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Abstract

An analysis of some identi�cation problems in the cointegrated VAR is
given. We give a new criteria for identi�cation by linear restrictions on indi-
vidual relations which is equivalent to the rank condition. We compare the
asymptotic distribution of the estimators of � and �; when they are identi�ed
by linear restrictions on �; and when they are identi�ed by linear restrictions
on �; in which case a component of �̂ is asymptotically Gaussian. Finally
we discuss identi�cation of shocks by introducing the contemporaneous and
permanent e¤ect of a shock and the distinction between permanent and transi-
tory shocks, which allows one to identify permanent shocks from the long-run
variance and transitory shocks from the short-run variance.
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2 Søren Johansen

1 Introduction

We analyze some identi�cation problems in the cointegrated vector autoregressive
model, where it is well known that the adjustment and cointegration parameters
enter through the impact matrix � = ��0:To get meaningful estimates of these
parameters we therefore need to impose identifying restrictions. The long-run im-
pact matrix C is the coe¢ cient matrix of the cumulated shocks to the model and
C
Pt

i=1 "i de�nes the common stochastic trends generated by the permanent shocks
�0?"t. We discuss identi�cation of permanent shocks based upon the rows of C: Fi-
nally the transitory shocks �0
�1"t enter the conditional model of�Xt given �0?�Xt

and the past via the matrix B = �(�0
�1�)�1�0
�1and we propose to discuss iden-
ti�cation of transitory shocks via the rows of B.
As a result of the lack of identi�cation, the asymptotic information matrix for the

parameters (�; �) is singular, see Theorem 1. To �nd meaningful estimates we need
to impose identifying restrictions on � or �, and this is usually done by restricting
the individual cointegrating vectors by linear restrictions. We give a new criterion
for identi�cation, which is equivalent to the classical rank condition, see Lemma
5, and give some applications. In Theorem 7 we give the asymptotic distribution
of the identi�ed coe¢ cients when they are identi�ed by linear restrictions on �: If
instead we impose linear restrictions on the adjustment coe¢ cients we �nd that the
asymptotic distribution of the cointegrating coe¢ cient have a Gaussian component,
see Theorem 9.
Finally we de�ne permanent and transitory shocks and the contemporary and

permanent e¤ects of these. If we analyze the permanent shocks by a Cholesky de-
composition of the long-run variance C
C 0 and the transitory shocks by a Cholesky
decomposition of the short-run variance B
B0; we need the asymptotic distribution
of the linear combinations thus derived. These are found in Theorems 11 and 12.

2 The unrestricted cointegration model

We de�ne the cointegrated VAR model, the cointegrating relations, and the com-
mons stochastic trends. We then discuss estimation of � by an eigenvalue problem
and �nd the asymptotic score and information under local alternatives.

2.1 Cointegration and common trends

We consider the p�dimensional process Xt; t = 1; : : : ; T; given by the cointegration
vector autoregressive model

�Xt = ��0Xt�1 +

kX
i=1

�i�Xt�i + "t; (1)

where � and � are p � r and "t are i.i.d. Np(0;
): We have left out deterministic
terms for simplicity. Under the assumption that the roots of the characteristic
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polynomial are either outside the unit circle or equal to one, and that det(�0?(Ip �Pk
i=1 �i)�?) 6= 0; the solution can be represented as

Xt = C
tX
i=1

"i + Yt + A; (2)

where Yt is stationary and A depends on initial values, so that �
0A = 0: The long-run

impact matrix matrix C is given by

C = �?(�
0
?(Ip �

kX
i=1

�i)�?)
�1�0?: (3)

It follows from (2) and (3) that the cointegrating linear combinations, �0Xt; are
stationary, and the nonstationarity of Xt is generated by the common stochastic
trends

St = �0?

tX
i=1

"i:

We also need the conditional model for �Xt given the past and �0?�Xt; as given by

�Xt = ��0Xt�1 + !�0?�Xt +
k�1X
i=1

(�i � !�0?�i)�Xt�i + "t � !�0?"t (4)

with ! = 
�?(�0?
�?)
�1; where "t � !�0?"t = B"t; and

B = Ip � 
�?(�0?
�?)�1�0? = �(�0
�1�)�1�0
�1: (5)

Asymptotic inference for model (1) has been worked out, see for instance Jo-
hansen (1996). In the following we give some asymptotic results without detailed
proofs, but appeal to the general idea that the asymptotic distribution of the maxi-
mum likelihood estimator can be found as the ratio of the limit under local alterna-
tives of the score function and the information. As usual the estimators are derived
from the Gaussian likelihood function and their properties given under general i.i.d.
errors with mean zero and �nite variance.

2.2 Estimation of the unrestricted parameters by reduced
rank regression

If the parameters (�; �;�1; : : : ;�k;
) are unrestricted, it is well known that the
parameters can be estimated by reduced rank regression, see Anderson (1951). We
use the Frisch-Waugh theorem to eliminate the short run dynamics �1; : : : ;�k and
de�ne the residuals

R0t = (�Xtj�Xt�1; : : : ;�Xt�k) and R1t = (Xt�1j�Xt�1; : : : ;�Xt�k)
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and the product moments Sij = T�1
PT

t=1RitR
0
jt and S"1 = T�1

PT
t=1 "tR1t: The

rest of the analysis is conducted in the pro�le likelihood function

� logLT (�; �;
) = � max
�1;:::;�1

logLT (�; �;�1; : : : ;�k;
)

=
1

2
tr[
�1

TX
t=1

(R0t � ��0R1t)(R0t � ��0R1t)
0]:

The parameter � is now estimated by solving an eigenvalue problem, and the max-
imized likelihood function is used to construct tests for rank and hypotheses on �;
see Johansen (1996).

2.3 Asymptotic distribution of score and information under
local alternatives

The local experiment, see van der Vaart (1988), is constructed by �nding the limit
under local alternatives of the parameters of the score and information. We introduce
some notation. Let f(x; y) be a matrix valued function of matrix arguments x and y;
and let dx and dy denote directions of the same dimensions as x and y respectively.
We de�ne the partial derivative of f with respect to x in the direction dx by

Dxf(x; y)(dx) = lim
s!0

s�1ff(x+ sdx); y)� f(x; y)g:

We use the notation fAijg for a block matrix with blocks Aij, and diagfAig for a
block diagonal matrix with diagonal blocks Ai: Finally we write A 
 B = faijBg;
and use throughout that if Z is a stochastic matrix with variance V ar(Z) = A
B;
then for vectors �; � we have

V ar(�0Z�) = � 0A��0B�:

We let W be the limit in distribution on Dp[0; 1] of X[Tu] = T�1=2
P[Tu]

i=1 "i; and
write

X[Tu] =) CW (u): (6)

Theorem 1 The limit in distribution of the score with respect to � in the direction
T�1�?

��
0
?(d�) is given by

tr[�0
�1
Z 1

0

(dW )W 0C 0�?(
��
0
?d�)]; (7)

which is mixed Gaussian with asymptotic conditional variance

vec(��
0
?d�)

0
�
�0
�1�
 �?C

Z 1

0

WW 0duC 0�?

