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Abstract
This paper discusses model based inference in an autoregressive model for

fractional processes based on the Gaussian likelihood. The model allows for the
process to be fractional of order d or d� b; where d � b > 1=2 are parameters to
be estimated.
We model the data X1; : : : ; XT given the initial values X0

�n; n = 0; 1; : : :,
under the assumption that the errors are i.i.d. Gaussian. We consider the like-
lihood and its derivatives as stochastic processes in the parameters, and prove
that they converge in distribution when the errors are i.i.d. with suitable moment
conditions and the initial values are bounded. We use this to prove existence and
consistency of the local likelihood estimator, and to �nd the asymptotic distrib-
ution of the estimators and the likelihood ratio test of the associated fractional
unit root hypothesis, which contains the fractional Brownian motion of type II.
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1 Introduction and motivation

We consider the univariate time seriesXt; t = : : : ;�1; 0; 1; : : : ; T; and modelX1; : : : ; XT

conditional on the initial values X0
�n; n = 0; 1; : : : ; by the fractional autoregressive

model
a(Ld)Xt = "t; (1)

where "t is i.i.d. (0; �2), a(z) is a (k+ 1)�th order polynomial, and we have introduced
the lag operator Ld = 1 � �d (when d = 1 we have the usual lag operator L1 = L).
We rewrite the model as

�dXt = �LdXt +

kX
i=1

�i�
dLidXt + "t; t = 1; : : : ; T; (2)

where, in particular, � = �a(1). The parameters (�; �1; : : : ; �k; d; �2) are unrestricted
except �2 > 0. In the simplest case with k = 0 the model is

�dXt = �LdXt + "t; t = 1; : : : ; T; (3)

which we shall consider separately in some of our results. We analyze the conditional
likelihood function for (X1; : : : ; XT ) given the initial values X0

�n; n = 0; 1; : : : ; under
the assumption that "t is i.i.d. N(0; �2): For the asymptotic analysis we assume that
"t is i.i.d. with suitable moment conditions and that X0

�n is bounded:
For given values of the parameters, the processXt is determined by (2) as a function

of parameters, initial values, and errors "i; i = 1; : : : ; t; but the properties of Xt depend
on the properties of the characteristic function associated with (2),

�(z) = (1� z)d� �(1� (1� z)d)�
kX
i=1

�i(1� z)d(1� (1� z)d)i = a(1� (1� z)d): (4)

This is most easily analyzed by the substitution y = 1� (1� z)d: Note that �(z) is a
polynomial in z if and only if d is a non-negative integer, whereas a(y) is a polynomial
for any d. Clearly a(y) is simpler to analyze, and conditions in terms of the roots of
a(y) are given under which the process determined by (2) is fractional of order 0, or
fractional of order d when � = �a(1) = 0, in which case the characteristic function
�(z) has a unit root. In this paper we are primarily interested in the nonstationary
(unit root) case with � = 0 and d > 1=2. Thus, the hypothesis of a unit root in
the fractional autoregressive model (1), i.e. the hypothesis a(1) = 0, is most easily
formulated in (2) where it is given simply by the restriction � = 0. We call the test of
� = 0 the (fractional) unit root test in our model.
To allow even more generality we analyze the autoregressive model

�dXt = ��d�bLbXt +

kX
i=1

�i�
dLibXt + "t; t = 1; : : : ; T; (5)
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which allows the solution to be fractional of di¤erent orders, d or d� b � 0, depending
on whether � = 0 or � 6= 0; assuming that the remaining roots are outside the set Cb,
see Johansen (2007) and section 2.1 below. The parameters (�; �1; : : : ; �k; b; d; �

2) are
unrestricted except for d � b and �2 > 0.
Thus, the test that � = 0 is a test that the process is fractional of order d versus d�b;

i.e. the fractional unit root test is also a test of the order of fractionality of Xt. Note
that when d > b the characteristic function of (5), �(z) = (1�z)d�ba(1�(1�z)b) has a
unit root also when � 6= 0. However, we shall still refer to the test of � = 0 as the unit
root test in (5) since it is a test of a unit root in the polynomial a(y). Other hypotheses
of interest are linear hypotheses on the regression parameters � = (�1; : : : ; �k)

0 and the
fractionality parameters d and b.

1.1 Summary of main results

The main results of this paper are to �nd asymptotic properties of (local) maximum
likelihood estimators of the parameters in model (5) under the assumption that � = 0;
and the asymptotic distribution of the likelihood ratio test that � = 0. We show
that if the initial values are bounded they have no in�uence on limit results, except
that conditioning on initial values implies that some of the limit results are expressed
in terms of the fractional Brownian motion of type II, whereas fractional Brownian
motion of type I plays no role in the analysis.
We show that the pro�le likelihood function converges in distribution as a con-

tinuous stochastic process in the parameters (d; b; �) to a deterministic limit which
is strictly convex in a neighborhood of the true value (d0; b0; �0): Using tightness, or
stochastic equicontinuity, see Newey (1991) and Andrews (1992)1, of the derivatives
of the pro�le likelihood function, we show that it too is strictly convex in a small
neighborhood with probability tending to one. Hence, the (local) likelihood estimator
(d̂; b̂; �̂) exists, is unique, and is consistent, a result which also holds for the estimators
�̂ and �̂2. For model (3) we prove strict convexity of the likelihood function (with large
probability) and hence existence and uniqueness of the (global) maximum likelihood
estimator.
We �nd the asymptotic distribution of the estimators using the usual expansion

of the pro�le score function with a remainder term, which is the second derivative
evaluated at an intermediate point between (d̂; b̂; �̂) and (d0; b0; �0): We use tightness
of the second derivative to show that we can replace the intermediate point with the
true value. We then �nd the asymptotic distribution of �̂; and �nally we apply an
expansion of the log likelihood to �nd the limit distribution of the likelihood ratio test
for the unit root hypothesis � = 0:

1Note that the stochastic equicontinuity conditions given by Newey (1991) and Andrews (1992)
involve di¤erent conditions than the ones we apply. We prefer to use moment conditions usually
presented in a tightness context, e.g. Billingsley (1968) and Kallenberg (2001), and thus we use the
tightness terminology rather than stochastic equicontinuity. The moment conditions also have the
useful feature that we need only analyze the second derivative of the likelihood function, and not
higher-order derivatives.
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1.2 Comparison with other models

Our paper �ts into two related strands of the literature. The �rst group of papers
considers statistical modeling of fractional processes. The statistical analysis is based
upon the Gaussian likelihood function, and LM, Wald, and likelihood ratio tests are
derived from this. The second group of papers focuses on the test for a unit root, but
test statistics and estimators are motivated by regression equations.
It is important that in any case it is part of the methodology to test the underlying

assumptions, e.g. on the error process or the constancy of the parameters, against the
data to assess whether the model proposed is appropriate before conducting inference
on the parameters of the model. Since we are concerned with model-based statistical
inference, our paper clearly belongs to the former group, although parallels can be
drawn between our unit root test and the fractional unit root tests in the latter group.
A prominent place in the �rst group is held by the ARFIMA model proposed by

Granger and Joyeux (1980) and Hosking (1981), i.e.,

A(L)�dXt = B(L)"t; (6)

where A(L) and B(L) are the autoregressive and moving average polynomials and "t is
a white noise process. The ARFIMA model generalizes the well known ARIMA model
by introducing the fractional (non-integer) order of di¤erentiation, d. The original
Dickey and Fuller (1979, 1981) test can thus also be placed in this group, since it is a
likelihood ratio (LR) test of A(1) = 0 within the autoregressive model with d = 0 and
B(L) = 1. A Wald-type test of the same null was considered by Ling and Li (2001)
in the ARFIMA model, where the null hypothesis A(1) = 0 implies that the process is
fractional of order d+ 1 versus order d under the alternative.
Robinson (1991, 1994) proposed testing for the unit root using the LM-test in

a number of di¤erent models, see also Tanaka (1999) and Nielsen (2004). However,
these authors examined the properties of hypothesis tests of the form d = d0 (against
composite alternatives) in ARFIMA models, and thus these are not unit root tests in
the sense de�ned above.2

The model we propose to analyze (5) is di¤erent from the ARFIMA model (6)
because of the role of the lag operator Lb: The model is not an ARFIMA model in L,
but an ARFIMA model in the new lag operator Lb, which implies that the di¤erence
in order of fractionality of the process under the unit root null and the alternative is b
rather than one, see section 2.1 below.

2A slightly more general version of the ARFIMA model, see Hualde and Robinson (2005), is

�dXt = ut1ft�1g; ut = '(L; �)"t;

where the parameter vector � does not contain the fractional parameter d. That is, the in�nite lag
polynomial ' is not allowed to depend on d. However, if we write our model in the similar way, the
lag polynomial ' would depend on both d and b. This is an important di¤erence, which complicates
our analysis.
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In the second group of papers we place those that analyze regression-type statistics
with the purpose of testing for a fractional unit root, a topic that has received much
attention recently.
An early contribution is Sowell (1990) who analyzed the behavior of the usual

Dickey-Fuller-type regression when the errors are fractional. Speci�cally, Sowell (1990)
considered the regression

yt = �yt�1 + ut; �
dut = "t;

where "t is i.i.d. N(0; �2) and �0 = 1. He derived the asymptotic distribution of �̂FS;
the regression estimator of yt on yt�1, instead of the maximum likelihood estimator
for �xed d, �̂ML; that is, a regression of �

dyt on �dyt�1 as considered by Ling and Li
(2001). Consequently, the asymptotic distribution of the estimator �̂FS is dichotomous,
i.e. discontinuous in d; in the sense that T 2d+1(�̂FS � 1) converges in distribution to
a fractional Brownian motion functional when d � 0 and T (�̂FS � 1) converges in dis-
tribution to another such functional when d � 0. On the other hand, the distribution
of �̂ML is the same as that of the standard Dickey and Fuller (1979, 1981) statistic
(see also the analysis in Phillips, 1987). Clearly, the discontinuous distribution theory
obtained for �̂FS is a consequence of the simplicity of the estimator. Similar dichoto-
mous or discontinuous distribution results for the same type of model and estimator
are obtained by Tanaka (1999), see also Chan and Terrin (1995). Furthermore, these
papers all assume that the parameter d is known, which is usually not desirable from
a practical point of view, and which we do not assume in our analysis of (5) below.
The ideas in Sowell (1990) were further developed by Dolado, Gonzalo, and Mayoral

(2002) who consider the statistical model �(L)�yt = ��d1yt�1+"t and test that � = 0;
and Velasco and Lobato (2006) who consider the model �(L)�d

+Xt = "t and test that
d = 1: Here �(L) is a lag polynomial. They indicate the properties of the process
under the null and under the alternative3. In both cases they apply a t-ratio based on
a regression equation, which is motivated by the model equations, rather than a test
based upon an analysis of the likelihood function.
The model (5) proposed here has the advantage relative to that of Dolado, Gonzalo,

and Mayoral (2002) and others, that one can give simple criteria for fractional integra-
tion of various orders in terms of the parameters of the model, see Johansen (2007).
In this way we have a platform for conducting model-based statistical inference on the
parameters and on the fractional order of Xt.

3The condition given by Dolado, Gonzalo, and Mayoral (2002) for the roots of �(z) = �(z)(1 �
z)1�d1 ��z = 0 to be outside the unit circle are �(0) = 1; �(1) > 0; �(�1) > 0: This cannot be correct
as the example �(z) = 4(z � 1=2)2 = (1 � 4z)(1 � z) + z shows. Indeed, the solution would lead to
an unpleasant transcendental equation, see the discussion in Johansen (2007), and thus it does not
appear possible to give general conditions for fractionality of various orders in terms of the parameters
of the model.
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1.3 An overview of the present paper

The remainder of the paper is organized as follows. We discuss in section 2 the prop-
erties of the solution of the model (5) including the role of the initial values and give
the Gaussian likelihood function and the pro�le likelihood function as a function of
(d; b; �): In section 3 we give the results on the convergence of the product moments as
functions of (d; b; �): These results are applied in section 4 to prove consistency and to
show that d̂; b̂; and �̂ are asymptotically Gaussian, whereas the asymptotic distribution
of �̂ is a functional of Brownian motion B and fractional Brownian motion Bb0�1 of
type II. In section 5 we show that the asymptotic distribution of the likelihood ratio
test for a (fractional) unit root is a functional of B and Bb0�1: We conclude in section
6, and give some mathematical details in three appendices.

1.4 Notation

For a symmetric matrix A we write A > 0 to mean that it is positive de�nite. For
a function f : Rp 7! R we sometimes denote the vector of derivatives Df and matrix
of second derivatives D2f . The Euclidean norm of a vector or scalar a is denoted jaj.
For a real number a we denote the positive part a+ = max(0; a) and the negative
part a� = �min(0; a). Throughout "t is a sequence of i.i.d. variables with mean
zero and variance �2 > 0: For coe¢ cients �n with

P1
n=0 �

2
n < 1 we de�ne F (z) =P1

n=0 �nz
n and the linear process Zt = F (L)"t =

P1
n=0 �n"t�n: We use the notation

Z+t = F+(L)"t =
Pt�1

n=0 �n"t�n and Z
�
t = F�(L)"t =

P1
n=t �n"t�n for the corresponding

truncated processes.
For a random variable Z with EjZjp <1 we use the notation jjZjjp = E(jZjp)1=p.

