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Abstract

This paper discusses model based inference in an autoregressive model for
fractional processes based on the Gaussian likelihood. The model allows for the
process to be fractional of order d or d — b, where d > b > 1/2 are parameters to
be estimated.

We model the data Xi,..., X7 given the initial values X°,, n = 0,1,...,
under the assumption that the errors are i.i.d. Gaussian. We consider the like-
lihood and its derivatives as stochastic processes in the parameters, and prove
that they converge in distribution when the errors are i.i.d. with suitable moment
conditions and the initial values are bounded. We use this to prove existence and
consistency of the local likelihood estimator, and to find the asymptotic distrib-
ution of the estimators and the likelihood ratio test of the associated fractional

unit root hypothesis, which contains the fractional Brownian motion of type II.
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1 Introduction and motivation

We consider the univariate time series X;, t = ..., —1,0,1,...,7T, and model Xy, ..., X
conditional on the initial values X°  n = 0,1,..., by the fractional autoregressive
model

a(Lq) X; = &4, (1)

where ¢, is i.i.d. (0,0?), a(z) is a (k + 1)’th order polynomial, and we have introduced
the lag operator Ly = 1 — A% (when d = 1 we have the usual lag operator L; = L).
We rewrite the model as

k
A'Xy = mLaXy+ ) GALIX, +ey, t=1,...,T, (2)

i=1

where, in particular, 7 = —a(1). The parameters (7, ¢y, ..., ®;,d,c?) are unrestricted
except 02 > 0. In the simplest case with £ = 0 the model is

A'X, =7mLgXy+e, t=1,...,T, (3)

which we shall consider separately in some of our results. We analyze the conditional
likelihood function for (Xi,..., X7) given the initial values X° , n = 0,1,..., under
the assumption that ¢; is i.i.d. N(0,0?). For the asymptotic analysis we assume that
g; is i.i.d. with suitable moment conditions and that X°  is bounded.

For given values of the parameters, the process X; is determined by (2) as a function
of parameters, initial values, and errors ¢;, ¢ = 1,...,t, but the properties of X; depend
on the properties of the characteristic function associated with (2),

k

m(z) =(1-2)"—7(1-(1-2)) =Y ¢(1-2)"(1-(1-2)" =a(l-(1-2)". (4)

i=1

This is most easily analyzed by the substitution y = 1 — (1 — 2)¢. Note that 7(z) is a
polynomial in z if and only if d is a non-negative integer, whereas a(y) is a polynomial
for any d. Clearly a(y) is simpler to analyze, and conditions in terms of the roots of
a(y) are given under which the process determined by (2) is fractional of order 0, or
fractional of order d when m = —a(1) = 0, in which case the characteristic function
7(z) has a unit root. In this paper we are primarily interested in the nonstationary
(unit root) case with 7 = 0 and d > 1/2. Thus, the hypothesis of a unit root in
the fractional autoregressive model (1), i.e. the hypothesis a(1) = 0, is most easily
formulated in (2) where it is given simply by the restriction 7 = 0. We call the test of
7 = 0 the (fractional) unit root test in our model.
To allow even more generality we analyze the autoregressive model

k
AYXy = TATLX Y QAL X e, t=1,..,T, (5)

=1
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which allows the solution to be fractional of different orders, d or d — b > 0, depending
on whether 7 = 0 or m # 0, assuming that the remaining roots are outside the set Cy,
see Johansen (2007) and section 2.1 below. The parameters (7, ¢y, ..., ®.,b, d, 0?) are
unrestricted except for d > b and o2 > 0.

Thus, the test that 7 = 0 is a test that the process is fractional of order d versus d—b,
i.e. the fractional unit root test is also a test of the order of fractionality of X;. Note
that when d > b the characteristic function of (5), 7(2) = (1—2)%"%a(1—(1—2)%) has a
unit root also when 7 # 0. However, we shall still refer to the test of 7 = 0 as the unit
root test in (5) since it is a test of a unit root in the polynomial a(y). Other hypotheses
of interest are linear hypotheses on the regression parameters ¢ = (¢, ..., ¢;)" and the
fractionality parameters d and b.

1.1 Summary of main results

The main results of this paper are to find asymptotic properties of (local) maximum
likelihood estimators of the parameters in model (5) under the assumption that = = 0,
and the asymptotic distribution of the likelihood ratio test that @ = 0. We show
that if the initial values are bounded they have no influence on limit results, except
that conditioning on initial values implies that some of the limit results are expressed
in terms of the fractional Brownian motion of type II, whereas fractional Brownian
motion of type I plays no role in the analysis.

We show that the profile likelihood function converges in distribution as a con-
tinuous stochastic process in the parameters (d, b, ) to a deterministic limit which
is strictly convex in a neighborhood of the true value (dy, by, ¢,). Using tightness, or
stochastic equicontinuity, see Newey (1991) and Andrews (1992)', of the derivatives
of the profile likelihood function, we show that it too is strictly convex in a small
neighborhood with probability tending to one. Hence, the (local) likelihood estimator
(a?, 1;, <Aﬁ) exists, is unique, and is consistent, a result which also holds for the estimators
# and 62. For model (3) we prove strict convexity of the likelihood function (with large
probability) and hence existence and uniqueness of the (global) maximum likelihood
estimator.

We find the asymptotic distribution of the estimators using the usual expansion
of the profile score function with a remainder term, which is the second derivative
evaluated at an intermediate point between (d, b, ¢) and (dy, by, ¢,). We use tightness
of the second derivative to show that we can replace the intermediate point with the
true value. We then find the asymptotic distribution of 7, and finally we apply an
expansion of the log likelihood to find the limit distribution of the likelihood ratio test
for the unit root hypothesis m = 0.

'Note that the stochastic equicontinuity conditions given by Newey (1991) and Andrews (1992)
involve different conditions than the ones we apply. We prefer to use moment conditions usually
presented in a tightness context, e.g. Billingsley (1968) and Kallenberg (2001), and thus we use the
tightness terminology rather than stochastic equicontinuity. The moment conditions also have the
useful feature that we need only analyze the second derivative of the likelihood function, and not
higher-order derivatives.
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1.2 Comparison with other models

Our paper fits into two related strands of the literature. The first group of papers
considers statistical modeling of fractional processes. The statistical analysis is based
upon the Gaussian likelihood function, and LM, Wald, and likelihood ratio tests are
derived from this. The second group of papers focuses on the test for a unit root, but
test statistics and estimators are motivated by regression equations.

It is important that in any case it is part of the methodology to test the underlying
assumptions, e.g. on the error process or the constancy of the parameters, against the
data to assess whether the model proposed is appropriate before conducting inference
on the parameters of the model. Since we are concerned with model-based statistical
inference, our paper clearly belongs to the former group, although parallels can be
drawn between our unit root test and the fractional unit root tests in the latter group.

A prominent place in the first group is held by the ARFIMA model proposed by
Granger and Joyeux (1980) and Hosking (1981), i.e.,

A(L)A’X, = B(L)e, (6)

where A(L) and B(L) are the autoregressive and moving average polynomials and ¢; is
a white noise process. The ARFIMA model generalizes the well known ARIMA model
by introducing the fractional (non-integer) order of differentiation, d. The original
Dickey and Fuller (1979, 1981) test can thus also be placed in this group, since it is a
likelihood ratio (LR) test of A(1) = 0 within the autoregressive model with d = 0 and
B(L) = 1. A Wald-type test of the same null was considered by Ling and Li (2001)
in the ARFIMA model, where the null hypothesis A(1) = 0 implies that the process is
fractional of order d 4 1 versus order d under the alternative.

Robinson (1991, 1994) proposed testing for the unit root using the LM-test in
a number of different models, see also Tanaka (1999) and Nielsen (2004). However,
these authors examined the properties of hypothesis tests of the form d = dy (against
composite alternatives) in ARFIMA models, and thus these are not unit root tests in
the sense defined above.?

The model we propose to analyze (5) is different from the ARFIMA model (6)
because of the role of the lag operator L,. The model is not an ARFIMA model in L,
but an ARFIMA model in the new lag operator L;, which implies that the difference
in order of fractionality of the process under the unit root null and the alternative is b
rather than one, see section 2.1 below.

2 A slightly more general version of the ARFIMA model, see Hualde and Robinson (2005), is
AdXt =ul>1y, U= o(L,0)ey,

where the parameter vector 6 does not contain the fractional parameter d. That is, the infinite lag
polynomial ¢ is not allowed to depend on d. However, if we write our model in the similar way, the
lag polynomial ¢ would depend on both d and b. This is an important difference, which complicates
our analysis.
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In the second group of papers we place those that analyze regression-type statistics
with the purpose of testing for a fractional unit root, a topic that has received much
attention recently.

An early contribution is Sowell (1990) who analyzed the behavior of the usual
Dickey-Fuller-type regression when the errors are fractional. Specifically, Sowell (1990)
considered the regression

Yy = QY1 + Uy, Ay, = Et,

where &, is ii.d. N(0,02) and ¢, = 1. He derived the asymptotic distribution of ¢,
the regression estimator of y; on 3;_1, instead of the maximum likelihood estimator
for fixed d, &5 1, that is, a regression of A%y, on A%y,_; as considered by Ling and Li
(2001). Consequently, the asymptotic distribution of the estimator ¢ pg is dichotomous,
i.e. discontinuous in d, in the sense that T2d+1(&5FS — 1) converges in distribution to
a fractional Brownian motion functional when d < 0 and T’ (@ rg — 1) converges in dis-
tribution to another such functional when d > 0. On the other hand, the distribution
of ¢ v 1s the same as that of the standard Dickey and Fuller (1979, 1981) statistic
(see also the analysis in Phillips, 1987). Clearly, the discontinuous distribution theory
obtained for gES rg 1s a consequence of the simplicity of the estimator. Similar dichoto-
mous or discontinuous distribution results for the same type of model and estimator
are obtained by Tanaka (1999), see also Chan and Terrin (1995). Furthermore, these
papers all assume that the parameter d is known, which is usually not desirable from
a practical point of view, and which we do not assume in our analysis of (5) below.

The ideas in Sowell (1990) were further developed by Dolado, Gonzalo, and Mayoral
(2002) who consider the statistical model a(L)Ay; = ¢A%y,_; +¢&; and test that ¢ = 0,
and Velasco and Lobato (2006) who consider the model a(L)A% X, = ¢, and test that
d = 1. Here a(L) is a lag polynomial. They indicate the properties of the process
under the null and under the alternative®. In both cases they apply a t-ratio based on
a regression equation, which is motivated by the model equations, rather than a test
based upon an analysis of the likelihood function.

The model (5) proposed here has the advantage relative to that of Dolado, Gonzalo,
and Mayoral (2002) and others, that one can give simple criteria for fractional integra-
tion of various orders in terms of the parameters of the model, see Johansen (2007).
In this way we have a platform for conducting model-based statistical inference on the
parameters and on the fractional order of X;.

