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Abstract

An analysis of some identification problems in the cointegrated VAR is
given. We give a new criteria for identification by linear restrictions on indi-
vidual relations which is equivalent to the rank condition. We compare the
asymptotic distribution of the estimators of & and 5, when they are identified
by linear restrictions on [, and when they are identified by linear restrictions
on «, in which case a component of B is asymptotically Gaussian. Finally
we discuss identification of shocks by introducing the contemporaneous and
permanent effect of a shock and the distinction between permanent and transi-
tory shocks, which allows one to identify permanent shocks from the long-run
variance and transitory shocks from the short-run variance.
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2 SGREN JOHANSEN
1 Introduction

We analyze some identification problems in the cointegrated vector autoregressive
model, where it is well known that the adjustment and cointegration parameters
enter through the impact matrix II = «f’. To get meaningful estimates of these
parameters we therefore need to impose identifying restrictions. The long-run im-
pact matrix C' is the coefficient matrix of the cumulated shocks to the model and
C 22:1 g; defines the common stochastic trends generated by the permanent shocks
o/, ;. We discuss identification of permanent shocks based upon the rows of C. Fi-
nally the transitory shocks o’Q "¢, enter the conditional model of AX; given o/, AX;
and the past via the matrix B = a(a/Q *a) 1a/Qtand we propose to discuss iden-
tification of transitory shocks via the rows of B.

As a result of the lack of identification, the asymptotic information matrix for the
parameters («a, () is singular, see Theorem 1. To find meaningful estimates we need
to impose identifying restrictions on 3 or «, and this is usually done by restricting
the individual cointegrating vectors by linear restrictions. We give a new criterion
for identification, which is equivalent to the classical rank condition, see Lemma
5, and give some applications. In Theorem 7 we give the asymptotic distribution
of the identified coefficients when they are identified by linear restrictions on 3. If
instead we impose linear restrictions on the adjustment coefficients we find that the
asymptotic distribution of the cointegrating coefficient have a Gaussian component,
see Theorem 9.

Finally we define permanent and transitory shocks and the contemporary and
permanent effects of these. If we analyze the permanent shocks by a Cholesky de-
composition of the long-run variance CQ2C" and the transitory shocks by a Cholesky
decomposition of the short-run variance B2B’, we need the asymptotic distribution
of the linear combinations thus derived. These are found in Theorems 11 and 12.

2 The unrestricted cointegration model

We define the cointegrated VAR model, the cointegrating relations, and the com-
mons stochastic trends. We then discuss estimation of 5 by an eigenvalue problem
and find the asymptotic score and information under local alternatives.

2.1 Cointegration and common trends

We consider the p—dimensional process X;, t = 1,...,T, given by the cointegration
vector autoregressive model

k
AX, =af' X, + Z [AX i+ &y, (1)

i=1

where o and 3 are p x r and ¢; are i.i.d. N,(0,2). We have left out deterministic
terms for simplicity. Under the assumption that the roots of the characteristic
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polynomial are either outside the unit circle or equal to one, and that det(o/, (I, —
Zle I;,)3,) # 0, the solution can be represented as

t
X, =C) e+Yi+A4, (2)

=1

where Y} is stationary and A depends on initial values, so that 5’A = 0. The long-run
impact matrix matrix C' is given by

k

C =B (a (I,= ) Ti)8,) . (3)

=1

It follows from (2) and (3) that the cointegrating linear combinations, 3’ X;, are
stationary, and the nonstationarity of X, is generated by the common stochastic

trends
t
/
St = E E;.
i=1

We also need the conditional model for AX; given the past and o/, AX;, as given by

k-1
AX; =af' X; 1 +wd| AX; + Z(F’ —wd |\ THAX, i + e — wad & (4)
i—1

with w = Qa (o, Qo) )™, where g, — wa/| &, = Bey, and
B=1,—Qa, (¢ Qa)) | =a(@dQa) Q7 (5)

Asymptotic inference for model (1) has been worked out, see for instance Jo-
hansen (1996). In the following we give some asymptotic results without detailed
proofs, but appeal to the general idea that the asymptotic distribution of the maxi-
mum likelihood estimator can be found as the ratio of the limit under local alterna-
tives of the score function and the information. As usual the estimators are derived
from the Gaussian likelihood function and their properties given under general i.i.d.
errors with mean zero and finite variance.