The probability results (for the model (5)) are derived under the assumption that the
true parameters are d0 > b0 > 1=2; �0; �0 = 0; and �

2
0 > 0: Expectation with respect to

the true values is denoted by E:We also use the notation  = (d; b)0:We let Cb denote
the image of the unit disk under the function f(z) = 1� (1�z)b; b > 0: Throughout, c
denotes a generic positive constant which may take di¤erent values in di¤erent places.
In the following we apply the theory of weak convergence of probability measures,

see Billingsley (1968) and Kallenberg (2001). It is convenient to describe it in terms
of stochastic variables and processes, and for a sequence of k�dimensional stochastic
processes XT (u); u 2 [0; 1]; we write XT =) X or XT (u) =) X(u) to indicate
convergence in distribution of the sequence, either on Dk[0; 1] or Ck[0; 1], whereas

XT (u)
d! X(u) means convergence in distribution on Rk for a �xed u. We letW denote

Brownian motion generated by "t, B = ��1W denote standard Brownian motion,
and Bd�1 denote the corresponding fractional Brownian motion of type II, Bd�1(t) =
�(d)�1

R t
0
(t� s)d�1dB(s); d > 1=2:
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2 The conditional likelihood and pro�le likelihood
functions for the fractional process

This section contains some de�nitions of fractional processes and a discussion of the
properties of the solution of the autoregressive model (5) and the role of initial values.
We also de�ne the conditional likelihood function and the pro�le likelihood function,
where the regression parameter � and the variance have been eliminated.

2.1 Properties of the solution of the fractional autoregressive
model

The binomial expansion of (1� z)�d de�nes the coe¢ cients �n(d) = (�1)n
��d
n

�
which

are bounded in absolute value by cnd�1; d 2 R: For d < 1=2 and "t i.i.d. (0; �2) we
de�ne the stationary process with �nite variance

��d"t = (1� L)�d"t =
1X
n=0

(�1)n
�
�d
n

�
"t�n:

For d � 1=2 the in�nite sum does not exist, but we can de�ne a nonstationary process
by the operator ��d

+ ;

��d
+ "t =

t�1X
n=0

(�1)n
�
�d
n

�
"t�n = "t + d"t�1 + � � �+ (�1)t�1

�
�d
t� 1

�
"1; t = 1; : : : ; T;

see for instance Dolado, Gonzalo, and Mayoral (2002) or Marinucci and Robinson
(2000) who use the notation ��d"t1ft�1g and call this a �type II�process.
We apply the result, e.g. Davydov (1970) and Akonom and Gourieroux (1987),

that on D[0; 1]

T�d+1=2��d
+ "[Tu] =) Wd�1(u) = �(d)

�1
Z u

0

(u� s)d�1dW (s) (7)

for each d > 1=2; which by the continuous mapping theorem implies that

T�2d
TX
t=1

(��d
+ "t)

2 d!
Z 1

0

W 2
d�1du: (8)

We also have, see Jakubowski, Mémin, and Pages (1989),

T�d
TX
t=1

��d
+ "t"t+1

d!
Z 1

0

Wd�1dW: (9)

In this paper we apply these results to analyze model (5) which has as a solution a
fractional process, see Johansen (2007, Theorem 8). We formulate the solution of (5)
and some of its properties in the next result.
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Lemma 1 If � = 0 then a(1) = 0; and if the remaining roots are outside the set Cb0,
then for �(z) given by (5) it holds that

(1� z)d0�(z)�1 = 
0 + (1� z)b0H(1� (1� z)b0); (10)

where 
0 = (1 �
Pk

i=1 �0i)
�1 and H(u) is regular in a neighborhood of Cb0 ; so that

the coe¢ cients de�ned by F (z) = H(1 � (1 � z)b0) =
P1

n=0 �nz
n; jzj < 1, de�ne a

stationary process Yt =
P1

n=0 �n"t�n: Then
P1

n=0 j�nj < 1; so that the covariance
function 
Y (h) = E(YtYt�h) satis�es

P1
h=�1 j
Y (h)j <1. Equation (5) is solved by

Xt = 
0�
�d0
+ "t +�

�d0+b0
+ Y +

t + �0t ; t = 1; 2; : : : ; (11)

where Y +
t =

Pt�1
n=0 �n"t�n is asymptotically stationary and the trend generated by the

initial values is �0t = ��+(L)�1��(L)Xt.

Proof. The expression for (1�z)d0�(z)�1 and the de�nition of Yt follows from Johansen
(2007, Theorem 8). The transfer function for Yt has the form

�(�) = H(1� (1� ei�)b) = F (ei�);

where F (z) =
P1

n=0 �nz
n and the series is convergent for jzj � 1 + �; for some � > 0;

and F (1) 6= 0: It follows that �(�) is continuous, that �(0) 6= 0; and that �(�) has the
expansion

�(�) =
1X
n=0

�ne
i�n

for some coe¢ cients �n which are used to de�ne the process Yt: The derivative of �(�)
is

d�

d�
= ibei�

dH

dz
(1� (1� ei�)b)(1� ei�)b�1;

which has a pole for � = 0; when b < 1. It is, however, square integrable for b > 1=2.
By Parseval�s formula it then holds that the Fourier coe¢ cients of d�=d�, in�n; are
square summable so that

P1
n=0 n

2� 2n <1, see Zygmund (2003, p. 37). It follows from
this that

(
1X
n=0

j�nj)2 = (
1X
n=0

j�nnjn�1)2 �
1X
n=0

j�nnj2
1X
n=0

n�2 <1;

so that
P1

n=0 j�nj <1. Finally
1X

h=�1

j
Y (h)j �
1X

h=�1

1X
j=0

1X
i=0

jE(� j"t�j� i"t+h�i)j � c
1X
i=0

1X
h=�1

j� i�hjj� ij � c(
1X
i=0

j� ij)2 <1:

The expression (11) follows from (5) by applying ��1+ (L) to �(L)Xt = �+(L)Xt +
��(L)Xt = "t to get

Xt = ��1+ (L)"t � ��1+ (L)��(L)Xt
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and applying the expression (10) for ��1+ (L)"t.
From (11) follow the properties of the process and we �nd in particular that

��uXt = 
0�
�d0�u
+ "t +�

�d0�u+b0
+ Y +

t +�
�u
+ �0t +�

�u
� Xt; t = 1; 2; : : : ; (12)

��uXt = ��u
� Xt; t = 0;�1;�2; : : : ;

where the �rst term of (12) is nonstationary, but asymptotically stationary for d0+u <
1=2: For d0 + u > 1=2 it will, suitably normalized, converge to a fractional Brownian
motion, see (7). The next term is asymptotically stationary when d0+u�b0 < 1=2; and
the last terms are deterministic functions of the initial values. The di¤erent processes
will be studied in detail below.
In order to study the impact of the initial values on the process we apply the

representations

��1+ (L) = 
0�
�d0
+ +��d0+b0

+ F+(L);

��(L) = (�d0 �
kX
i=1

�i�
d0(1��b0)i)� =

kX
j=0

�j�
d0+jb0
� ;

for some coe¢ cients �j; and �nd

�0t = ��+(L)�1��(L)Xt = �(
0 +�b0
+F+(L))

kX
j=0

�j�
�d0
+ �d0+jb0

� Xt: (13)

The theory in this paper will be developed for observations X1; : : : ; XT generated
by (5) assuming that all initial values are observed, that is, conditional on X0

�n; n =
0; 1; : : : In practice, this is obviously not the case, and one will have to choose a value
T0 and base the calculations on setting X0

�n = 0; n > T0. We call X0
�n; n = 0; : : : ; T0;

the observed initial values. One will then have to investigate the sensitivity to the
initial values by choosing di¤erent values of T0. For usual autoregressive models with
k lags, the observed initial values will be X0

�k+1; : : : ; X
0
0 .

Thus, the initial values are not modeled, and the asymptotic results show that the
in�uence of the initial values disappears in the limit provided they are bounded, an
assumption that appears reasonable in practice.

2.2 The conditional likelihood function

The model is

�dXt = ��d�bLbXt +
kX
i=1

�i�
dLibXt + "t; t = 1; : : : ; T;

where "t is i.i.d. Gaussian (0; �2) and we apply the lag operator Lb = 1 � �b: Note
that the asymptotic properties are derived below without the Gaussianity assumption
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but assuming "t is i.i.d. with mean zero and q �nite moments. The parameter space is
de�ned by assuming that �2 > 0; d � b > 1=2, and that the remaining parameters vary
freely, but it is convenient to introduce the parameter � = T d0�d+b�1=2�: Note that the
parameter space is unchanged. We use the notation � = (d; b; �0; �; �2)0 and  = (d; b)0

so that the likelihood function, conditional on initial values fX0
�n; n � 0g; becomes

�2T�1 logLT (�) (14)

= log �2 +
1

�2T

TX
t=1

(�dXt � T�d0+d�b+1=2��d�bLbXt �
kX
i=1

�i�
dLibXt)

2

= log �2 +
1

�2

0@ 1
��
��

1A00@ B00T ( ) B0�T ( ) C0T ( )
B�0T ( ) B��T ( ) C�T ( )0
C0T ( ) C�T ( ) AT ( )

1A0@ 1
��
��

1A :

We here de�ne the product moments

AT ( ) = T�2(d0�d+b)
TX
t=1

(�d�bLbXt)
2; (15)

BijT ( ) = T�1
TX
t=1

(�dLibXt)(�
dLjbXt); i; j = 0; 1; : : : ; k; (16)

CiT ( ) = T�(d0�d+b)�1=2
TX
t=1

(�d�bLbXt)(�
dLibXt); i = 0; 1; : : : ; k: (17)

The notation B�jT ( ) is used for the vector with components BijT ( ); i = 1; : : : ; k;
Bi�T ( ) = B�iT ( )0; and B��T is the matrix with elements BijT ( ); i; j = 1; : : : ; k. We
also de�ne the matrix

BT ( ) =
�
B00T ( ) B0�T ( )
B�0T ( ) B��T ( )

�
and de�ne B( ) as the probability limit of BT ( ); see Lemma 24.
We let C�T ( ) denote the vector with components CiT ( ); i = 1; : : : ; k and CT ( ) =

(C0T ( ); C�T ( )0)0, and �nally we need

C0"T ( ) = T�1=2
TX
t=1

(T�(d0�d+b)�d�bLbXt)"t: (18)

2.3 The maximum likelihood estimators and pro�le likelihood
function for �xed d, b, and �

For �xed d; b; and � we can �nd the maximum likelihood estimators and the pro�le
likelihood function by regression,

�̂( ; �) = (C0T ( )� �0C�T ( ))=AT ( ); (19)

�̂2( ; �) = B00T ( )� 2�0B�0T ( ) + �0B��T ( )��
(C0T ( )� �0C�T ( ))2

AT ( )
: (20)
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Finally we �nd the pro�le likelihood as

�2T�1 logLpro�le;T ( ; �) = �2T�1 logmax
�;�2

LT ( ; �; �; �
2) = 1 + log �̂2( ; �): (21)

In the following, we use this expression to investigate the pro�le likelihood function in
a small neighborhood of the value ( 0; �0).
For model (2) with b = d, we �nd in the same way, writing AT (d); BijT (d); and

CiT (d) for AT (d; d); BijT (d; d); and CiT (d; d); that

�̂2(d; �) = B00T (d)� 2�0B�0T (d) + �0B��T (d)��
(C0T (d)� �0C�T (d))2

AT (d)
;

�2T�1 logLpro�le;T (d) = 1 + log �̂2(d; �):

We also de�ne B(d) as the probability limit of BT (d).
We conclude this section with the assumptions we shall use in the asymptotic

analysis of our model.

Assumption 1 The process Xt; t = 1; : : : ; T , is generated by model (5) for some
k = 1; 2; : : : and satis�es:
Errors: The errors "t are i.i.d. (0; �2) with Ej"tjq <1 for some q > max(6; 2=(2b0�

1)).
True values: The true values satisfy d0 > b0 > 1=2; �0 = 0; �

2
0 > 0; so that a(u)

has a unit root, and the remaining roots of a(u) are outside the set Cb0.
Initial values: The initial values X0

�n; n = 0; 1; : : :, are bounded, i.e. there exists
a c > 0 such that jX0

�nj � c for all n � 0.

Assumption 2 The process Xt; t = 1; : : : ; T , is generated by model (2) for some
k = 0; 1; 2; : : : and satis�es:
Errors: The errors "t are i.i.d. (0; �2) with Ej"tjq <1 for some q > max(4; 2=(2b0�

1)).
True values: The true values satisfy d0 > 1=2; �0 = 0; �20 > 0; so that a(u) has

a unit root, and the remaining roots of a(u) in (1) are outside the set Cd0.
Initial values: The initial values X0

�n; n = 0; 1; : : :, are bounded, i.e. there exists
a c > 0 such that jX0

�nj � c for all n � 0.

Importantly, the errors are not assumed Gaussian for the asymptotic analysis, but
are only assumed to be i.i.d. with su¢ cient moments to apply a functional central limit
theorem and our tightness arguments below. The True Values assumption is the
unit root assumption, which ensures that Xt is nonstationary and fractional of order
d0. The Initial values assumption is needed so that �dXt can be calculated for any
d > 0; and is su¢ cient for the asymptotic analysis of the conditional likelihood.



Likelihood inference for fractional processes 12

3 Weak convergence of the pro�le likelihood func-
tion

We �rst give a useful tightness criterion from Kallenberg (2001), generalizing a well
known result from Billingsley (1968), and formulate and prove some simple conse-
quences of tightness, convergence in distribution, and the continuous mapping theo-
rem. We then give the result on the asymptotic behavior of the product moments
(AT ( );BT ( ); CT ( )) and their derivatives, and end this section with the weak limit
of the pro�le likelihood function considered as a stochastic process in the parameters
 and �.
We apply the convergence result to processes de�ned on a compact set containing

the true value ( 0; �0); but we formulate them, as is usually done, for the unit hypercube
[0; 1]m:

3.1 Some weak convergence results

Lemma 2 If Xn(s) is a sequence of p-dimensional continuous processes on [0,1]2 for
which Xn(0) is tight and

jjXn(s)�Xn(t)jj3 � cjs� tj (22)

for some constant c > 0; which does not depend on n, s, or t, then Xn(s) is tight on
Cp[0; 1]2:

Proof. This is a consequence of Kallenberg (2001, Corollary 16.9).