�
vec(��

0
?d�): (8)
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The score with respect to �; � in the directions T�1=2(���0(d�); (d�)0) is asymptoti-
cally Gaussian with mean zero and variance

vec(��
0
(d�); (d�)0)0

��
�0
�1� �0
�1


�1� 
�1

�

 ���

�
vec(��

0
(d�); (d�)0); (9)

where ��� = V ar(�0Xtj�Xt; : : : ;�Xt�k+1):
The asymptotic distribution of the information is given by a block diagonal matrix

with a block corresponding to T�1�?��
0
?d� given by (8) and a block corresponding to

T�1=2(���
0
(d�); (d�)0) given by the singular matrix (9).

Proof. We let 
 be known to simplify the calculations, and de�ne the concen-
trated likelihood function lT (�; �) = �2 logLT (�; �;
):We �rst �nd the score with
respect to � in the direction T�1�?��

0
?(d�);

T�1D�lT (�; �)(�?�
0
?(d�)) = �tr[
�1S"1�?��

0
?(d�)�

0];

and the limits in (7) and (8) follow from (6) and

S1"
d! C

Z 1

0

W (dW )0;

T�1S11
d! C

Z 1

0

WW 0duC 0:

Next, the derivatives with respect to (�; �) in the directions T�1=2(���0(d�); (d�)0)
are

T�1=2D�lT (�; �)(���
0
(d�)) = �tr[
�1T 1=2S"1���

0
(d�)�0]; (10)

T�1=2D�lT (�; �)(d�) = �tr[
�1T 1=2S"1�(d�)0]: (11)

It follows from
T 1=2�0S1"

d! Nr�p(0;

 ���);

that the scores are (jointly) asymptotically Gaussian with the mean zero and vari-
ance (9). The calculation of the information and its limit is given in the Appendix.

It is seen that the asymptotic distribution of the maximum likelihood estimators
cannot be derived from the results in Theorem 1 because the parameters are not
identi�ed or equivalently the asymptotic information (9) is singular. By imposing
restrictions on � or � we restrict the variation of d� and d� so that � and � become
identi�ed and the asymptotic information has full rank. This has the implication
that there are cases in which �̂ � � has a component in the direction �; so that
T 1=2(��

0
(�̂ � �); (�̂� �)) is asymptotically Gaussian and in general correlated. This

is discussed in sections 4 and 5, but �rst we give some criteria for identi�cation by
linear restrictions.
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3 De�nitions and criteria for identi�cation

We give here the de�nition of identi�cation and discuss some criteria for identi�ca-
tion by linear restrictions on individual relations.

De�nition 2 Let fP�; � 2 �g be a family of probability measures, that is, a sta-
tistical model. We say that a parameter function g(�) is identi�ed if g(�1) 6= g(�2)
implies that P�1 6= P�2 ; or equivalently if P�1 = P�2 implies that g(�1) = g(�2):

In the cointegration model (1), the parameter function � = ��0 and the para-
meters �1; : : : ;�k;
 are identi�ed, because if �

i = (�i; �i;�i1; : : : ;�
i
k;


i); i = 1; 2;
and the (conditional) densities are equal

p(X1; : : : ; XT ; �
1jX0; : : : ; X�k) = p(X1; : : : ; XT ; �

2jX0; : : : ; X�k);

then �1 = �1�10 = �2�20 = �2; �1i = �
2
i ; i = 1; : : : ; k; and 


1 = 
2: On the other
hand, given any choices of (�1; �1) and (�2; �2) for which � = �1�10 = �2�20; one
can �nd a full rank r � r matrix for which �1 = �2�0 and �1 = �2��1: Thus the
identi�cation of � and � reduces to giving such restrictions on � or �; that if � and
� satisfy the restrictions and �� and ��0�1 satisfy the same restrictions, then � = Ir.
A general formulation of linear restrictions on individual cointegrating relations

allows si linear restrictions the i0th vector: R0i�i = 0; i = 1; : : : ; r; where Ri is p� si
of rank si. If we de�ne Hi = Ri?; then the restrictions can be formulated as

R0i�i = 0 or �i = Hi�i; �i 2 Rmi ; i = 1; : : : ; r: (12)

Thus �i; or �i; has mi = p � si free parameters. The general de�nition of
identi�cation implies that �i is identi�ed (up to a constant factor) by (12) if it is
the only linear combination of � which satis�es the same restriction. That is, if
R0i�v = 0; v 2 Rr; implies that v is proportional to the i0th unit vector v = �ei.
Often we normalize the vectors and in this case the restrictions R0i�i = 0 can be

formulated as
�i = hi +H i i;  2 Rmi�1; (13)

where Hi = (hi; H
i) = Ri?; and H i is p� (mi � 1):

We give a simple example:

Example 1 If r = 2; a set of restrictions that is sometimes useful is

�0 =

�
1 0 �31 �41
0 1 �32 �42

�
= (I2;�B); (14)

which corresponds to solving the cointegrating relations for the �rst two variables,
that is, if Xt = (X1t; X2t); each of dimension 2; we can write the cointegrating
relations as

X1t = BX2t + ut:
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In the general formulation, (13), h1 and h2 are the �rst two unit vectors and H i0 =
(02�2; I2) and  i is 2� 1: Clearly if � is 2� 2 and �� satis�es the same restrictions,
than � = I2; so that the restrictions in (14) identify �.
If instead

�0 =

�
1 0 �31 �41
�12 1 0 �42

�
; (15)

then if �� satisfy the same restrictions, one can see that �11 = �22 = 1; �12 = 0;
and �21�31 = 0: Thus if �31 6= 0; then �21 = 0; and � = I2; so that the restrictions
(15) identify �; whereas if �31 = 0; then only the �rst relation is identi�ed. In this
case we say that �2 is generically identi�ed because the set of � for which �2 is not
identi�ed is a small set which has Lebegue measure zero.�
The next lemma is the classical rank condition for identi�cation, see for instance

Fisher (1966).

Lemma 3 (Rank condition) The vector �i is identi�ed up to a normalization by the
si restrictions R0i�i = 0; if and only if the si � r matrix R0i� has rank r � 1:

Proof. We let i = 1: If rank(R01�) =rank(R
0
1(�2; : : : ; �r)) < r � 1; there would

be an (r� 1)�vector v = (v2; : : : vr) 6= 0 for which R01(�2; : : : ; �r)v = 0: In this case
the vector ��1 = �1 +

Pr
i=2 �ivi 6= ��1 would satisfy R

0
1�

�
1 = 0; so that �1 is not

identi�ed.
If on the other hand �1 is not identi�ed identi�ed, we can �nd an r � 1 vector

v 6= 0; for which ��1 = (�2; : : : ; �r)v satis�es R
0
1�

�
1 = 0; but then rank(R01�) =

rank(R01(�2; : : : ; �r)) < r � 1:

What is usually done in practice in order to implement this criterion, is to con-
sider the determinant

P1(�2; : : : ; �r) = j(�2; : : : ; �r)0R1R01(�2; : : : ; �r)j

which, if �1 is identi�ed, has rank r � 1: The polynomial P1(�2; : : : ; �r) is either
identically zero, in which case no vector is identi�ed by R1 or there is only a �nite
number of roots, so that except for �nitely many values of (�2; : : : ; �r) the rank con-
dition is satis�ed and �1 is identi�ed by R1. In this case we say that the restrictions
R1; : : : ; Rr are generically identifying.
Example 2 Let

�0 =

�
0 �21 �31 �41
�12 0 �32 �42

�
;

which satis�es the restrictions R0i�i = 0; where

R01 = (1; 0; 0; 0); R02 = (0; 1; 0; 0):

In this case P1(�2) = (R
0
1�2)

2 = �212; has only one zero, �12 = 0; so that R1 is
generically identifying, and �1 is identi�ed if �12 6= 0: Similarly �2 is identi�ed if
�21 6= 0:�
We next give an elementary result from matrix algebra and apply this to refor-

mulate the rank condition.
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Lemma 4 For any two matrices �(p� r) and R(p� s) of rank r and s respectively
it holds that

rank(R0�) = r � q if and only if rank(�0?R?) = p� s� q:

Proof. If if rank(R0�) � r � q; there exists a matrix �(r � q) of rank q for
which R0�� = 0; but then there exists a matrix �((p � s) � q) of rank q for which
�� = R?�; so that 0 = �0?�� = �0?R?�; which implies that rank(�

0
?R?) � p�s�q:

Thus
rank(R0�) � r � q implies rank(�0?R?) � p� s� q:

By interchanging � with R? and R with �? and p� s with r; we see that also the
inverse implication holds and therefore the ranks have to be equal.