2.2 Estimation of the unrestricted parameters by reduced
rank regression

If the parameters (o, 3,',..., 'k, Q) are unrestricted, it is well known that the

parameters can be estimated by reduced rank regression, see Anderson (1951). We

use the Frisch-Waugh theorem to eliminate the short run dynamics I'y, ..., 'y and
define the residuals

ROt = (AXt’AXt,b c. ,AXt,k) and th = (Xt,1|AXt,1, ey Athk)
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and the product moments S;; = T* Z;‘le RyR), and S, = T™! ZtT:l e:Ry:. The
rest of the analysis is conducted in the profile likelihood function

_1OgLT(avﬁ7Q) = _1_, a}éllogLT(aaﬁarla'"7FkaQ)

Tyeery
T

= 0 S (R — ' Ru)(Ror — 0 ).

t=1

The parameter § is now estimated by solving an eigenvalue problem, and the max-
imized likelihood function is used to construct tests for rank and hypotheses on £,
see Johansen (1996).

2.3 Asymptotic distribution of score and information under
local alternatives

The local experiment, see van der Vaart (1988), is constructed by finding the limit

under local alternatives of the parameters of the score and information. We introduce

some notation. Let f(z,y) be a matrix valued function of matrix arguments x and y,

and let dx and dy denote directions of the same dimensions as x and y respectively.
We define the partial derivative of f with respect to x in the direction dx by

D, f(z,)(dz) = lim s~ {f(z + sdz). ) — f(x.9)}.
We use the notation {A;;} for a block matrix with blocks A4;;, and diag{A;} for a
block diagonal matrix with diagonal blocks A;. Finally we write A ® B = {a;; B},

and use throughout that if Z is a stochastic matrix with variance Var(Z) = A® B,
then for vectors u, v we have

Var(p'Zv) = v Avu' Bp.
We let W be the limit in distribution on D?[0,1] of Xipy = T2 3™ ¢, and
write

Xiru = CW (u). (6)

Theorem 1 The limit in distribution of the score with respect to 3 in the direction
T8, B, (dB) is given by

a0 / (AWYW'C'B, (7, dB)), (7)

which is mized Gaussian with asymptotic conditional variance

1
vec(B' dp) (o/sz-la ®3,C / WW’duC’EL) vec(B' dp). (8)
0
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The score with respect to [3,a in the directions T_l/z(ﬁﬁl(dﬁ), (da)') is asymptoti-
cally Gaussian with mean zero and variance

O o /O

vee(B'(dB), (da)')' << 0-lo -1 ) ® 256) vee(B (dB), (da)'), 9)

where Ygg = Var(f' Xi|AXy, ..., AX; i1).
The asymptotic distribution of the information is given by a block diagonal matrix

with a block corresponding to T3 LBldﬁ given by (8) and a block corresponding to
T-V2(B35'(dB), (do)') given by the singular matriz (9).

PrOOF. We let 2 be known to simplify the calculations, and define the concen-
trated likelihood function Ir(a, 8) = —2log Lr(a, 3,€2). We first find the score with
respect to (8 in the direction TflﬁLBl(dﬁ),

T 'Dalr(ev, B) (BB (dB)) = —tr[Q7" S8, B, (dB)a],

and the limits in (7) and (8) follow from (6) and
. 1
.4 ¢ / W(dwY,
0
1
718, e / WW'duC".
0

Next, the derivatives with respect to (3, ) in the directions T-V2(85'(df), (de))
are

TDglr(a, B)(BB(dB)) = —tr[Q TS558 (dB)d/], (10)
T7Y2D (o, B)(do) = —tr[Q TS, 6(de)). (11)

It follows from
T1/2ﬁ/515 i NTXp(Ov Q® 236)7

that the scores are (jointly) asymptotically Gaussian with the mean zero and vari-
ance (9). The calculation of the information and its limit is given in the Appendix.
[ ]

It is seen that the asymptotic distribution of the maximum likelihood estimators
cannot be derived from the results in Theorem 1 because the parameters are not
identified or equivalently the asymptotic information (9) is singular. By imposing
restrictions on « or 3 we restrict the variation of dao and df so that o and 3 become
identified and the asymptotic information has full rank. This has the implication
that there are cases in which [‘3 — 3 has a component in the direction 3, so that
TY2(B'(B — B), (& — «)) is asymptotically Gaussian and in general correlated. This
is discussed in sections 4 and 5, but first we give some criteria for identification by
linear restrictions.
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3 Definitions and criteria for identification

We give here the definition of identification and discuss some criteria for identifica-
tion by linear restrictions on individual relations.

Definition 2 Let {Pp,0 € ©} be a family of probability measures, that is, a sta-
tistical model. We say that a parameter function g(0) is identified if g(61) # g(62)
implies that Py, # Pp,, or equivalently if Py, = Py, implies that g(01) = g(02).