Lemma 3 If Xn(s) satis�es (22) on Cp[0; 1]2; Xn(s0) is tight on Rp, and f : [0; 1]m !
Rp is continuous, then Zn(s; u) = f(u)0Xn(s) is tight on C[0; 1]2+m:

Proof. Let
!h(�) = max

ju�vj��
jh(u)� h(v)j

denote the modulus of continuity of h(u), which may be a deterministic function or a
stochastic process. Then

Zn(s; u)� Zn(s
�; u�) = f(u)0(Xn(s)�Xn(s

�)) + (f(u)� f(u�))0Xn(s
�);

which shows that

sup
n
!Zn(�) � max

u2[0;1]m
jf(u)j sup

n
!Xn(�) + !f (�) sup

n
max
s2[0;1]2

jXn(s)j:

By continuity of f; !f (�) ! 0 as � ! 0; and tightness of Xn implies, by the Arzelà-
Ascoli theorem see Kallenberg (2001, pp. 311 and 563), that supn !Xn(�)! 0 as � ! 0:
Finallymaxu2[0;1]m jf(u)j <1 , and because the mappingXn(s) 7�! maxs2[0;1]2 jXn(s)j
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is continuous and continuous mappings preserve compact sets (and thus tightness) it
follows that also supnmaxs2[0;1]2 jXn(s)j is bounded on a set with large probability, so
that supn !Zn(�)

P! 0 as � ! 0; which shows that Zn(s; u) = f(u)0Xn(s) is tight on
C[0; 1]2+m:
Below we use that the likelihood function for ( ; �; �; �2); the pro�le likelihood

function for ( ; �; �); and the pro�le likelihood function for ( ; �) are all tight as
processes in the parameters. Lemma 3 shows that this follows from the tightness of
the product moments AT , BT , and CT .
In the next lemma we consider a sequence of univariate processes Xn(s) where

s 2 [0; 1]m.

Lemma 4 1. Assume Xn(s0)
P! c > 0 and Xn(s) is tight on C[0; 1]m: Then for all

� > 0 there is a � > 0 and an n0 so that P (minjs�s0j��Xn(s) > 0) � 1� � for n � n0.

2. Assume that Sn
P! s0 and Xn(s) is tight on C[0; 1]m. Then Xn(Sn)�Xn(s0)

P! 0:

Proof. 1. We �nd for js� s0j � � that

Xn(s) = Xn(s0) + (Xn(s)�Xn(s0)) � Xn(s0)� !Xn(�):

By the Arzelà-Ascoli theorem, if Xn is tight on C[0; 1]m and Xn(s0)
P! c; we can �nd

for any � > 0; a � > 0 and an n0 so that

P (An1) = P (!Xn(�) �
c

3
) � 1� �

2
;

P (An2) = P (jXn(s0)� cj � c

3
) � 1� �

2
;

for n � n0. Let An = An1 \ An2. Then P (An) � 1� � for n � n0, and on An we have
the inequality

Xn(s) � c+Xn(s0)� c� !Xn(�) � c� c

3
� c

3
=
c

3
> 0;

for all js� s0j � �.
2. To prove the second result we �nd

P (jXn(Sn)�Xn(s0)j > "; jSn � s0j � �) � P (jSn � s0j � �);

P (jXn(Sn)�Xn(s0)j > "; jSn � s0j < �) � P (!Xn(�) � "):

With the above � and n0 the last probability is less than �; and for n su¢ ciently large
the �rst is less than �, which shows that

P (jXn(Sn)�Xn(s0)j > ") � P (jSn � s0j � �) + P (!Xn(�) � ") � 2�;

which proves that Xn(Sn)�Xn(s0)
P! 0:
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The �rst part of the lemma is used to show that with probability tending to one,
the second derivative of the pro�le likelihood is positive de�nite, so that the pro�le
likelihood itself is convex in a small � neighborhood of the true value implying the
existence of a local likelihood estimator.
The second part of Lemma 4 is especially useful when deriving the asymptotic

distribution of the maximum likelihood estimators via an asymptotic expansion of the
score function. The remainder term in the expansion is the second derivative of the
likelihood function evaluated at an intermediate point, which we can replace by the
true value by application of Lemma 4 and an initial consistency proof. Thus, we avoid
�nding a uniform bound on the third derivative of the likelihood function and rely
instead on showing tightness using the moment condition in Lemma 2.
We conclude with a result which indicates how we are going to establish tightness

in the application of the result of Kallenberg.

Lemma 5 For u 2 [0; 1] and i = 1; 2; let the processes V i
ut; t = 1; 2; : : : ; be continuous

in u and linear in the i.i.d. variables "t with �nite sixth moment. If V i
ut, i = 1; 2,

satisfy
jjV i

utjj2 � c and jjV i
ut � V i

~utjj2 � cju� ~uj; (23)

where the constants do not depend on u 2 [0; 1]; ~u 2 [0; 1]; or t 2 [1; T ]; then, for
i; j = 1; 2; the product moment

Suv = T�1
TX
t=1

V i
utV

j
vt (24)

is tight as a process in (u; v) 2 [0; 1]2:
If furthermore Di

ut; i = 1; 2; are deterministic functions which are continuous in
u 2 [0; 1] and satisfy

max
u2[0;1]

jDi
utj ! 0 as t!1; (25)

then

S�uv = T�1
TX
t=1

(V i
ut +Di

ut)(V
j
vt +Dj

vt)

is tight in (u; v) 2 [0; 1]2:

Proof. To prove (24) we apply the decomposition

Suv � S~u~v = T�1
TX
t=1

(V i
ut � V i

~ut)V
j
vt + V i

~ut(V
j
vt � V j

~vt)

and the inequality (47) in Lemma 15 and �nd

jjSuv � S~u~vjj3 � cT�1
TX
t=1

jjV i
ut � V i

~utjj2jjV
j
vtjj2 + jjV i

~utjj2jjV
j
vt � V j

~vtjj2

� c(ju� ~uj+ jv � ~vj) � c
p
2j(u� ~u; v � ~v)j:
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This shows that the tightness criterion (22) from Lemma 2 holds.
In order to prove tightness of S�uv we note that

S�uv = Suv + T�1
TX
t=1

V i
utD

j
vt + T�1

TX
t=1

Di
utV

j
vt + T�1

TX
t=1

Di
utD

j
vt:

We want to show tightness of the last three terms by showing that the supremum
converges in probability to zero. We �nd using (25) that

max
(u;v)2[0;1]2

jT�1
TX
t=1

Di
utD

j
vtj � T�1

TX
t=1

j max
u2[0;1]

Di
utjj max

v2[0;1]
Dj
vtj ! 0 as T !1

and

max
(u;v)2[0;1]2

(T�1
TX
t=1

V i
utD

j
vt)

2 � max
v2[0;1]

T�1
TX
t=1

(Dj
vt)

2 max
u2[0;1]

T�1
TX
t=1

(V i
ut)

2:

The �rst factor tends to zero by assumption (25), and, by (24), T�1
PT

t=1(V
i
ut)

2 is tight
in u; so that maxu2[0;1] T�1

PT
t=1(V

i
ut)

2 is tight. Hence the product tends to zero in
probability.
Thus to establish tightness of product moments it is enough simply to check con-

dition (23) for the stochastic parts of the involved processes and condition (25) for the
deterministic parts of the processes.

3.2 Convergence of product moments and the likelihood pro-
�le

We are now ready to state the result on weak convergence of the product moments.

Theorem 6 Let Assumption 1 be satis�ed for model (5) and let 0 < � < min(1=2; b0�
1=2; d0 � b0). We de�ne d1 = max(1=2; d0 � 1=2) + �, d2 > d0, and

N1 = f(b; d) : d1 � d � d2; b � 1=2 + �; � � d� b � d0 � 1=2� �g:

Then AT ( ); BT ( ); and CT ( ) and their derivatives are tight on C(N1); and for
m = 0; 1; 2, it holds jointly that

AT ( ) =) A( ) = 
20
R 1
0
W 2
d0�d+b�1du on C(N1); (26)

DmBT ( ) =) DmB( ) on C(k+1)�(k+1)(N1); (27)

DmCT ( ) =) 0 on Ck+1(N1): (28)

T 1=2C0"T ( 0)
d! 
0

Z 1

0

Wb0�1dW: (29)

Let Assumption 2 be satis�ed for model (2) and let 0 < � < min(1=2; d0 � 1=2)
and I1 = [d1; d2]. Then the same results hold for AT (d); BT (d); CT (d), and C0"T (d0) =
C0"T (d0; d0) and their derivatives, when N1 is replaced by I1, d = b, and d0 = b0.
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The proof is given in appendix C.
We next apply these results to derive the weak limit of the pro�le likelihood func-

tions for the models (5) and (2) as well as some useful properties.

Corollary 7 Let Assumption 1 be satis�ed for model (5), and de�ne for A > 0 the set
N2 = f� : j�� �0j � Ag: Then, for any A, and 0 < � < min(1=2; b0 � 1=2) we have:
1. The pro�le likelihood function converges weakly,

�2T�1 logLpro�le;T ( ; �) =) 1 + log �2( ; �) on C(N1 �N2); (30)

where �2( ; �) = B00( )� 2�0B�0( ) + �0B��( )�; see Lemma 24.
2. For k = 0; 1; : : : ; D2(�2T�1 logLpro�le;T ( ; �)) is tight on C(N1 � N2), and for

( ; �) = ( 0; �0);

D2(�2T�1 logLpro�le;T ( 0; �0))
d! D2 log �2( 0; �0): (31)

Proof. 1. The pro�le likelihood is given in (21) and involves the expression (20):

�̂2( ; �) = B00T ( )� 2�0B�0T ( ) + �0B��T ( )��
(C0T ( )� �0C�T ( ))2

AT ( )
:

Because (AT ( );BT ( ); CT ( )) =) (
20
R 1
0
W 2
d0�d+b�1du;B( ); 0), see (26), (27), and

(28), we �nd
(C0T ( )� �0C�T ( ))2AT ( )

�1 =) 0

and thus
�̂2( ; �) =) B00( )� 2�0B�0( ) + �0B��( )� = �2( ; �);

which proves the �rst result.
2. The second derivative of the pro�le likelihood can be expressed in terms of

(AT ( );BT ( ); CT ( )) and their �rst two derivatives, and is therefore tight by Theorem
6 and Lemma 3. In order to determine the limit for ( ; �) = ( 0; �0) we need the results
(26) to (28) and the tightness of the second derivatives, and then we can apply Lemma
24.

Corollary 8 Let Assumption 2 be satis�ed for model (2), and de�ne the interval I1 =
[d1; d2] for d1 = max(1=2; d0 � 1=2) + � and d2 > d0 with 0 < � < min(1=2; d0 � 1=2).
Then we have:
1. The pro�le likelihood function converges weakly,

�2T�1 logLpro�le;T (d; �) =) 1 + log �2(d; �) on C(I1 �N2); (32)

where �2(d; �) = B00(d)� 2�0B�0(d) + �0B��(d)�; see Lemma 24.
2. The second derivative D2(�2T�1 logLpro�le;T (d; �)) is tight on C(I1 � N2), and

for (d; �) = (d0; �0);

D2(�2T�1 logLpro�le;T (d0; �0))
d! D2 log �2(d0; �0): (33)

3. For k = 0; the convergence in (32) holds on C(I1), and the limit 1+ log �2(d) =
1 + logB00(d) is strictly convex on [d1; d2] with a minimum at d = d0.
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Proof. The proofs of 1. and 2. follow as in Corollary 7. To see 3., we note that when
k = 0 and �0 = 0; the process is Xt = �

�d0
+ "t + �0t ; see (11), and the limit of �̂

2(d) is

B00(d) = lim
T!1

(T�1
TX
t=1

E(�d�d0
+ "t +�

d
+�

0
t +�

d
�Xt)

2)

= lim
T!1

T�1�20

TX
t=1

t�1X
j=0

�j(d0 � d)2 = �20
�(1� 2(d0 � d))

�(1� (d0 � d))2
; d 2 [d1; d2];

where the second equality uses (59) with u = d0 � d � 1=2 � � and v = d0 + jb0 �
d0 > d1 � 1=2 + � for j = 0; : : : ; k (noting that (d0; b0) is an interior point in N1 and
therefore d0 > d1), and (57) with v = d � d1 � 1=2 + � from Lemma 18 such that
T�1

PT
t=1(�

d
+�

0
t )
2 ! 0 and T�1

PT
t=1(�

d
�Xt)

2 ! 0; and hence the initial values have
no in�uence on the limit. We �nd

D log
�(1� 2(d0 � d))

�(1� (d0 � d))2
jd=d0 = 2 (1� 2(d0 � d))jd=d0 � 2 (1� (d0 � d))jd=d0 = 0;

where  (�) is the digamma function,

 (�) = D log �(�) = C � 1
�
+

1X
i=1

(
1

i
� 1

� + i
); (34)

and C is Euler�s constant. Using the multiplication formula 2��( �
2
)�( �+1

2
) = 2�(�)�(1

2
),

see Artin (1964, p. 24), we �nd that for � = 1� 2(d0 � d);

�(1� 2(d0 � d))

�(1� (d0 � d))2
=

�(1=2� (d� d0))

�(1� (d0 � d))�(1=2)
2�2(d�d0):

Hence

D2 log
�(1� 2(d0 � d))

�(1� (d0 � d))2
=

1X
i=0

(
1

(1=2� (d0 � d) + i)2
� 1

(1� (d0 � d) + i)2
) > 0:

4 Asymptotic properties of the local likelihood es-
timator

In this section we use the results of the previous sections to prove consistency and
derive the asymptotic distribution of the (local) likelihood estimator.
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4.1 Existence and consistency of the local likelihood estimator

We apply weak convergence of the pro�le likelihood function and its derivatives to show
that there is a neighborhood of ( 0; �0) on which the likelihood pro�le is convex with
probability tending to one, so that the (local) likelihood estimator for ( ; �) exists and
is consistent.