3The condition given by Dolado, Gonzalo, and Mayoral (2002) for the roots of m(z) = a(z)(1 —
2)1=% — ¢z = 0 to be outside the unit circle are 7(0) = 1, 7(1) > 0,7(—1) > 0. This cannot be correct
as the example 7(z) = 4(z — 1/2)? = (1 — 42)(1 — z) + z shows. Indeed, the solution would lead to
an unpleasant transcendental equation, see the discussion in Johansen (2007), and thus it does not
appear possible to give general conditions for fractionality of various orders in terms of the parameters
of the model.
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1.3 An overview of the present paper

The remainder of the paper is organized as follows. We discuss in section 2 the prop-
erties of the solution of the model (5) including the role of the initial values and give
the Gaussian likelihood function and the profile likelihood function as a function of
(d,b, ¢). In section 3 we give the results on the convergence of the product moments as
functions of (d, b, ¢). These results are applied in section 4 to prove consistency and to
show that d, I;, and &) are asymptotically Gaussian, whereas the asymptotic distribution
of 7 is a functional of Brownian motion B and fractional Brownian motion By,_; of
type II. In section 5 we show that the asymptotic distribution of the likelihood ratio
test for a (fractional) unit root is a functional of B and By,_1. We conclude in section
6, and give some mathematical details in three appendices.

1.4 Notation

For a symmetric matrix A we write A > 0 to mean that it is positive definite. For
a function f : R?” — R we sometimes denote the vector of derivatives Df and matrix
of second derivatives D?f. The Euclidean norm of a vector or scalar a is denoted |a|.
For a real number a we denote the positive part at = max(0,a) and the negative
part a- = —min(0,a). Throughout ¢; is a sequence of i.i.d. variables with mean
zero and variance o > 0. For coefficients £, with Y >° €2 < oo we define F(z) =
> 0 &,z and the linear process Z, = F(L)ey = > 2 €,6t—n. We use the notation
Z; =F,(L)e, =Y €ernand Z; = F (L)e, = 3.0, €,6_n for the corresponding
truncated processes.

For a random variable Z with E|Z[P < oo we use the notation ||Z||, = E(|Z|P)'/?.
The probability results (for the model (5)) are derived under the assumption that the
true parameters are dy > by > 1/2, ¢,, 7o = 0, and 62 > 0. Expectation with respect to
the true values is denoted by E. We also use the notation ¢ = (d, b)’. We let C,, denote
the image of the unit disk under the function f(z) = 1—(1—2)%, b > 0. Throughout, c
denotes a generic positive constant which may take different values in different places.

In the following we apply the theory of weak convergence of probability measures,
see Billingsley (1968) and Kallenberg (2001). It is convenient to describe it in terms
of stochastic variables and processes, and for a sequence of k—dimensional stochastic
processes Xr(u), u € [0,1], we write X = X or Xp(u) = X(u) to indicate
convergence in distribution of the sequence, either on D*[0,1] or C*[0, 1], whereas
Xr(u) 4 X (u) means convergence in distribution on R” for a fixed u. We let W denote

Brownian motion generated by &, B = o'W denote standard Brownian motion,
and By 1 denote the corresponding fractional Brownian motion of type II, By 1(t) =

D(d)~" [ (t — s)T'dB(s), d > 1/2.
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2 The conditional likelihood and profile likelihood
functions for the fractional process

This section contains some definitions of fractional processes and a discussion of the
properties of the solution of the autoregressive model (5) and the role of initial values.
We also define the conditional likelihood function and the profile likelihood function,
where the regression parameter 7 and the variance have been eliminated.

2.1 Properties of the solution of the fractional autoregressive
model

The binomial expansion of (1 — 2)~% defines the coefficients 7,(d) = (—1)"( ) which
are bounded in absolute value by cn?!, d € R. For d < 1/2 and & i.i.d. (0,0?%) we
define the stationary process with finite variance

Ade, = (1— L)% = g;(—w (_nd) Eton.

For d > 1/2 the infinite sum does not exist, but we can define a nonstationary process
by the operator A;d,

t—1
—d —d
A;d‘gt = Z(_1>n( )Etn =&+ dé‘tfl T+t (_1)t71 (t N 1)517 t= 17 s 7T7

see for instance Dolado, Gonzalo, and Mayoral (2002) or Marinucci and Robinson
(2000) who use the notation A‘detl{tzl} and call this a “type II” process.

We apply the result, e.g. Davydov (1970) and Akonom and Gourieroux (1987),
that on DI0, 1]

TN s Wy (u) = T(d) ! /Ou(u — 8 W (s) (7)

for each d > 1/2, which by the continuous mapping theorem implies that

T 1
Ty (At [ W ®
t=1 0

We also have, see Jakubowski, Mémin, and Pages (1989),

T 1
T—dZA;detemi / Wy_1dW. (9)
0

t=1

In this paper we apply these results to analyze model (5) which has as a solution a
fractional process, see Johansen (2007, Theorem 8). We formulate the solution of (5)
and some of its properties in the next result.
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Lemma 1 If 7 =0 then a(1) = 0, and if the remaining roots are outside the set Cy,,
then for m(z) given by (5) it holds that

(1= 2)*m(z) =+ (1 —2)"H(1 - (1-2)"), (10)

where v = (1 — ¥ ¢o)™" and H(u) is reqular in a neighborhood of Cy,, so that
the coefficients defined by F(z) = H(1 — (1 — 2)%) = Y >°  7,2", |2]| < 1, define a
stationary process Yy = > 0 Tpet—n. Then >~ |T,| < oo, so that the covariance
function vy (h) = E(Y;Y,_3) satisfies Y - |vy(h)| < co. Equation (5) is solved by

Xy = oAl %e, + APty ) t=1,2,..., (11)

where Y, = Zfb 107'net n 1S asymptotically stationary and the trend generated by the
initial values is p? = —mw (L) 'n_(L)X;.

Proof. The expression for (1—2z)%7(2)~! and the definition of Y; follows from Johansen
(2007, Theorem 8). The transfer function for Y; has the form

¢(N) = H(1 — (1 —€¢™)") = F(e™),

where F(z) =Y 2 7,2" and the series is convergent for |z| < 1+ 0, for some 6 > 0,
and F'(1) # 0. It follows that ¢(\) is continuous, that ¢(0) # 0, and that ¢(\) has the

expansion
oo
_ E Tnez)\n
n=0

for some coefficients 7, which are used to define the process Y;. The derivative of ¢(\)
is

dop . ndd A\ iA\b—1

1be’ 1—(1—¢ 1—e¢'

R = e (1= (1 M) (1 - )
which has a pole for A = 0, when b < 1. It is, however, square integrable for b > 1/2.
By Parseval’s formula it then holds that the Fourier coefficients of d¢/d\, inT,, are
square summable so that Y > 1?72 < oo, see Zygmund (2003, p. 37). It follows from
this that

) [eS) o) [e9)
O Imal)> = O Imanln™)? <D franl® > 0% < o0,
n=0 n=0 n=0 n=0

so that _>°  |7,| < co. Finally

Z vy ()] < Z ZZ'E (Tje—jTi€trn—i)| < ¢ Z Z |7 h||71|<CZ|Tz

h=—o00 h=—oc0 j=0 =0 =0 h=—o00

The expression (11) follows from (5) by applying 7' (L) to 7(L)X; = 7(L)X; +
W_(L)Xt =& to get
Xy =7 (L) — m N L)m_ (L)X,
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and applying the expression (10) for 7;'(L)s;. =
From (11) follow the properties of the process and we find in particular that

ATUXy = AL e + ALY L AT+ ATEX, t=1,2,..., (12)
A_uXt - A:uXt, t= 0, —]., —2, ey

where the first term of (12) is nonstationary, but asymptotically stationary for dg+u <
1/2. For dy + u > 1/2 it will, suitably normalized, converge to a fractional Brownian
motion, see (7). The next term is asymptotically stationary when dy+u—by < 1/2, and
the last terms are deterministic functions of the initial values. The different processes
will be studied in detail below.

In order to study the impact of the initial values on the process we apply the
representations

T L) = AT+ AR (L),

k
7_(L) = (A% — Z@Ado(l — Ab)i)_ = ijAUio+Jb0,
i=1

j=0

E

for some coefficients p;, and find

k
i = = (D) (D) Xy = —(yp + ARFL(L) Y pATRAT X, (13)

Jj=0

The theory in this paper will be developed for observations X1, ..., X7 generated
by (5) assuming that all initial values are observed, that is, conditional on X°
0,1,... In practice, this is obviously not the case, and one will have to choose a value
Ty and base the calculations on setting X° =0, n > Ty. Wecall X°  n=0,...,T,
the observed initial values. One will then have to investigate the sensitivity to the
initial values by choosing different values of Tj. For usual autoregressive models with
k lags, the observed initial values will be X°, ,..., X{.

Thus, the initial values are not modeled, and the asymptotic results show that the
influence of the initial values disappears in the limit provided they are bounded, an
assumption that appears reasonable in practice.

n =

2.2 The conditional likelihood function
The model is
k
ATX, = ALY+ QAL X ey, t=1,...,T,
=1

where ¢; is i.i.d. Gaussian (0,0%) and we apply the lag operator L, = 1 — A’ Note
that the asymptotic properties are derived below without the Gaussianity assumption
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but assuming ¢, is i.i.d. with mean zero and ¢ finite moments. The parameter space is
defined by assuming that 02 > 0, d > b > 1/2, and that the remaining parameters vary
freely, but it is convenient to introduce the parameter § = T%~4t0=1/21 Note that the
parameter space is unchanged. We use the notation 7 = (d, b, ¢', 0, 0%) and ¢ = (d, b)’
so that the likelihood function, conditional on initial values {X°  n > 0}, becomes

—2T log Ly(7) (14)
T k
1 d —do+d—b d—b dri
= logo® + 7 ;(A X, — T dotd=bH1/2gNd=b), X, ZZ:;@A LiX,)?
1 1\ [ Boor(¥)) Bour(v) Cor() 1
= logo® + ) —¢ Bior(¥) Bur() Cur(y) —¢
—0 Cor(¥) Cur(¥)  Ar(y) —t
We here define the product moments
T
Ap(y) = T2 DN (ATPL X )2, (15)
t=1
T
Biyr(¥) = T (A'LiX)(A'LIX,), i,j =0,1,... k, (16)
t=1
T

Cor(1p) = Tt N AL X)) (ALX), 0= 0,1, k. (17)

t=1

The notation B,;r(¢) is used for the vector with components B;;r (), i = 1,...,k,
Biwr(¢) = Bur(y)', and B,.r is the matrix with elements B;;r(v¢), i,7 =1,..., k. We

also define the matrix Buor () Boer(1)
B _ 00T 0+T )
T(¢) ( B*OT(w) B**T(w>
and define B(1)) as the probability limit of Br(1)), see Lemma 24.
We let C,r (1)) denote the vector with components Cir(¢), i =1,...,k and Cr(¢)) =
(Cor(¥),Cur(¥))")', and finally we need

T
Coer(¢) =T/ (TR~ HIA L X e, (18)

t=1
2.3 The maximum likelihood estimators and profile likelihood
function for fixed d, b, and ¢

For fixed d,b, and ¢ we can find the maximum likelihood estimators and the profile
likelihood function by regression,

0, 0) = (Cor(v) — ¢'Cur(¥))/ Ar(¥), (19)

S, 0) = BOOT<w>—z¢’B*OT<w>+¢'B**T<w>¢—““T“”J;Tif)*TW”Q. (20)

10
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Finally we find the profile likelihood as

_2T71 log Lproﬁle,T(wa ¢) = _2T71 10g rgla2x LT(¢> ¢7 97 0'2) =1 + IOg &2(¢7 ¢) (21)

In the following, we use this expression to investigate the profile likelihood function in
a small neighborhood of the value (¢, ¢;)-

For model (2) with b = d, we find in the same way, writing Ay (d), B;;jr(d), and
Cir(d) for Ap(d,d), Bijr(d,d), and Cir(d,d), that

(Cor(d) — ¢'Cur(d))?