Lemma 5 The relation �i is identi�ed up to a normalization by the si restrictions
R0i�i = 0; if and only if the (p� r)� (p� si) matrix �

0
?Hi has rank p� si � 1:

The lemma is a Corollary of Lemma 4 for q = 1.
Another algebraic criterion that does not depend on the parameters but only on

the restrictions is given in

Lemma 6 A necessary and su¢ cient condition that �i is generically identi�ed by
R0i�i = 0 is that for any k = 1; : : : ; r�1 and any k indices 1 � i1 < i2 < � � � < ik � r
for which ij 6= i; we have

rank(R0i(Ri1?; : : : ; Rik?)) � k:

Proof. To show that the condition is necessary we take �ij = Rij?�j; j =
1; : : : ; k; for some �j: Then

rank(R01(Ri1?; : : : ; Rik?)) � rank(R01(Ri1?�1; : : : ; Rik?�k))

= rank(R0i(�i1 ; : : : ; �ik)) = k:

That this criterion is also su¢ cient follows from a theorem of Rado (1942), see
Johansen (1995).
It shows that based upon the restrictions alone it is possible to check for generic

identi�cation without knowing the parameter values.

4 Identi�cation by linear restrictions on �

We give the well known asymptotic distribution of the estimated cointegrated rela-
tions when they are identi�ed by individual linear restrictions.
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4.1 Asymptotic distribution of �̂ and �̂ with identifying re-
strictions on �

Theorem 7 If � is identi�ed by the restrictions �i = hi+H
i i; i = 1; : : : ; r; it holds

that the limit of the information matrix for the parameters  i; i = 1; : : : ; r; is the
full rank matrix

f�0i
�1�jH i0C

Z 1

0

WW 0duC 0Hjg:

The asymptotic distribution of Tvec(�̂��) is mixed Gaussian with asymptotic con-
ditional variance

diagfH igf�0i
�1�jH i0C

Z 1

0

WW 0duC 0Hjg�1diagfHjg0;

which can be estimated by

TdiagfH igf�̂0i
̂�1�̂jH i0S11H
jg�1diagfHjg0: (16)

The asymptotic distribution of T 1=2vec(�̂��) is Gaussian with mean zero and vari-
ance matrix

��1�� 
 
: (17)

The estimators �̂ and �̂ are asymptotically independent.

Proof. The score with respect to � in the direction T�1H id i is

�tr[
�1S"1H i(d i)�
0
i] = �tr[
�1S"1(���

0
+ �?

��
0
?)H

i(d i)�
0
i]

d! �tr[�0i
�1
Z 1

0

(dW )W 0C 0H i(d i)];

so that in the limit the directions ���0H i i play no role. The limit of the vector of
scores with respect to T�1(H1(d 1); : : : ; H

r(d r)) is therefore mixed Gaussian with
asymptotic conditional variance matrix

vec( )0f�0i
�1�jH i0C

Z 1

0

WW 0duC 0Hjgvec( );

where vec( ) = ( 01; : : : ;  
0
r)
0: This is also the limit of the information matrix. It

follows from Lemma (5) that this matrix has full rank because if vi; i = 1; : : : ; r are
vectors so that

rX
i=1

rX
j=1

�0i

�1�jv

0
iH

i0C

Z 1

0

WW 0duC 0Hjvj

= tr[�0
�1�fv0iH i0C

Z 1

0

WW 0duC 0Hjvjg] = 0;



10 Søren Johansen

then v0iH
i0C
R 1
0
WW 0duC 0Hjvj = 0; and hence �0?H

jvj = 0; but this implies by
Lemma 5 that vj = 0: We can therefore �nd the asymptotic distribution of T  ̂i by
dividing the score by the information.
The asymptotic distribution of the score with respect to � in the direction

T�1=2(d�); T�1=2D�lT (�; �)(d�) = �tr[
�1T 1=2S"1�(d�)0] see (11), is Gaussian with
mean zero and variance

vec((d�)0)0(��� 
 
�1)vec((d�)0);

which is also the limit of the information, and that proves (17). Finally the estimates
are asymptotically independent because

T�3=2D2
��lT (�; �)(d�i; H

i(d i))

= �T�1=2trf
�1S"1H i(d i)(d�i)
0) + T�1=2trf
�1(d�i)�0iS11H id i)�

0
i)

P! 0:

The result above is derived under the assumption that all vectors in � are iden-
ti�ed. If only some are identi�ed, we can impose just identifying restrictions on the
remaining ones and apply the result.
It may therefore appear that the asymptotic distribution of an identi�ed vector,

T (�̂1� �1) say, could depend on how some of the other columns of � are being just
identi�ed. It is, however, a consequence of Lemma 5 that this is not the case.

Theorem 8 Let � = (�1; : : : ; �r) be identi�ed by R1; : : : ; Rr; and assume that �r is
just identi�ed. Then the asymptotic conditional variance for the vector Tvec(�̂1 �
�1; : : : ; �̂r�1��r�1) does not depend on how �r is just identi�ed, and it is estimated
by the relevant block of (16).

Proof. Let �ij = �0i

�1�j, and M = ��

0
?C

R 1
0
WW 0duC 0��?: The asymptotic

conditional variance of Tvec( ̂1 �  1; : : : ;  ̂r�1 �  r�1) is given by the inverse of a
matrix with i; j0th block

�ijH
i0�?M�0?H

j � �irH
i0�?M�0?H

r(�rrH
r0�?M�0?H

r)�1�rjH
r0�?M�0?H

j

= (�ij �
�ir�rj
�rr

)H i0�?M�0?H
j;

where we use that Hr0�? is (p � r) � (p � r) of full rank, see Lemma 5, for any
choice of a just identifying Hr: Next we show that the coe¢ cient �ij �

�ir�rj
�rr

does
not depend on the choice of Hr: We �nd

�ij �
�ir�rj
�rr

= �0i

�1�j � �0i


�1�r(�
0
r


�1�r)
�1�0r


�1�j

= �0i�r?(�
0
r?
�r?)

�1�0r?�j;
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so that the adjustment coe¢ cient �r only enters through its orthogonal complement.
If ��r =

Pr
i=1 �ivi (vr 6= 0) is chosen so that ��r is just identi�ed by some other

restrictions R�0r �
�
r = 0, then

rX
i=1

�i�
0
i =

r�1X
i=1

(�i � �r
vi
vr
)�0i + �r

1

vr
��r =

r�1X
i=1

��i�
0
i + ��r�

�0
r ;

which shows that the adjustment coe¢ cient to ��i is �
�
i = �i � �r vivr ; and the coe¢ -

cient to ��r is �
�
r = �r

1
vr
; so that ��r? = �r?: Therefore

��ij �
��ir�

�
rj

��rr
= ��0i �

�
r?(�

�0
r?
�

�
r?)