Theorem 9 Let Assumption 1 be satis�ed for model (5) or Assumption 2 for model
(2).
1. Then for model (5) with b0 < d0, k > 0, and �0 6= 0, there exists a neighborhood

N( 0; �0) of ( 0; �0) and a sequence of sets KT with probability tending to one, such
that on KT the local likelihood estimators of d; b; �; �; and �2 exist uniquely and are
consistent.
2. The same result holds for the local likelihood estimators of d; �; �; and �2 in

model (2) where d0 = b0 and k � 0.
3. If k = 0 in model (2), the limit of the pro�le likelihood is convex on any interval

[d1; d2] in ] max(1=2; d0 � 1=2);1[; so that on KT the maximum likelihood estimator
exists uniquely and is consistent, for d 2 [d1; d2]:

Proof. Existence and uniqueness: We give the proof for model (5). The limit 1 +
log �2( ; �) of the pro�le likelihood function on the set N1 � N2 is given in Corollary
7. For k > 0 and �0 6= 0, the limit has a positive de�nite second derivative for
( ; �) = ( 0; �0); see (72) and (76) in Lemma 24. Note that ( 0; �0) is an interior
point in N1 �N2 by de�nition of � and d1.
The function �min(�) which to a symmetric matrix associates the smallest eigenvalue

is a continuous function and we therefore have, see (31), that

�min(�2T�1D2 logLpro�le;T ( 0; �0))
d! �min(D

2 log �2( 0; �0)) > 0:

We then apply Lemma 4 which states that because �2T�1D2 logLpro�le;T ( ; �) is tight
on N1 �N2, the set

K̂T = f min
j( ;�)�( 0;�0)j��1

�min(�2T�1D2 logLpro�le;T ( ; �)) > 0g

has probability tending to one, where �1 has been chosen so small that

N�1( 0; �0) = f( ; �) : j( ; �)� ( 0; �0)j � �1g � N1 �N2:

De�ne the minimum of log(�2( ; �)=�2( 0; �0)) on the boundary of the neighbor-
hood N�1( 0; �0) as

�(�1) = min
j( ;�)�( 0;�0)j=�1

log
�2( ; �)

�2( 0; �0)
:

The continuous mapping theorem shows that, because the pro�le likelihood function
converges in distribution,

ZT = min
j( ;�)�( 0;�0)j=�1

(�2T�1 logLpro�le;T ( ; �)� 1� log �2( 0; �0))
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converges in probability to

Z = min
j( ;�)�( 0;�0)j=�1

(1 + log �2( ; �)� 1� log �2( 0; �0))

= min
j( ;�)�( 0;�0)j=�1

log
�2( ; �)

�2( 0; �0)
= �(�1):

The distribution of Z is degenerate at the point �(�1); so that all other points, in
particular 1

2
�(�1); are continuity points of the distribution function. Therefore ~KT =

fZT � 1
2
�(�1)g satis�es P ( ~KT )! 1.

By the same argument we have that in the neighborhood N�1( 0; �0),

Z�T = min
( ;�)2N�1 ( 0;�0)

(�2T�1 logLpro�le;T ( ; �)� 1� log �2( 0; �0))

converges in probability to

Z� = min
( ;�)2N�1 ( 0;�0)

log
�2( ; �)

�2( 0; �0)
� 0

since the function log(�2( ; �)=�2( 0; �0)) attains the value zero at ( ; �) = ( 0; �0),
so that K�

T = fZ�T � 1
4
�(�1)g satis�es P (K�

T )! 1.
For any observation in K̂T the pro�le likelihood function is strictly convex. For

any observation in KT = K̂T \ ~KT \ K�
T it attains its unique minimum in the inte-

rior of N�1( 0; �0) because the function �2T�1 logLpro�le;T ( ; �) � 1 � log �2( 0; �0)
is no less than 1

2
�(�1) on the boundary but attains a value no greater than 1

4
�(�1)

in the interior. Therefore there exists a unique minimizer, that is, a (local) solution
( ̂; �̂) of the likelihood equation exists uniquely for ( ; �) 2 N�1( 0; �0) which satis�es
�2T�1D logLpro�le;T ( ̂; �̂) = 0.
Consistency: The above arguments hold for all �1, and consistency of ( ̂; �̂) thus

follows by taking �1 small.
Consistency of ( ̂; �̂) implies by the second part of Lemma 4 that, because of the

tightness of (AT ;BT ; CT ) as processes indexed by  , we have that (AT ( ̂);BT ( ̂); CT ( ̂))
d!

(A( 0);B( 0); 0), see also Theorem 6. Therefore

�̂ =
C0T ( ̂)� �̂

0
C�T ( ̂)

AT ( ̂)

P! 0; (35)

so that �̂ is consistent. By (20) and (35), �̂2 has the same limit as

B00T ( ̂)� 2�̂
0B�0T ( ̂) + �̂

0B��T ( ̂)�̂:

Because BT ( ) is tight we can replace  ̂ by  0; and �nd that �̂2 converges in probability
to �2( 0; �0) = �20; see Lemma 24.
The proof of the same result for model (2) is similar.
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Finally, for k = 0 and b = d, we have weak convergence of the second derivative of
the pro�le likelihood,

D2(�2T�1 logLpro�le;T (d)) =) D2 logB00(d) on C(I1);

see Theorem 6 and Corollary 8. In this case we can thus rede�ne the set KT as KT =
fmind2I1(�2T�1D2 logLpro�le;T (d)) > 0g; and by the continuous mapping theorem

min
d2I1

(�2T�1D2 logLpro�le;T (d)) =) min
d2I1

D2 logB00(d) > 0

such that PfKTg ! 1. It follows that, for d 2 I1, the maximum likelihood estimator
exists uniquely and is consistent.
Note that for the simple model in (3) with k = 0 and b = d we get global conver-

gence of the pro�le likelihood function and can prove that it is convex on the interval
[d1; d2] using weak convergence the second derivative. For the general model we can
prove convexity of the pro�le likelihood only in a small neighborhood of (d0; b0) using
tightness. Thus, we obtain existence, uniqueness, and consistency of the estimators
globally for the model (3) but only locally for the general model (5).

4.2 Asymptotic distribution of the local likelihood estimator

We �rst �nd the asymptotic distribution of the score functions and the limit of the
information for � = �� = (d0; b0; �0; 0; �̂

2). By Lemma 4 we only need the information
at �� since the estimators are consistent (by Theorem 9) and the second derivatives
are tight (by Theorem 6). Again we let D denote the 2 + k vector of derivatives with
respect to  and �.

Lemma 10 Under Assumption 1 the limit distribution of the Gaussian score function
for model (5) at �� = (d0; b0; �0; 0; �̂

2) is given by�
T�1=2D logLT (��)
T�1=2 @

@�
logLT (��)

�
d!
�
N2+k

�
0; ��20 �( 0; �0)

�

0
R 1
0
Bb0�1dB

�
; (36)

where �( 0; �0) is given in (72).

Proof. Let "t( ; �) = �dXt �
Pk

i=1 �i�
dLibXt. Because "t( 0; �0) = "t, see (78), we

�nd the score function for ( ; �) to be

T�1=2D logLT (��) = ��̂�2T�1=2
TX
t=1

"tD"t( 0; �0): (37)

Since "tD"t( 0; �0) is a stationary martingale di¤erence, see (79), with �nite third
moment, we �nd the �rst result in (36) from the central limit theorem for martingale
di¤erence sequences, see Hall and Heyde (1980, chp. 3).
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The score function for � is

T�1=2
@

@�
logLT (��) = �̂�2T�b0

TX
t=1

(�d0�b0Lb0Xt)"t = �̂�2T 1=2C0"T ( 0);

which converges as indicated, see (29).

Lemma 11 Under Assumption 1 the Gaussian information per observation for model
(5) at �� = (d0; b0; �0; 0; �̂

2) converges in distribution to�
��20 �( 0; �0) 0

0 
20
R 1
0
B2
b0�1du

�
: (38)

Proof. We �nd that

�T�1D2 logLT (��) = �̂�2T�1
TX
t=1

"tD
2"t( 0; �0) + �̂�2T�1

TX
t=1

D"t( 0; �0)D"t( 0; �0)
0

P! ��20 �( 0; �0)

by (72), (79), and a law of large numbers. We also have that

�T�1 @2

@�@�
logLT (��) = �̂�2C�T ( 0)

P! 0;

�T�1 @2

@�@ 
logLT (��) = �̂�2(�00

@

@ 
C�T ( 0)�

@

@ 
C0T ( 0))

P! 0;

�T�1 @
2

@�2
logLT (��) = �̂�2AT ( 0)

d! ��20 
20

Z 1

0

W 2
b0�1du;

by Theorem 6.
We now apply the previous two lemmas in the usual expansion of the likelihood

score function to obtain the asymptotic distribution of the local likelihood estimators.

Theorem 12 Under Assumption 1 the asymptotic distribution of the (local) Gaussian
maximum likelihood estimators (d̂; b̂; �̂; �̂) for model (5) is given by0BB@

T 1=2(d̂� d0)

T 1=2(b̂� b0)

T 1=2(�̂� �0)
T b0 �̂

1CCA d!
�

N2+k (0; �
2
0�( 0; �0)

�1)R 1
0
Bb0�1dB(
0

R 1
0
B2
b0�1du)

�1

�
: (39)

For model (2) where d = b; we �nd0@ T 1=2(d̂� d0)

T 1=2(�̂� �0)
T b0 �̂

1A d!
�
N1+k (0; �

2
0(M

0�( 0; �0)M)
�1)R 1

0
Bb0�1dB(
0

R 1
0
B2
b0�1du)

�1

�
; (40)

see (77).
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Proof. Proof of (39): To �nd the limit distributions of d̂; b̂; �̂; and �̂; we apply the
usual expansion of the score function. We expand the �rst derivatives of

lT (�̂) = �T�1 logLT (�̂)

around the value �� = (d0; b0; �0; 0; �̂
2). Using Taylor�s formula with remainder term we

�nd (with subscripts denoting partial derivatives)

0 =

0@ T 1=2lT (��)
T 1=2lT�(��)
T 1=2lT�(��)

1A+
0@ lT  (��

�) lT �(��
�) lT �(��

�)
lT� (��

��) lT��(��
��) lT��(��

��)
lT� (��

���) lT��(��
���) lT��(��

���)

1A0@ T 1=2( ̂ �  0)

T 1=2(�̂� �0)

T 1=2�̂

1A :

(41)
Here the asterisks indicate intermediate points between �̂ and �� ; which hence converge
to � 0 in probability.
The score functions normalized by T 1=2 and their weak limits are given by Lemma

10. Because the second derivatives are tight, see Theorem 6 and Lemma 3, and
(�� �; �� ��; �� ���)

P! (� 0; � 0; � 0) we apply Lemma 4 to replace the intermediate points
by � 0 and �nd the limit of the information per observation in Lemma 11, see (38).
Premultiplying by its inverse we �nd (39).
Proof of (40): The same proof applies and we �nd the expression for the asymptotic

variance from (77) in Lemma 24.
We remark that the asymptotic distribution is normal for the estimators of the

fractional and autoregressive parameters, whereas the asymptotic distribution of the
estimator of the unit root is non-normal and of the Dickey-Fuller type, where some of
the usual Brownian motions have been replaced by fractional Brownian motion. Simi-
lar results have been obtained previously in the literature. For instance, Tanaka (1999)
and Nielsen (2004), among others, consider likelihood based inference in the ARFIMA
model and obtain asymptotically normal distribution theory for the parameters. How-
ever, they do not allow for a unit root in the autoregressive polynomial and cannot
consider the asymptotic distribution of an estimator of a unit root. On the other hand,
Ling and Li (2001) do allow for a unit root in the autoregressive polynomial in the
ARFIMA model, and obtain results similar to ours except their functionals are in fact
functionals of Brownian motion since, in our notation, their b = b0 = 1.
Note also that the order of the fractional Brownian motion depends on the distance

between the fractional order of Xt when � = 0 (i.e. in the data generating process)
and when � 6= 0. That is, it depends on the parameter b0, but it does not depend
on the fractional order of Xt itself, d0. Finally, we remark that the estimator of � is
super-consistent in the sense that the rate of convergence is T b0 ; which is more than
root-T -consistent because b0 > 1=2.



Likelihood inference for fractional processes 23

5 The likelihood ratio test for a (fractional) unit
root

We next consider the likelihood ratio test of the unit root hypothesis � = 0, i.e. the
Dickey and Fuller (1979, 1981) test in our model, as discussed in the introduction. The
restricted pro�le likelihood for ( ; �) when � = 0 is

�2T�1 logLpro�le;T ( ; �; � = 0) = �2T�1 log max
�=0;�2

LT ( ; �; �; �
2) = 1 + log �2(~ ; ~�);

where the restricted maximum likelihood estimators, ~ and ~� when � = 0; satisfy
@
@ 
�2(~ ; ~�) = 0; @

@�
�2(~ ; ~�) = 0; and ~�2 = �2(~ ; ~�). The consistency of the estimator

(~ ; ~�) follows from the consistency of ( ̂; �̂).