5*(d,¢) = Boor(d) — 2¢'Buor(d) + ¢/ Buur(d)o — Az (d) ’

—2T 7 og Lyosiier(d) = 1+logé?(d, ¢).

We also define B(d) as the probability limit of Br(d).
We conclude this section with the assumptions we shall use in the asymptotic
analysis of our model.

Assumption 1 The process X;, t = 1,...,T, is generated by model (5) for some
k=1,2,... and satisfies:

ERRORS: The errorse; are i.i.d. (0,02) with E|&;|? < oo for some ¢ > max(6,2/(2by—
1))

TRUE VALUES: The true values satisfy dy > by > 1/2, 1y = 0, 02 > 0, so that a(u)
has a unit root, and the remaining roots of a(u) are outside the set Cy,.

INITIAL VALUES: The initial values X° ,n =0,1,..., are bounded, i.e. there exists
a ¢ >0 such that | X°,| < c for alln > 0.

Assumption 2 The process Xy, t = 1,...,T, is generated by model (2) for some
k=0,1,2,... and satisfies:

ERRORS: The errorse; arei.i.d. (0,0%) with E|e4]? < oo for some q > max(4,2/(2by—
1))

TRUE VALUES: The true values satisfy dyg > 1/2, mg = 0, 02 > 0, so that a(u) has
a unit root, and the remaining roots of a(u) in (1) are outside the set Cg,.
INITIAL VALUES: The initial values X°,,n = 0,1,..., are bounded, i.e. there exists

a c> 0 such that | X°, | <c for alln > 0.

Importantly, the errors are not assumed Gaussian for the asymptotic analysis, but
are only assumed to be i.i.d. with sufficient moments to apply a functional central limit
theorem and our tightness arguments below. The TRUE VALUES assumption is the
unit root assumption, which ensures that X, is nonstationary and fractional of order
dy. The INITIAL VALUES assumption is needed so that A?X, can be calculated for any
d > 0, and is sufficient for the asymptotic analysis of the conditional likelihood.
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3 Weak convergence of the profile likelihood func-
tion

We first give a useful tightness criterion from Kallenberg (2001), generalizing a well
known result from Billingsley (1968), and formulate and prove some simple conse-
quences of tightness, convergence in distribution, and the continuous mapping theo-
rem. We then give the result on the asymptotic behavior of the product moments
(Ar(¥), Br(v),Cr()) and their derivatives, and end this section with the weak limit
of the profile likelihood function considered as a stochastic process in the parameters
1 and ¢.

We apply the convergence result to processes defined on a compact set containing
the true value (1), ¢,), but we formulate them, as is usually done, for the unit hypercube
[0, 1]™.

3.1 Some weak convergence results

Lemma 2 If X,,(s) is a sequence of p-dimensional continuous processes on [0,1]* for
which X,(0) is tight and

|1 Xn(5) = Xn(8)]|s < cfs — 1| (22)

for some constant ¢ > 0, which does not depend on n, s, ort, then X, (s) is tight on

Crlo, 1]%
Proof. This is a consequence of Kallenberg (2001, Corollary 16.9). m

Lemma 3 If X,,(s) satisfies (22) on C?[0,1]?, X,,(so0) is tight on RP, and f : [0,1]™ —
R? is continuous, then Z,(s,u) = f(u)' X, (s) is tight on C[0,1]>T™.

Proof. Let
wp(0) = max |h(u) — h(v)|

fu—v|<3

denote the modulus of continuity of h(u), which may be a deterministic function or a
stochastic process. Then

Zn(s,u) = Zn(s",u") = f(u) (Xn(s) = Xn(s7)) + (f(u) = f(u")) Xn(s),
which shows that

supwy, (6) < max |f(u)|supwy, (d) + w(d)sup max |X,(s)|.
n u€lo,1]m n n sel0,1]2

By continuity of f, ws(d) — 0 as 6 — 0, and tightness of X,, implies, by the Arzela-

Ascoli theorem see Kallenberg (2001, pp. 311 and 563), that sup,, wx, (§) — 0 asd — 0.

Finally max,cjo1j» | f(u)| < oo, and because the mapping X,,(s) —— maxc[,12 | Xn(5)|
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is continuous and continuous mappings preserve compact sets (and thus tightness) it
follows that also sup, maxcjo1)2 | X, (s)| is bounded on a set with large probability, so

that sup,, wz, (9) £ 0 as § — 0, which shows that Zn(s,u) = f(u)' X, (s) is tight on
Cl0,1]*™. m

Below we use that the likelihood function for (v, ¢,0,0?), the profile likelihood
function for (v, ¢,0), and the profile likelihood function for (¢, ) are all tight as
processes in the parameters. Lemma 3 shows that this follows from the tightness of
the product moments A, Br, and Cr.

In the next lemma we consider a sequence of univariate processes X, (s) where
s € [0,1]™.

Lemma 4 1. Assume X, (so) Lo¢>0 and X, (s) is tight on C[0,1]™. Then for all
n > 0 there is a § > 0 and an ng so that P(minj,_g <5 Xn(s) > 0) > 1 —n for n > ny.

2. Assume that S, = so and Xn(s) is tight on C[0,1]™. Then X, (S,)—Xn(so0) Lo.
Proof. 1. We find for |s — so| < § that
Xn(8) = Xn(s0) + (Xn(s) = Xu(s0)) = Xn(s0) = wx,(9).

By the Arzela-Ascoli theorem, if X, is tight on C[0, 1]™ and X, (s¢) L ¢, we can find
for any n > 0, a § > 0 and an ng so that

P(An) = Plwx,(9) <
P(An) = P(|Xu(s0) —¢| <

for n > ng. Let A, = A1 N Aya. Then P(A,) > 1 —n for n > ng, and on A,, we have
the inequality

Xn(s) > c+ X,(s0) —c—wx, (0) > c—

for all |s — sq| < 0.
2. To prove the second result we find

P(|X0n(Sn) = Xu(s0)| > &, [Sn = so| 2 6) < P(|Sn — so| = 0),

P(Xn(S0) — Xn(50)| > &, S — 50| < 8) < Plwx, (8) > &).

With the above § and ng the last probability is less than 7, and for n sufficiently large
the first is less than 7, which shows that

P([X0n(Sn) = Xn(s0)| > &) < P([Sn = 50| = 0) + P(wx, (0) = &) < 2n,

which proves that X,,(S,,) — X, (so0) 20 m
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The first part of the lemma is used to show that with probability tending to one,
the second derivative of the profile likelihood is positive definite, so that the profile
likelihood itself is convex in a small § neighborhood of the true value implying the
existence of a local likelihood estimator.

The second part of Lemma 4 is especially useful when deriving the asymptotic
distribution of the maximum likelihood estimators via an asymptotic expansion of the
score function. The remainder term in the expansion is the second derivative of the
likelihood function evaluated at an intermediate point, which we can replace by the
true value by application of Lemma 4 and an initial consistency proof. Thus, we avoid
finding a uniform bound on the third derivative of the likelihood function and rely
instead on showing tightness using the moment condition in Lemma 2.

We conclude with a result which indicates how we are going to establish tightness
in the application of the result of Kallenberg.

Lemma 5 Foru € [0,1] and i = 1,2, let the processes V',, t = 1,2, ..., be continuous

in u and linear in the i.i.d. wvariables e; with finite sixth moment. If Vi, i = 1,2,
satisfy A ‘ }
[Vaillz < ¢ and [|V, = Vil < clu —al, (23)

where the constants do not depend on u € [0,1],a € [0,1], or t € [1,T], then, for
1,7 = 1,2, the product moment

T
Suw =T Z V&Wi (24)
t=1

is tight as a process in (u,v) € [0,1]2.

If furthermore D!,, i = 1,2, are deterministic functions which are continuous in

u € [0, 1] and satisfy

max |D!,| — 0 ast — oo, (25)
u€(0,1]

then .
St =T (Vi + D) (Vi + D}y
t=1
is tight in (u,v) € [0,1]2.
Proof. To prove (24) we apply the decomposition
T
Suv = Sao =T Y (Vi = Vi) Vi + Var(Vig, = Vi)

t=1

and the inequality (47) in Lemma 15 and find
180 = Saslls < Ty Vi = Va2Vl Iz + [1Vallal Vi, — Vil
=1

< eju—al+ v —10]) < evV2|(u—a,v— D).
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This shows that the tightness criterion (22) from Lemma 2 holds.
In order to prove tightness of S}, we note that

T T T
Sty = Suw + T ViDL, +T > DLV, +T'> DD,

We want to show tightness of the last three terms by showing that the supremum
converges in probability to zero. We find using (25) that

T
max |7~ ZD Dit|§T_1Z|maXDut||maxD | —0asT — o0
t=1

(u,v)€[0,1]2 u€[0,1] »e[0,1]
and
T T
ma V’ DJ 2 < max 771 D7 )2 max 7! V)2,
(u,0) e[())<1]2 Z UE[O,}I(] (Dur) ue[o,)f} Z< ut)

t=1
The first factor tends to zero by assumption (25), and, by (24), 7! Zt L(VE)? is tight
in u, so that max,cp1 7~ LS (Vi)? is tight. Hence the product tends to zero in
probability. m

Thus to establish tightness of product moments it is enough simply to check con-
dition (23) for the stochastic parts of the involved processes and condition (25) for the
deterministic parts of the processes.

3.2 Convergence of product moments and the likelihood pro-
file

We are now ready to state the result on weak convergence of the product moments.

Theorem 6 Let Assumption 1 be satisfied for model (5) and let 0 < n < min(1/2, by —
1/2,dy — by). We define d; = max(1/2,dy — 1/2) +n, dy > do, and

Ni={(b,d):dy <d<dy, b>1/24+n, n<d—b<dy—1/2 —n}.

Then Ar(v), Br(y), and Cr(v) and their derivatives are tight on C(Ny), and for
m =0,1,2, it holds jointly that

Ar(¥) = A®W) =73 [y W2 4y 1du on C(N), (26)
D" Br(y) = D™B(sh)  on COFDXEHD (), (27)
D"Cr(¢p) = 0 on CF1(Ny). (28)
d 1
T2 Cr(o) S 7 [ WiyeadV. (29)
0

Let Assumption 2 be satisfied for model (2) and let 0 < n < min(1/2,dy — 1/2)
and Iy = [dy,ds]. Then the same results hold for Ar(d), Br(d), Cr(d), and Coer(do) =
Coer(do, dy) and their derivatives, when Ny is replaced by I, d = b, and dy = by.
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The proof is given in appendix C.
We next apply these results to derive the weak limit of the profile likelihood func-
tions for the models (5) and (2) as well as some useful properties.