�1��0r?�
�
j = ��0i �r?(�

0
r?
�r?)

�1�0r?�
�
j

= �0i�r?(�
0
r?
�r?)

�1�0r?�j = �ij �
�ir�rj
�rr

:

This shows that the asymptotic conditional variance does not depend on how the
last vector is just identi�ed.

5 Identi�cation of � using linear restrictions on �

Another possibility for identifying � is to identify the r cointegrating relations as
the �rst r rows of the matrix �: This corresponds to identifying � by choosing
�0 = (Ir; �

0
2); see (14): A general formulation of this is

�i = ai + Ai i;  i 2 Rmi�1 ; i = 1; : : : ; r;

or (ai; Ai)0?�i = 0; see (13). We give the asymptotics of �̂ and �̂ in this case.

5.1 Asymptotic distribution of �̂ and �̂ with identifying re-
strictions on �

Theorem 9 Under the identi�cation �i = ai + Ai i the limit of the information
matrix in the directions ��0(d�1; : : : ; d�r); d 1; : : : ; d r is

I =
�
fe0i�0
�1�ej���g f���ele0i�0
�1Alg
fA0k
�1�eje0k���g fe0k���elA0k
�1Alg

�
; (18)

which has full rank. The asymptotic distribution of T (vec(��0?(�̂ � �))) is mixed
Gaussian with asymptotically conditional variance

(�0
�1�
 �0?C

Z 1

0

WW 0duC 0�?)
�1 (19)

and T 1=2(vec(��0(�̂��))0;  ̂1� 1; : : : ;  ̂r� r) is asymptotically Gaussian with mean
zero and variance matrix I�1; see (18).
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In the special case where Ai = A; i = 1; : : : ; r; the covariance matrix I�1 becomes�
fe0i(�0A?(A0?
A?)�1A0?�)�1ej��1��g �f��1��ele0i(�0
�1�)�1�0
�1AMg
�fMA0
�1�(�0
�1�)�1eje

0
k�

�1
��g fe0k��1��elMg

�
; (20)

where M = (A0�?(�
0
?
�?)

�1�0?A)
�1: When we identify � by � = (Ir; �02)

0 we have
A = (0; Ip�r); and �nd the asymptotic variance matrix for T 1=2(vec(��

0
(�̂ � �)))

��1�� 
 
1:r;1:r:

Proof. Proof see the appendix
The results of Theorem 9 show that the asymptotic distribution of �̂ has two

components: one in the direction of � which is T 1=2 consistent and one in the
direction of �? which is T consistent. It follows that

T 1=2(�̂ � �) = T 1=2���
0
(�̂ � �) + T 1=2�?

��
0
?(�̂ � �) = T 1=2���

0
(�̂ � �) + oP (1):

Thus, the distribution of T 1=2(�̂��) is asymptotically Gaussian, but with a singular
covariance matrix, so there are some hypotheses that one cannot test using the
Gaussian distribution. We illustrate by an example.

Example 3 Suppose we have four variables and two cointegrating relations, and
we identify using �0 = (I2; �

0
2) so that the �rst two rows of � are the identi�ed

cointegrating parameters. Now assume that the true value � has �11 = 0. We can
test this hypothesis by applying the asymptotic Gaussian distribution of �̂11 :

T 1=2�̂11q
e01
̂e1e

0
1�̂�

�1
�̂�̂
�̂
0
e1

d! N(0; 1); (21)

where

e01��
�1
���

0e1 = (�11; �12)�
�1
�� (�11; �12)

0 = (0; �12)�
�1
�� (0; �12)

0 = (�12)
2(��1�� )22:

Thus we see that (21) only holds if �12 6= 0: In this case we let BT = (�; T�1=2�?)
and �nd a consistent estimator of e01��

�1�0e1 from

e01S
�1
11 e1 = e01BT (B

0
TS11BT )

�1B0
T e1 (22)

= e01��
�1
���

0e1 + T�1e01�?(T
�1�0?S11�?)

�1�0?e1 + oP (1)
P! e01��

�1
���

0e1:

Thus a simulation experiment will show that �̂11 is approximately Gaussian in
case �12 6= 0: If, however, �12 = 0; that is, � has the �rst row equal to zero, �0e1 = 0;
we cannot use the asymptotic result (21), and �nd instead that

T �̂11 = Te01(�̂ � �)e1 = Te01�
��
0
(�̂ � �)e1 + Te01�?

��
0
?(�̂ � �)e1 = Te01�?

��
0
?(�̂ � �)e1

d! e01�?(�
0
?C

Z 1

0

WW 0duC 0�?)
�1�0?C

Z 1

0

W (dW )0
�1�1;
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and because e01� = 0; we have e
0
1�? 6= 0. Thus in case �12 = 0; the simulation above

will show that �̂11 is not approximately Gaussian, but mixed Gaussian, which means
that we no longer want to normalize by the standard error, but by an estimate of
the asymptotic conditional standard error. Thus in this case inference is not based
on the asymptotic distribution of �̂11 but on the joint asymptotic distribution of �̂11
and the observed information e01
̂e1e

0
1S

�1
11 e1.

Thus, the mixed Gaussian limit has to be used to make inference on �11: Note,
however, that one can use the same statistic:

T 1=2�̂11q
e01
̂e1e

0
1S

�1
11 e1

=
T �̂11q

e01
̂e1e
0
1(T

�1S11)e1

d! N(0; 1);

because in this case, it follows from (22) that when e01� = 0;

e01(T
�1S11)

�1e1 = e01�?(T
�1�0?S11�?)

�1�0?e1 + oP (1)

d! e01�?(�
0
?C

Z 1

0

WW 0duC 0�?)
�1�0?e1;

so that T �̂11 is normalized by an estimator of the square root of its asymptotic
conditional variance, which is the appropriate scaling factor, and the limit is again
N(0; 1).
The di¤erence between the situation �21 = 0 and �21 6= 0; is that if �21 6= 0; the

hypothesis �11 = 0 does not change the cointegration space. When �21 6= 0; it is
possible to change the coordinate system inside sp(�) and obtain �11 = 0; that is
�nd a linear combination of �1 and �2 with �rst coe¢ cient zero: If �21 = 0; however,
this is not possible in general and the hypothesis �11 = 0; becomes a hypothesis on
the cointegrating space leading to mixed Gaussian inference.�

5.1.1 Discussion.

The mathematical formulation of all this is that it is the cointegration space which
is estimated superconsistently and the estimator is mixed Gaussian and asymptoti-
cally independent of the limit of the remaining parameters. The problem is how to
reformulate this statement into something that is economically useful. This is what
is done by the identifying restrictions of the form R0i�i = 0; whereby the cointegrat-
ing space is parameterized using economically meaningful parameters. On the other
hand, identifying the cointegration space as the �rst two rows, say, of the matrix �;
that is, as the stationary linear combination to which the �rst two variables react, is
clearly an identi�cation of the cointegration space, but it also speci�es which vectors
in that space we are interested in. Thus if the �rst two rows of � are

�0 =

�
�11 �21 �31 �41
�12 �22 �32 �42

�
;

it is clear that by multiplying by the matrix�
�22 ��21
��12 �11

�
;
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we get �
�11�22 � �12�21 0 � �

0 �11�22 � �12�21 � �

�
:

This does not change the cointegrating space, but we can achieve zeros at the po-
sitions 12 and 21: Thus the hypothesis that, say, �12 = �21 = 0; is clearly testable,
because the parameters are identi�ed, but it is not a hypothesis on the cointegration
space and hence does not involve mixed Gaussian inference.