Theorem 13 Under Assumption 1 the asymptotic distribution of the Gaussian log
likelihood ratio statistic for the hypothesis � = 0 is given by

�2 logLRT (� = 0)
d!
(
R 1
0
Bb0�1dB)

2R 1
0
B2
b0�1du

: (42)

Proof. Let lT (�) = �2T�1 logLT (�); and denote derivatives by subscripts. The
expansion of lT� (�̂) around � 0 gives

0 = lT� (�̂) = lT� (� 0) + l�T�� (�̂ � � 0);

where l�T�� is the matrix of second derivatives (the information per observation) with
each row evaluated at an intermediate point, see (41). The expansion of the likelihood
ratio test of a simple hypothesis gives

�2 logLRT (� = � 0)) = 2 log(LT (�̂)=LT (� 0)) = T (�̂ � � 0)
0l��T�� (�̂ � � 0)

= T lT� (� 0)
0(l�T�� )

�1l��T�� (l
�
T�� )

�1lT� (� 0) = T lT� (� 0)
0(i�T�� )

�1lT� (� 0);

say. With the notation � = (d; b; �; �2) we then get

�2 log LT (�̂; �̂)
LT (�0; 0)

= T

�
lT�(� 0)
lT�(� 0)

�0�
i�T�� i�T��
i�T�� i�T��

��1�
lT�(� 0)
lT�(� 0)

�
= T lT�(� 0)

0(i�T��)
�1lT�(� 0) + T

(lT�(� 0)� i�T��(i
�
T��)

�1lT�(� 0))
2

(i�T�� � i�T��(i
�
T��)

�1i�T��)
:

Similarly we �nd under the null hypothesis � = 0 that

�2 log LT (~�; 0)
LT (�0; 0)

= T lT�(� 0)
0(l��T��)

�1lT�(� 0) = T lT�(� 0)
0(i��T��)

�1lT�(� 0);
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so that the test for � = 0 becomes

�2 log LT (~�)
LT (�̂)

= �2 log LT (~�)=LT (� 0)
LT (�̂)=LT (� 0)

= T
(lT�(� 0)� i�T��(i

�
T��)

�1lT�(� 0))
2

(i�T�� � i�T��(i
�
T��)

�1i�T��)

+T lT�(� 0)
0[(i�T��)

�1 � (i��T��)�1]lT�(� 0):

Because lT�� is tight (see Lemma 3 and Theorem 6), �̂ and ~� are consistent, and
T 1=2lT�(� 0) converges in distribution, we �nd that

T 1=2lT�(� 0)
0[(i�T��)

�1 � (i��T��)�1]T 1=2lT�(� 0)
P! 0:

Moreover we see from (38) that i�T��(i
�
T��)

�1 P! 0; so that �2 log(LT (�̂)=LT (~�)) has the
same limit as

(T 1=2lT�(� 0))
2

iT��(� 0)

d!
(
R 1
0
Bb0�1dB)

2R 1
0
B2
b0�1du

:

The asymptotic distribution of the LR test for a (fractional) unit root is of the
Dickey-Fuller type, but with fractional Brownian motion functionals replacing the usual
Brownian motion functionals as integrand. Note that a test of the I(1) hypothesis in our
framework would entail jointly testing � = 0 and d = 1. The asymptotic distribution
of the LR test of such a joint hypothesis is readily obtained from Theorems 12 and 13
as the sum of (42) and a �2-distributed random variable with one degree of freedom.
Similar asymptotic distributions as those in our Theorem 13 are obtained by Dolado,

Gonzalo, and Mayoral (2002) and Lobato and Velasco (2006), although these authors
analyze other test statistics. On the other hand, Ling and Li (2001) obtain the usual
Dickey-Fuller distribution since their model has b = b0 = 1.

6 Conclusion

In this paper we have discussed likelihood based inference in an autoregressive model for
a nonstationary fractional process based on the lag operator Lb. The model generalizes
the usual autoregressive model in that it allows for solutions where the process is
fractional of order d or d�b; where d � b > 1=2 are parameters to be estimated. Within
this framework we have discussed model-based likelihood inference on the parameters
and on the fractional order of the process.
We model the data X1; : : : ; XT given the initial values X0

�n; n = 0; 1; : : :, under
the assumption that the errors are i.i.d. Gaussian. Our main technical tool is to
consider the likelihood and its derivatives as stochastic processes in the parameters
under the assumptions that the errors are i.i.d. with suitable moment conditions and
that the initial values are bounded. Conditioning on initial values results in the use of
the type II fractional Brownian motion for the asymptotic analysis. We apply these
results to prove that the likelihood and its derivatives converge in distribution, and
use this to discuss the existence, consistency, and asymptotic distribution of the local
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likelihood estimator, as well as the distribution of the associated likelihood ratio test
of the fractional unit root hypothesis.

A Some inequalities

For a random variable X we de�ne the norm jjXjjp = (EjXjp)1=p if EjXjp < 1 and
note the properties

jjX + Y jjp � jjXjjp + jjY jjp; jjXY jjp � jjXjj2pjjY jj2p; for p > 1: (43)

The �rst inequality states that jj � jjp is a norm (triangle inequality) and the second
follows from the Cauchy-Schwarz inequality.

Lemma 14 Let "t be i.i.d. with mean zero and �nite n�th cumulant �n("), and de�ne
Z =

P1
j=0 �j"j for some coe¢ cients �j for which

P1
j=0 �

2
j <1: Then for n = 1; 2; : : :

j�n(Z)j � j�n(")j(
1X
j=0

�2j)
n=2; (44)

jjZjjn � cnjjZjj2; (45)

where the constant cn does not depend on the coe¢ cients �j:

Proof. For n = 1, the results hold trivially because E(Z) = �1(") = 0: The character-
istic function of Z is given by �Z(�) = E(ei�Z) =

Q1
j=0 �"(��j); so that the cumulants

are

�n(Z) = (�i)nDn log �Z(0) =
1X
j=0

�nj (�i)nDn log �"(0) = �n(")
1X
j=0

�nj :

We thus show the inequality

1X
j=0

j�jjn � (
1X
j=0

�2j)
n=2; n = 2; 3; : : : ; (46)

which will complete the proof of (44). Let �rst n = 2m; and note that

(
1X
j=0

�2j)
m =

1X
j1;:::;jm

�2j1 � � � �
2
jm �

1X
j1=:::=jm

�2j1 � � � �
2
jm =

1X
j=0

�2mj :

Next let n = 2m+ 1 and apply the Cauchy-Schwarz inequality

(

1X
j=0

j�jj2m+1)2 = (
1X
j=0

j�jj�2mj )2 � (
1X
j=0

�2j)(

1X
j=0

�4mj ) � (
1X
j=0

�2j)
2m+1:
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Finally we want to prove (45). From Kendall and Stuart (1977, p. 70) we �nd a
relation between moments and cumulants,

E(Zn) =
nX

m=1

X
q

n!

q1! � � � qm!

mY
i=1

(
�pi(Z)

pi!
)qi ;

where the summation over q extends over all non-negative integers (q1; : : : ; qm) and
(p1; : : : ; pm) such that p1q1 + : : :+ pmqm = n. We then �nd

jE(Zn)j � cn

nX
m=1

X
q

mY
i=1

j�pi(Z)
pi!

jqi � cn

nX
m=1

X
q

mY
i=1

j�pi(")(
1X
j=0

�2j)
pi=2jqi

� cn(
1X
j=0

�2j)
Pm
i=1 qipi=2 = cn(

1X
j=0

�2j)
n=2 � cnE(Z

2)n=2;

which proves (45).

Lemma 15 Let Ut; Vt; Xt; Yt be processes of the form
P1

n=0 �tn"n; with �nite sixth mo-
ments and

P1
n=0 �

2
tn <1, then

jj
TX
t=1

XtUt �
TX
t=1

YtVtjj3 � c
TX
t=1

(jjXtjj2jjUt � Vtjj2 + jjVtjj2jjXt � Ytjj2); (47)

where the constant does not depend on the coe¢ cients �tn:

Proof. The inequality follows by using the properties (43) with p = 3;

jj
TX
t=1

XtUt �
TX
t=1

YtVtjj3 = jj
TX
t=1

Xt(Ut � Vt) + Vt(Xt � Yt)jj3

�
TX
t=1

jjXt(Ut � Vt)jj3 + jjVt(Xt � Yt)jj3

�
TX
t=1

(jjXtjj6jjUt � Vtjj6 + jjVtjj6jjXt � Ytjj6);

and then applying Lemma 14.

Lemma 16 We have

�(t; �; �) =
tX

j=0

j�j(�)�t�j(�)j � c

�
t�+��1; � � 0 and � � 0;

tmax(�;�)�1; � < 0 or � < 0;
(48)

�(t; �; �) = max
i;k

tX
j=max(i;k)

j�j�i(�)�j�k(�)j � c(log t)

�
t(�+��1)

+
; � � 1 and � � 1;

t�
++�+�1; � > 1 or � > 1:

(49)
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Proof. Proof of (48): For � = � = 0 we �nd �(t; 0; 0) = 1ft=0g; and for � = 0 6= �
we �nd �(t; 0; �) = j�t(�)j � ct��1; which shows (48) in case either � or � is zero. For
� 6= 0 and � 6= 0; we apply the inequality

tX
j=0

j�j(�)�t�j(�)j � c

t�1X
j=1

j��1(t� j)��1:

For � > 0 and � > 0 we normalize the product moment and �nd

t�1
t�1X
j=1

(
j

t
)��1(1� j

t
)��1 !

Z 1

0

u��1(1� u)1��du = B(�; �) as t!1;

where B(�; �) is the Beta function, which proves the �rst result in (48).
Next for � < 0 or � < 0 we assume, by symmetry and without loss of generality,

that � � � and � < 0; so thatmax(�; �) = �; and split up according to � � 1 or � < 1.
First, if � � 1 then j��1 is non-decreasing, j��1 � t��1, and

Pt�1
j=1(t � j)��1 � c; so

that
t�1X
j=1

j��1(t� j)��1 � ct��1;

Next consider (0 6=)� < 1; in which case j��1 is decreasing and (t� j)��1 is increasing
so that

t�1X
j=1

j��1(t� j)��1 � c
X
j�t=2

j��1(
t

2
)��1 + c

X
j>t=2

(
t

2
)��1(t� j)��1

� ct�
+

t��1 + ct��1 � ct��1;

where the last inequality follows because � � � and � < 0. This completes the proof
of (48).
Proof of (49): First take � � 1 and � � 1, where we use (j � i) � (j �max(i; k))

and (j � k) � (j �max(i; k)) so that
t�1X

j=max(i;k)+1

(j � i)��1(j � k)��1 �
t�1X

j=max(i;k)+1

(j �max(i; k))�+��2 � c(log t)t(�+��1)
+

:

Next let � > 1 and � > 1; then (j � i)��1 � t��1; (j � k)��1 � t��1; and
t�1X

j=max(i;k)+1

(j � i)��1(j � k)��1 � ct�+��1 � ct�
++�+�1:

Finally for � > 1 and � � 1 we use (j � i)��1 � t��1 and (j � k) � (j � max(i; k)),
and �nd

t�1X
j=max(i;k)+1

(j � i)��1(j � k)��1 � t��1
t�1X

j=max(i;k)+1

(j �max(i; k))��1

� c(log t)t�+�
+�1 � c(log t)t�

++�+�1:
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The result for � � 1 and � > 1 follows by symmetry.
Let now Dm denote derivative(s) with respect to u and/or v.

Lemma 17 For u � u0 > �1 we have

jDm�j(u)j � c(u0)(log j)
mj�j(u)j; (50)

jDmT�u�j(u)j � c(u0)T
�uj(log j

T
)m�j(u)j � c(u0)(log T )

mT�uj�j(u)j: (51)

For �1 < v0 � v < u we have

jDm�j(u)� Dm�j(v)j � c(v0)(u� v)(log j)m+1j�j(u�)j; u� 2 [v; u]; (52)

jDmT�u�j(u)� DmT�v�j(v)j � c(v0)(u� v)(log T )m+1T�u
�j�j(u�)j; u� 2 [v; u]:(53)

Proof. Proof of (50): For �j(u) = (�1)j
��u
j

�
= �(u + j)=(�(u)�(j + 1)) and  (u) =

D log �(u) we �nd for m = 1;

jD�j(u)j = j�j(u)jj (u+ j)�  (u)j = j�j(u)jj
j�1X
i=0

1

u+ i
j;

where the second equality applies the recurrence relation  (z+1)� (z) = z�1. Since
�j(u) = u(u+1) � � � (u+j�1)=j!, the i = 0 term becomes j�j(u)j=juj = j�j(u+1)=(u+j)j
so that

jD�j(u)j = j
�j(u+ 1)

(u+ j)
j+ j�j(u)jj

j�1X
i=1

1

u+ i
j � c(u0)j�j(u)j log j:

Further di¤erentiation shows the derivatives are dominated by the term c(u0)(log j)
mj�j(u)j:

Proof of (51): For m = 1 we �nd

jDT�u�j(u)j = T�uj�j(u)jj (u+ j)�  (u)� log T j (54)

= T�uj�j(u)jj
j�1X
i=0

1

u+ i
� log T j

� c(u0)T
�uj�j(u)jj log

j

T
j � c(u0)(log T )T

�uj�j(u)j:

Further di¤erentiation shows that the bound is given by (51).
Proof of (52) and (53): These results follow from the mean value theorem using

(50) and (51).

