in volatility over time is similar across models.

However, when volatility increases it tends to do so much more sharply in the 3/2 models and

somewhat more sharply in the linear (VAR) di¤usion models when compared with the square root

di¤usion models. The VAR and 3/2 di¤usions thus exhibit more spikes in volatility when compared

with the SQR model. Example of this include September 1998 (LTCM/Russia default), September

2001 (9/11), and July 2002 (bursting of the dot com bubble).

We de�ne the conditional leverage e¤ect in a given model as the conditional covariance between

the index return and the variance in the model. We can approximate the conditional leverage in

each model as

Covt(ln (St+1) ; �Vt+1) = �� �V
b+1=2
t

Notice that the di¤erences in the speci�cation of the variance di¤usion term across models translate

into di¤erent conditional leverage e¤ects. In particular, the power on V varies between the square

root, linear and 3/2 di¤usion speci�cations.

Figure 5 shows the path for the annualized conditional leverage for each model. Again we use

the same scale for all the plots so as to emphasize the di¤erences across models. Notice how high-

volatility episodes such as the September 1998 LTCM debacle and Russia default and the July 2002

stock market decline lead to sharp di¤erences between the benchmark models, namely the SQR

model in the top-left panel, the VAR model in the middle-left panel, and the 3/2N model in the

bottom-right panel.

We can also compare the models in terms of their conditional variance of variance properties.

We get

V art(Vt+1) = �
2 �V 2bt : (25)

Figure 6 shows the path for the annualized conditional volatility of variance for each model,

i.e. the square root of the expression in (25). Notice again the sharp di¤erences across models

during the high volatility episodes. Again the di¤erences across the benchmark SQR, VAR and

3/2N models are quite striking.

4.3 NLSIS Estimation on Option Prices and Returns

This section presents the results from the option-based NLSIS estimation. We �rst describe the

option data and then present the parameter estimates and di¤erences in �t between the models.

For comparison we also report results on option �tting using the return-based MLIS estimates from

Table 2.

We conduct our empirical option-based analysis using S&P500 index call options for the 1996-

2004 period. We only use Wednesday and Thursday options data. For the in-sample analysis, we

use the Wednesday data. Wednesday is the day of the week least likely to be a holiday. It is also

less likely than other days such as Monday and Friday to be a¤ected by day-of-the-week e¤ects.
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The decision to pick one day every week is to some extent motivated by computational constraints.

The optimization problems are fairly time-intensive, and limiting the number of options reduces the

computational burden. Using only Wednesday data allows us to study a long time-series, which

is useful considering the highly persistent volatility processes. An additional motivation for only

using Wednesday data is that following the work of Dumas, Fleming and Whaley (1998), several

studies have used this setup.10

Panel A of Table 3 presents descriptive statistics for the options data for the 1996-2004 Wednes-

day in-sample data by moneyness and maturity. We estimate the models on a total of 16,506 con-

tracts with an average call price of $46.05 and average implied volatility of 20.32%. The implied

volatility is largest for the in-the-money options re�ecting the well-known volatility smirk in index

options. The average implied volatility term structure is roughly �at during the period. Panel B

of Table 3 shows that the Thursday sample used for out-of-sample valuation has 15,390 options

with similar characteristics as the in-sample Wednesday data. We use the same calendar period for

the out-of-sample study so as to avoid the impact of structural breaks in unconditional volatility.

Because we are comparing equally parsimonious models estimated on a large sample, the Bates

(2003) critique mentioned in Section 2, that more heavily parameterized models are favored in such

out-of-sample experiments, does not apply.

Table 4 contains the parameter values obtained from minimizing the option implied volatility

mean-squared-error de�ned above as

IV MSE (�; �; �; �; �) =
1

NT

X
t;i

�
IVi;t �BS�1i

�
Ci( �Vt)

	�2
(26)

Prior to NLSIS optimization the return drift, � is again �xed at the sample average daily return in

all models.

Consider �rst the in-sample root mean squared error (IVRMSE) column. We see that the

SQR model performs the worst with an IVRMSE of 3.32% and the VAR model the best with an

IVRMSE of 2.85%. The RMSE thus drops by about 14% (see the Ratio column) going from the

SQR to the VAR model. Note again that this is without adding any parameters to the model.