6 Shocks and their e¤ect

The cointegrated vector autoregressive model associates with each variable Xit a
contemporaneous shock "it; which is the unanticipated part of Xit given the past.
The identi�cation of shocks is often done by postulating an ordering of the variables,
and therefore the corresponding shocks, and perform a Cholesky decomposition of
the variance 
: If we decompose the shock into a permanent �0?"t and a transitory
part, �0
�1"t, there is no natural ordering because of the lack of identi�cation of
(�; �?): We propose to give names to the permanents shocks by considering their
e¤ects on the process, that is, by analyzing the long-run variance

C
C 0;

see (3). Similarly we give names to the transitory shocks by considering their e¤ect
on the equations given the long-run shocks. This leads to an analysis of the short-run
variance

B
B0 = �(�0
�1�)�1�0:

If we apply a Cholesky decomposition of C
C 0 or B
B0 we �nd linear combinations
of shocks. We end this section by �nding the asymptotic variances of these estimated
linear combinations.

6.1 Permanent and transitory shocks and their contempo-
raneous and permanent e¤ects

Model (1) can be written as

Xt = (Ip + ��0)Xt�1 +

kX
i=1

�i�Xt�i + "t:

This shows that a change in "t ("t 7! "t + c) is equivalent to a change in Xt (Xt 7!
Xt + c): We now discuss the e¤ect of such a change on later values Xt+h; using the
Granger representation theorem (2). We �nd

Xt+h = C

t+hX
i=1

"i +

1X
i=0

Ci"t+h�i + A;
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which shows that the e¤ect at time t+ h of a change c 2 Rp to "t (or Xt) is

@Xt+h

@"t
c = (C + Ch)c! Cc; h!1:

A change c to the system at time t propagates through the system and becomes Cc
in the long run, that is, the permanent e¤ect of a change is Cc: Moreover from the
expression for C; see (3), we see that the part of the shock "t; which has an e¤ect
in the long run is �0?"t:
We note the decomposition of "t into independent components

"t = �(�0
�1�)�1�0
�1"t + 
�?(�
0
?
�?)

�1�0?"t: (23)

Based on this we use the de�nitions

De�nition 10 We call "t the shock at time t; and de�ne the permanent shock as
�0?"t and the transitory shock as �

0
�1"t: We de�ne the contemporaneous e¤ect of
"t as Ip:
From the decomposition (23) of the shock "t; we �nd the contemporaneous e¤ect

of the permanent shock, �0?"t; is 
�?(�
0
?
�?)

�1; and that of a transitory shock,
�0
�1"t; is �(�0
�1�)�1:
Finally the long-run e¤ect of a shock "t is de�ned to be C; of a permanent shock it

is C
�?(�0?
�?)
�1 = �?(�

0
?��?)

�1; and of a transitory shock it is C�(�0
�1�)�1 =
0.

7 Identi�cation of permanent shocks

We start by an example.
Example 4 Let us assume we have among others the real variable yrt and the

nominal variable pt; and that we have two permanent shocks, which we want to call
a real shock and a nominal shock. The Granger representation of the variables is

yrt = e01C

tX
i=1

"i + z1t = c01

tX
i=1

"i + z1t;

pt = e02C

tX
i=1

"i + z2t = c02

tX
i=1

"i + z2t;

...

It seems clear that we want the permanent shocks to be de�ned by �0?"t: The problem
is to identify which shock can in�uence which variable.
Let us assume that

A nominal shock cannot have a permanent inuence on a real variable
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From this it follows that the only permanent shock which appears in a real
variable is a permanent real shock.
Thus we de�ne (or identify) the permanent real shock as that which generates

the random walk in the real variable, that is, the linear combination given by the
row of C which corresponds to the real variable.
It seems natural then to de�ne (or identify) the permanent nominal shock as

the linear combination given by that row of C which corresponds to the nominal
variable but orthogonalized to the permanent real shock.�

If we want to announce that the cumulated (permanent) shocks which enter into
the �real�variable X1t is generated by the �permanent real�shocks to the economy,
we can de�ne the �permanent real�shock as

v1t = c01"t = e01C"t; (24)

where c01 is the �rst row of the matrix C corresponding to X1t: If we next want to
de�ne the �permanent nominal�shock as that part of the cumulated shock in the
�nominal�variable X2t which is independent of c01"t we de�ne

v2t = c02"t � c02
c1(c
0
1
c1)

�1c01"t: (25)

If more orthogonalized shocks are needed the Cholesky decomposition is contin-
ued by choosing further variables, that is, rows of C until we have identi�ed p � r
shocks. We have to choose the variables so that the rows ci are linearly independent,
that is, so that the next vector chosen is linearly independent of those previously
chosen, or so that the next variable is not cointegrating with those already chosen.
In general when we have chosen c1:m = (c1; : : : ; cm); we de�ne

vm+1:t = c0m+1:1:m"t = c0m+1"t � c0m+1
c1:m(c
0
1:m
c1:m)

�1c01:m"t:

Note that we can estimate C"t from

ĈR0t = Ĉ(�̂�̂
0
R1t + "̂t) = Ĉ"̂t:

The above discussion of de�ning the permanent shocks by their long-run properties,
is of course not new, see Blanchard and Quah (1989), but here the di¤erent terms are
de�ned in the cointegrated VAR. A discussion of long-run propositions as restrictions
on �? is found in the paper by Lin (2007).
Thus, instead of the Cholesky decomposition of 
; based upon an ordering of

the variables, one may choose a Cholesky decomposition of the long-run variance
C
C 0, in order to identify the permanent shocks.

7.1 The variance of the weights of the permanent shocks

We �nd here the asymptotic Gaussian distribution of the estimators of the weights
found by the Cholesky decomposition of the long-run variance C
C 0.
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Theorem 11 The asymptotic variance of the coe¢ cients

ĉ01 = e01Ĉ

is given by
asV ar(ĉ01) = �0��1�c01
c1 (26)

whereas the asymptotic variance of ĉ2:1 is given by

asV ar(ĉ2:1) = c02:1(
 + 
�
0��1�
)c2:1C1 (27)

+(c02:1
c2:1)

�1C1?�

0��1�C1?

�1;

where we have used the notation

� = EZtZ
0
t;

Z 0t = (X
0
t�1�;�X

0
t�1; : : : ;�X

0
t�k+1);

�0 = ((C 0�0 � Ip)��;C
0; : : : ; C 0)

C1 = c1(c
0
1
c1)

�1c01
C1? = c1?(c

0
1?


�1c1?)
�1c01?

The general case is found by replacing c01 by c
0
1:m and c

0
2:1 by c

0
m+1:1:m = c0m+1 �

c0m+1
c1:m(c
0
1:m
c1:m)

�1c01:m.

Proof. See the Appendix.