B Variation bounds

In this appendix we prove a series of lemmas containing variation bounds of the type
jjVutjj2 � c and jjVut � Vvtjj2 � c(u � v); which we shall use to verify condition (23)
in Lemma 5 for relevant processes and product moments. The �rst lemma covers
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the deterministic terms, the second the nonstationary processes, the third lemma deals
with the (asymptotically) stationary processes, and the fourth lemma concerns product
moments including both stationary and nonstationary processes.
The next lemma evaluates the in�uence of the initial values on (derivatives of) the

di¤erenced process �d+ibXt, as given by the terms

�d+ib
+ �0t = �(
0 +�b0

+F+(L))
kX
j=0

�j�
d�d0+ib
+ �d0+jb0

� Xt

and �d+ib
� Xt; see (12) and (13). A general form of such terms is G+(L)Dm��u

+ �
v
�Xt

for G+(L) = �(
0 + �b0
+F+(L)) or G+(L) = 1 and various values of u and v: We let

Dm, m = 0; 1; 2, denote derivatives with respect to the arguments u and/or v.

Lemma 18 Let G+(L)Xt =
Pt�1

n=0 gnXt�n; where
P1

n=0 jgnj < 1: The initial values
satisfy the relation

��u
+ �

v
�Xt =

1X
n=0

[
t�1X
j=0

�j(u)�n+t�j(�v)]X0
�n: (55)

If maxn�0 jX0
�nj <1 and 0 < � � v; then

j @
k+m

@uk@vm
��u
+ �

v
�Xtj � c

�
tu�v+2�;

tmax(u+�;1�v+�)�1;
u+ � � 0 and v � � � 1;
u+ � < 0 or v � � > 1:

(56)

It follows that for any positive �;

sup
v��

jDm�v
�Xtj ! 0 as t!1; (57)

max
��v�d0�1=2��

max
1�t�T

T�d0+1=2jDmT v�v
�Xtj ! 0 as T !1; (58)

sup
u�1=2��

sup
v�1=2+�

jG+(L)
@k+m

@uk@vm
��u
+ �

v
�Xtj ! 0 as t!1; (59)

sup
u�1=2+�

sup
v�1=2+�

max
1�t�T

jG+(L)
@k+m

@uk@vm
T�u+1=2��u

+ �
v
�Xtj ! 0 as T !1: (60)

Proof. Proof of (55): We �nd

��u
+ �

v
�Xt =

t�1X
j=0

�j(u)
1X

i=t�j
�i(�v)X0

t�j�i =
1X
n=0

[
t�1X
j=0

�j(u)�n+t�j(�v)]X0
�n:
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Proof of (56): We apply the inequalities jX0
�nj � c and jDm�j(u)j � c(log j)mju�1; see

(50), and �nd from (55) that

j @
k+m

@uk@vm
��u
+ �

v
�Xtj � c

1X
n=0

t�1X
j=1

(log j)k(log(n+ t� j))mju�1(n+ t� j)�v�1

� c

1X
n=0

t�1X
j=1

ju+��1(n+ t� j)�v+��1;

where we have used that maxj(log j)kj�� <1 and maxj(log j)mj�� <1:
We then use that

P1
n=0(n + t � j)�v+��1 =

P1
n=t�j n

�v+��1 � c(t � j)�v+� when
v � � � 0, so that the bound becomes c

Pt�1
j=1 j

u+��1(t � j)�v+�: The result follows if
we apply (48) of Lemma 16 with � = u+ � and � = 1� v + �:
Proof of (57): We �nd from (56) with u = 0; k = 0; and � = �=3, so that v � �;

that

jDm�v
�Xtj � c

�
t�v+2�;

tmax(�;1�v+�)�1;
v � � � 1
v � � > 1

�
� c

�
t��;
t��1;

v � � � 1;
v � � > 1;

which tends to zero uniformly in v � � and thus proves (57).
Proof of (58): For � � v � d0 � 1=2 � � we �nd, using (57), that for � = �=3; we

get

T�d0+1=2jDmT v�v
�Xtj = T�d0+1=2+vj

mX
k=0

�
m

k

�
(log T )kDm�k�v

�Xtj

� T��
mX
k=0

�
m

k

�
(log T )k sup

v��
jDm�k�v

�Xtj

� cT��
mX
k=0

�
m

k

�
(log T )k ! 0;

uniformly in v 2 [�; d0 � 1=2� �]:
Proof of (59): We de�ne � = �=3; and apply (56) to �nd that

jG+(L)
@k+m

@uk@vm
��u
+ �

v
�Xtj

�
t�1X
n=0

jgnjj
@k+m

@uk@vm
��u
+ �

v
�Xt�nj

�
t�1X
n=0

jgnjc
�

tu�v+2�;
tmax(u+�;1�v+�)�1;

u+ � � 0 and v � � � 1;
u+ � < 0 or v � � > 1:

Therefore, when u � 1=2�� and v � 1=2+�; we �nd u�v+2� � �2�+2� = �4�=3 < 0
and

max(u+ �; 1� v + �)� 1 � max(1=2� � + �; 1=2� � + �)� 1 = �1=2� 2�=3 < 0;
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so by application of the dominated convergence theorem and
P1

n=0 jgnj <1; it follows
that jG+(L) @k+m

@uk@vm
��u
+ �

v
�Xtj ! 0 as t!1 uniformly in u � 1=2�� and v � 1=2+�:

Proof of (60): We �nd

jG+(L)
@k+m

@uk@vm
T�u+1=2��u

+ �
v
�Xtj � c

t�1X
n=0

jgnjj
@k+m

@uk@vm
T�u+1=2��u

+ �
v
�Xt�nj;

where

jT 1=2[ @
k

@uk
T�u��u

+ ][
@m

@vm
�v
�Xt]j

� T 1=2�uj
kX
i=0

(�1)i
�
k

i

�
(log T )i

@k�i+m

@uk�i@vm
��u
+ �

v
�Xtj

� (log T )kT 1=2�u
kX
i=0

�
k

i

�
j @

k�i+m

@uk�i@vm
��u
+ �

v
�Xtj

� c(log T )kT 1=2�u
�

tu�v+2�;
tmax(u+�;1�v+�)�1;

v � � � 1;
v � � > 1:

by application of (56) with � = �=3. Thus, when v � � � 1 we �nd the bound

c(log T )kT 1=2�utu�v+2� � c(log T )k
�

T��;
T��+2� = T��=3;

u� v + 2� � 0
u� v + 2� > 0

�
! 0:

When v � � > 1 we �nd the bound

c(log T )kT 1=2�utmax(u+�;1�v+�)�1 � c(log T )k
�

T��;
T ��1=2;

max(u+ �; 1� v + �) � 1
max(u+ �; 1� v + �) > 1

�
! 0

because

1=2� u+max(u+ �; 1� v+ �)� 1 = �1=2+ �+max(0; 1� v� u) = �1=2+ �=3 < 0:

Lemma 19 Let Zt =
P1

n=0 �n"t�n be a stationary linear process with �nite variance
and

P1
n=0 j�nj < 1; and de�ne �Z(h) = �2

P1
n=0 j�njj�n+hj and Z+t =

Pt�1
n=0 �n"t�n.

For v0 > 1=2 and m = 0; 1; 2 it holds that

jjDmT�u+1=2��u
+ Z+t jj2 � c(v0); (61)

jjDmT�u+1=2��u
+ Z+t � DmT�v+1=2��v

+ Z+t jj2 � c(v0)(u� v); (62)

uniformly in u > v � v0:
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Proof. We �rst note the evaluation

jCov(Z+t ; Z+t+h)j = �2j
t�1�jhjX
n=0

�n�n+jhjj � �Z(h);

so that

V ar(DmT�u+1=2��u
+ Z+t ) = V ar(

t�1X
i=0

DmT�u+1=2�i(u)Z
+
t�i)

�
t�1X
i=0

t�1X
j=0

jDmT�u+1=2�i(u)jjDmT�u+1=2�j(u)j�Z(i� j):

We apply the inequality (51) and �nd

V ar(DmT�u+1=2��u
+ Z+t )

� c
t�1X
i=1

t�1X
j=1

jT�u+1=2�i(u) log(
i

T
)mjjT�u+1=2�j(u) log(

j

T
)mj�Z(i� j)

� cT�2u+1
t�1X
h=0

�Z(h)
t�1�hX
j=1

(j + h)u�1ju�1j log(j + h

T
)jmj log( j

T
)jm:

Now we evaluate (j + h)u�1 � ju�1 if u < 1 and (j + h)u�1 � (j + T )u�1 if u � 1;
that is

(j + h)u�1 � (j + T1fu�1g)
u�1:

Then we �nd, because
P1

h=0 �Z(h) <1, that

V ar(DmT�u+1=2��u
+ Zt) � cT�1

T�1�hX
j=1

(
j

T
+ 1fu�1g)

u�1(
j

T
)u�1j log(j + T

T
)jmj log( j

T
)jm

! c

Z 1

0

(x+ 1fu�1g)
u�1xu�1j log(x+ 1)jmj log xjmdx;

which is integrable uniformly in u � v0 > 1=2 because xu�1j log xjm is integrable when
u > 0.
To prove (62), we apply the inequality (52) and then use the same proof.

Lemma 20 Let Zt =
P1

n=0 �n"t�n be a stationary linear process with �nite variance
and

P1
n=0 j�nj < 1, and de�ne �Z(h) = �2

P1
n=0 j�njj�n+hj and Z+t =

Pt�1
n=0 �n"t�n.

For u0 < 1=2 and m = 0; 1; 2 it holds that

jjDm��u
+ Z+t jj2 � c(u0); (63)

jjDm��u
+ Z+t � Dm��v

+ Z+t jj2 � c(u0)(u� v); (64)

uniformly in v < u � u0.
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Proof. We prove the results for m = 0. The results for the derivatives follow in
the same way, using the evaluation (50). We �nd as in the proof of Lemma 19 the
inequality

V ar(��u
+ Z+t ) � c

t�1X
h=0

�Z (h)

t�1�jhjX
j=1

ju�1(j + jhj)u�1 � c

t�1X
j=1

j2u0�2 � c(u0);

when u0 < 1=2, which gives (63) because
P1

h=0 �Z(h) <1. For V ar((��u
+ ���v

+ )Z
+
t )

we apply the inequality (52), and then use the same proof.

Lemma 21 Let Zt =
P1

n=0 �n"t�n be a stationary linear process with �nite variance
and

P1
n=0 j�nj < 1, and de�ne �Z(h) = �2

P1
n=0 j�njj�n+hj and Z+t =

Pt�1
n=0 �n"t�n.

Then for v < 1=2 < u we have

T�u�1=2
TX
t=1

��u
+ Z+t �

�v
+ Z+t

P! 0:

Proof. We show convergence in mean square. Let

IT =
TX
t=1

��u
+ Z+t �

�v
+ Z+t =

TX
t=1

t�1X
i=0

t�1X
j=0

�i(u)�j(v)Z
+
t�iZ

+
t�j:

The second moment of IT is

V = E(I2T ) =
TX
t=1

tX
i=1

tX
j=1

�t�i(u)�t�j(v)
TX
s=1

sX
k=1

sX
l=1

�s�k(u)�s�l(v)E(Z
+
i Z

+
k Z

+
j Z

+
l )

�
TX
i=1

TX
j=1

TX
t=max(i;j)

�t�i(u)�t�j(v)
TX
k=1

TX
l=1

TX
s=max(k;l)

�s�k(u)�s�l(v)E(Z
+
i Z

+
k Z

+
j Z

+
l )

� �(T; u; v)2
TX
i=1

TX
j=1

TX
k=1

TX
l=1

jE(Z+i Z+k Z+j Z+l )j;

see Lemma 16 for the de�nition of �(T; u; v): We want to prove that T�2u�1V ! 0 as
T !1:
Now,

E(Z+i Z
+
k Z

+
j Z

+
l ) � �40(�Z(i� k)�Z(j � l) + �Z(i� j)�Z(k � l) + �Z(i� l)�Z(j � k))

+�4(")

1X
n=0

�i�n�k�n�j�n�l�n;

see Anderson (1971, p. 467) for the case of stationary processes. Summing over 1 �
(i; j; k; l) � T we �nd the bound

cT 2�40(
1X
h=0

j�Z(h)j)2 + cT j�4(")j(
1X
n=0

j�nj)4 � cT 2(
1X
n=0

j�nj)4:
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Thus we �nd from (49) in Lemma 16 that

T�2u�1V � cT�2u+1�(T; u; v)2 � c(log T )

�
T (u+v�1)

+�2u+1; u � 1 and v � 1;
T v

+�u; u > 1 or v > 1;

which tends to zero because v < 1=2 < u implies that v+ � u < 0 and

(u+ v � 1)+ + 1� 2u =
�

v � u < 0; u+ v � 1 � 0;
1� 2u < 0; u+ v � 1 < 0:

C Proof of Theorem 6

The derivatives of the likelihood function with respect to the various parameters are
functions of (AT ( );BT ( ); CT ( )); see (15), (16), and (17), and their derivatives with
respect to d and b; which again are functions of the normalized product moments of the
processes�d+ibXt; i = �1; 0; : : : ; k; and their derivatives, and we discuss the properties
of these processes below.
We prove tightness by showing that Lemma 5 is satis�ed for the product moments

entering AT ; BT ; and CT and their derivatives, using conditions (23) and (25). Then
we derive the limits of each of the product moments AT ; BT ; and CT and the relevant
derivatives.

C.1 Tightness of product moments

Lemma 22 Under Assumption 1 for model (5) the product moments AT ( ); BT ( );
CT ( ), and their derivatives are tight on C(N1), where the compact set N1 is de�ned
as

N1 = f(b; d) : d1 � d � d2; b � 1=2 + �; � � d� b � d0 � 1=2� �g;
with d1 = max(1=2; d0 � 1=2) + �, d2 > d0, and 0 < � < min(1=2; b0 � 1=2; d0 � b0).
Under Assumption 2 for model (2) the product moments AT (d); BT (d); CT (d), and

their derivatives are tight on C(I1), where I1 = [d1; d2] with d1 = max(1=2; d0�1=2)+�,
d2 > d0, and 0 < � < min(1=2; d0 � 1=2).