The 3/2N model is about 11% better than the SQR model and the VARN model with nonlinear

drift and linear di¤usion (a = 1; b = 1) is about 10% better than the SQR model. The remaining

two models are only marginally better than the SQR model. Out of sample the overall IVRMSEs

are slightly higher for all models but the relative di¤erences are similar. The VAR model is about

17% better than the SQR model and the 3/2N model is about 11% better. The VARN model with

(a = 1; b = 1) is about 9% better and the remaining two models improve upon the SQR model by

less than 5%.

The improvement in IVRMSE of the VAR model over the benchmark SQR model is quite

substantial, and consistent with the �nding from the return-based estimation in Table 2. The most

natural reference point is the rich literature that uses Poisson jumps in returns and/or volatility in

10See for instance Heston and Nandi (2000).
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conjunction with an SQR stochastic volatility model. The evidence on the in-sample and especially

the out-of-sample improvement provided by including the jump processes is inconclusive, with

some studies �nding moderate improvements, and others concluding that there is no improvement

in �t. See for instance Bates (2000), Pan (2002) and Eraker (2004). In recent work, using a very

di¤erent empirical setup, Broadie, Chernov and Johannes (2007) �nd large improvements in �t

when including Poisson jumps. The improvement in �t from adopting the VAR model over the

SQR model is roughly similar in-and out-of-sample. It is also consistent with the evidence from

returns and realized variances discussed earlier.

The improvement in �t of the 3/2N model over the SQR model is less impressive but still

substantial. Recall that the most impressive return-based performance of the 3/2N model in Table

2 was when the 1987 crash was included in the sample. Our evidence on the 3/2N model is

interesting in light of the �ndings in Jones (2003) and Aït-Sahalia and Kimmel (2007). These

papers both estimate a CEV model using a bivariate time series of index returns and options.

However, they obtain very di¤erent results. Jones (2003) estimates a CEV parameter of 1.33 using

a 1986-2000 sample, while Aït-Sahalia and Kimmel�s (2007) estimate for the CEV parameter is

0.65. Our results suggest that one potential reason for these con�icting results is the di¤erent

samples used in these studies: Aït-Sahalia and Kimmel�s sample is 1990-2003, and therefore does

not include the 1987 crash. However, it must be noted that Jones (2003) also estimates a CEV

parameter of 1.17 using a 1988-2000 sample.

Comparing the option-based NLSIS estimates in Table 4 with the return-based estimates in

Table 2 we �nd that the � is generally smaller indicating a slower mean-reversion of variance when

options are driving the parameters. The long-run variance � is generally lower in Table 4 with the

SQR model as the notable exception. The volatility of variance parameter � is generally lower in

Table 4, the notable exception again being the SQR model. The volatility risk premium parameter

� is generally small but positive for all models so that the unconditional variance is higher under

the risk-neutral measure as expected. Finally, the correlation coe¢ cient, �, is slightly smaller (in

absolute value) when estimated using options.

In order to assess the economic di¤erence between the NLSIS estimates and the MLIS estimates,

the penultimate column of Table 4 reports the IVRMSEs from the Wednesday options when using

the MLIS-based parameters in each model.11 Not surprisingly, when compared with the NLSIS-

based in-sample IVRMSEs, the MLIS-based errors are clearly considerably larger except for in

the 3/2 model where the di¤erence is negligible. Comparing across models in the MLIS-based

column, it is clear that the SQR model is still worst. The VAR model is about 13% better and

the 3/2N model 14% better than the SQR model. The 3/2 model now performs the best with

an improvement of 20% over the SQR model. Somewhat surprisingly, the SQRN model performs

relatively well in this experiment improving upon the SQR model by 15%.