Corollary 7 Let Assumption 1 be satisfied for model (5), and define for A > 0 the set
No={¢:|p— ¢y < A}. Then, for any A, and 0 < n < min(1/2,by — 1/2) we have:
1. The profile likelihood function converges weakly,

_QT_l IOg Lproﬁle,T(wa ¢) — 1 + log Uz(wa ¢) on C(Nl X N2)7 (30)

where 02(4,6) = Boo() — 26Bog() + &/Bu. ()6, see Lemma 24
2. Fork=0,1,..., D*(—=2T'1og Lyt (1, @) is tight on C(Ny X N3), and for

(wa ¢) = (w(b ¢0)>
D?(—2T"10g Lyosite;r (¥, b9)) - D*log (1, ). (31)
Proof. 1. The profile likelihood is given in (21) and involves the expression (20):

(Cor(¥) — ¢'Car(1))?
Ar(¢) '

Because (Ar(v), Br(v),Cr(v)) = (V2 fol W3 _arp—1du, B(1),0), see (26), (27), and
(28), we find

62 (¥,9) = Boor (¥) — 2¢'Buor (1) + ¢'Bewr (1) —

(Cor(¥) = ¢'Cur())? Ar () =0
and thus
% (1), ¢) == Boo(1) — 2¢'Buo(¥) + ¢'Bue(¥0)¢ = 0 (10, 9),
which proves the first result.
2. The second derivative of the profile likelihood can be expressed in terms of
(Ar(v), Br(v),Cr(¢)) and their first two derivatives, and is therefore tight by Theorem
6 and Lemma 3. In order to determine the limit for (1, ¢) = (1, ¢) we need the results

(26) to (28) and the tightness of the second derivatives, and then we can apply Lemma
24. m

Corollary 8 Let Assumption 2 be satisfied for model (2), and define the interval I; =
[dy1,ds] for diy = max(1/2,dy — 1/2) +n and dy > dy with 0 < n < min(1/2,dy — 1/2).
Then we have:

1. The profile likelithood function converges weakly,

—2T 1 log Lyrofiter(d, ) => 1+ log 02(d, @) on C(I; x Ny), (32)

where 0(d, ¢) = Boo(d) — 2¢'B.o(d) + ¢'Bux(d) 9, see Lemma 24.
2. The second derivative D*(—2T 1 log Lyfier(d, ¢)) is tight on C(I; x Ny), and
fOT (d7 ¢) - (d07 ¢O))
D*(—2T" 10g Lyogie;r(do, ¢y)) - D*log 02(do, ). (33)

3. For k =0, the convergence in (32) holds on C(I,), and the limit 1 +log o?(d) =
1+ log Boo(d) is strictly convex on [dy,ds] with a minimum at d = dy.

16
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Proof. The proofs of 1. and 2. follow as in Corollary 7. To see 3., we note that when
k =0 and 7y = 0, the process is X; = A;%¢, + 19, see (11), and the limit of 53(d) is

T
Buo(d) = lim (T71 )} E(AT%e + ALy + ATX,)?)
t=1
— I'(1 - 2(dy — d))
— i 7! . 2 _ 2 S deld.d
TEI;O ;]_0 7TJ UOF(l _ (dO _ d))g? S [ 1 2}7

where the second equality uses (59) with u = dy —d < 1/2 —n and v = dy + jby >
do >dy > 1/2+4nfor j =0,...,k (noting that (do, by) is an interior point in N; and
therefore do > dy), and (57) with v = d > d; > 1/2 + n from Lemma 18 such that

IS (AT49)? — 0 and T3 (A? X,)? — 0, and hence the initial values have
no influence on the limit. We find

I(1L - 2(dy - d))
D108 £ 1= (dy — )

> la=do = 29(1 = 2(do — d))|a=d, — 2¢(1 = (do — d))|a=d, = 0,

where 1(+) is the digamma function,

§0) =Dlogl(() = C = 432~

and C is Euler’s constant. Using the multiplication formula 2°T'($)I'(¢3%) = 2I'(O)T'(3),
see Artin (1964, p. 24), we find that for ( =1 — 2(dy — d),

M(1—-2(do—d))  T(1/2—(d—dp)) o~ 2(d—do)
I'(1—=(do—d))> TI'(l—(do—d))I'(1/2) '
Hence
o, (1 —2(dy— = 1
Drlog do— ;) 1/2 - do—d)+z')2 T "
| |

4 Asymptotic properties of the local likelihood es-
timator

In this section we use the results of the previous sections to prove consistency and
derive the asymptotic distribution of the (local) likelihood estimator.
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4.1 Existence and consistency of the local likelihood estimator

We apply weak convergence of the profile likelihood function and its derivatives to show
that there is a neighborhood of (¢, ¢,) on which the likelihood profile is convex with
probability tending to one, so that the (local) likelihood estimator for (v, ¢) exists and
is consistent.

Theorem 9 Let Assumption 1 be satisfied for model (5) or Assumption 2 for model

1. Then for model (5) with by < dgy, k > 0, and ¢, # 0, there exists a neighborhood
N (g, dg) of (g, ¢y) and a sequence of sets Kr with probability tending to one, such
that on Kr the local likelihood estimators of d,b,,0, and o® exist uniquely and are
consistent.

2. The same result holds for the local likelihood estimators of d,¢,0, and o in
model (2) where dy = by and k > 0.

3. If k = 0 in model (2), the limit of the profile likelihood is convex on any interval
[dy1,ds] in |max(1/2,dy — 1/2),00[, so that on Kr the maximum likelihood estimator
exists uniquely and is consistent, for d € [dy, ds].

Proof. Existence and uniqueness: We give the proof for model (5). The limit 1 +
log 0(1), ¢) of the profile likelihood function on the set N; x Ny is given in Corollary
7. For £ > 0 and ¢, # 0, the limit has a positive definite second derivative for
(¥, 9) = (g, dg), see (72) and (76) in Lemma 24. Note that (¢, ¢,) is an interior
point in N7 X Ny by definition of 1 and d;.

The function Api, () which to a symmetric matrix associates the smallest eigenvalue
is a continuous function and we therefore have, see (31), that

Aumin(— 27~ D?10g Linofie (Y, $0)) > Amin (D? 10g 0 (1, 6p)) > 0.
We then apply Lemma 4 which states that because —27'D?log Lovotiie (%, ¢) is tight
on N; X Ns, the set

e . C(_op—1R2
KT - {\(1ﬁ7¢)—r(r1}i)r,l¢o)|§51 )\m1n< 21D log Lproﬁle,T(wa ¢)) > 0}

has probability tending to one, where ¢; has been chosen so small that

Niy (o, 60) = {(¥,¢) = (¥, 8) — (g, do)| < 01} C Ny X Ny

Define the minimum of log(a?(¢, ¢)/02(1by, ¢,)) on the boundary of the neighbor-
hood Ny, (1, ¢y) as
(¢, ¢)

((61) = min og .

() W.d)-(bodo)l=81 021y, §y)

The continuous mapping theorem shows that, because the profile likelihood function
converges in distribution,

7= min —2T71 log L rofile , —1-=1o 0_2 :
’ \(w7¢)*(¢07¢0)|=61( & Lyrotiter (1, 0) g0 (Y, ¢y))
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converges in probability to

7= \<w»¢>—1(?z}iol}¢o>|:51(1 +logo® (1), ¢) — 1 — log o™ (¢, 6))
e ()

= min log ——2— = ((§y).
|(1,6) (0, 0) | =01 ga?(%,cbo) @)

The distribution of Z is degenerate at the point ((d;), so that all other points, in
particular %C (1), are continuity points of the distribution function. Therefore Ky =
{Zr > 1¢(61)} satisfies P(K7) — 1.

By the same argument we have that in the neighborhood Ny, (1, @),

Tx min —9T oo I, ofile 6)—1—1o o2 ’
r (¢7¢)€N51(w0,¢0)< & Loprofil ,T(w ) g0 (1, ¢g))

converges in probability to

S w *(.9) _,

min lo
(,6)ENs, (o:0) ga?(wo,%) -

since the function log( 2(1), ¢)/02(1hg, dy)) attains the value zero at (1, @) = (g, dy),
so that K7 = {Z5 < 1((6, )} satisfies P(K}) — 1.

For any observatlon in K7 the profile likelihood function is strictly convex. For
any observation in K = KT N IN(T N K7 it attains its unique minimum in the inte-
rior of Nj, (g, ¢) because the function —27 1 1og Lysosier (v, @) — 1 — log o?(1g, ¢)
is no less than $((d1) on the boundary but attains a value no greater than 3((d1)
in the interior. Therefore there exists a unique minimizer, that is, a (local) solution
(1h, ) of the likelihood equation exists uniquely for (¢, ¢) € Ns, (1, ¢y) Which satisfies
—2T'Dlog Lyofite (1, @) = 0.

Consistency: The above arguments hold for all d;, and consistency of (121, éﬁ) thus
follows by taking d; small.

Consistency of (w qﬁ) implies by the second part of Lemma 4 that, because of the

tightness of (Ar, Br, Cr) as processes indexed by v, we have that (Ap (), By (¥), Cr(¢)) =
(A(1g), B(1)y),0), see also Theorem 6. Therefore

Ar ()

so that 0 is consistent. By (20) and (35), 62 has the same limit as

BOOT(QL) — 2&&@@) + Q%/B**T(@)gﬁ-

Because Br (1) is tight we can replace @Y) by 1, and find that 62 converges in probability
to 02(1hy, ¢y) = 02, see Lemma 24.
The proof of the same result for model (2) is similar.

19
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Finally, for £ = 0 and b = d, we have weak convergence of the second derivative of
the profile likelihood,

D*(—2T7"'1og Lyrofier(d)) = D?log Byo(d) on C(I),

see Theorem 6 and Corollary 8. In this case we can thus redefine the set Kr as K =
{minges, (—27'D?log Lyofile,r(d)) > 0}, and by the continuous mapping theorem

géi]lll(—2T_1D2 IOg meﬁlc’T(d» - géllrll D? lOg Boo(d) >0

such that P{Kr} — 1. It follows that, for d € I, the maximum likelihood estimator
exists uniquely and is consistent. m

Note that for the simple model in (3) with £ = 0 and b = d we get global conver-
gence of the profile likelihood function and can prove that it is convex on the interval
[dy, d2] using weak convergence the second derivative. For the general model we can
prove convexity of the profile likelihood only in a small neighborhood of (dy, by) using
tightness. Thus, we obtain existence, uniqueness, and consistency of the estimators
globally for the model (3) but only locally for the general model (5).

4.2 Asymptotic distribution of the local likelihood estimator

We first find the asymptotic distribution of the score functions and the limit of the
information for 7 = ¥ = (dp, by, #y,0,5%). By Lemma 4 we only need the information
at 7 since the estimators are consistent (by Theorem 9) and the second derivatives
are tight (by Theorem 6). Again we let D denote the 2 + k vector of derivatives with
respect to ¢ and ¢.

Lemma 10 Under Assumption 1 the limit distribution of the Gaussian score function
for model (5) at ¥ = (do, by, ¢y, 0,5°) is given by

( Tﬁl/ZDlOgLT(%) > d ( Noyp, (0,3622(1/}0,%)) ) (36)
T2 % log Ly (7) Yo Jy Bbo-1dB ’

where (1, ¢g) is given in (72).