Proof. We give the proof for model (5) only. The same proof can be applied for model
(2). For �d+ibXt; i = 0; 1; : : : ; k; we have the representation, see (12),

�d+ibXt = �
d+ib�d0
+ (
0"t +�

b0
+Y

+
t ) + �

d+ib
+ �0t +�

d+ib
� Xt; i = �1; 0; 1; : : : ; k: (65)

For i = 0; 1; : : : ; k and (b; d) 2 N1; condition (23) holds for the processDm�d+ib�d0
+ (
0"t+

�b0
+Y

+
t ) by (63) and (64) of Lemma 20 with u = �d� ib+ d0 � d0 � d � 1=2� � and

Z+t = 
0"t +�
b0
+Y

+
t =

Pt�1
n=0 �n"t�n which satis�es

P1
h=0 j�nj <1, see Lemma 1.
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We next show that the deterministic parts of the process, �d+ib
+ �0t and �

d+ib
� Xt;

satisfy condition (25). We �nd

max
(b;d)2N1

jDm�d+ib
+ �0t j = max

d1�d+ib�(1+k)d2
j(
0 +�b0

+F+(L))
kX
j=0

�jD
m�d+ib�d0

+ �d0+jb0
� Xtj;

(66)
which tends to zero by applying (59) with the choices G+(L) = (
0 + �

b0
+F+(L))�j;

u = �d � ib + d0 � �d + d0 � 1=2 � �; and v = d0 + jb0 � d0 > d1 � 1=2 + � for
j = 0; : : : ; k (noting that (d0; b0) is an interior point in N1 and therefore d0 > d1). Next
we have

max
d1�d+ib�(1+k)d2

jDm�d+ib
� Xtj;

which tends to zero by (57) with the choice v = d+ ib � d � d1 � 1=2 + �:
For i = �1 we apply Lemma 5 for the process DmT d�b�d0+1=2�d�bXt; see (65), and

verify conditions (23) and (25). Condition (23) holds for T d�b�d0+1=2�d�b�d0
+ (
0"t +

�b0
+Y

+
t ) and its derivatives by Lemma 19 with Z

+
t = 
0"t+�

b0
+Y

+
t and u = d0�d+b �

1=2 + �.
For the deterministic part we show condition (25). From (66) we see that the �rst

term, DmT d�b�d0+1=2�d�b
+ �0t , is composed of terms of the form

(
0 +�
b0
+F+(L))D

mT d�b�d0+1=2�d�b�d0
+ �d0+jb0

� Xt;

which are investigated in (60). We take G+(L) = 
0 + �
b0
+F+(L); u = �d + b + d0 �

1=2 + �; and v = d0 + jb0 � d0 > d1 � 1=2 + �; and �nd that condition (25) is
satis�ed. For the term DmT d�b�d0+1=2�d�b

� Xt we apply (58) with v = d � b which
satis�es � � v � d0 � 1=2� �:

C.2 The product moment BT
These product moments, see (16), involve the processes �dLibXt; i = 0; 1; : : : ; k; which
are linear combinations of the processes �d+ibXt; i = 0; 1; : : : ; k; for which we have the
representation, see (65),

�d+ibXt = S+it +D1it; i = 0; 1; : : : ; k; (67)

S+it = �d+ib�d0
+ (
0"t +�

b0
+Y

+
t );

D1it = �d+ib
+ �0t +�

d+ib
� Xt

where S+it is asymptotically stationary. In the next lemma, let D
m denote derivatives

with respect to  = (d; b)0:

Lemma 23 Under Assumption 1 for model (5) the representation (67) implies that

max
d1�d+ib�(k+1)d2

jDmD1itj ! 0 as t!1; (68)

DmBijT ( ) = T�1Dm
TX
t=1

�d+ibXt�
d+jbXt

P! DmBij( ) as T !1; (69)
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when (d; b) 2 N1. If Assumption 2 holds for model (2) then the same conclusions hold
with d = b and d 2 I1.

Proof. Proof of (68): From Lemma 18 we see that we can apply (57) with v = d+ib �
d � d1 � 1=2 + � to show that maxd1�d+ib�(k+1)d2 jDm�d+ib

� Xtj � supv�� jDm�v
�Xtj !

0; and (59) with u = d0 � d� ib � 1=2� � and v = d0 + jb0 � d0 > d1 � 1=2 + � for
j = 0; : : : ; k to show that

max
d1�d+ib�(k+1)d2

j�d+ib
+ �0t j � sup

u�1=2��
sup

v�1=2+�
j(
0 +�b0

+F+(L))

kX
j=0

�j�
�u
+ �

v
�Xtj ! 0:

Proof of (69): The process S+it =
Pt�1

n=0 � in"t�n is asymptotically stationary in
the sense that V ar(S�it ) = V ar(

P1
n=t � in"t�n) = �20

P1
n=t �

2
in ! 0 as t ! 1: Let

Sit =
P1

n=0 � in"t�n: From the law of large numbers we �nd

T�1
TX
t=1

SitSjt
P! E(SitSjt):

It follows from S+it = Sit�S�it that also T�1
PT

t=1 S
+
itS

+
jt

P! E(SitSjt); if T�1
PT

t=1(S
�
it )

2 P!
0: But this is a consequence of

E(T�1
TX
t=1

(S�it )
2) = T�1

TX
t=1

(
1X
n=t

� 2in)! 0:

The result (69) now follows from (68) using (67). The derivatives give rise to an extra
factor (log T )m which does not change the results, see (51).
The results of Lemma 23 hold jointly for �nitely many values of  in N1 and we

have shown tightness in Lemma 22, which proves (27) in Theorem 6.

C.3 Some moment relations for B( )
In this subsection we denote by D the 2 + k vector of derivatives with respect to the
parameters  and �: Similarly D2 is the matrix of second derivatives. We de�ne

"t( ; �) = �dXt �
kX
i=1

�i�
dLibXt; (70)

�2( ; �) = lim
t!1

E("t( ; �)
2) = B00( )� 2�0B�0( ) + �0B��( )�; (71)

see (69), and the (2+k)� (2+k) positive semide�nite matrix which enters the asymp-
totic distribution of the estimators  ̂ and �̂ :

�( ; �) =

�
�00( ; �) �0�( ; �)
��0( ; �) ���( ; �)

�
= lim

t!1
E (D"t( ; �)D"t( ; �)

0) : (72)
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Lemma 24 Under Assumption 1 we �nd for model (5) that the following identities
hold

�0 = B�1�� ( 0)B�0( 0); (73)

�20 = B00( 0)� 2�00B�0( 0) + �00B��( 0)�0; (74)

D�2( 0; �0) = 0; (75)

D2�2( 0; �0) = 2�( 0; �0) > 0; �0 6= 0: (76)

It follows that for �0 6= 0; �2( ; �) is strictly convex in a neighborhood of ( 0; �0) with
a minimum at ( 0; �0).
Under Assumption 2 we �nd for model (2) that

D2�2(d; �)jd=d0;�=�0 = 2M
0�( 0; �0)M > 0; (77)

where D denotes derivatives with respect to (d; �0)0 and M 0 =

�
1 1 0
0 0 Ik

�
:

Proof. From equation (5) we �nd when (d; b; �; �; �2) = (d0; b0; �0; 0; �
2
0) that

�d0Xt =
kX
i=1

�0i�
d0Lib0Xt + "t: (78)

It follows in the same way as in (68) above, using Lemma 18, that the initial values have
no in�uence on the calculation of the matrices B( 0) and �( 0; �0), and we therefore
calculate them from the stationary processes �d0Xt = 
0"t +�

b0Yt and its derivatives
Dm�d0Xt:Multiplying (78) by the stationary process �d0Ljb0Xt and taking expectation
we �nd

B0j( 0) =
kX
i=1

�0iBij( 0);

which proves (73). Taking the variance in (78) we �nd (74).
From (70) and (78) it is seen that "t( 0; �0) = "t and that the coe¢ cient to "t

in "t( ; �) is one so that D"t( ; �) only contains lagged "t. We let Et�1 denote the
conditional expectation given the past, Ft�1 = �fX0

�n; n � 0; "s; 1 � s � t� 1g, and
�nd

Et�1("tD"t( 0; �0)) = 0; Et�1("tD
2"t( 0; �0)) = 0; (79)

showing that "tD"t( 0; �0) and "tD
2"t( 0; �0) are martingale di¤erence sequences.

To prove (75) we di¤erentiate (71) and �nd

D�2( 0; �0) = 2 lim
t!1

E("tD"t( 0; �0)) = 0;

using (79). To prove (76) we di¤erentiate (71) twice and �nd, for ( ; �) = ( 0; �0) and
using (79), that

D2�2( 0; �0) = 2 lim
t!1

E(D"t( 0; �0)D"t( 0; �0)
0) = 2�( 0; �0):
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We next want to show that �( 0; �0) is positive de�nite unless �
0
0 = (0; 0; : : : ; 0):

The process �d0Xt = Zt; see (78), has transfer function

fZ(z) = �20=(1�
kX
i=1

�0i(1� (1� z)b0)i);

and

"t( ; �) = �
dXt �

kX
i=1

�i�
dLibXt = (1�

kX
i=1

�iL
i
b)�

d�d0Zt

is stationary for d close to d0 with transfer function

f"(z) = �20(1� z)d�d0(1�
kX
i=1

�i(1� (1� z)b)i)=(1�
kX
i=1

�0i(1� (1� z)b0)i):

Let ��(u) = 1 �
Pk

i=1 �0iu
i; _��(u) = �

Pk
i=1 i�0iu

i�1; and u = 1 � (1 � z)b0 : The
transfer function for the derivatives are

@

@d
f"(z)j = 0;�=�0 = �20b

�1
0 log(1� u);

@

@b
f"(z)j = 0;�=�0 = ��20b�10 (1� u) log(1� u) _��(u)=��(u);

@

@�i
f"(z)j = 0;�=�0 = ��20ui=��(u):

If�( 0; �0) = E(D"t( 0; �0)D"t( 0; �0)
0) is singular then there are constants �; �; 
1; : : : ; 
k;

so that

�
@

@d
"t( ; �)j = 0;�=�0 + �

@

@b
"t( ; �)j = 0;�=�0 +

kX
i=1


i
@

@�i
"t( ; �)j = 0;�=�0 = 0:

The three derivatives are stationary linear processes, which are linearly dependent if
and only if their transfer functions are linearly dependent. That is, the asymptotic
variance matrix is singular if

�

b0
log(1� u) +

�

b0
(1� u) log(1� u) _��(u)=��(u) +

kX
i=1


iu
i=��(u) = 0 for all u;

or

log(1� u)(���(u) + �(1� u) _��(u)) + b0

kX
i=1


iu
i = 0 for all u:

The last term is a polynomial and the �rst is not, so this implies that 
i = 0 for all i;
and that

���(u) + �(1� u) _��(u) = 0 for all u:
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Setting u = 1; we �nd that ���(1) = �(1�
Pk

i=1 �0i) = 0; so that � = 0; and hence

�(1� u) _��(u) = 0 for all u:

This implies that either � = 0; in which case we have proved linear independence, or
that

_��(u) = 0 for all u;

which means that ��(u) = 1; and hence �00 = (0; 0; : : : ; 0).
Finally we �nd (77) from the relation

@2

@d2
�2(d; �) =

@2

@d2
�2(b; d; �) +

@2

@b2
�2(b; d; �) + 2

@2

@b@d
�2(b; d; �)

for b = d = d0; and � = �0:

C.4 The product moment AT
The product moment AT ; see (15), is

AT ( ) = T�1
TX
t=1

(T d�b�d0+1=2�d�bLbXt)
2

and involves the process �d�bLbXt = �d�bXt � �dXt: Using the result for B00T in
Lemma 23 we �nd that T�2(d0�d+b)

PT
t=1(�

dXt)
2 =) 0; when (d; b) 2 N1 because

�2(d0 � d+ b) � �1� 2� < �1: We therefore only consider the sum of squares of the
process

T d�b�d0+1=2�d�bXt = N+
t +M+

t +D2t; (80)

N+
t = T d�b�d0+1=2
0�

d�b�d0
+ "t;

M+
t = T d�b�d0+1=2�d�b�d0

+ �b0
+Y

+
t ;

D2t = T d�b�d0+1=2�d�b
+ �0t + T d�b�d0+1=2�d�b

� Xt:

We �rst show that T d�b�d0+1=2�d�bX[Tu] converges in distribution on D[0; 1] and
then show that the product moment AT ( ) converges in distribution on C(N1):

Lemma 25 Under Assumption 1 for model (5) we �nd that, as T !1;

max
1�t�T

jD2tj ! 0; (81)

max
1�t�T

jM+
t j

P! 0; (82)

N+
[Tu] =) 
0Wd0�d+b�1(u); (83)

from which it follows that

T d�b�d0+1=2�d�bX[Tu] =) 
0Wd0�d+b�1(u) on D[0; 1]

for �xed (d; b) 2 N1. If Assumption 2 holds for model (2) then the same conclusions
hold with d = b and d 2 I1.
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Proof. Proof of (81): We apply Lemma 18. We �nd that the convergence of the term
max1�t�T T

d�b�d0+1=2j�d�b�0t j ! 0 follows from (60) with G+(L) = 
0 + �
b0
+F+(L);

u = �d + b + d0 � 1=2 + �; and v = d0 + jb0 � d0 > d1 � 1=2 + � for j = 0; : : : ; k.
From (58) with v = d� b � � it follows that max1�t�T T d�b�d0+1=2j�d�b

� Xtj ! 0.
Proof of (82): We �nd

max
1�t�T

j��(d0�d+b)
+ �b0

+Y
+
t j � max

1�t�T

t�1X
j=0

j�j(d0 � d+ b)jj�b0
+Y

+
t�jj

� c max
1�t�T

j�b0
+Y

+
t j

TX
j=1

jd0�d+b�1 � cT d0�d+b max
1�t�T

j�b0
+Y

+
t j:

Then

P ( max
1�t�T

jMtj � c) � P ( max
1�t�T

j�b0
+Y

+
t j � T�1=2c)

�
TX
t=1

P (j�b0
+Y

+
t j � T�1=2c) � T

Ej�b0
+Y

+
t j4

T 2c4
:

Now

Ej�b0
+Y

+
t j4 � c(

t�1X
n=0

� 2n)
2 � c;

which proves (82).
Proof of (83): For the nonstationary process N[Tu] = 
0�

�(d0�d+b)
+ "[Tu] we can apply

(7) and �nd the main result

T�(d0�d+b)+1=2
0�
�(d0�d+b)
+ "[Tu] =) 
0Wd0�d+b�1(u):

Lemma 26 Under Assumption 1 for model (5) we �nd that for each �xed  2 N1 it
holds that

AT ( ) = T�2(d0�d+b)
TX
t=1

(�d�bLbXt)
2 d! 
20

Z 1

0

W 2
d0�d+b�1du:

If Assumption 2 holds for model (2) then the same result holds with d = b and d 2 I1.