8 Identi�cation of transitory shocks

Having now exploited the matrix C for p�r linearly independent rows to de�ne p�r
permanent shocks, we next want to identify the r transitory shocks. These can be
found in the conditional model for �Xt given the past and �0?�Xt; or equivalently
given the permanent shocks �0?"t; that is, in model (4).
Thus to each equation is associated a transitory shock through the corresponding

row of the matrix
B = �(�0
�1�)�1�0
�1:

With this notation, the formulae for identifying the transitory shocks by a
Cholesky decomposition of B
B0 are the same as for the permanent shocks, only C
is replaced by B:
Thus, whereas the permanent shocks are ordered according to variable, the tran-

sitory shocks are ordered according to equation.
A Cholesky decomposition is then found as before

u1t = e01B"t = b01"t; (28)

where e1 is the unit vector corresponding to the �rst equation chosen. Next we
choose another equation and de�ne

u2t = (b
0
2 � b02
b1(b

0
1
b1)

�1b01)"t; (29)
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and continue the Cholesky decomposition up to r shocks.
The transitory shocks, B"t; can be found from

R0t = �̂�̂
0
R1t + !̂�̂0?R0t + B̂"̂t:

8.1 The variance of the weights of the transitory shocks

We �nd here the asymptotic Gaussian distribution of the estimators of the weights
found by the Cholesky decomposition of the short-run variance B
B0.

Theorem 12 The asymptotic variance of b̂01 is

asV ar(b̂1) = (
A?
)11

�1���


�1 + 
�1���e1e
0
1
A? (30)

+ A?
e1e
0
1���


�1 + A?(��� + A)11

where
A = �(�0
�1�)�1�0 and A? = �?(�

0
?
�?)

�1�0? (31)

which satisfy A
�1 + 
A? = Ip; and

��� = �(�0
�1�)�1��1�� (�
0
�1�)�1�0: (32)

The asymptotic variance of b̂02:1 is

asV ar(b̂02:1) (33)

= (b02:1
b2:1)b1(b
0
1
b1)

�1b01
+(b02:1���b2:1)b1(b

0
1
b1)

�1e01
A?
e1(b
0
1
b1)

�1b01
+(e02:1
A?
e2:1)


�1B1?

�1���


�1B1?

�1 + (��� + A)22A?

+
�1B1?

�1���e2:1e

0
2:1
A? + A?
e2:1e

0
2:1���


�1B1?

�1

+(e02:1
A?
e1)(b
0
1
b1)

�1
�1B1?

�1���b2:1b

0
1

+(e02:1���b2:1)

�1B1?A?
e1(b

0
1
b1)

�1b01;

where
B1 = b1(b

0
1
b1)

�1b01 and B1? = b1?(b
0
1?


�1b1?)
�1b01?;

which satisfy Ip = B1
 + 

�1B1?; and e02:1 = e02 � b02
b1(b

0
1
b1)

�1e01:

The result for b̂m+1:1:m is given by replacing b1; b2:1; by b1:m; bm+1:1:m:

Proof. See the Appendix.

9 Appendix

9.1 Proof of Theorem 1

We give here a calculation of the information with respect to the parameters (�; �)
and its limit. We �nd the components of the information matrix and their limits in
the directions

(T�1�?
��
0
?(d�); T

�1=2���
0
(d�); T�1=2d�):
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1. D2�� :

T�1D2��lT (�; �)(d�; d�) = tr[
�1(d�)�0S11�(d�)
0]

P! tr[
�1(d�)���(d�)
0];

2. D2�� :

T�1D2��lT (�; �)(d�; �
��
0
d�)) = �tr[
�1S"1���

0
(d�)(d�)0]

+tr[
�1�(d�)0���0S11�(d�)
0];

T�3=2D2��lT (�; �)(d�; �?
��
0
?d�)) = �T�1=2tr[
�1S"1�?��

0
?(d�(d�)

0)]

+T�1=2tr[
�1�0(d�)0��?�
0
?S11�(d�)

0]:

We apply the convergence S"1�
P! 0; and �0S11�

P! ���; and �nd

T�1D2��lT (�; �)(d�; �
��
0
d�))

P! tr[
�1�(d�)0�����(d�)
0];

T�3=2D2��lT (�; �)(d�; �?
��
0
?d�))

P! 0:

3. D2��:

T�1D2��lT (�; �)(�
��
0
d�; ���

0
d�) = tr[�0
�1�(d�)0���0S11���

0
(d�)]

T�3=2D2��lT (�; �)(�
��
0
d�; �?

��
0
?d�) = T�1=2tr[�0
�1�(d�)0���0S11�?

��
0
?(d�)

T�2D2��lT (�; �)(�?
��
0
?d�; �?

��
0
?d�) = tr[�0
�1�(d�)0��?T

�1�0?S11�?
��
0
?(d�)]

Here we apply the convergence �0S11�
P! ���; �

0S11�? 2 OP (1); and T�1�0?S11�?
d!

�0?C
R 1
0
WW 0duC 0�? to see that

T�1D2��lT (�; �)(�
��
0
d�; ���

0
d�)

P! tr[�0
�1�(d�)0�������
0
(d�)];

T�3=2D2��lT (�; �)(�
��
0
d�; �?

��
0
?d�)

P! 0;

T�2D2��lT (�; �)(�?
��
0
?d�; �?

��
0
?d�)

d! tr[�0
�1�(d�)0C

Z 1

0

WW 0duC 0(d�)]:

Collecting these terms we �nd the results.

9.2 Proof of Theorem 9

The result (19) follows as in Theorem 1. We �nd the score functions for � and � in
the direction T�1=2(��0(d�i); Ai(d i)) to be

T�1=2D�lT (�; �)(���
0
(d�i)) = �tr[
�1T 1=2S"1���

0
(d�i)�

0
i]

T�1=2D�lT (�; �)(Ai(d i)) = �tr[(d i)0A0i
�1T 1=2S"1�i]

which are asymptotically jointly Gaussian with mean zero with a variance matrix
as given in (20).
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In the special case where Ai = A we can invert the information matrix and �nd�
fe0i�0
�1�ej���g f���ele0i�0
�1Ag
fA0
�1�eje0k�g fe0k���elA0
�1Ag

��1
=

�
M11 M12

M21 M22

�
:

We �rst �nd that fe0k���elA0
�1Ag�1 = fe0k��1��el(A0
�1A)�1g; and therefore, for
�ij = �0i


�1�j;

(M�1
11 )ij = �ij��� �

X
l;k

���ele
0
i�
0
�1Ae0k�

�1
��el(A

0
�1A)�1A0
�1�eje
0
k���

= �ij��� �
X
l;k

���ele
0
k�

�1
��ele

0
k���[e

0
i�
0
�1A(A0
�1A)�1A0
�1�ej]

Now
P

l;k ���ele
0
l�
�1
��eke

0
k��� = ����

�1
����� = ���; and hence

(M�1
11 )ij = e0i[�

0
�1�� �0
�1A(A0
�1A)�1A0
�1�]ej���

= e0i[�
0A?(A

0
?
A?)

�1A?�]ej���

and therefore
M11 = fe0i(�0A?(A0?
A?)�1A?�)�1ej��1��g:

Similarly we �nd

(M�1
22 )kl = �klA

0
�1A�
X
i;j

(A0
�1�eje
0
k���e

0
i(�

0
�1�)�1ej�
�1
�����ele

0
i�
0
�1A

= �klA
0
�1A� e0k���el

X
i;j

(A0
�1�eje
0
i(�

0
�1�)�1eje
0
i�
0
�1A

= �kl[A
0
�1A� (A0
�1�(�0
�1�)�1�0
�1A]

= �kl[A
0�?(�

0
?
�?)