11The volatility risk premium parameter, �, is not identi�ed when estimating the models on returns only. Further-

more, it is quantitatively small when estimated in Table 4. Thus, we simply set it to zero in this experiment.
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Finally, the footnote to Table 4 reports the IVRMSE from two benchmark models. First,

the simple Black-Scholes model where volatility is kept constant at the average implied volatility

across all options and across the entire sample period. The resulting IVRMSE is 4.95% for the

Wednesday sample and 5.22% for the Thursday sample. Note that, not surprisingly, all the SV

models outperform the simple Black-Scholes model by a wide margin. The second benchmark is

the so-called ad-hoc Black-Scholes model where the implied volatility for each option is set to the

average implied volatility across options on the same weekday of the previous week. This ad-hoc

model has an IVRMSE of 2.99% for the Wednesday sample and 3.06% for the Thursday sample.

Thus only the VAR model estimated using NLSIS outperforms this benchmark in both samples.

This result may be surprising but note that the ad-hoc model allows for the estimation of 9*52 = 468

parameters versus only �ve parameters in the SV models. These results are not easily comparable

with other recent studies as the weekly estimated ad-hoc benchmark is not often compared with

SV models estimated on a long sample. Heston and Nandi (2000) provide a similar benchmark,

but their SV models are estimated on much shorter samples.

4.4 Decomposing the Option Valuation Errors

Tables 5 and 6 provide more detail on the option pricing �t of the various SV models. In Table 5

we report the in-sample RMSE by moneyness, maturity, and volatility level. The moneyness and

maturity decompositions are as in Table 3 and the volatility level decomposition is according to

the VIX index. We sort the data set into four bins using the quartiles of the CBOE VIX index for

the sample period. The out-of-sample results are very similar and thus omitted from the tables.

Consider �rst the IVRMSE by moneyness in Panel A of Table 5. Note that the strong overall

performance of the VAR model in Table 4 results from better than average performance in all

moneyness categories. The VAR model is best at pricing deep-in-the money calls. The 3/2N model

is also better than average for all categories and is particularly good at pricing out-of-the-money

calls. The SQR model is below average in all moneyness categories and it is particular bad for

in-the-money options.

Panel B of Table 5 reports the IVRMSE by maturity categories. The VAR model performs best

for all but the longest maturities where the VARN model (a = 1; b = 1) is a bit better. The 3/2N

model is better than average for all moneyness categories. The SQR model is below average for all

moneyness categories and is the worst model in the two medium-term categories. Note in general

that the nonlinear drift speci�cations do well for long maturity options.

Panel C of Table 5 reports the IVRMSE by VIX level categories. Rather than sorting by cross-

sectional characteristics, we split the sample days into four categories sorted by the VIX level on

each day of the sample. The VAR model is better than average for all VIX levels. The same is true

for the 3/2N models. The SQR model is worst for the three categories with the highest volatility

levels and better than average only for the lowest volatility category. Not surprisingly the IVRMSE

tends to increase with the level of the VIX in all models.

20



To summarize Table 5: In the twelve categories considered, the VAR model performed better

than average in all twelve and best in seven. The 3/2N model also performed better than average

in all twelve and best in four. The SQR model performed below average in eleven and worst in

seven categories.

Note in general across models that the IVRMSE is increasing in moneyness, which may be

partly driven by the average implied volatility simply being increasing in moneyness (Table 3).

Note also that the IVRMSE tends to decrease with maturity for all models. This is only partially

explained by the average implied volatility being larger for short-term options (Table 3) as this e¤ect

is small. A likely explanation for both of these phenomena is that we have ruled out return jumps

in the model speci�cations. Negative return jumps are likely to have most e¤ect on short-term and

deep-in-the-money call options.

Table 6 reports the bias (average market price less average model price) across moneyness,

maturity and volatility level categories de�ned as in Table 5. Consider �rst the �All�column which

shows that the SQR model has a large positive bias and thus underprices options on average. The

overall biases are very small in all other models except for the 3/2 (a = 0; b = 3=2) model which

tends to overprice options on average. Panel A reports the bias by moneyness. Note that the

SQR model underprices all options and that all models underprice the deep in-the-money calls. All

but the SQR tend to overprice the out-of-the money calls. The model errors tend to �smirk�and

appear to leave a role for jumps.

Panel B of Table 6 reports the bias by maturity. The SQR model underprices all categories and

the 3/2 model overprices all categories. The remaining models tend to overprice short-term options

and underprice long-term options but the biases are generally small.

