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Abstract

We consider selecting a regression model, using a variant of Gets, when there are more variables
than observations, in the special case that the variables are impulse dummies (indicators) for every
observation. We show that the setting is unproblematic if tackled appropriately, and obtain the
finite-sample distribution of estimators of the mean and variance in a simple location-scale model
under the null that no impulses matter. A Monte Carlo simulation confirms the null distribution,
and shows power against an alternative of interest.
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1 Introduction

We consider the application of automatic general-to-specific ( Gets) model selection procedures when there
are more variables m than observations N in the special case that a model is saturated with a complete
set of N impulse indicators, one for every observation. In this setting, the initial general unrestricted
model (GUM) cannot be estimated at the outset. Instead, Hendry and Krolzig (2004) propose ‘subset
selection” by PcGets across combinations of candidate variables, each search path leading to a terminal
model, followed by searches across the union of these.! We show that their approach can be applied
successfully to the selection of indicators. For general analyses of Gets, see inter alia Hoover and Perez
(1999, 2004), Krolzig and Hendry (2001), Hendry and Krolzig (2003, 2005), Campos, Hendry and Krolzig
(2003), Granger and Hendry (2005), and Campos, Ericsson and Hendry (2004); details of the standard
algorithm in PcGets are presented in the appendix to Hendry and Krolzig (2001).

When m > N, all regressors cannot be entered simultaneously. Consequently, models based on
combinations of subsets of m; < N/2 variables are explored seriatim, and a new joint model is formulated
from all the terminal models thereby selected. If this union model is sufficiently small, PcGets can be
applied as usual; otherwise repeated serial searches are required. Variants of this algorithm are discussed
by Hendry and Krolzig (2004). Under the null that none of the N indicator variables (impulses) matters,
we derive the distributions of post-selection estimators of the mean and variance in a simple location-scale
data generation process (DGP). A Monte Carlo simulation confirms the null distributions obtained, and
shows power against a range of alternatives of practical interest in econometrics. We also show that

*Financial support from the UK Economic and Social Research Council under a professorial Research Fellowship, RES 051
270035 and grant RES 000 230539; support from Center for Research in Econometric Analysis of Time Series, CREATES,
funded by the Danish National Research Foundation; and funding from the Fundagdo para Ciéncia e a Tecnologia (Lisboa)
are gratefully acknowledged by the first, second and the third author respectively.

L PcGets is an Ox Package (see Doornok 1999) implementing automatic general-to-specific (Gets) modelling for linear
regression models based on the theory of reduction (see Hendry 1995, Ch.9).



exploring many combinations of subsets of indicators dag¢sfiect the null rejection frequency of the
procedure, but could be advantageous under the alterrthavdoreaks have occurred. Finally, noting
that any regressor can be expressed as an exact functiSnrmapulse indicators, we explore the more
general case ok > N candidate regressor variables when in fagt< N are relevant.

As an analogy, th€cGetssearch procedure attempts to sieve valuable informategréssors that
genuinely matter) from ‘garbage’ (regressors that are @t ii@elevant, but this is not known to the
investigator). Its properties when doing so far<< N are described in Hendry and Krolzig (2005).
The sieving can be achieved in one step in that case, hametaradidate regressors are addsal
initio, and checked for relevance by multi-path searches, usitigatrvalues that depend om, N,
and the investigator's perceived costs of over, versus rursgdection. If the total set of candidates
exceeds the sieve’s capacity, the search is conductedgasstdesigned to ensure that almost all low-
order interactions between regressors are examined. Heestablish the sampling properties under the
null whenm = N + 1 candidate variables are postulated, and interpret the@mds. Other approaches
tom > N include e.g., Foster and Stine (2004).

The paper is organized as follows. Section 2 considers nemlettion when there are too many
indicators for the available sample. Section 3 derives thamand variance of the sampling distribution
of the mean, and section 4 presents simulation evidences dimiiie-sample accuracy and the power of
the procedure to detect some forms of location shift. Sediooncludes.