Proof. Let ¢,(1,¢) = A%X, — 32F | ¢,AYLLX;. Because (1, ¢y) = &1, see (78), we
find the score function for (v, ¢) to be

T
T-V2Dlog Ly(7) = —6 2T &:Dey(ty, ). (37)

t=1

Since &,Dey(1)y, o) is a stationary martingale difference, see (79), with finite third
moment, we find the first result in (36) from the central limit theorem for martingale
difference sequences, see Hall and Heyde (1980, chp. 3).
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The score function for 0 is

T

0 _ _ .
T71/289 log Ly (7) = 67T~ bOZ(AdO " Ly Xi)er = 6 2T1/2005T(%),
t=1

which converges as indicated, see (29). =

Lemma 11 Under Assumption 1 the Gaussian information per observation for model
(5) at ¥ = (do, bo, ¢y, 0,6%) converges in distribution to

062E(¢07 %) 0
( 0 Bf B du ) ' (38)

Proof. We find that

T T
~T~'D?log Lr(#) = &‘ZT*ZetD%two,%) + 67T Dey(thg, do)De (g, b))’
t=1

- 75 % (¢, do)
by (72), (79), and a law of large numbers. We also have that
0 y L P
-T 189(9¢ log Ly(7) = 6 2C.r(1hy) — 0
., 02 3 9, O 0
-T 1@9@@ log Ly(7) = o 2(%@@&(%) ¢COT(¢0))
o2
-1 1%108;[@( 7) = 6 Ar(t) H‘70273/ Wi 1du,

by Theorem 6. m
We now apply the previous two lemmas in the usual expansion of the likelihood
score function to obtain the asymptotic distribution of the local likelihood estimators.

Theorem 12 Under Assumption 1 the asymptotic distribution of the (local) Gaussian
maximum likelihood estimators (d, b, ¢, 7) for model (5) is given by

T1/2((Ai _ do)
T1/2(? - bO) d ( N2+k (0 OO (¢07 ¢0) ) ) (39)
T1/2(¢ — &) fo Biy-1dB(7g fo Bbo ydu) ™!
T
For model (2) where d = b, we find
1/2(,7 _
) | 4 (N 0B 27 o)
s ’ fo Bbo—ldB(’Yo fo Bl?o—ldu)_l 7

see (77).
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Proof. Proof of (89): To find the limit distributions of cZ, 13, g}ﬁ, and @, we apply the
usual expansion of the score function. We expand the first derivatives of

ZT<7A') = —T_l log LT(%>

around the value 7 = (dg, bo, ¢y, 0, 5*). Using Taylor’s formula with remainder term we
find (with subscripts denoting partial derivatives)

T2y (7) gy (F7) () lrge(77) TY2(¢h = 1hy)
0=1{ T"2lrg(7) | + | lrow(™)  lrop(F™)  lrgo(7™) TY%(6 — &)
T 217g(7) ey (T77)  lrop(T™)  lrea(T) T2

(41)
Here the asterisks indicate intermediate points between 7 and 7, which hence converge
to 7o in probability.

The score functions normalized by 7/? and their weak limits are given by Lemma
10. Because the second derivatives are tight, see Theorem 6 and Lemma 3, and

ok Wokk W oskoksk

(7%, 7, ) RN (To0,70,T0) We apply Lemma 4 to replace the intermediate points
by 7o and find the limit of the information per observation in Lemma 11, see (38).
Premultiplying by its inverse we find (39).

Proof of (40): The same proof applies and we find the expression for the asymptotic
variance from (77) in Lemma 24. =

We remark that the asymptotic distribution is normal for the estimators of the
fractional and autoregressive parameters, whereas the asymptotic distribution of the
estimator of the unit root is non-normal and of the Dickey-Fuller type, where some of
the usual Brownian motions have been replaced by fractional Brownian motion. Simi-
lar results have been obtained previously in the literature. For instance, Tanaka (1999)
and Nielsen (2004), among others, consider likelihood based inference in the ARFIMA
model and obtain asymptotically normal distribution theory for the parameters. How-
ever, they do not allow for a unit root in the autoregressive polynomial and cannot
consider the asymptotic distribution of an estimator of a unit root. On the other hand,
Ling and Li (2001) do allow for a unit root in the autoregressive polynomial in the
ARFIMA model, and obtain results similar to ours except their functionals are in fact
functionals of Brownian motion since, in our notation, their b = by = 1.

Note also that the order of the fractional Brownian motion depends on the distance
between the fractional order of X; when m = 0 (i.e. in the data generating process)
and when 7w # 0. That is, it depends on the parameter by, but it does not depend
on the fractional order of X; itself, dy. Finally, we remark that the estimator of 7 is
super-consistent in the sense that the rate of convergence is 7%, which is more than
root-T'-consistent because by > 1/2.
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5 The likelihood ratio test for a (fractional) unit
root

We next consider the likelihood ratio test of the unit root hypothesis 7 = 0, i.e. the
Dickey and Fuller (1979, 1981) test in our model, as discussed in the introduction. The
restricted profile likelihood for (¢, ¢) when 7 = 0 is

_2T_1 1Og Lproﬁle,T(d)? Qb, ™= O) = _2T_1 log griloaxz LT<1/}7 ¢7 07 02) =1+ 1Og 0-2(777)7 gb)a

where the restricted maximum likelihood estimators, ¢ and ¢ when m = 0, satisfy

%02(171, ¢) =0, %02(171, ¢) = 0, and 6% = 62(1), ¢). The consistency of the estimator

(1), ¢) follows from the consistency of ({D, &5)

Theorem 13 Under Assumption 1 the asymptotic distribution of the Gaussian log
likelihood ratio statistic for the hypothesis m = 0 is given by

1
i (fo BbO*ldB)2'

—2log LRy(m =0
{ ) fol B _ydu

(42)

Proof. Let Ip(t) = —2T 'log Lr(7), and denote derivatives by subscripts. The
expansion of I, (7) around 7¢ gives

0= lTT(%) = ZTT(T[)) + Z;TT(’% — 7'0),

where [7.__ is the matrix of second derivatives (the information per observation) with
each row evaluated at an intermediate point, see (41). The expansion of the likelihood
ratio test of a simple hypothesis gives

_2 lOg LRT(T = 7'0)) = 2 log(LT(%)/LT<T[))) — T(7’\- _ TU)IZ;:‘;_T(% . 7_0)
- TZTT<TO),(Z}TT)_11}17(1}77)_1&17(TO) - TlTT(TO),(i;—’TT)_llTT(TO)7

say. With the notation n = (d, b, ¢, 0%) we then get

_QIOgM _ T( I7y(70) ), ( Z’?pm i?na )1 ( lry(To) )
Lz (n,0) lro(T0) A Lro(70)
lrg(To) — 14 5 -1 T0))?
Dl (o) (i) Mg (ro) + 7T FrnFy) V(7o)
(700 = 70y ()~ ip0)

Similarly we find under the null hypothesis § = 0 that

LT(ﬁ? 0)

—2log ———~
LT(%a O)

= Tlpy(70) (I75) " lry(T0) = Ty (70) (i)~ (7o),
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so that the test for m = 0 becomes

Lr(7) o Lr(7)/Lr(ro) . (lre(T0) = i, (i) " Hlrn(T0))?
L) B Lr(re) (e — (i) i)

+TZTU<TO),[(i;’nn>_1 - (i;’*nn)_l]lTﬂ(T(D‘

Because Ir,, is tight (see Lemma 3 and Theorem 6), 7 and 7 are consistent, and
T2z, (7¢) converges in distribution, we find that

—2log

T 20 () [~ — (55,) T2l (70) > 0.

Moreover we see from (38) that i7, (i%,,) " 20, so that —2log(Lr(7)/Ly(7)) has the
same limit as

(T"2170(70))? a (Jo Bro-1dB)’
ir00(T0) fol B _ du

|

The asymptotic distribution of the LR test for a (fractional) unit root is of the
Dickey-Fuller type, but with fractional Brownian motion functionals replacing the usual
Brownian motion functionals as integrand. Note that a test of the /(1) hypothesis in our
framework would entail jointly testing 7 = 0 and d = 1. The asymptotic distribution
of the LR test of such a joint hypothesis is readily obtained from Theorems 12 and 13
as the sum of (42) and a x2-distributed random variable with one degree of freedom.

Similar asymptotic distributions as those in our Theorem 13 are obtained by Dolado,
Gonzalo, and Mayoral (2002) and Lobato and Velasco (2006), although these authors
analyze other test statistics. On the other hand, Ling and Li (2001) obtain the usual
Dickey-Fuller distribution since their model has b = by = 1.

6 Conclusion

In this paper we have discussed likelihood based inference in an autoregressive model for
a nonstationary fractional process based on the lag operator L. The model generalizes
the usual autoregressive model in that it allows for solutions where the process is
fractional of order d or d—b, where d > b > 1/2 are parameters to be estimated. Within
this framework we have discussed model-based likelihood inference on the parameters
and on the fractional order of the process.

We model the data Xi,..., X7 given the initial values X° , n = 0,1,..., under
the assumption that the errors are i.i.d. Gaussian. Our main technical tool is to
consider the likelihood and its derivatives as stochastic processes in the parameters
under the assumptions that the errors are i.i.d. with suitable moment conditions and
that the initial values are bounded. Conditioning on initial values results in the use of
the type II fractional Brownian motion for the asymptotic analysis. We apply these
results to prove that the likelihood and its derivatives converge in distribution, and
use this to discuss the existence, consistency, and asymptotic distribution of the local
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likelihood estimator, as well as the distribution of the associated likelihood ratio test
of the fractional unit root hypothesis.
A Some inequalities

For a random variable X we define the norm || X||, = (E|X|P)"" if E|X|P < co and
note the properties

X+ Yl < [[ X[l + 1Yl [[XY ]y < [[X]]2p[[Y]]2p, for p>1. (43)

The first inequality states that || - ||, is a norm (triangle inequality) and the second
follows from the Cauchy-Schwarz inequality.

Lemma 14 Let ¢; be i.i.d. with mean zero and finite n’th cumulant k,(¢), and define
Z =372 & € for some coefficients &; for which 372 f? < o0o. Then forn=1,2,...

5n(2)] < [Ra()I(D_ €)™, (44)
i=0
1Z]ln < enllZ]l2, (45)
where the constant ¢, does not depend on the coefficients &;.

Proof. For n = 1, the results hold trivially because E(Z) = k1(¢) = 0. The character-
istic function of Z is given by ¢,()\) = E(e*?) = [172 ¢-(A§;), so that the cumulants
are

kn(Z) = (—i)"D" log ¢ ,(0) Zs )'D"l0g 6.(0) = kn(2) 3 _ &'

We thus show the inequality

DGO & n=2.3..., (46)
=0 =0

which will complete the proof of (44). Let first n = 2m, and note that

) [eS) [eS)

2 o 2m

<Z g])m - Z g]1 Z 5.71 ]m - Z€J :
Jj=0 J1seensJm J1=.=Jm Jj=0
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Finally we want to prove (45). From Kendall and Stuart (1977, p. 70) we find a
relation between moments and cumulants,

S s T

|
m=1 ¢ i1 P

where the summation over ¢ extends over all non-negative integers (qi,...,¢,) and
(p1, ..., pm) such that p1gs + ... + Prm@m = n. We then find

Bz < anZHW TS 93 | (XCH LT

mlqzl m=1 q =1

< cn<25§>22’%w/2 = (D) < e B(Z*)"2,
j=0

J=0

which proves (45). m

Lemma 15 Let Ut, Vi, X+, Y, be processes of the form Y >  &,.en, with finite sizth mo-
ments and Y oo &7, < 00, then

T T T
1Y XU = YiVills < e > (1% LIU = Vil + (Vi1 X: = Yill2),  (47)
t=1 t=1 t=1

where the constant does not depend on the coefficients &,,,.