Panel C of Table 6 reports the bias by volatility level. The SQR model underprices all categories

except the lowest volatility category. The VAR and 3/2N models both overprice slightly in the

lowest volatility category and overprice in the highest volatility category. An even more �exible

volatility speci�cation may therefore be warranted.

5 Summary and Conclusions

This paper provides an empirical comparison of the a¢ ne SQR model of Heston (1993) with a range

of non-a¢ ne but equally parsimonious option valuation models. An exploratory analysis using

realized volatility data suggests that the SQR model is misspeci�ed, and subsequent estimation

on index returns and option prices con�rms this conclusion. Based on the likelihood values, non-

a¢ ne models in general are superior when estimated using a long sample of daily index returns.

The VAR model consistently outperforms the SQR model based on an RMSE comparison when

estimating the models using comprehensive panels of option contracts. While the focus of the

option valuation literature on a¢ ne models is well motivated, because the resulting closed-form

solutions are extremely convenient, our results suggest that this analytical convenience comes at a
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price, and non-a¢ ne models need to be studied more extensively.

At the methodological level, this paper uses a method to estimate continuous-time option val-

uation models that has not yet been applied to this particular problem. We use particle �ltering,

which is rather �exible and straightforward to implement. It can easily be used to investigate

option data and underlying equity returns jointly for a wide range of objective functions as well as

for a wide range of models. In our opinion, this method is extremely attractive compared to other

statistical frameworks that have been used in this literature.

Our empirical results suggest a couple of extensions. First, it may prove interesting to investigate

how the popular class of Poisson jump models can help improve the �t of non-a¢ ne stochastic

volatility models. In particular, a comparison with available results for the SQR model may

be worthwhile. An analysis of the Levy processes in Carr and Wu (2004) and Huang and Wu

(2004) may also prove interesting. Second, the �nding from the returns data that the 3/2N model

is particularly useful in a sample that includes the 1987 crash, indicates that another interesting

avenue for future work is to focus more explicitly on the CEV model, and particularly to investigate

its performance when periodically re-estimating the CEV parameter.
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Figure 1: Diagnostics of Realized Volatility and Log Realized Variance. 1996-2004.
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Notes to �gure: Using realized volatilities (left panels) and log realized variances (right panels)

from 1996 through 2004, the top panel plots the quantiles of the daily changes against quantiles

from the normal distribution. The middle panels scatter plot the daily changes against the daily

levels. The bottom panels scatter plot the absolute daily changes against the daily levels and

show an OLS regression line for reference.

26



Figure 2: Analytical (Fourier Inversion) and Monte Carlo Prices for the Heston (1993) Model.
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Notes to �gure: We �rst compute option prices from Heston�s (1993) model using the Fourier in-

version technique (solid) and then using Monte Carlo simulation (�+�). We consider two maturities:

one month (left panels) and three months (right panels). We consider three spot variance levels:

Half the unconditional variance (top panels), equal to the unconditional variance (middle panels)

and twice the unconditional variance (bottom panels).
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Figure 3: Drift and Di¤usion Functions for Various SV Models.
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Notes to �gure: The solid lines denote the drift function �V a (� � V ) plotted against the level of
spot variance, V . The dashed lines denote the di¤usion function �V b plotted against the level of

spot variance. The parameter estimates are from Table 2 using daily returns from 1996 through

2004.
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Figure 4: Spot Volatility Paths for Various SV Models. 1996-2004.
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Notes to �gure: For each SV model of the form dV = �V a(� � V )dt+ �V bdw, we plot the annual-
ized daily �ltered spot volatility path,

p
�Vt during 1996-2004. The parameters are from the MLIS

estimation on daily S&P500 returns from 1996 through 2004 as reported in Table 2.
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Figure 5 Conditional Leverage Paths for Various SV Models. 1996-2004.
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Notes to �gure: For each SV model of the form dV = �V a(��V )dt+�V bdw, we plot the annualized
daily conditional leverage path de�ned as the conditional covariance between shocks to returns and