2 Modd sdlection with N indicator variables

We consider the behaviour for regressions which are ‘sgdréy indicator variables. Let an observed
random variabley; be independently normally distributed gs~ IN [x,02] for i = 1,..., N, where
u € R, 02 € R, are the parameters of interest. However, an investigatandsrtain where outliers (if
any) may lurk. She therefore defines a saturating séf efdicatorsd; ; = 1;,_;;, one for everyj, and
wishes to estimatg ando? from a regression of; on {y,d;;,j = 1,...,N — 1}. Since a perfect fit
will always result from such a regression, nothing is ledrne
As a first step, consider instead adding half of the indisaterg.d;; for j = 1,..., N/2, assuming
for simplicity that N is even) together with the intercept. Thus we consider theeige unrestricted
(GUM) of the first step:
N/2
Yi = p+ Zéjdj,i + &;. (1)
7j=1
Hence, (1) containgV/2 parameters folV/2 impulse indicators for the firsv/2 observations, as well
as the mean and variance. Below, we consider alternativg@ale of the indicators across the sample.
We find:

. N

o= N > i (2)
1=N/2+1
. N

> _ a2

TS NpoT1 > (wi— i) 3)

i=N/2+1
b = yi—Th, i=1,...,N/2 (4)

so that:



Because the estimates pfindo? are the usual ones for the remaining sample, we find that:

E[fiy] = 1 and Vaiiy] = (N/2)"!

and:
E [sﬂ = o2,

Consequently, both GUM estimators are unbiased at thig stag

Next, adopting the usudcGetsapproach, a parsimonious model is selected from (1) sudtatha
mis-specification tests remain insignificant and all regdimariables are significant at the desired level.
That terminal model is stored, ensuring the intercept is anhe ‘variables’ retained by assigning it
a fixed status. This selection simply involves eliminatimy @ndicator where{tl,gi| < ¢4, When the
significance levet,, is used (such as that correspondingyte- 0.025 or « = 0.01 or more generally, a
function of V to control the false retention rate under the null).

Now re-commence from the equivalent of (1), but enteriny ¢tim other half of the impulses namely
(1, dij, 5 = N/2 +1,...,N), repeat the process to estimatando? by 7i, ands3, then again ap-
ply PcGets eliminating |nd|cators Wherﬁ2 | < ¢q and storing the resulting parsimonious selection.
Lastly, formulate a model where all S|gn|f|cant selecteddatbrs from the two terminal models are com-
bined, and re-select from that for the final model. This destraes that despite saturating by indicators,
a feasible algorithm exists for checking every observation

The final estimates are:

N N
i1 Yilgey 5 l<ead T 2im N1 Vil (e, 5 1<ea) 5
p= SN ] TS ! 5)
=1ty 5,1<ca} i=N1+1 [ty 5. [<ca}

and
N ~ N ~
Ly 2 W B e 5 (<ead F 2 imny o (Wi~ 12) Lty 5 <ea)
0. = oA ~ . (6)
2im1 Lt 5 1<ead T 2oimNa1 Lty 5 1<ea) — 1

The next section presents a formal analysis and derivessihrapotic properties of the estimators (5)
and (6).

Although the ‘perfect fit' problem no longer arises, it maytheught that the huge number df/2
indicators entered in each stage might induce spuriousfisigmce. However, the corresponding group
of observations is simply ‘dummied out’ for estimatipgwhich is then just the mean of the remaining
sample. For an approximately normal distributiary outliers will occur on average under the null for
a significance levety, soaN/2 indicators will be selected on average at each stagep@nhaverall:
an indicator will be significant at level if and only if there is am-level outlier at that observation.
Under the null, therefore, the proposed procedure is ctmofading outliers relative to the whole sample
meani and variance&?: nevertheless, under some alternatives, the procedurgieanvery different
outcomes from (say) direct comparison with a criterion hsag being greater thaw in absolute value,
as figure 3 below illustrates.

Additional regressors will entail an inability to add hdiktindicators at each stage, and may neces-
sitate exploring many combinations, but do not otherwisecathe analysis. More generally, to ensure
adequate power against reasonable alternatives, mangiviaions could be used to check that breaks
do not occur at any precise division point (suchN§&), as discussed in sub-section 5, and checked by
simulation in section 4.