Proof. The inequality follows by using the properties (43) with p = 3,
T T T
1" X0, - > vivills = IIZXt — Vi) + Vi(X, = V)3
t=1 t=1

T
< D IXU = Vi)lls + [Vi(Xe = Y2)lIs
t=1
T
< D UIXllellUr = Vills + [[Ville|[ X2 — Yille),

t=1

and then applying Lemma 14. m

Lemma 16 We have

totb=1 o >0 and B >0,
t Q B Z |7TJ 7Tt J | < C{ tmax(oz,ﬂ)—l7 a<0 07,6 < 07 (48)

t +
tleth=D7 " <1 and B < 1,
£(ta, B) = mox Z |mj—i(a)m;—k(B)] < c(logt) { et -1 S 1 or B> 1.

j=max(i,k)
(49)
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Proof. Proof of (48): For a = 3 = 0 we find k(¢,0,0) = 1y—g}, and for a = 0 # 8
we find k(t,0, ) = |m:(8)] < ct?~1, which shows (48) in case either a or 3 is zero. For
a # 0 and (8 # 0, we apply the inequality
t

Z|7Tj( )i (8 |<CZ]a1t—

=0
For a > 0 and 8 > 0 we normalize the product moment and find

t—1

— ] a— 1 — —B

1 J < du= B

Z(t) —>/ u= B(a,3) as t — oo,
7j=1

where B(«, 3) is the Beta function, which proves the first result in (48).

Next for a < 0 or f < 0 we assume, by symmetry and without loss of generality,
that # < awand § < 0, so that max(«, ) = «, and split up according toa > 1 or a < 1.
First, if @ > 1 then j*! is non-decreasing, j* ! < t*°!, and Z;;ll(t — )Pt <e s0
that

t—1
D= <t
=1

Next consider (0 #)a < 1, in which case ! is decreasing and (¢ — j)?~! is increasing
so that
t—1 y
ST < e Y e () e )
Jj=1 j<t/2 j>t/2
< P T < e,
where the last inequality follows because f < « and 3 < 0. This completes the proof
of (48).
Proof of (49): First take o < 1 and 8 < 1, where we use (j — i) > (j — max(i, k))
and (j — k) > (j — max(i, k)) so that
t—1 t—1
> G- -k < (7 = max(i, k)" < eflog ) +#~",
j=max(i,k)+1 j=max(i,k)+1
Next let a > 1 and 3 > 1, then (j —i)* ! <t*71 (j — k)P~ <71 and
t—1
Yo GG k) <t < et
j=max(i,k)+1
Finally for « > 1 and 8 < 1 we use (j —4)* ! < ¢* ' and (j — k) > (j — max(i, k)),
and find

t—1 t—1

3 R R D SR

j=max(i,k)+ j=max(i,k)+1
< c(log t)taJrBJr’l < c(log t)t‘ﬁ*’w’l.
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The result for o <1 and 5 > 1 follows by symmetry. =
Let now D™ denote derivative(s) with respect to u and/or v.

Lemma 17 For u > ug > —1 we have

D™ (w)| < e(uo)(log )" | (u), (50)
DTy ()] < c{ua)T"|(log 21" (u)] < eluo)(log T)" T "y (u)|.  (51)

For —1 < vg < v < u we have

D™ (u) — D™7;(v)]
DT "m(u) — D™ m;(v)]

c(vo)(u — v)(log j)™ | (w)], w” € [v,u],  (52)
c(vo)(u — v)(log T)™ T~ |m;(u")|, w” € [v,4p3)

Proof. Proof of (50): For mj(u) = (—1) (_J”) =T(u+7)/(T(w)I'(j+1)) and ¥(u) =
DlogI'(u) we find for m =1,

<
<

D7 (u)] = [ ()| [y (u + 5) = ()] = |m;(w)]] Z

-,
4

where the second equality applies the recurrence relation ¢(z +1) —1)(z) = z~!. Since
7j(u) = u(u+1) - - (u+j—1)/4!, the i = 0 term becomes |m;(u)|/|u| = |7;(u+1)/(u+j)|
so that

D) = 1)+ ||Zui|<c<uO>|w]< o

Further differentiation shows the derivatives are dominated by the term c(ug)(log 7)™ |7;(u)|.
Proof of (51): For m =1 we find

DT ()| = T™"|mj(u)l[t(u + 5) — p(u) —log T (54)

7j—1
» 1
=T |”j<“)||2u—+i—10gT\
i=0

< e(ug)T"|m;(w)]|log %| < (o) (log TYT "] (u)|.

Further differentiation shows that the bound is given by (51).
Proof of (52) and (53): These results follow from the mean value theorem using
(50) and (51). =

B Variation bounds
In this appendix we prove a series of lemmas containing variation bounds of the type

[|Vutll2 < c and ||V — Viell2 < e(u — v), which we shall use to verify condition (23)
in Lemma 5 for relevant processes and product moments. The first lemma covers
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the deterministic terms, the second the nonstationary processes, the third lemma deals
with the (asymptotically) stationary processes, and the fourth lemma concerns product
moments including both stationary and nonstationary processes.

The next lemma evaluates the influence of the initial values on (derivatives of) the
differenced process AT X, as given by the terms

k
W= —(yp + APEL (L)) Y py Ad-dotib pdotito y,

J=0

d+ib
A-i—

and ATPX, see (12) and (13). A general form of such terms is G, (L)D™AT*AY X,
for G (L) = —(yy + A% F, (L)) or G (L) = 1 and various values of u and v. We let
D™, m =0, 1,2, denote derivatives with respect to the arguments u and/or v.

Lemma 18 Let G, (L)X; = Y00 9o Xt n, where 00 |ga| < oo. The initial values
satisfy the relation

t—1

ATUAY Xy =Y D () ()] X0, (55)
0

n=0 j=

If max,>0 | X?,| < 0o and 0 < § < v, then

ok+m e85 >0andv—0<1
—Uu v < Y — —_ Y
|8ukava+ ALK < c{ goax(uidl—vtd)=1 9 4§ <0 orv—4 > 1. (56)
It follows that for any positive n,
sup [D"AY X;| — 0 as t — oo, (57)
v>n
max max T~ ©F2DMTVAY X,| — 0 as T — oo, (58)
n<v<do—1/2—n 1<t<T
ak+m
su sup |GL(L)————AT"A’ X;| — 0 ast — oo, 59
u§1/§_nyz1/§+n| +( )8ukavm + t’ ( )
aker

T F2ATEAY Xy — 0 as T — o0. (60)

sup sup max |G.(L)
u>1/2+4n v>1/24n 1SI<T dukdu™

Proof. Proof of (55): We find

t—1

ATPAY Xy = Z’/Tj Z mi(—v)XP l:ZZW] W Tyt (—0)] X2,
= =0

i=t—j n=0 j=

29
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Proof of (56): We apply the inequalities | X°,| < ¢ and |D™n;(u)| < c(log j)™ ", see
(50), and find from (55) that

8k+m “UAY X S m u— v—
|WA+A d < > (logj)(log(n+t — )™ H(n+t—j)
n=0 j=1
oo t—1
n=0 j=1

where we have used that max;(logj)*j=° < 0o and max;(log j)™j~° < oo.
We then use that Y7 (n+t — j) v~ =372, 0=~ < ¢t — j)"* when
v — ¢ > 0, so that the bound becomes cz —L el — §)7v+0 The result follows if
we apply (48) of Lemma 16 with o = u + ¢ and B=1—-v+0.
Proof of (57): We find from (56) with u = 0, £ = 0, and § = /3, so that v > §,
that
Py —5<1 t9, vw—6<1,
ID"AY X,| < C{ pmax(G1-vkd)=1 4 55 } { 1 5> 1,

which tends to zero uniformly in v > 1 and thus proves (57).
Proof of (58): For n < v < dy —1/2 —n we find, using (57), that for 6 = n/3, we
get

T—d0+1/2|DmTvAiiXt| _ do+1/2+v| Z < > lOgT Dm kAv Xt|

< Ty (Z) (log T)* sup [D™FA? X,|

k=0 =
< I % (TIZ) (log T)F — 0,

uniformly in v € [,dy — 1/2 — n].
Proof of (59): We define § = /3, and apply (56) to find that

ak+m
G (L —A_“A”X
(R RAENONS
ak-{—m
< Z|gnH ukavm A—Xt_”|
tevt2 oy §>0andv—0 <1,
< Z|gn|c{ max(udd,l=vd)=1 =y § < Qorv—6 > 1.

n=0
Therefore, when u < 1/2—nand v > 1/24n, we find u—v+26 < —2n+20 = —4n/3 <0

and

max(u+0,1 —v+0) —1 <max(1/2—-n+6,1/2—-n+6) —1=-1/2—-2n/3 <0,
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so by application of the dominated convergence theorem and > |gn| < 00, it follows
that |G+(L)ﬂA;”AZXt| — 0 as t — oo uniformly inu < 1/2—nand v > 1/24.

duFgum

Proof of (60): We find

ghtm Caa -1 ak+ e
where
o s LU
T 1 ][a A X))
< TV~ ”‘Z (log T’ ﬂ&umxty
- Ouk=igym —+ T~

k HF—itm

k
< (logT)TV* (-)'—imA;wa
< \i ouk—iduv

. tu—v+26, v—20 S ]_’
< ¢(log T)’“Tl/2 { pmax(uts,l—v6)—1 5 ]

by application of (56) with § = 7/3. Thus, when v — § < 1 we find the bound

—n _ <
C(logT)le/Q—utu—v—i-% < c(logT)k{ T u—-v+20<0 } 0.

T2 =T7=1/3 4 —v+26>0
When v — § > 1 we find the bound

- B <1
c(log T)FTY/2-upmax(utdl—v)-1 c(logT)k{ T, max(u+ 6,1 —v+90) - } 0

75712 max(u+ 6,1 —v+6)
because

1/2 —u+max(u+9,1—v+6)—1=-1/24+0+max(0,1 —v—u) =—-1/24+7/3 <0.
u

Lemma 19 Let Z, = > " .61 be a stationary linear process with ﬁmte variance

and Y7 1€, < o0, and define ¢4(h) = 02> 7 1€, |Ensn] and ZF = Zn 05 Etem-
For vy > 1/2 and m = 0,1,2 it holds that

||DmT_u+1/2A_T_uZt+||2

<
||DmT_“+1/2A;“Zt+ _ DmT_”H/ZA;UZ;er <

uniformly in u > v > vy.
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Proof. We first note the evaluation

tl\h\

|Cov(Z, Z},)| = Z &bl < 02(R),

so that

t—1

Var(D"TPATZE) = Var() DT Pm(u) 2,
< DT 2y (w) DT 2 (u) 2 (i — ).
We apply the inequality (51) and find

Var(D™T"H2ATZ,)

t—1 t—1

< e D T Pa(u log(T)mllT 2y ()10g( )"z (i = J)
=1 j=1
t—1 t—1—h .
< Y 6, Y (G log(T oL
h=0 j=1

Now we evaluate (j + h)* ' < j* lifu<land (j+h)" < (G+T) " ifu>1,
that is
(G +h)" < G+ Thuey)"!
Then we find, because ) ;- , ¢,(h) < oo, that
RNy j j+T J
m—u+1/2 A —u -1 J u—1/J yu—1 m Jy\|m
Var(D T PATZ) < T (1) ) s oa( L)

j=1
1
— c/ (x4 Liusy)* "2 log(z + 1)|™| log x|™dx,
0
which is integrable uniformly in u > vy > 1/2 because 2%~ | log z|™ is integrable when

u > 0.
To prove (62), we apply the inequality (52) and then use the same proof. =

Lemma 20 Let Z, = > 7 &,.61—n be a stationary linear process with ﬁmte variance

and 3307 [,| < oo, and define ¢4(h) = 0 307 |€,|[€nsn] and Z7 = 32, €.
For ug < 1/2 and m = 0,1, 2 it holds that

ID"ATZ 2 < c(uo), (63)
ID"AT Z —DMATZ s < e(ug)(u—v), (64)

uniformly in v < u < ug.