shocks to variance, �� �V b+1=2t . The parameters are from the MLIS estimation on daily S&P500

returns from 1996 through 2004 as reported in Table 2. The vertical axes have been truncated for

the 3/2 di¤usions in order to facilitate comparisons with the other models.
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Figure 6: Conditional Volatility of Variance Paths for Various SV Models. 1996-2004.
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Notes to �gure: For each SV model of the form dV = �V a(��V )dt+�V bdw, we plot the annualized
daily conditional volatility of variance path de�ned as the square root of the conditional variance

of the variance of returns, � �V bt . The parameters are from the MLIS estimation on daily S&P500

returns from 1996 through 2004 as reported in Table 2. The vertical axes have been truncated for

the 3/2 di¤usions in order to facilitate comparisons with the other models.
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Estimators
ML|V ML conditional on observing the true spot variance
QML Quasi ML as in Harvey, Ruiz, and Shephard (1994)
GMM Andersen and Sørensen (1996)
EMM Efficient method of moments as in Andersen, Chung and Sørensen (1999)
AML Approximate ML of Bates (2006)
MCMC Markov Chain Monte Carlo as in Jacquier, Polson and Rossi (1994)
MLIS Method used in this paper. See Pitt (2002)

Parameter ω φ σ
True values -0.736 0.9 0.363

Estimators Bias
ML|V -0.015 -0.002 0.000
QML -0.117 -0.020 0.020
GMM 0.150 0.020 -0.080
EMM -0.057 -0.007 -0.004
AML -0.039 0.005 0.005
MCMC -0.026 -0.004 -0.004
MLIS 0.049 0.004 -0.017

Estimators RMSE
ML|V 0.076 0.010 0.006
QML 0.460 0.060 0.110
GMM 0.310 0.040 0.120
EMM 0.224 0.030 0.049
AML 0.173 0.023 0.043
MCMC 0.150 0.020 0.034
MLIS 0.157 0.020 0.046

Table 1: Monte Carlo Study of MLIS and Alternative Estimation Methods.

Notes: Following Bates (2006), we compare the MLIS estimator to those considered in the 
large scale Monte Carlo study by Andersen, Chung and Sørensen (1999). We generate 500 
Monte Carlo samples of 2,000 returns with zero drift and stochastic volatility following the 
logaritmic SV model in (23) and (24) with constant term ω, persistence φ, and diffusion 
parameter σ. We then estimate the model using MLIS and compare the bias and RMSE 
from MLIS to the bias and RMSE reported in Bates (2006) and Andersen, Chung and 
Sørensen (1999). 



Name a b κ θ σ ρ 1996-2004 1989-2004 1985-2004 Mean StdDev Skewness Kurtosis

SQR 0 1/2 6.5200 0.0352 0.4601 -0.7710 7,064.7 13,359.3 16,595.0 17.698 5.166 0.487 0.086
1.1096 0.0026 0.0309 0.0375

SQRN 1 1/2 100.0291 0.0457 0.3425 -0.7527 7,045.1 13,328.9 16,532.2 17.495 5.172 0.043 -0.411
14.4534 0.0038 0.0193 0.0234

VAR 0 1 3.9248 0.0408 2.7790 -0.7876 7,074.5 13,372.5 16,631.7 17.673 6.146 1.302 2.120
1.1392 0.0067 0.1949 0.0345

VARN 1 1 133.9347 0.0560 2.4188 -0.7559 7,066.1 13,362.5 16,615.4 17.708 5.569 0.581 0.316
25.3311 0.0053 0.1654 0.0417

3/2 0 3/2 1.0852 0.0633 11.9534 -0.7411 7,064.9 13,352.9 16,625.8 17.294 5.863 1.989 6.341
0.8260 0.0351 0.9125 0.0432

3/2N 1 3/2 60.1040 0.0837 12.4989 -0.7591 7,068.8 13,362.9 16,638.4 17.683 5.893 1.616 4.659
23.9651 0.0247 0.8575 0.0426

Standard Errors:

Standard Errors:

Model

Standard Errors:

Standard Errors:

MLIS Objective Values

Standard Errors:

Standard Errors:

Notes: For each model, we estimate the parameters using Maximum Likelihood Importance Sampling (MLIS) on daily returns. The reported 
parameter estimates use data from January 4, 1996 to December 31, 2004. The return drift parameter μ is fixed at the sample average return of 0.091 
for all models. The parameters are reported in annual units. Standard errors are computed using the outer product of the gradient at the optimal 
parameter values. The MLIS objective value is reported for estimations on longer samples as well. The first four moments of the distribution of the 
annualized filtered volatility is reported in the last four columns of the table.