Conversely, testing many different forms of hypothesisl@@lier the null rejection frequency. For
example, checking the joint significance of all possiblegdriplets, etc. will not deliver a null rejection
frequency ofa. This is not a serious issue under the null hypothesis thigt §n= 0 for all ¢; but
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researchers may have a temptation to consider (e.g.) sfepwhere blocks ob; take the same values.
To control the null rejection frequency, the number of absssf hypotheses has to be controlled, and one
way of achieving that goal is to restrict such hypothesiscess to situations where the null has been
rejected. Conditional on that occurrence, then many atems of how to form an index of the retained
indicators can be entertained, which will not affect thel mejection frequency: Hendry and Santos
(2005) show that after selecting indicators, indexes thfezan be formed without distorting inference.
There is a selection effect on the mean and variance esSnratée final model, similar to ‘trim-
ming’, and the approximate distributions are derived intisac3. The 3-stagd’cGetsprocedure is
difficult to analyze directly, so the approach therein is limmate half of the sample by adding half
the indicators (see Salkever (1976)), then select ouiliettse remainding half. Next, the converse half-
sample is removed and the other group of outliers detectis procedure entails that on both steps,
all outliers in the saturated half are also removed, so isecto the third stage ¢fcGets The analysis
then derives the distribution of the mean based on the twsasuple means, as well as the mean of the
error variance. In fact, since an exact sample split is netlad, and may sometimes be undesirable, the
analysis allows for a general split, and in section 3.3 aersi the possibility that many splits are used.
The role of the Monte Carlo experiments in section 4 is, thoeeg to check that the theory is indeed
closely relevant to thBcGetgprocedure in small samples when the null distribution isadard normal,
as well as being relevant for other distributions.

3 Sampling distributions

We first derive the sampling distribution gfunder the null after dummy saturation, then consider the
impact of saturation of.

3.1 Asymptotic distributions of 1

We derive the asymptotic distribution @f calculated under the assumptions that the first analysis has
N7 dummies and the second h&¢ = N — N; dummies, whereas the data generating procesbas
variables.

Theorem 1 Letys,...,yn bellD with a symmetric continuous densjty-) with meanu and E(y%) <
co. Let N = N; + No, and assume tha¥V; /N — Ay and No/N — Ay where0 < Aq, Ao < 1, with
A1 + A2 = 1, then the limit distribution of the estimatar, see (5), is given by:

N2 (fi— p) — N [0,0207] (7)

»Ye%pn

where

o2 = ( - f(s)ds) - U 2 ()de(1 + deaf(ca)) + (;—i + i—%) (2caf(ca))2} .

—Ca —Co

Note thatffia f(e)de = 1 — «, and for the normal distributionf () = Ui (=), we find the
expression:
/ e2¢(e)de = ¢(e)de — 2co,0(cq),

so that under normality for an equal split; (= Ao:

26a¢(ca)

(1 — a) [1 + 20a¢(ca)]> . (8)

ai = ﬁ (1 + 4dcqd(ca) —



Proof. The is no loss of generality in settingg = 1, and we letc = ¢,,. The estimator satisfies:

-1/2 Ni . N .
NY2(fi— p) = N ( i=1 &l ajcon TG T 2= 1 5’1{\ai—52|3c82\/1+1v1‘1}) _ By
— =

_1 Ny N
N (Zi:l 1{|5i7€1|§cs1\/W} + Zi:Nl'i'l 1{\6i*52|§082\/m}>
We show thatB converges in distribution to a normal distribution, aWg, converges in probability to

a constant. The problem is the dependence structure due &pfiearance @t s3) and (2, s3) in the
selection variables. We therefore define the simpler veegalwhich are sums dfD variables:

N1 N
Ky = N Ageicat Do Yei<a
=1

i=N1+1

N1 N
Cy = N7Y2 (Z(5i1{81<c}+20f(c)51)+ > (€i1{81<c}+20f(0)52))-

=1 i=N1+1
We want to approximat& /My by Cn /K and so write:

PR =0y~ My —Kn) + En-

From the law of large numbers:
Cc
Ky 5 [ fle)de. 9)

—C

By symmetry of the distributiork[Cx] = 0, and from:

N1 N
A A
Cy = N-1/2 (2 (5i1{|€¢\§0} + )\—j2cf(c)€i) + E (Eil{\5i|§c} + /\;QCf(C)EZ‘)) ,

=1 1=N1+1

so from the central limit theorend, is asymptotically normal with mean zero and variance:
2 A2 2 2 A2 2
M (B[ e<a] + N (2¢f(c))” + 4Cf(0))\—1E [£°14e1<}]

2
+X2 |E [ 1<) + G—;) (2¢f(c))? +4cf(c);—;E [521{a|s«:ﬂ]

2y A—) (2ef()?,

- E [521{\g|§c}] (1 +4ef(c)) + <)\1 A2

which together with (9) gives is the expression dﬁr We therefore only have to prove that:

My — Ky 50, (10)
By — Cy 5 0. (11)

To prove (10) we note that it is enough to show that:

Ny
— N1 P
Dy =M, 2}(%51<c51¢W}—1{6il<c})*07 (12)
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since the other one follows by replacing subscript 1 by 2..lete; andv = ¢(s14/1 + N;l —1)and
apply the inequality:

L eimer <o irneTy — Heiget = lei—ul<ero) = Lail<erl < Leimcl<iul+iol} + Lileitel<lul+lol)
(13)

to find:

ctlul+|v] —ct|ul+]v]

ef(e)dz + / ef()de = h(jul + [u]),

—c—lul=|v|

Nl_lEuv |DN| S /

c—ul=|v]
which is bounded and continuous | + |v| by the assumptions. Becauseg + |v| £ 0, we then get,
by taking expectations, that:
N;'E|Dy| < E[h(Jul + [o])] — h(0) = 0.
This shows thaD P, 0 and hence (20).
We next prove (11). Itis enough to show that:

Ny

—1/2 _\ P
= / ;(Eil{fisll@mm} ~ &il{leiize} ~ 26f(e)1) = 0.

By symmetry, we have th&[R ] = 0, and we want to show that Vid x| — 0.

To find the variance, we again condition en = » andc(s;y/1 + N;l — 1) = v, which are
independent of the variables, . . . , ¢, , which remainliD, and find:

Euv[RN] = N11/2E [Eil{‘6i7u|§c+v} — Ell{|€1‘§c} — QCf(C)U]
ct+v+u c
= Nll/2 (/ ef(e)de — / ef(e)de — 20f(c)u> )
—c—v+u —c

From Taylor’s formula with remainder term, we find for a difatiable function:

gle+h) = g(c) + hg(c®) = g(c) + hg(c) + h(g(c”) — g(c)), |c — " < |h].

This implies that, using (c¢) = f(—c):

ct+v+u c
/ cf(e)de = / eF(e)de + (u+ v)ef(e) + (u+ v) (€ () — ef(e),

—00 —00

—c—v+tu —c
/ ef(e)de = / ef(e)de — (u —v)ef(e) + (u —v) (=™ f(™) + cf (¢)).

—0o0 —00

Subtracting these expressions, we find that:

[Euo[Ba]| < N2 (ful + [o]) (e F(e*) = ef ()] + ™ F(e™) = e ()])-

Hence:
Var(EuU[RN]) < E(EuvRN])2
< NE(lu] + [0])2(|e" f(c*) = ef(e)] + ¢ F(¢™) = ef (e)])?
< 2NE@W? + ) (| F(F) = ef ()] + | F(67) = ef (e)])?
< 22N (E(ut + ") P E (e () = ef ()] + ¢ £(e) = ef (o))

6



where we used the inequalify +b5)? < 2(a?+b?) twice and the Cauchy—Schwartz inequality to separate
the expectations.

Note that becausk;| has a finite mean, we have f(c) — 0, |¢| — oo, so that the continuity of
f (-) implies|c|f(c) is a bounded continuous function. Because

max(|c — ™|, |c — *|) < |u|l + |v| = |&1] + ¢|s114/1 +N2_1 —1] LA 0,

it follows thate* = ¢ ande* o> ¢, so that:
E (I f(e") = ef ()] + [ f(¢) = ef(e))*) ¢ — 0.
We then have to prove thaf?E(u* + v*) is bounded. The first term is
NYE(e]) = Ny E(e1) +3(1 - Ny,

using thatE(e;) = F(e3) = 0 andE(e?) = 1. This is bounded when we assume finite fourth moment.

Next:
NPE(s1\/1+ Nyt —1)* <8 [NfE(sl DY+ Ny D24 NE(L— /1 + N;l)ﬂ

The factor(1 + N, )? and the termVZ(1 — /1 + N, !)* are bounded, and we evaluate:

NZE(s; — 1) < NZE(s? —1)?
= NyEG - D' N (B - 1))
which is bounded when; has moments of order eight. Thus the first faddgtE(u* + v*) is bounded

and therefore:
Var (Eyy [Rn]) — 0. (14)

Next we consideE|[Var,, (Ry)] and find using the inequality (13) that:

2
Vary, (RN) = E [511{\51—u\§c+v} - 511{|61\§c}] (15)
—c+|ul+|v] ctlul+v]
< / e2f(e)de + / e2f(e)de,
—c—|ul—=|v| c—|ul—=|v|

which is a bounded continuous function|ef + |v|, so that:
E [Var,,(Ry)] — 0. (16)
Combining (14) and (16) we see that Y& ) — 0, which completes the proof of (11

3.2 The probability limit of 5
Theorem 2 Under the assumptions of Theorem 1 it holds that the estmagtcsee (6), has the limit:

~2 P ffza €2f(€)d€

= Var < Cq)-
7S TR = Vel < ca)



For the normal distributionf () = Uld)(ai), we find the expression:

Proof. The technique is the same as in the proof of Theorem 1. We?let 1, and lete = c,. We first
note that, see (6> = % + Hy, where:

. ZZ 18 {|6 —e1|<esi/ 14N, }+ZZ Ni+1€i {|61—62‘<CSQ\/1+N }

1
N~ ZZ 1 {|61—61‘<681\/1+N }+ZZ Ni+1 {|el—€2|<052\/1+N }
Hy — (=1 i 1 {lei—21|<esi/T+N, T} (= ia)* it N+ Ly, ~Eaf<essy/TIN )
= N
Zi:l 1{\5i—€1|§cslm}+z =Ni+1 {\81—62\<682\/1+T}

The last termH y, tends to zero in probability becauge L wandjis L 1

From (9), we know thaf< L ffc f(e)de. We define the sum of independent variables and apply
the law of large numbers to find::

N1 N C
_ P
Ey=N"> i<+ D & liii<a */ e f(e)de.
i=1 i=N1+1 -¢

We next have to show thdfy — Dy P ltis clearly enough to prove that:

-1 2 P
Ny Zgi (1{|ei—€1\§cs1\/1+N2_1} - 1{|5iSC}) —0
i=1

Conditioning onu andv we find using (13) that:

1
-1 2
ol Ny Zéi (1{\5i—€1|§051\/1+N;1} ~ Lei<ey)l
i=1

< ElEF(Lgey—c/<lul o} + L{lertel<jul+[o]}]

c+|ul+|v| —c+|ul+|v|
< [T ereues [T 2,

c—|ul—v| —c—|ul—v|

see (15). This is a bounded and continuous functigmlof |v| and hence the expectation tends to zero
|

3.3 Many splits

We split the data intd;, j = 1,...,m with N; = A\; N elements and estimatogs, s? and define

Nj = Y Ne=N-Nj, Aj=1-)
k]

 Xign ¥ Yk Nelie

T Zi¢1-1 a Zkz;éij’

9 Zk;ég( —1)st

a Zk;;éj(Nk 1)
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m .
N Zj:l Zielj yll{|yi_g_j|<¢:as—j L+NZ}
i 17)

2j=1 2l 1{\yi7gfj\<casfj 14+N7)}
and . o
9 2j=1 2ier, (Wi~ =) 1{|yi—g—j|<ca5—j 1+N~}}
.= — 1 . (18)
2j=1 2uiel, {lyi=9—jl<cas—_j\/14+N_]}
3.4 Asymptotic distributions of 7 and limit of 2.
Theorem 3 Lety,...,yy bellD with a symmetric continuous densify-) with meanu and E(y%) <

oo. LetN = >, Nj;, and assume thaV;/N — \;, where0 < \; < 1, with 377", \; = 1, then the
limit distribution of the estimatof:, see (17), is given by:

N2 (fi — p) — N [0,0207] (19)

where

2

Ca -2 pea m
Ug:< f(s)ds) / 2 f(e)de(1 +4caf(ca)) + DA Zli'}k (2caf(ca))?

—Ca ~Ca j=1  |k#

2
Ifin particular Ny = ... = Ny, theny>"" | ) [Zk# f—_fﬂk] = 1.

Proof. There is no loss of generality in setting = 1, and we letc = c,. The estimator satisfies:

N*1/2 Z;ﬂzl ZiEIj 5,‘1{

le;—E—j|<cas—j l—i-N:;} BN
—1~m =
N7 Y ier, 1

My

N2 (= p) =
{lei—g—jl<cas—jy/1+N_}}
We show thatBy converges in distribution to a normal distribution, akfl; converges in proba-

bility to a constant. The problem is the dependence straatue to the appearance (ef_;, sQ_j) in the
selection variables. We therefore define the simpler veegalwhich are sums dfD variables:

Ex = N7'Y 0% jcen)

j=liel,

Cn = N3 (el e + 2¢f(0)E).

j=liel;
We want to approximat& /My by Cn /Ky and so write:

~ By  (By—Cy)+C
12~ v_ By _ (BN N N
N ('u 'u) My (MN—KN)—FKN‘

From the law of large numbers:

Kn 5 / " f(e)de. (20)



By symmetry of the distributiorE [Cy] = 0, and from:

Cy = N—1/2ZZ(€Z-1{‘€Z.‘SC}+20f(6)§7j)

J=1icl,

N-1/2 1 9 Ni
ZZ& (leil<e} T 2¢f(c)e ZN )
J=1icl; ki

so from the central limit theorend,y is asymptotically normal with mean zero and variance:

N7UY T NGE [E1<q] +

2
Z]ykk} (2cf(c))? + 4cf(c) {Z Aj;[’“k] E[e*1qje<c}]

i=1 ki ki
2
N,
= E[1( <] (1 +4cf(c) 12]\7 ZN )+ N~ 1ZN Z—’“ (2¢f(c))?
i=1 kA = s N
= A = A i
= E[PLeg] A +4ef(© DN Y +ZA Z—’“ (2¢f ()%
= k£

next we show that

A AjA 1— XA
PRIY) PIIEE) gL zzl_;;—zl—ﬁ_;y:l @)

=1 k#j k#j k=1 j#k

which together with (9) gives is the expression (@c
If in particular \; = m~!, then

Zm:%{z ] i;{zﬁl}

m 2
1 1
S~ [(m—l)—] — 1.
- / —' m m—1
J=1 k#j J=1 k#j m J=1

4 Monte Carlo experiments

We first examine the properties of the retained impulses umoienality, checking that thBcGetspro-
cedure delivers retention rates which closely match therhial expansion ofa + [1 — a])" despite
the sequential selection. Next, we check that using threalesizedN/3 sample splits does not affect
the null outcome. Then we investigate the empirical distiim of 5> under the null, before turning to
that of iz to check the small-sample accuracy of the derivations itise8. We also briefly consider the
impact of saturation in the highly non-normal case ofg-distributed error. Finally, we consider some
empirical rejection frequencies of the saturation procedunder two simple alternatives.

We consider a simple location-scale DGP:

Yi = U+ (22)

with:
g; ~INI0,0.]. (23)
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In the simulations, we will set. = 0 ando. = 1. The aim is to investigate the impact on estimating
ando? when saturating the model with impulse dummies.
We consider two econometric models. The first is given by:

N—N/2
yi=p+ Y, ddijte (24)
j=1
whilst the second is: N
yi=p+ Y, Gdijte (25)
i=N/2+1

N is the sample size ant] ; is a single impulse indicator. Hence, (24) contaW& parameters folN /2
impulse indicators for the firs¥/2 observations; and (25) contaifé/2 impulse indicators for the last
set of observations. Below, we consider alternative divisiof the indicators across the sample.

4.1 Empirical rgjection frequencies of impulseindicators under the normal null

Given the DGP, the composite null hypothesis:

is true, Vi, for both models. We first estimate model (24) and then madzi8l iq that order, under these
assumptions, store the significant indicators, and comtbi@ése to obtain the final selected model, and
hence estimators akin to (5) and (6)4 = 10,000 replications were conducted for this experiment.
From Hendry and Santos (2005), the OLS estimator§ afe unbiased and tests of (26) have Student
t(nv—ny2) distributions under the null. Table 1 reports the mean tigiedrequency (RF) of the null for a
sample of 50 observations at nominal rejection frequerméedest of 5%, 2.5% and 1%. The empirical
rejection frequencies are close to the nominals.

Mean Rk, | Mean Rk 5, | Mean RRg,
0.0499 0.0250 0.0101

Table 1: Rejection frequencies of impulse indicators in (22

This outcome is not affected by randomly, rather than cantsety, addingN/2 dummies in each
regression, unsurprisingly since the data have no timeriogleUnder an alternative where the break is
a location shift, such shuffling could be useful, as we shoevie

4.1.1 Empirical distributions of retained impulses

Under the null hypothesis, the distributions of the numlmdrempirically retained impulses are of in-
terest: retention is decided on the basis of a two-sidediohaal significance test. We report these for
N =50 andN = 100 using the above settings, but including additional sigaiit®e levels.