LIKELIHOOD INFERENCE FOR FRACTIONAL PROCESSES 33

Proof. We prove the results for m = 0. The results for the derivatives follow in
the same way, using the evaluation (50). We find as in the proof of Lemma 19 the
inequality

t1|h|

t—1
Var(AT"Z}) < CZ R 1) 0232“0 2 < c(up),
h=0

Jj=1 7j=1
when uy < 1/2, which gives (63) because Y ;> ¢,(h) < oo. For Var((AT" — AL")Z,})
we apply the inequality (52), and then use the same proof. =

Lemma 21 Let Z, = > 7 &,.61—n be a stationary linear process with ﬁmte variance

and Y202 o |6, < oo, and define dz(h) = 0* 3272 |€,l€ninl and Z" = 3217 €ncrn.
Then for v < 1/2 < u we have

T
TN AT ZEATZE 5 0,
t=1

Proof. We show convergence in mean square. Let

T
Ir=Y ATZIATZE =Y mi(u)m;(0) 2, Z;E .

t=1 t=1 i=0 j=0

The second moment of I is

Vo= B = Y0 mewme i 0) S0 S S weww)m 1 (0) B(Z 7 2 7))

=1 [=1

—_
Bl

T
> mew(wm (0 E(ZFZ 2] 7))

INA
MH
Mq
MH
3
4
=
El
|
=
MH
MH

-
Il
—
<
Il
—
&~
g
S
2
JaN
S
<
=
e
Il
—
Il
—
Vo)
®
»
A
>
~
=

< Tuw)y Y > Y B2 ZD),

see Lemma 16 for the definition of &(T,u,v). We want to prove that T-2*~'V — 0 as
T — 0.
Now,

E(Z;rZ,jZ].*Zl*) < op(dy(i —k)py (G — 1)+ d5(i — j)dg(k — 1)+ d5(i — D5 — k)

_’_54 (5) Z gi—nfk’—nﬁj—nil—n )
n=0

see Anderson (1971, p. 467) for the case of stationary processes. Summing over 1 <
(1,4, k,1) < T we find the bound

200D 102(M)? + cTlra(e)| (Y 1€)" < eT* (Y 1€AD"
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Thus we find from (49) in Lemma 16 that

Tluto=DT=2utl <1 and v < 1
T2 < oT=2HE(T, u,0)? < c(log T S 1
Sc §(T,u,v)” < c(log T) T v, uw>1lorwv>l1,

which tends to zero because v < 1/2 < u implies that v —u < 0 and

v—u<0, u+v—12>0,

LT — 9 —
(wtv—17"+1-2u {1—2u<0, utv—1<0.

C Proof of Theorem 6

The derivatives of the likelihood function with respect to the various parameters are
functions of (Ar(v), Br(¢),Cr(v)), see (15), (16), and (17), and their derivatives with
respect to d and b, which again are functions of the normalized product moments of the
processes AT X, i = —1,0,...,k, and their derivatives, and we discuss the properties
of these processes below.

We prove tightness by showing that Lemma 5 is satisfied for the product moments
entering Az, Br, and Cr and their derivatives, using conditions (23) and (25). Then
we derive the limits of each of the product moments Ar, Br, and Cr and the relevant
derivatives.

C.1 Tightness of product moments

Lemma 22 Under Assumption 1 for model (5) the product moments Ar (1), Br(v),
Cr(v), and their derivatives are tight on C(N;), where the compact set Ny is defined
as

Ny ={(byd):dy <d<dy, b>1/2+6, n<d—b<do—1/2—n},

with dy = max(1/2,dy — 1/2) + 1, dy > do, and 0 < n < min(1/2,by — 1/2,dy — by).

Under Assumption 2 for model (2) the product moments Ar(d), Br(d), Cr(d), and
their derivatives are tight on C(1y), where Iy = [dy, do] with dy = max(1/2,dy—1/2)+n,
dy > dp, and 0 < n < min(1/2,dy — 1/2).

Proof. We give the proof for model (5) only. The same proof can be applied for model
(2). For ATX, §=0,1,...,k, we have the representation, see (12),

AN, = AT D (g + ARV + ATHP LD 4+ ATPPXG = —1,0,1,.. . k. (65)
Fori=0,1,...,kand (b,d) € Ny, condition (23) holds for the process D™ AL~ (v e, +

A%Y;") by (63) and (64) of Lemma 20 with u = —d — ib +dy < dy —d < 1/2 — 7 and
7} = e + ARY = 3200 €6, which satisfies 250 (€, | < oo, see Lemma 1.
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We next show that the deterministic parts of the process, Afibu? and ATPX,
satisfy condition (25). We find

k
e, 0O = e N0+ ARFLE) S DA AR,
(66)
which tends to zero by applying (59) with the choices G4 (L) = (v, + AYFL(L))p;,
u = —d—2b+d0 < —d+d0 < 1/2—77, and v :d0+jb0 > do > dy > 1/2+77f01‘
j=0,...,k (noting that (dy, by) is an interior point in N; and therefore dy > d;). Next
we have
max DA X,
d1 <d+ib<(1+4k)d>
which tends to zero by (57) with the choice v=d+ib>d > dy > 1/2+n.

For i = —1 we apply Lemma 5 for the process D™ T4 -b=d+1/2Ad=b X, see (65), and
verify conditions (23) and (25). Condition (23) holds for T4 b=do+t1/2ATb=do (o 4
AY;") and its derivatives by Lemma 19 with Z,” = v,e, + APY,;" and u = dy—d+b >
1/2+n.

For the deterministic part we show condition (25). From (66) we see that the first
term, D™T4-b=do+1/2A%0,0 is composed of terms of the form

(70 + A$F+(L))Dde_b_dO+1/2A(j__b_d0Aio—i_jboXt,

which are investigated in (60). We take G (L) = vy + AYF, (L), u = —d + b+ dy >
1/2+mn, and v = do + jby > dy > dy > 1/2 + 1, and find that condition (25) is
satisfied. For the term DT b~%+1/2A4P X, we apply (58) with v = d — b which
satisfiess n <v <dy—1/2—1n. =

C.2 The product moment By

These product moments, see (16), involve the processes AYLi X, i =0,1,..., k, which
are linear combinations of the processes A X, i =0,1,...,k, for which we have the
representation, see (65),

ATX, = SE 4+ Dy, i=0,1,... k, (67)

Si = AT (e + ARYY),
Dy = A{u) + ATPX,

where S} is asymptotically stationary. In the next lemma, let D™ denote derivatives
with respect to ¢ = (d,b)".

Lemma 23 Under Assumption 1 for model (5) the representation (67) implies that

max ID" Dyjt] — 0 ast — oo, (68)
dy <d+ib< (k+1)ds

T
D" Byjr(1h) = T7'D™ Y AT X, ATX, L D"Bi(1) as T — oo, (69)
t=1

35
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when (d,b) € Ny. If Assumption 2 holds for model (2) then the same conclusions hold
with d =b and d € 1.

Proof. Proof of (68): From Lemma 18 we see that we can apply (57) with v = d+ib >
d > dy > 1/2 + 1 to show that maxg, <itib<(k+1)ds DA X | < Sup,s, [IDAY X;| —
0, and (59) with u = dy —d —ib < 1/2 —nand v = dy + jby > doy > dy > 1/2 + ¢ for
7 =0,...,k to show that

k

max AT < sup  sup  |(vo + AR FL(L)) Z p; ATAY Xy — 0.

d1 <d+ib<(k+1)d2 u<1/2—nv>1/24n =0

Proof of (69): The process Si = Z;;IO Tin€t—n 18 asymptotically stationary in
the sense that Var(Sy) = Var(3. 2, Tinct—n) = 08> v, T3, — 0 as t — oo. Let

in

Sit = fozo Tin€t—n. From the law of large numbers we find

T
T Z SitSit it E(SiuSjt).

t=1
It follows from Sj = S;;—S;, that also T~ 31, S5S% 5 E(SSj.), if T 1 (S7)%
0. But this is a consequence of

T 00

(S =T7" Y (> 7h) —0.

1 t=1 n=t

[M] =

BE(T!

t

The result (69) now follows from (68) using (67). The derivatives give rise to an extra
factor (logT')™ which does not change the results, see (51). m

The results of Lemma 23 hold jointly for finitely many values of ¢ in N; and we
have shown tightness in Lemma 22, which proves (27) in Theorem 6.

C.3 Some moment relations for B(v))

In this subsection we denote by D the 2 + k vector of derivatives with respect to the
parameters 1) and ¢. Similarly D? is the matrix of second derivatives. We define

k
e, 0) = AX, =) ¢A'LIX, (70)

1=1

(4,6) = Jim B(e(w,0)%) = Boo(v) — 20Bo) + $B..()s, (1)

see (69), and the (2+k) x (2+ k) positive semidefinite matrix which enters the asymp-
totic distribution of the estimators ¢ and ¢ :

. 200(?/%?15) EO*<¢7¢) B /
S(w.0) = (52009 09 ) = i B @a e 0. ()
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Lemma 24 Under Assumption 1 we find for model (5) that the following identities
hold

¢0 = B;l(¢o)5*o(¢o)> (73)
o5 = Boo(tg) — 260Buo(o) + GoBux (¥0) b, (74)
D02(¢07¢0) = 0, (75)
D202(¢0>¢0) = 2%(tbg, ¢g) >0, ¢y # 0. (76)

It follows that for ¢y # 0, o(1, @) is strictly convez in a neighborhood of (g, ¢y) with
a minimum at (¥, ¢g)-
Under Assumption 2 we find for model (2) that

D*0°(d, §)la—do.s—py = 2M"E(ty, 60) M > 0, (77)

where D denotes derivatives with respect to (d,¢') and M' = ( (1) (1) 19 ) .
k

Proof. From equation (5) we find when (d, b, ¢, 7, 02) = (do, by, ¢, 0, 02) that

k
APX, =) o, ALy X + & (78)

=1

It follows in the same way as in (68) above, using Lemma 18, that the initial values have
no influence on the calculation of the matrices B(v,) and X(1,, ¢y), and we therefore
calculate them from the stationary processes A% X, = YoEt + AbY, and its derivatives
D™ A% X,. Multiplying (78) by the stationary process A% Lzo X, and taking expectation
we find

k
Bo;(1hy) = Z G0iBii (1),
=1

which proves (73). Taking the variance in (78) we find (74).