Table 2: Parameter Estimates from Maximum Likelihood Importance Sampling on Returns.

Parameter Estimates for 1996-2004 Filtered Volatility, 1996-2004



S/X<0.975 0.975<S/X<1 1<S/X<1.025 S/X>1.025 All
Number of Contracts 5,761 3,859 3,077 3,809 16,506
Average Call Price 29.73 37.22 47.05 78.85 46.05
Average IV 19.35 19.37 20.13 22.67 20.32

DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
Number of Contracts 2,552 7,829 2,992 3,133 16,506
Average Call Price 34.82 40.09 50.83 65.51 46.05
Average IV 20.60 20.33 20.21 20.15 20.32

S/X<0.975 0.975<S/X<1 1<S/X<1.025 S/X>1.025 All
Number of Contracts 4,695 3,775 3,072 3,848 15,390
Average Call Price 30.29 37.29 46.59 78.52 47.32
Average IV 19.26 19.34 20.05 22.78 20.38

DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
Number of Contracts 3,782 6,541 2,717 2,350 15,390
Average Call Price 35.86 40.32 53.99 77.52 47.32
Average IV 20.62 20.20 20.35 20.51 20.38

Notes: We use Wednesday closing call option data (in-sample) and Thursday closing call option data (out-of-
sample) from OptionMetrics from January 1, 1996 through December 31, 2004. 

Panel A. Option Data Charateristics by Moneyness and Maturity. In-Sample

Panel B. Option Data Charateristics by Moneyness and Maturity. Out-of-Sample

Table 3: S&P500 Index Call Option Data. 1996-2004. In-and Out-of-Sample.



Name a b κ θ σ λ ρ IVRMSE Ratio IVRMSE Ratio IVRMSE Ratio

SQR 0 1/2 3.1146 0.0523 0.5826 9.00E-05 -0.6520 3.32% 1.0000 3.57% 1.0000 4.11% 1.0000
1.50E-03 3.13E-05 1.27E-04 2.16E-03 2.41E-04

SQRN 1 1/2 67.8964 0.0340 0.1747 1.14E-03 -0.6069 3.17% 0.9565 3.42% 0.9580 3.49% 0.8479
3.94E-02 6.26E-06 7.42E-05 1.47E-03 3.16E-04

VAR 0 1 2.4730 0.0272 1.1884 4.37E-03 -0.7116 2.85% 0.8602 2.98% 0.8338 3.57% 0.8677
1.12E-03 6.84E-06 3.20E-04 1.17E-03 2.06E-04

VARN 1 1 64.4378 0.0367 1.1214 1.93E-03 -0.6749 3.00% 0.9041 3.25% 0.9089 3.63% 0.8823
3.95E-02 1.91E-05 4.36E-04 4.94E-02 2.50E-04

3/2 0 3/2 1.5284 0.0336 7.9501 7.91E-04 -0.7169 3.27% 0.9864 3.42% 0.9585 3.27% 0.7962
2.22E-03 3.65E-05 2.94E-03 2.15E-03 2.10E-04

3/2N 1 3/2 50.9140 0.0388 6.2593 3.36E-04 -0.6854 2.96% 0.8923 3.19% 0.8933 3.52% 0.8559
4.08E-02 2.68E-05 2.41E-03 5.13E-02 2.35E-04

Table 4: NLSIS Estimates and Implied Volatility Root Mean Squared Error (IVRMSE). 1996-2004.