In the cointegration model (1), the parameter function I = af8’ and the para-
meters I'y,..., T, Q are identified, because if 0' = (o, 5, T%,..., T%L, Q) i = 1,2,
and the (conditional) densities are equal

p(X1,..., X7, 0" Xo, ..., X 1) = p(Xy,..., X7, 0% X0, ..., X ),

then IT' = 'Y = ?p¥ =112, T} =T2,i =1,...,k, and Q' = Q2. On the other
hand, given any choices of (o', ') and (a?, %) for which II = 'Y = o?$%, one
can find a full rank 7 x r matrix for which o! = o?¢’ and ' = p*¢!. Thus the
identification of o and (8 reduces to giving such restrictions on « or 3, that if @ and
[3 satisfy the restrictions and 3¢ and o'~ satisfy the same restrictions, then &€ = I,.

A general formulation of linear restrictions on individual cointegrating relations
allows s; linear restrictions the ¢'th vector: R.5, =0, i =1,...,r, where R; is p X s;
of rank s;. If we define H; = R; |, then the restrictions can be formulated as

Thus B,, or ¢,;, has m; = p — s; free parameters. The general definition of
identification implies that (3, is identified (up to a constant factor) by (12) if it is
the only linear combination of 5 which satisfies the same restriction. That is, if
R;fv =0, v € R", implies that v is proportional to the i'th unit vector v = Ae;.

Often we normalize the vectors and in this case the restrictions R;5;, = 0 can be
formulated as

B; = hi+ H',, p € R™ 1, (13)

where H; = (h;, H") = R;;, and H' is p x (m; — 1).
We give a simple example:

Example 1 If r = 2, a set of restrictions that is sometimes useful is

(10 By By \ _
5‘(0 L B 642>_<I2’ B )

which corresponds to solving the cointegrating relations for the first two variables,
that is, if X; = (X1, Xa), each of dimension 2, we can write the cointegrating
relations as

X1y = BXy + uy.
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In the general formulation, (13), hy and hy are the first two unit vectors and H” =
(022, I3) and 1), is 2 x 1. Clearly if £ is 2 x 2 and 3¢ satisfies the same restrictions,
than & = I, so that the restrictions in (14) identify 3.

If instead L 0 4. B
r_ 31 Pa
= 0 0 ) 15)

then if B¢ satisfy the same restrictions, one can see that £;; = 5 = 1, &5, = 0,
and &5 83; = 0. Thus if 85, # 0, then £, = 0, and £ = I, so that the restrictions
(15) identify /3, whereas if 55, = 0, then only the first relation is identified. In this
case we say that (3, is generically identified because the set of 5 for which 3, is not
identified is a small set which has Lebegue measure zero.ll

The next lemma is the classical rank condition for identification, see for instance
Fisher (1966).

Lemma 3 (Rank condition) The vector (3, is identified up to a normalization by the
s; restrictions R, = 0, if and only if the s; X r matriz R, has rank r — 1.

PrOOF. We let ¢ = 1. If rank(R} ) =rank(R} (B, ..., [5,)) < r — 1, there would
be an (r — 1)—vector v = (vy,...v,) # 0 for which R} (S, ...,,)v = 0. In this case
the vector 8] = B, + >.i_, ;i # A\B; would satisfy R|f] = 0, so that /3, is not
identified.

If on the other hand /3, is not identified identified, we can find an r — 1 vector
v # 0, for which 87 = (B,,...,0,)v satisfies R|3] = 0, but then rank(R;5) =
rank(Ry(By,...,5,)) <r—1. m

What is usually done in practice in order to implement this criterion, is to con-
sider the determinant

Pi(By, - B,) = (B, -, B,) Ba Ry (B, -, B,

which, if 3, is identified, has rank r — 1. The polynomial P;(3,,...,[,) is either
identically zero, in which case no vector is identified by R; or there is only a finite
number of roots, so that except for finitely many values of (5, ..., 3,) the rank con-
dition is satisfied and (3, is identified by R;. In this case we say that the restrictions
Ry, ..., R, are generically identifying.

Example 2 Let
g = ( 0 fBar Bs1 Bu )
Bz 0 Bsy By )’

which satisfies the restrictions R.3; = 0, where
R} =(1,0,0,0), R, =(0,1,0,0).

In this case Py(3,) = (R}f3,5)% = [32,, has only one zero, 3, = 0, so that R; is
generically identifying, and (3, is identified if 5,5, # 0. Similarly 3, is identified if
By # 0.0

We next give an elementary result from matrix algebra and apply this to refor-
mulate the rank condition.
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Lemma 4 For any two matrices 5(p x r) and R(p X s) of rank r and s respectively
it holds that

rank(R'B3) = r — q if and only if rank(8,R.) =p— s —q.