�1�0?A]:

Hence
M22 = fe0l��1��ek[A0�?(�0?
�?)�1�0?A]�1g:

The o¤-diagonal elements are found from

f�ij���gM12 + f���ele0i�0
�1AgM22 = 0;

which implies that

(M12)il = �
X
k;m

�ik��1�����eme
0
k�

0
�1A�mlM

= �
X
m

eme
0
m�

�1
��el

X
k

e0i(�
0
�1�)�1eke

0
k�

0
�1AM

= ���1��ele0i(�0
�1�)�1�0
�1AM:

In particular for A = (0; Ip�r)0 we �nd, using �0A? = Ir; and A? = (Ir; 0)0

M11 = fe0i(�0A?(A0?
A?)�1A?�)�1ej��1��g
= fe0i
�1ej��1g = 
11 
 ��1�� :
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9.3 Proof of Theorem 11

We want to derive the asymptotic distribution in Theorem 11 using the ��method.
For this we need the asymptotic distribution of (Ĉ; 
̂); which is asymptotically
Gaussian with variance matrix given by the next lemma and an expansion of c2:1 as
function of C and 
.

Lemma 13 The asymptotic variance and covariance matrix of 
̂ and Ĉ are given
by

asV ar(�0
̂�) = (�0
�)(�0
�) + (�0
�)2;

asV ar(�0Ĉ�) = (�0�0��1��)(�0C
C 0�);

asCov(
̂; Ĉ) = 0;

where

� = EZtZ
0
t;

Z 0t = (X
0
t�1�̂;�X

0
t�1; : : : ;�X

0
t�k+1);

�0 = ((C 0�0 � Ip)��;C
0; : : : ; C 0):

see Paruolo (1997). We also need the derivatives of

c02:1 = c02 � c02
c1(c
0
1
c1)

�1c01 = [e
0
2 � e02C
C

0e1(e
0
1C
C

0e1)
�1e01]C

with respect to C and 
:

Lemma 14 We have the expansion

d(c02 � c02
c1(c
0
1
c1)

�1c01)

= (e02 � c02
c1(c
0
1
c1)

�1e01)(dC)C1?

�1 � c02:1(d
)C1 � c02:1
(dC)

0e1(c
0
1
c1)

�1c01;

where C1 = c1(c
0
1
c1)

�1c01 and C1? = c1?(c
0
1?


�1c1?)
�1c01?:

Proof. By Taylor�s expansion we �nd

d(c02 � c02
c1(c
0
1
c1)

�1c01)

= (dc2)
0 � (dc2)0
c1(c01
c1)�1c01 � c02(d
)c1(c

0
1
c1)

�1c01 � c02
(dc1)(c
0
1
c1)

�1c01
+ c02
c1(c

0
1
c1)

�1((dc1)
0
c1 + c01(d
)c1 + c01
(dc1))(c

0
1
c1)

�1c01 � c02
c1(c
0
1
c1)

�1(dc1)
0

= e02(dC)(Ip � 
C1)� c02:1(d
)C1 � c02
[Ip � C1
]

(dC)0e1(c
0
1
c1)

�1c01 � c02
c1(c
0
1
c1)

�1(dC)0e1C1?

�1

= e02(dC)C1?

�1 � c02:1(d
)C1

� c02:1
(dC)
0e1(c

0
1
c1)

�1c01 � c02
c1(c
0
1
c1)

�1e01(dC)C1?

�1;

which reduces to the result.
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We start the proof of Theorem 11 by (26), which follows directly from the ex-
pression for the asymptotic variance of Ĉ :

asV ar(ĉ01�) = asV ar(e01Ĉ�) = (�
0�0��1��)(e01C
C

0e1) = (�
0�0��1��)(c01
c1):

We next prove (27). We �nd from Lemma 14 that, for e02:1 = e02� c02
c1(c01
c1)�1e01;
it holds that

(dc2:1)
0� = �c02:1(d
)C1� + e02:1(dC)C1?


�1� � �0c1(c
0
1
c1)

�1e01(dC)
c2:1;

so that

asV ar(ĉ02:1�) = asV ar(�c02:1
̂C1� + e02:1ĈC1?

�1� � �0c1(c

0
1
c1)

�1e01Ĉ
c2:1)

= asV ar(K
 +K1 +K2):

We �rst �nd the variances

asV ar(K
) = (c
0
2:1
c2:1)(�

0C1
C1�) + (c
0
2:1
C1�)

2 = (c02:1
c2:1)(�
0C1�)

because C1
C1 = C1 and c02:1
C1 = 0: Next

asV ar(K1) = (�
0
�1C1?�

0��1�C1?

�1�)(c02:1
c2:1):

Finally

asV ar(K2) = (c
0
2:1
�

0��1�
c2:1)(�
0c1(c

0
1
c1)

�1e01C
C
0e1(c

0
1
c1)

�1c01�)

= (c02:1
�
0��1�
c2:1)(�

0C1�):

We have Cov(K
;K1) = Cov(K
;K2) = 0; because Ĉ and 
̂ are asymptotically
independent, see Lemma 13, and �nd

asCov(K1;K2) = �asCov[e02:1ĈC1?
�1�; �0c1(c01
c1)�1e01Ĉ
c2:1]
= (e02:1C
C

0e1(c
0
1
c1)

�1c01�)(c
0
2:1
�

0��1�C1?

�1�)

= (c02:1
C1�)(c
0
2:1
�

0��1�C1?

�1�) = 0;

because c02:1
C1 = 0: Collecting the result, we have proved (27). The general case is
proved the same way by replacing c1 by c1:m. This completes the proof of Theorem
11.

9.4 Proof of Theorem 12

We �rst �nd an expansion of B as a function of 
 and �; and apply this to �nd the
asymptotic distribution of (B̂; 
̂):

Lemma 15 We have the expansions

dB = d(�(�0
�1�)�1�0
�1) (34)

= 
A?(d�)(�
0
�1�)�1�0
�1 + �(�0
�1�)�1(d�)0A? � A
�1(d
)A?;

where A = �(�0
�1�)�1�0 and A? = �?(�
0
?
�?)

�1�0?:
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Proof. By Taylor�s expansion we �nd

d
�1 = �
�1(d
)
�1

and

d(�0
�1�)�1 = �(�0
�1�)�1[(d�)0
�1���0
�1(d
)
�1�+�0
�1(d�)](�0
�1�)�1

so that

d(�(�0
�1�)�1�0
�1)

= (d�)(�0
�1�)�1�0
�1 + �(�0
�1�)�1(d�)0
�1 � �(�0
�1�)�1�0
�1(d
)
�1

� �(�0
�1�)�1[(d�)0
�1�� �0
�1(d
)
�1�+ �0
�1(d�)](�0
�1�)�1�0
�1

This expression is the same as in (34), as can be seen by multiplying both by the
matrix (
�?; �).
The asymptotic variance of �̂; see Johansen (1996), is given by

asCov(�0�̂�; �0�̂�) = (�0
�)(�0��1���)

��� = V ar(�0Xtj�Xt; : : : ;�Xt�k+1);

asCov(�̂; 
̂) = 0;

and we apply that to �nd the asymptotic variance of (B̂; 
̂):

Lemma 16 The asymptotic variance of B̂ = �̂(�̂0
̂�1�̂)�1�̂0
̂�1 is

asCov(�0B̂�; �0B̂�) (35)