Out-of-SampleModel

Standard Errors:

Standard Errors:

Standard Errors:

Standard Errors:

Standard Errors:

Standard Errors:

Notes: For each model, we estimate the parameters using NLSIS on the 16,506 Wednesday closing option quotes observed from January 4, 1996 to 
December 31, 2004. The return drift parameter μ is fixed at the sample average return of 0.091 for all models. Standard errors are computed using the 
outer product of the gradient at the optimal parameter values. Out-of-Sample refers to the fit of the 15,390 Thursday closing option prices observed from 
January 4, 1996 to December 31, 2004. The MLIS-Based IVRMSE refers to using the return-based parameters from Table 2 (1996-2004) when 
computing option prices on the Wednesday data. The Black-Scholes benchmark yields an RMSE of 4.95% for the Wednesday sample and 5.22% for the 
Thursday sample. The ad-hoc Black-Scholes benchmark uses the average IV for the same weekday of the previous week and has an RMSE of 2.99% for 
the Wednesday sample and 3.06% for the Thursday sample.

MLIS-BasedNLSIS Estimation on Option Implied Volatilities In-Sample



Name a b S/X<0.975 0.975<S/X<1 1<S/X<1.025 S/X>1.025 All
SQR 0 1/2 2.9326 3.0455 3.1786 4.1422 3.3186

SQRN 1 1/2 2.8124 2.9454 2.8974 4.0159 3.1742
VAR 0 1 2.6774 2.7946 2.7627 3.2240 2.8547

VARN 1 1 2.6516 2.7400 2.7433 3.8329 3.0004
3/2 0 3/2 3.1133 3.1284 3.0787 3.7687 3.2735

3/2N 1 3/2 2.6274 2.6839 2.7105 3.7848 2.9612
2.8024 2.8896 2.8952 3.7948

Name a b DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
SQR 0 1/2 3.9390 3.4192 2.9164 2.8364 3.3186

SQRN 1 1/2 4.0059 3.1942 2.7791 2.6717 3.1742
VAR 0 1 3.3337 2.8626 2.5713 2.6628 2.8547

VARN 1 1 3.7828 3.0117 2.5873 2.5909 3.0004
3/2 0 3/2 3.9129 3.2968 2.7903 3.0640 3.2735

3/2N 1 3/2 3.6968 2.9422 2.5717 2.6679 2.9612
3.7785 3.1211 2.7027 2.7490

Name a b VIX<18.6 18.6<VIX<21.5 21.5<VIX<25.5 VIX>25.5 All
SQR 0 1/2 2.6782 2.9798 3.3293 4.0926 3.3186

SQRN 1 1/2 2.8225 2.8591 3.2171 3.7164 3.1742
VAR 0 1 2.7453 2.4309 2.9197 3.2599 2.8547

VARN 1 1 2.5974 2.7144 3.1236 3.4840 3.0004
3/2 0 3/2 3.4262 2.6110 3.1364 3.8039 3.2735

3/2N 1 3/2 2.5246 2.6044 3.0750 3.5302 2.9612
2.7990 2.6999 3.1335 3.6478

Panel C. IVRMSE by VIX Level

Average

Notes: We use the NLSIS estimates from Table 4 to compute the option implied volatility root mean 
squared error (IVRMSE) in percent for various moneyness, maturity, and volatility (VIX Level) bins for 
each model. The contracts used in the table are for the 1996-2004 in-sample period, which consists of 
Wednesday closing call option quotes. 

Model

Table 5: In-Sample IVRMSE (%) by Moneyness, Maturity, and VIX Level. 1996-2004.

Model

Average

Model

Average

Panel B. IVRMSE by Maturity

Panel A. IVRMSE by Moneyness



Name a b S/X<0.975 0.975<S/X<1 1<S/X<1.025 S/X>1.025 All
SQR 0 1/2 0.7068 0.7870 1.0238 1.9194 1.0645

SQRN 1 1/2 -0.6771 -0.6152 0.0043 1.8672 0.0515
VAR 0 1 -0.6094 -0.6958 -0.1805 1.2372 -0.1235

VARN 1 1 -0.6775 -0.5778 -0.0131 1.6782 0.0133
3/2 0 3/2 -1.5553 -1.4361 -0.8849 0.6143 -0.9018

3/2N 1 3/2 -0.6893 -0.6079 -0.0538 1.6291 -0.0168

Name a b DTM<30 30<DTM<90 90<DTM<180 DTM>180 All
SQR 0 1/2 1.2380 1.2778 0.9723 0.4781 1.0645