The first plot refers taV = 50 and uses a two-sidedtest with a 1% significance level. The
axis measures the number of impulses retained, ang-&éxés the actual number of regressions (out of
10,000) that retained the given number of ‘spurious’ imesils

The mode occurs at zero with probability — ) ~ 0.6, with the probability of retaining one
impulse by chance beinya x (1 — a)V~! ~ 0.3. As figure 1a also shows, a three-way equal split
of N/3 does not change the outcomes substantively: neither the modthe decay pattern alters.
Corresponding outcomes held at nominal sizes of 2.5% and 5%.
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Figure 1: Distributions of impulses, means and equationdsted errors forv = 1%

Figure 1b records the impact on the mean null rejection feaqy of using finer equal sub-divisions
of added impulses av = 50 for = 0.01, soaN = 0.5. There is little change in rejection frequency
as the number of equal splits increases, especially givagrhie uncertainty bars are2 x 0.005 (one
standard error bars are shown for the first two splits). Tlezallrange of the mean estimate is 0.490 to
0.496, so there is in fact slight under selection.

4.2 Empirical distribution of 1 under the null

Figure 1c shows the empirical distributionsgoind;: under the null forV-= 100. Throughout, we use

7i anda? as the full-sample OLS estimators of the mean and variaiianda? are the estimators for
the impulse saturated model. The distributionia$ correctly centered, and more concentrated near the
center, but as shown above, more dispersed in the tailsptpsma larger standard deviation.

4.3 Empirical distribution of 5> under the normal null

Figure 1d records the estimates of the residual varianaes $ample size oV = 100, with 5?) and
without (8?) dummies at 5%: the sampling distributions f§r= 50 at the same settings were similar.
As expecteds is downwards biased when impulses are introduced. Tablpdteethe average Monte
Carlo estimates of2 ata = 0.01. Sinces? = 1, the expected downward biasessif are close to the
values of(—2c, ¢ (c,)) o2 obtained in section 3.2 0f£0.066 for N = 50 and —0.079 for N = 100.
Hence, as the sample size increasess closer to the relevant limiting value.
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N |5 P
50 | 0.977] 0.901
100 | 0.989| 0.910

Table 2: Average across MC replications fér= 50 and N = 100

4.4 Response surface for a}% for normal errors

The distributional result in section 3 was that:

NY2 (5 — ) BN TJ0,0207] (27)

so for normal errors wheh; = A\, from (8):

gi = ﬁ <1 +4dcqp(ca) — %(ZS) [1 + 20a¢(ca)]>
and: NVar [

Thus, the simulations generated the values of the left-Batedof (28) which were then regressed on the
numerical values oa‘rﬁ computed using (8).

The Monte Carlo simulation first confirmed the invariancehef butcomes fronPcGetgo the value
of o2 and to the form of ‘split’ into equal blocks ofi = 2 andm = 3. There were 78 experiments
spanningc, = 5tocy, = 1 (P (cq) ~ 110 P (c,) = 0.68) and N = 20 to N = 300. The response
surface for Veljz] yielded (HCSE in parentheses: see White, 1980):

—

Var[g] = 1.002 N~'olo7, (29)
(0.0021)
R? = 0.9997 7 = 1.4% x%4(2) = 16.4" Fpe(2,75) = 21.7* (30)

Some outliers were detected and slightly alter the outcdomeas figure 2a shows, the fitted and actual
values are extremely close across the 78 experiments. Weesled for whether the outcome depended
on the split being in halves or in thirds and found the comesing dummy was insignificant.

The outcome using a scaled log form was similar, reported metuding the outlier correction for
experiments 71-73:

o2 H

NVar
log <7[“]) = 0.0135 + 0.936 log(o2)+ 0.04 Iri_73 (31)
€ (0.002) (0.011) (0.006)

RZ = 0.9899 & = 1.04%

although all the mis-specification tests were again higtggicant.
Figure 2b shows the fitted and actual values of (31) across8lexperiments, and the residuals with
their density (c and d respectively). The fit is extremelyselo

4.5 Non-normality

We briefly consider the impact of saturation in a highly nammal case, namelyt4)-distributed error.
Although this distribution does not satisfy the assumgiohthe main theorem, it was of interest to see
if ‘fat-tails’ led to an excess of retained impulses.