= (�0
A?
�)(�
0
�1���


�1�) + (�0
�1����)(�
0
A?�)

+ (�0A?
�)(�
0���


�1�) + (�0A?�)(�
0[��� + A]�);

and the covariance with 
̂ is

asCov(�0B̂�; �0
̂�) = �(�0A�)(�0A?
�); (36)

where A and A? are given in Lemma 15, and

��� = �(�0
�1�)�1��1�� (�
0
�1�)�1�0:

Proof. We �nd from the expansion of B in Lemma 15 that (�
 = �(�
�1�)�1)

asCov(�0B̂�; �0B̂�)

= asCov(�0
A?�̂�
0




�1� + �0�
�̂
0A?� � �0A
�1
̂A?�;

�0
A?�̂�
0




�1�+ �0�
�̂
0A?�� �0A
�1
̂A?�);



24 Søren Johansen

We �rst take the terms with 
̂ :

asCov(�0A
�1
̂A?�; �
0A
�1
̂A?�)

= (�0A
�1

�1A�)(�0A?
A?�) + (�
0A
�1
A?�)(�

0A
�1
A?�)

= (�0A�)(�0A?�);

because
A
�1
A? = 0; A
�1A = A; A?
A? = A?:

Next consider the terms involving �̂ and �̂0

asCov(�0
A?�̂�
0




�1� + �0�
�̂
0A?�; �

0
A?�̂�
0




�1�+ �0�
�̂
0A?�)

= asCov(�0
A?�̂�
0




�1� + �0A?�̂�
0

�; �

0
A?�̂�
0




�1�+ �0A?�̂�
0

�)

= (�0
A?
�)(�
0
�1�0
�

�1
���

0




�1�) + (�0
A?�)(�
0
�1�
�

�1
���

0

�)

+ (�0A?
�)(�
0�
�

�1
���

0




�1�) + (�0A?�)(�
0�
�

�1
���

0

�):

Introducing ��� = �
�
�1
���

0

 we have proved (35), because �̂ and 
̂ are asymptoti-

cally independent.
Next consider (36), where we again use the asymptotic independence of �̂ and


̂ to �nd

asCov(�0B̂�; �0
̂�)

= asCov(�0
A?�̂�
0




�1� + �0�
�̂
0A?� � �0A
�1
̂A?�; �

0
̂�)

= �asCov(�0A
�1
̂A?�; �0
̂�) = �(�0A
�1
�)(�0A?
�):

We start the proof of Theorem 12 by (30). We apply (35) of Lemma 16 with
� = � = e1; and � = � =  to �nd the asymptotic variance of b̂1 :

asCov(e01B̂ ; e
0
1B̂ )

= (
A?
)11 
0
�1���


�1 +  0
�1���e1e
0
1
A? 

+  0A?
e1e
0
1���


�1 + (��� + A)11 
0A? ;

which shows (30).
Next we prove (33). We apply Lemma 14 with C replaced by B to �nd the

expansion

(db2:1)
0 = �b02:1(d
)B1 +(e02�b02
b1(b01
b1)�1e01)(dB)B1?
�1 � 0b1(b01
b1)�1e01(dB)
b2:1;

so that

asV ar(b̂02:1 ) = asV ar(�b02:1
̂B1 
+ (e02 � b02
b1(b

0
1
b1)

�1e01)B̂B1?

�1 �  0b1(b

0
1
b1)

�1e01B̂
b2:1)

= asV ar(L
 + L1 + L2)
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9.4.1 The variances

We �rst �nd the variances:

asV ar(L
) = asV ar(�b02:1
̂B1 ) = (b02:1
b21)( 0B1
B1 ) + (b02:1
B1 )2

= (b02:1
b21)( 
0B1 );

because B1
B1 = B1 and b02:1
B1 = 0:
Next we consider asV ar(L1) = asV ar((e02�b02
b1(b01
b1)�1e01)B̂B1?
�1 ) which

follows from (35) for � = � = e02 � b02
b1(b
0
1
b1)

�1e01 = e02:1; say, and � = � =
B1?


�1 

asV ar(L1)

= ( 0
�1B1?

�1���


�1B1?

�1 )(e02:1
A?
e2:1) + (e

0
2:1���e2:1)( 

0A? )

+ 2( 0
�1B1?

�1���e2:1)(e

0
2:1
A? ) + (e

0
2:1Ae2:1)( 

0A? );

using A?B1? = A?
.
Similarly we �nd asV ar(L2) = asV ar( 0b1(b

0
1
b1)

�1e01B̂
b2:1) from (35) for � =
� = e1(b

0
1
b1)

�1b01 and � = � = 
b2:1

asV ar(L2)

= (b02:1


�1���


�1
b2:1)( 
0b1(b

0
1
b1)

�1e01
A?
e1(b
0
1
b1)

�1b01 )

+ ( 0b1(b
0
1
b1)

�1e01���e1(b
0
1
b1)

�1b01 )(b
0
2:1
A?
b2:1)

+ 2(b02:1


�1���e1(b

0
1
b1)

�1b01 )( 
0b1(b

0
1
b1)

�1e01
A?
b2:1)

+ ( 0b1(b
0
1
b1)

�1e01Ae1(b
0
1
b1)

�1b01 )(b
0
2:1
A?
b2:1)

= (b02:1���b2:1)( 
0b1(b

0
1
b1)

�1e01
A?
e1(b
0
1
b1)

�1b01 );

because A?
b2:1 = 0; so that only the �rst term is non-zero:

9.4.2 The covariances

We �rst take the covariance asCov(L1;L
) = �asCov(e02:1B̂B1?
�1 ; b02:1
̂B1 )
which we calculate from (36) for � = e2:1; � = b2:1; � = B1?


�1 ; and � = B1 

asCov(L
;L1) = �(e02:1Ab2:1)( 0
�1B1?A?
B1 ) = 0:

because A?
B1 = 0:
Next asCov(L2;L
) = asCov( 0b1e

0
1B̂
b2:1; b

0
2:1
̂B1 ) can be found for

� = e1(b
0
1
b1)

�1b01 ; � = b2:1; � = 
b2:1; � = B1 ;

which gives

asCov(L
;L2) = ( 
0(b01
b1)

�1b01e
0
1Ab2:1)(b

0
2:1
A?B1 ) = 0;
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because b02:1
A? = 0:

asCov(�0B̂�; �0B̂�)

= (�0
A?
�)(�
0
�1���


�1�) + (�0
�1����)(�
0
A?�)

+ (�0A?
�)(�
0���


�1�) + (�0A?�)(�
0[��� + A]�)

Finally asCov(L1;L2) = Cov(e02:1B̂B1?

�1 ; 0b1(b

0
1
b1)

�1e01B̂
b2:1) can be found
from (35) for �0 = e02:1; �

0 =  0b1(b
0
1
b1)

�1e01; � = B1?

�1 ; � = 
b2:1. We note

that A?� = A?
b2:1 = 0; so we only need to consider the terms

(�0
A?
�)(�
0
�1���


�1�) + (�0A?
�)(�
0���


�1�)

= ( 0
�1B1?

�1���b2:1)(e

0
2:1
A?
e1)(b

0
1
b1)

�1b01 

+ (e02:1���b2:1)( 
0
�1B1?A?
e1(b

0
1
b1)

�1b01 )

Collecting the terms we have proved the result.�
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