Proof. This follows from Lemma 25 and the continuous mapping theorem, see (8).
Finally we want to prove the result (26) in Theorem 6. For a �nite number of

values  1; : : : ;  m in N1; we get joint convergence from Lemma 26, and we have shown
tightness in Lemma 22. Thus we have proved (26) in Theorem 6.
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C.5 The product moment CT
We �nd, for i = 0; 1; : : : ; k; the product moment CiT ( ); see (17) and (16),

CiT ( ) = T�1
TX
t=1

(T�(d0�d+b)+1=2�d�bXt)(�
dLibXt)� T�1=2�(d0�d+b)B0iT ( ):

Lemma 27 Under Assumption 1 for model (5) we �nd that for each �xed  2 N1 we
have

DmCiT ( )
P! 0; i = 0; 1; : : : ; k:

If Assumption 2 holds for model (2) then the same result holds with d = b and d 2 I1.

Proof. From (27) we �nd that DmT�1=2�(d0�d+b)B0iT ( ) =) 0; so we only need to
prove that

DmT�1
TX
t=1

(T�(d0�d+b)+1=2�d�bXt)(�
d+ibXt)

P! 0:

For i = 0; 1; : : : ; k we decompose the processes as

�d+ibXt = S+it +D1it; (84)

T d�b�d0+1=2�d�bXt = N+
t +M+

t +D2t;

see (67) and (80). For now let m = 0. We consider the product moment

T�1
TX
t=1

(N+
t +M+

t +D2t)(S
+
it +D1it):

Let Z+t = 
0"t +�
b0
+Y

+
t ; then

(N+
t +M+

t )S
+
it = T�(d0�d+b)+1=2(�

�(d0�d+b)
+ Z+t )(�

d+ib�d0
+ Z+t ):

We apply Lemma 21 with v = �(d+ib�d0) � �(d�d0) � 1=2��; and u = d0�d+b �
1=2 + �, and �nd that

T�1
TX
t=1

(N+
t +M+

t )S
+
it

P! 0:

The remaining product moments of the form T�1
PT

t=1AtBt are evaluated using
the Cauchy-Schwarz inequality,

jT�1
TX
t=1

AtBtj2 � (T�1
TX
t=1

A2t )(T
�1

TX
t=1

B2
t );

so that it is enough to show that jjAtjj2 ! 0; which gives T�1
PT

t=1A
2
t
P! 0; and that

T�1
PT

t=1B
2
t is bounded in probability. It is therefore enough to show that jjN+

t +M
+
t jj2

and jjS+it jj2 are bounded and that T�1
PT

t=1D
2
1it ! 0 and T�1

PT
t=1D

2
2t ! 0:
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The result for N+
t +M

+
t follows from (61) with u = b� d+ d0 � 1=2+ � and Z+t =


0"t+�
b0
+Y

+
t , and for S

+
it it comes from (63) with u = �d� ib+d0 � d0�d � 1=2��:

The result for D1it follows from (68) and the result for D2t from (81).
Finally, consider the derivatives Dm with respect to (d; b): We have from (51) that

it only amounts to an extra factor (log T )m; which does not change the proof.
We can now prove the result in Theorem 6 on CT ( ). Finite-dimensional conver-

gence is obtained from Lemma 27. Tightness was proved in Lemma 22 and that proves
(28) in Theorem 6.

C.6 The product moment C0"T
Finally we investigate (for model (5) only, since the same proof can be applied for
model (2)) T 1=2C0"T ( 0) = T�b0

PT
t=1(�

d0�b0Lb0Xt)"t; where

�d0�b0Lb0Xt = �d0�b0Xt ��d0Xt = 
0(�
�b0
+ "t � "t) + Y +

t ��b0
+Y

+
t

+�d0�b0
+ �0t ��d0

+ �
0
t +�

d0�b0
� Xt ��d0

�Xt;

see (65). We decompose C0"T as

T�b0
TX
t=1


0(�
�b0
+ "t � "t)"t + T�b0

TX
t=1

(Y +
t ��b0

+Y
+
t )"t (85)

+T�b0
TX
t=1

(�d0�b0
+ �0t ��d0

+ �
0
t +�

d0�b0
� Xt ��d0

�Xt)"t: (86)

For the last term we �nd

T�b0
TX
t=1

((�d0�b0
+ �0t ��d0

+ �
0
t +�

d0�b0
� Xt ��d0

�Xt)"t
P! 0;

because the expectation is zero and

T�2b0
TX
t=1

(�d0�b0
+ �0t +�

d0�b0
� Xt)

2 = T�1
TX
t=1

D2
2tjd=d0;b=b0 ! 0

T�2b0
TX
t=1

(�d0
+ �

0
t +�

d0
�Xt)

2 = T�1
TX
t=1

D2
1itjd=d0;b=b0;i=0 ! 0

by (81) and (68).
The second term of (85) is

T�b0
TX
t=1

(Y +
t ��b0

+Y
+
t )"t = �T�b0

TX
t=1

t�1X
j=1

�j(�b0)Yt�j"t:
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Because (Y +
t ��b0

+Y
+
t )"t =

Pt�1
j=1 �j(�b0)Yt�j"t is a martingale di¤erence sequence we

�nd

V ar(T�b0
TX
t=1

(Y +
t ��b0

+Y
+
t )"t) = �2T�2b0

TX
t=1

V ar(Y +
t ��b0

+Y
+
t ) � cT 1�2b0 ! 0:

Finally, the �rst term of (85) is compared with a product moment for which we have
the convergence in (29), namely

T�b0
TX
t=1


0"t�
�b0
+ "t�1

d! �20
0

Z 1

0

Bb0�1dB;

see Jakubowski, Mémin, and Pages (1989). We therefore show that the di¤erence tends
to zero. We �nd

PT
t=1 "t(�

�b0
+ "t�1�(��b0

+ "t�"t)) =
PT

t=1 "t("t��
�b0+1
+ "t); with mean

zero and variance

V ar(
TX
t=1

"t("t ���b0+1
+ "t)) = �40

TX
t=1

t�1X
j=1

�2j(b0 � 1) � c
TX
t=1

t�1X
j=1

j2(b0�2) � cT 2(b0�3=2)
++1:

Hence V ar(T�b0
PT

t=1 "t(�
�b0
+ "t�1 � (��b0

+ "t � "t))) � cT 2(b0�3=2)
++1�2b0 ! 0; which

proves (29) of Theorem 6.

References

1. Akonom, J. and Gourieroux, C. (1987). A functional central limit theorem for
fractional processes. Technical report 8801, CEPREMAP, Paris.

2. Anderson, T. W. (1971). The Statistical Analysis of Time Series, Wiley, New
York.

3. Andrews, D. W. K. (1992). Generic uniform convergence. Econometric Theory
8, pp. 241�257.

4. Artin, E. (1964). The Gamma Function, Springer, New York.

5. Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

6. Chan, N. H. and Terrin, N. (1995). Inference for unstable long-memory processes
with applications to fractional unit root autoregressions. Annals of Statistics 23,
pp. 1662�1683.

7. Davydov , Yu. A. (1970) The invariance principle for stationary processes. The-
ory of Probability and its Applications 15, pp. 487�498.



Likelihood inference for fractional processes 44

8. Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for au-
toregressive time series with a unit root. Journal of the American Statistical
Association 74, pp. 427�431.

9. Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autoregres-
sive time series with a unit root. Econometrica 49, pp. 1057�1072.

10. Dolado, J. J., Gonzalo, J., and Mayoral, L. (2002). A fractional Dickey-Fuller
test for unit roots. Econometrica 70, pp. 1963�2006.

11. Granger, C. W. J. and Joyeux, J. (1980). An introduction to long memory time
series mode ls and fractional di¤erencing. Journal of Time Series Analysis 1, pp.
15�29.

12. Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Application,
Academic Press, New York.

13. Hosking, J. R. M. (1981). Fractional di¤erencing. Biometrika 68, pp. 165�176.

14. Hualde, J. and Robinson, P. M. (2005). Gaussian pseudo-maximum likelihood
estimation of fractional time series models. Working paper, University of Navarra.

15. Jakubowski, A., Mémin, J., and Pages, G. (1989). Convergence en loi des suites
d�intégrales stochastiques sur l�espace D1 de Skorokhod. Probability Theory and
Related Fields 81, pp. 111�137.

16. Johansen, S. (2007). A representation theory for a class of vector autoregressive
models for fractional processes. To appear in Econometric Theory.

17. Kallenberg, O. (2001). Foundations of Modern Probability Theory, 2nd edition,
Springer, New York.

18. Kendall, M. G. and Stuart, A. (1977). The Advanced Theory of Statistics, Vol.
I, 4th ed., Charles Gri¢ n, London.

19. Ling, S. and Li, W. K. (2001). Asymptotic inference for nonstationary fraction-
ally integrated autoregressive moving-average models. Econometric Theory 17,
pp. 738�764.

20. Lobato, I. N. and Velasco, C. (2006). E¢ cient Wald tests for fractional unit
roots. Econometrica 75, pp. 575�589.

21. Marinucci, D. and Robinson, P. M. (2000). Weak convergence of multivariate
fractional processes. Stochastic Processes and their Applications 86, pp. 103�
120.

22. Newey, W. K. (1991). Uniform convergence in probability and stochastic equicon-
tinuity. Econometrica 59, pp. 1161�1167.



Likelihood inference for fractional processes 45

23. Nielsen, M. Ø. (2004). E¢ cient likelihood inference in nonstationary univariate
models. Econometric Theory 20, pp. 116�146.

24. Phillips, P. C. B. (1987). Time series regression with a unit root. Econometrica
55, pp. 277�301.

25. Robinson, P. M. (1991). Testing for strong serial correlation and dynamic con-
ditional heteroskedasticity in multiple regressions. Journal of Econometrics 47,
pp. 67�84.

26. Robinson, P. M. (1994). E¢ cient tests of nonstationary hypotheses. Journal of
the American Statistical Association 89, pp. 1420�1437.

27. Sowell, F. B. (1990). The fractional unit root distribution. Econometrica 58, pp.
495�505.

28. Tanaka, K. (1999). The nonstationary fractional unit root. Econometric Theory
15, pp. 549�582.

29. Zygmund, A. (2003). Trigonometric Series, Vol. I and II, 3rd rev. ed., Cambridge
University Press, Cambridge.



Research Papers 
2007  
 

 

2007-21 Torben G. Andersen, Tim Bollerslev, Per Houmann Frederiksen and 
Morten Ørregaard Nielsen: Continuous-Time Models, Realized 
Volatilities, and Testable Distributional Implications for Daily Stock 
Returns 

2007-22 Tim Bollerslev, Uta Kretschmer, Christian Pigorsch and George 
Tauchen: A Discrete-Time Model for Daily S&P500 Returns and 
Realized Variations: Jumps and Leverage Effects 

2007-23 Olaf Posch: Structural estimation of jump-diffusion processes in 
macroeconomics 

2007-24 Torben G. Andersen and Oleg Bondarenko: Construction and 
Interpretation of Model-Free Implied Volatility 

2007-25 Torben G. Andersen and Luca Benzoni: Do Bonds Span Volatility Risk 
in the U.S. Treasury Market? A Specification Test for Affine Term 
Structure Models 

2007-26: Mark Podolskij and Daniel Ziggel: A Range-Based Test for the 
Parametric Form of the Volatility in Diffusion Models 

2007-27: Mark Podolskij and Mathias Vetter: Estimation of Volatility 
Functionals in the Simultaneous Presence of Microstructure Noise and 
Jump 

2007-28: Julie Lyng Forman and Michael Sørensen: The Pearson diffusions: A 
class of statistically tractable diffusion processes 

2007-29 Niels Haldrup, Frank S. Nielsen and Morten Ørregaard Nielsen: A 
Vector Autoregressive Model for Electricity Prices Subject to Long 
Memory and Regime Switching 

2007-30 Bent Jesper Christensen, Thomas Elgaard Jensen and Rune Mølgaard: 
Market Power in Power Markets: Evidence from Forward Prices of 
Electricity 

2007-31 Tom Engsted,  Stuart Hyde and Stig V. Møller: Habit Formation, 
Surplus Consumption and Return Predictability: International 
Evidence 

2007-32 Søren Johansen: Some identification problems in the cointegrated 
vector autoregressive model 

2007-33 Søren Johansen and Morten Ørregaard Nielsen: Likelihood inference 
for a nonstationary fractional autoregressive model 

 