13



- — Varff] — Var[f] a - log(6,?
0.06 0g(o,
i 0.3 — fitted
0.04] 020
0.02} 0.1]
| | | | | | | 0'07 L | | | | | |
10 20 30 40 50 60 70 10 20 30 40 50 60 70
standardlzed residuals from log model
— residual density d
1 ol - | N
o 03l
i
-1
g 0.1+
_2f L
| | | | -7 L L
10 20 30 40 50 60 70 -3 2 3

Figure 2: Fitted and actual values from the simulation

A sample size ofV = 300 was considered, for a sample split &%/2. At each replication, the
N draws are from a(4) distribution. From Johnson, Kotz and Balakrishnan (199%, moments of
X ~ t(4) are such thaE(X) = 0 and Va(X) = v/(v — 2) = 2 wherewv denotes the degrees of
freedom. Hence, when no impulses are added(¥ar= 2/300 = 0.0067 and,/Var (X) = 0.082.

We use the location-scale DGP in (22) with(d) error, but consider two criteria for retention of any
single impulse indicator, namely eithies,| > 2 or 2.5.

Table 3 reports summary statistics from the Monte Carlo expnts, where ARNI stands for the
average number of retained impulses in each replicatioereTis little evidence of an excess retention
of impulses. The intuitive explanation is that the fat tgéserate a much larger residual error variance,
so only draws far into the tails are significant even thougbrainal critical value relevant to the normal
is used.

N =300] [ts,| > 2| [ts,] > 2.5
ElL] -0.002 | -0.008
Var() | 0.00544| 0.00535
ARNI 15.64 | 8.08

RF 5.2% | 2.7%

Table 3: Results for an N/2 split drawing the errors froma

5 Power

Naturally, the power of the procedure to detect any form eflkrdepends on the nature and magnitude
Two cases of interest are gurexof distributions with considerably

of the departure from the null.
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different variances, where the indicators will ‘select’im observations drawn from the high variance
distribution; and location shifts, where a subset of thearis drawn with a different mean.

As a specific example, consider wherakes two values andu*, pre and post an observatign*
say. Providing the selected sub-samples include indisatovering all of the break and ‘outside break’
observations, then blocks df ; will be significant with an average value equalto— 1*), and thereby
reveal a step shift. As noted above, conditional on themethd;, tests for combinations do not alter
the null rejection frequency. However, outlier detectidgoaithms can fail to detect any problem in that
setting, since the overall sample mean is the value thabhbatamean deviations, and if both groups, pre
and post break, are a substantial proportio@vothen the large induced value of the estimated residual
standard deviation will include almost every outcome aséiduillustrates.

[

10/ “MM// \ W \/NN

: A i,

0 10 20 30 40 50 60 70 100

- [~ r:Yb (normalized)

|
)
1

I R O E I S |
0 30 40 50 70 80 90 100
Figure 3: Absence of outliers desplte a break

The procedure we propose could also reveal model mis-spe@ifn. For example, in a time-series
context, consider a model whege 1 has been included as a regressor, despite being irrelevaat)
there were no indicators but a mean shift occurred as in figufehen its coefficient would reflect the
step shift and would be close to unity, thereby removing tle&amshift except at its end points where
impulses of roughly equal magnitude, opposite sigh woulctieated: see e.g., Perron (1989), and
Hendry and Neale (1991). A conventional ‘outlier removalpeoach would again conclude with the
incorrect model, albeit one which may be viable for foreicgstAdding the blocks of indicators, in this
simple case, would clarify that there is a step shift, but yiwegiics. Thus, there are clear uses for such
a ‘saturation’ approach.

6 Conclusion

We have considered a problem that previously seemed iablact selecting a regression when there
are more regressors than observations. The special caseganvened was for saturating the model
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with individual impulse indicators, one for each obsemati A variant of the general-to-simpl&étg
approach nevertheless suggested a feasible solutionctssgighe distributions of the mean, its standard
error, and the residual standard deviation, after retgininly significant impulses from the saturating
set, were derived, together with an approximate operdtiaina correction for the last of these.

To select a regression when there are more regressors tharvations requires both a block imple-
mentation of multi-path searches, as well as such proceduitgin tentative models as cGets The
Monte Carlo simulations based on doing so match the theatetnalysis, confirming that the approach
is viable, with the null rejection frequencies as estalelishbove.

Moreover, many new problems become amenable to solutioiydimg general regression sub-set
selection, non-linear model selection, and new autonifticamputable tests of economic interest (see
Hendry and Santos, 2006).
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