SQRN 1 1/2 -0.1901 -0.2085 0.4193 0.5470 0.0515
VAR 0 1 -0.5755 -0.3722 0.4333 0.3342 -0.1235

VARN 1 1 -0.2453 -0.1111 0.1765 0.3788 0.0133
3/2 0 3/2 -0.8248 -0.9782 -0.5592 -1.1008 -0.9018

3/2N 1 3/2 -0.3405 -0.1458 0.2103 0.3523 -0.0168

Name a b VIX<18.6 18.6<VIX<21.5 21.5<VIX<25.5 VIX>25.5 All
SQR 0 1/2 -0.3329 1.2439 1.4689 1.8733 1.0645

SQRN 1 1/2 -0.2572 -0.5301 -0.4701 1.4638 0.0515
VAR 0 1 -1.5854 0.1206 0.2370 0.7340 -0.1235

VARN 1 1 -0.5825 -0.2336 -0.2830 1.1524 0.0133
3/2 0 3/2 -2.4271 -0.5256 -0.4660 -0.1883 -0.9018

3/2N 1 3/2 -0.9767 -0.0477 -0.0751 1.0325 -0.0168

Panel A. IV Bias by Moneyness

Panel B. IV Bias by Maturity

Panel C. IV Bias by VIX Level

Table 6: In-Sample IV Bias (%) by Moneyness, Maturity, and VIX Level. 1996-2004.

Notes: We use the NLSIS estimates from Table 4 to compute the option implied volatility bias (in 
percent) for various moneyness, maturity, and volatility (VIX Level) bins for each model. The 
contracts used in the table are for the 1996-2004 in-sample period, which consists of Wednesday 
closing call option quotes. 

Model

Model

Model



Research Papers 
2007  
 

2007-24 Torben G. Andersen and Oleg Bondarenko: Construction and 
Interpretation of Model-Free Implied Volatility 

2007-25 Torben G. Andersen and Luca Benzoni: Do Bonds Span Volatility Risk 
in the U.S. Treasury Market? A Specification Test for Affine Term 
Structure Models 

2007-26: Mark Podolskij and Daniel Ziggel: A Range-Based Test for the 
Parametric Form of the Volatility in Diffusion Models 

2007-27: Mark Podolskij and Mathias Vetter: Estimation of Volatility 
Functionals in the Simultaneous Presence of Microstructure Noise and 
Jump 

2007-28: Julie Lyng Forman and Michael Sørensen: The Pearson diffusions: A 
class of statistically tractable diffusion processes 

2007-29 Niels Haldrup, Frank S. Nielsen and Morten Ørregaard Nielsen: A 
Vector Autoregressive Model for Electricity Prices Subject to Long 
Memory and Regime Switching 

2007-30 Bent Jesper Christensen, Thomas Elgaard Jensen and Rune Mølgaard: 
Market Power in Power Markets: Evidence from Forward Prices of 
Electricity 

2007-31 Tom Engsted,  Stuart Hyde and Stig V. Møller: Habit Formation, 
Surplus Consumption and Return Predictability: International 
Evidence 

2007-32 Søren Johansen: Some identification problems in the cointegrated 
vector autoregressive model 

2007-33 Søren Johansen and Morten Ørregaard Nielsen: Likelihood inference 
for a nonstationary fractional autoregressive model 

2007-34 Charlotte Christiansen and Angelo Ranaldo: Extreme Coexceedances 
in New EU Member States’ Stock Markets 

2007-35 Søren Johansen: Correlation, regression, and cointegration of 
nonstationary economic time 

2007-35 David F. Hendry, Søren Johansen and Carlos Santos: Selecting a 
Regression Saturated by Indicators 

2007-37 Peter Christoffersen, Kris Jacobs and Karim Mimouni: Models for 
S&P500 Dynamics: Evidence from Realized Volatility, Daily Returns, 
and Option Prices 

 