From (70) and (78) it is seen that £,(1, ¢,) = &; and that the coefficient to &,
in €,(1), ®) is one so that Dey(1), ¢) only contains lagged ;. We let E;_; denote the
conditional expectation given the past, ;1 = c{X% , n >0, g, 1 <s<t—1}, and
find

n’

E;_1(eDei(1hg, ¢g)) = 0, Ey_1(:D% (b, ¢)) = 0, (79)

showing that &,De; (1, ¢o) and €;D%e;(¢)y, @) are martingale difference sequences.
To prove (75) we differentiate (71) and find

DUQ(T#O, $o) = 2}3& E(eDer(vg, ¢o)) = 0,

using (79). To prove (76) we differentiate (71) twice and find, for (¢, ¢) = (¢, ¢,) and
using (79), that

D2‘72(¢0> bo) = 2}1{20 E(De (v, ¢9)Der(1g, %)/) = 2X(1g, ¢g)-

37
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We next want to show that (1, ¢,) is positive definite unless ¢ = (0,0, ...,0).
The process A% X, = Z;, see (78), has transfer function

fa(z) = 03/(1 Z%Z (1= (1= 2)")),

and ) k
f©.0) = MK, = Y OALX = (1= Y G Lp)A 7,
=1 i=1

is stationary for d close to dy with transfer function

k k
fo(z) = of(1=2)" (1 =) (1= (1—2)")) /(1= o1 — (1= 2)")").
i=1 i=1
Let 7*(u) = 1 — Zf;l dout, 7T (u) = —Zle igguit, and u = 1 — (1 — z)%. The
transfer function for the derivatives are
8 fe(2)] = o2bt1o (1 —u)
ad Y=1pg,0=0¢q 00 g )
3 o X
PG Je(D)ympgo=0, = —0obp (1 —u)log(l —u)w*(u)/7*(u),
0
%fs(z)!wwo@:% = _Uou /7T (u).

If X(0g, ¢g) = E(Dei(1g, ¢o)Der(1hy, ¢p)’) is singular then there are constants «, 5, v, - . ., Vg,
so that

0 0 L9
etV O)lu=voo=y + B pee(¥, O)lu=yo.=0, + Zvi%etw, ) y=spp.0=9p = 0.
i=1 v

The three derivatives are stationary linear processes, which are linearly dependent if
and only if their transfer functions are linearly dependent. That is, the asymptotic
variance matrix is singular if

a log(1 — u) +

bo

k
bi(l —u)log(1l — u)7*(u) /7" (u) + Z%u’/w*(u) =0 for all u,

or
k
log(1 — u)(am™(u) + B(1 — u)7™*(u)) + bo nyiui =0 for all .
i=1
The last term is a polynomial and the first is not, so this implies that «, = 0 for all 4,

and that
ar*(u) + B(1 — u)7*(u) = 0 for all u.
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Setting u = 1, we find that an*(1) = a(1 — Zle ¢0;) = 0, so that & = 0, and hence
B(1 —u)7*(u) = 0 for all u.

This implies that either g = 0, in which case we have proved linear independence, or
that
7*(u) = 0 for all u,
which means that 7*(u) = 1, and hence ¢ = (0,0, ...,0).
Finally we find (77) from the relation

0? o? 0? 0?

——0%(d,$) = =—=0°(b,d ——o?(b,d 2—o%(b,d
forb=d=dy, and ¢ = ¢,. m

C.4 The product moment Ar

The product moment Ar, see (15), is

T
AT(w) _ T*l Z(Tdfbfdo+1/2Ad7bLbXt)2

t=1
and involves the process AL, X, = A’X, — A?X,. Using the result for Byyr in
Lemma 23 we find that 7-2do—d+0) S™T (A4X,)2 — 0, when (d,b) € N, because
—2(dy —d+b) < —1—2n < —1. We therefore only consider the sum of squares of the
process
TdfbfdoJrl/QAdbet — NtJr +Mt+ +D2t7 (80)
Nt Ti-bdo+1/2y Ad-b-dog,
Mt+ _ Td—b—do—l—l/QAi—b—doA[_JS}/;—i—’

D% — Td—b—do—f—l/QAi—b'UJS 4 Td—b—dg—l—l/QA(i—bXt'

We first show that 79—t~ +1/2Ad=bX 1., converges in distribution on D0, 1] and
then show that the product moment Ar (1)) converges in distribution on C'(Ny).

Lemma 25 Under Assumption 1 for model (5) we find that, as T — oo,

max | Dy — 0, (81)
1<t<T
max [M;"| 50, (82)
1<t<T
N[J:rru] = YoWiao—darv-1(u), (83)

from which it follows that
Td’b’d(’“/QAd’bX[Tu] = YoWiy—darp-1(u) on D[0,1]

for fixed (d,b) € Ny. If Assumption 2 holds for model (2) then the same conclusions
hold with d =b and d € I,.
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Proof. Proof of (81): We apply Lemma 18. We find that the convergence of the term

max; <;<p TP~ 0/2|Ad=b,0) — 0 follows from (60) with G (L) = v, + AR F, (L),

u=—-d+b+dy>1/2+n and v =dy+ jbg > dy > dy > 1/24+nfor j =0,... k.

From (58) with v = d — b > 7 it follows that max;<;<p 7% "% +1/2| AT X, | — 0.
Proof of (82): We find

t—1

A |A (do—d+b) Ab°Y+| <  max Z|7TJ do—d+b)||AbO

1<t<T 1<t<T
=0
< boy + -do—d+b—1 < do—d+b Aboy+
< cmulary '2] < T o [NV
]:
Then
P(max |M;| > ¢) < P(max |ARYT| > T72)
1<t<T 1<t<T
T boy + |4
N E]A Y, |
< D P(ARY| =TV < T&-
t=1
Now

t—1
EIARY M <e(d m) <
n=0

which proves (82).

Proof of (83): For the nonstationary process Nip, = ’yOA;(dode’)

(7) and find the main result

E[rw] We can apply

T—(dO—dJ“b)“/?fyoA;(dD*der)E[Tu] = YoWap—drv-1(u).
n

Lemma 26 Under Assumption 1 for model (5) we find that for each fized 1) € Ny it
holds that

T 1
Ap(i) = T~260-40) S (Ad=b L, X )2 4 2 / A
t=1

If Assumption 2 holds for model (2) then the same result holds with d =b and d € I.

Proof. This follows from Lemma 25 and the continuous mapping theorem, see (8). ®

Finally we want to prove the result (26) in Theorem 6. For a finite number of
values ¥y, ...,1,, in Ny, we get joint convergence from Lemma 26, and we have shown
tightness in Lemma 22. Thus we have proved (26) in Theorem 6.
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C.5 The product moment Cp
We find, for i = 0,1, ..., k, the product moment C;r (1)), see (17) and (16),

T
) =Ty (T HIREATOX) (AL X,) — T2 Cm 0By ().
t=1

Lemma 27 Under Assumption 1 for model (5) we find that for each fixed 1 € Ny we
have
D"Cir(1) 50, i =0,1,...,k

If Assumption 2 holds for model (2) then the same result holds with d =b and d € I.

Proof. From (27) we find that D7 —1/2=(do—d+b) B .. (1)) = 0, so we only need to
prove that

DM Z —(do—d-+b)+1/2 A d— bX)(Ad—i-ibXt) 50.

For:=0,1,...,k we decompose the processes as

AN, = SF+ Dy, (84)
Td-b-doet12Nd=b Y N N 4 Dy,

see (67) and (80). For now let m = 0. We consider the product moment
T
TN (N + M + Day)(Sg + Dua).-
t=1

Let Z," = vpe; + A®Y,", then
(N;" + M;") S} = Tf(dofd+b)+1/2( —(do—d+b) Z+)<Ad+zb d0Z+>

We apply Lemma 21 with v = —(d+ib—dy) < —(d—dp) <1/2—n,and u = dy—d+b >
1/2 + 7, and find that

T
TV (N + M)SE S 0.
t=1

The remaining product moments of the form 7! Zthl A¢B; are evaluated using
the Cauchy-Schwarz inequality,

T

T~ ZAtBtP (T~ ZA2 > B,

t=1

so that it is enough to show that || 4|y — 0, which gives T~ Y] | A2 2 0, and that
T-' ST B? is bounded in probability. It is therefore enough to show that || N;"+ M| |,
and ||S; ||, are bounded and that 7-' 1, D%, — 0 and T-' 3.1 D2, — 0.
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The result for N," + M," follows from (61) with u =b—d+dy > 1/2+n and Z," =
Yoet +APY, T and for Sj} it comes from (63) with u = —d —ib+dy < do—d < 1/2—1.
The result for D;;; follows from (68) and the result for Dy, from (81).

Finally, consider the derivatives D" with respect to (d,b). We have from (51) that
it only amounts to an extra factor (log7")™, which does not change the proof. m

We can now prove the result in Theorem 6 on Cr(v). Finite-dimensional conver-
gence is obtained from Lemma 27. Tightness was proved in Lemma 22 and that proves
(28) in Theorem 6.

C.6 The product moment Cy.p

Finally we investigate (for model (5) only, since the same proof can be applied for
model (2)) TY2Co.r(1y) = T7% S (A%~ L, X,)e;, where

Ado_bOLboXt — Ado_boXt o AdOXt — VQ(AI_bOgt _ 5t) + Yt+ o Al_?fy;—
FAB  AB 4 A, - AR,

see (65). We decompose Cop.r as

T T
TN (AT — &) + T Y (V= ARY,M)e (85)
t=1 t=1
T
TN (AfTrop) — AP + AT X, — AT X e, (86)

=1
For the last term we find

T
TN (AL o) — APpd + A, — AN X )e, 50,

t=1
because the expectation is zero and

T T
T30y (AP~ + AP = Ty Dl acdgbete — 0
t=1 t=1
T

T
T2 (APp + AP X)? = T " Dijlazdop=toizo — 0

t=1 t=1

by (81) and (68).
The second term of (85) is

T t-1

T
T Z(Y:_ - Al-)i?y;t+)5t =T Z Z 7Tj(_b0)}/t—j5t.
t=1

t=1 j=1
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Because (Y5 — A%Y,H)e, = S22 7(—bo)Yi_je; is a martingale difference sequence we

7=1
find

T
+ Alijfr)ét) — g2T2b ZVC”’(Y? _ Alry;r) < T2 ),

t=1 t=1

]~
=

Var(T’bO

Finally, the first term of (85) is compared with a product moment for which we have
the convergence in (29), namely

T 1
_ _ d
T E 705tA+b°€t—1 - 0370/ By,—1dB,
0

t=1

see Jakubowski, Mémin, and Pages (1989). We therefore show that the difference tends
to zero. We find 32, e/(A7 e 1 — (AT "e—&1)) = o, eu(er — AT™e,), with mean
zero and variance

t—1 T t-1

T T
VGT’(Z ei(er — ATV e)) = o Z mi(by — 1) < CZ Zf(bo’?) < TH0=3/2)+1
t=1

t=1 j=1 t=1 j=1

Hence Var(T= Y e/(A7e, 1 — (A, — &) < T2o=3/27+1=20 —, 0 which
proves (29) of Theorem 6.
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