Proor. If if rank(R'S) < r — g, there exists a matrix &(r x ¢) of rank ¢ for
which R'5¢ = 0, but then there exists a matrix ¢((p — s) X q) of rank ¢ for which
BE = R, ¢, sothat 0 = 3 3¢ = B, Ry, which implies that rank(3| R, ) < p—s—gq.
Thus

rank(R'3) < r — ¢ implies rank(3 |, R,) < p—s—gq.

By interchanging § with R, and R with 5, and p — s with r, we see that also the
inverse implication holds and therefore the ranks have to be equal. m

Lemma 5 The relation (3, is identified up to a normalization by the s; restrictions
RS, =0, if and only if the (p — 1) X (p — s;) matriz 3’| H; has rank p — s; — 1.

The lemma is a Corollary of Lemma 4 for ¢ = 1.
Another algebraic criterion that does not depend on the parameters but only on
the restrictions is given in

Lemma 6 A necessary and sufficient condition that (3, is generically identified by
R.5, =0 is that forany k =1,...,7r—1 and any k indices 1 < iy <ig < -+ <ip <7
for which i; # i, we have

rank(R;(Ri1,..., Ri,1)) > k.

Proor. To show that the condition is necessary we take Bij = Ri; 105, J =
1,...,k, for some ¢;. Then

rank(Ry(Ri1,...,Ri,1)) > rank(Ry(Ri,1¢1,-.., Riy10:))
= Tank(R;(ﬁila . 75%)) = k.

That this criterion is also sufficient follows from a theorem of Rado (1942), see
Johansen (1995). m

It shows that based upon the restrictions alone it is possible to check for generic
identification without knowing the parameter values.

4 Identification by linear restrictions on j

We give the well known asymptotic distribution of the estimated cointegrated rela-
tions when they are identified by individual linear restrictions.
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4.1 Asymptotic distribution of B and & with identifying re-
strictions on [

Theorem 7 If 3 is identified by the restrictions 3; = h;+H%,, i =1,...,r, it holds
that the limit of the information matrixz for the parameters v;, i = 1,...,r, is the
full rank matriz

1
{Q o H'C / WW'duC’'H7}.
0

The asymptotic distribution of Tvec(@ — B) is mized Gaussian with asymptotic con-
ditional variance

1
diag{Hi}{ag-QlajHi'C’/ WW'duC'H?} diag{ H"},
0
which can be estimated by
Tdiag{ H' }H{&Q  a;H" S, H } L diag{H}'. (16)

The asymptotic distribution of T ?vec(& — a) is Gaussian with mean zero and vari-
ance matrix

Y5 ® Q. (17)
The estimators B and & are asymptotically independent.
PROOF. The score with respect to (8 in the direction T~ H'd1; is
—tr[ Q' S Hi (dip)ol) = —tr[Q' S (8B + 8.8 ) H (dv,) o]
2 oo [ @y,
0
so that in the limit the directions 83 H ‘), play no role. The limit of the vector of

scores with respect to T-*(H'(dv,), ..., H"(dv,)) is therefore mixed Gaussian with
asymptotic conditional variance matrix

1
vec(@b)’{oz;Q_lajHi'C/ WW'duC' H Yvec(v)),
0

where vec(y)) = (¢],...,9")". This is also the limit of the information matrix. It
follows from Lemma (5) that this matrix has full rank because if v;, i = 1,...,7 are
vectors so that

T T 1
> el aHC / WW'duC' Hv;
0

i=1 j=1

1
= tr[a’Qloz{vZ{Hi'C’/ WW'duC'H’v;}] = 0,
0
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then vH"C fol WW'duC'H'v; = 0, and hence (| H'v; = 0, but this implies by
Lemma 5 that v; = 0. We can therefore find the asymptotic distribution of T{pi by
dividing the score by the information.

The asymptotic distribution of the score with respect to a in the direction
T=2(da), T?Dylr (o, B)(da) = —tr[Q'TY2S,, B(da)] see (11), is Gaussian with

mean zero and variance
vec((da)) (Sp5 @ Q Hvee((da)'),

which is also the limit of the information, and that proves (17). Finally the estimates
are asymptotically independent because

T’3/2DiﬁlT(a, B)(dev;, H (dip;))
— T P2 { Q7S HE(doy) (de)') + T2 { Q7 (day) BS1 Hidp,)alf) = 0.

]

The result above is derived under the assumption that all vectors in 3 are iden-
tified. If only some are identified, we can impose just identifying restrictions on the
remaining ones and apply the result.

It may therefore appear that the asymptotic distribution of an identified vector,
T(B1 — (,) say, could depend on how some of the other columns of 5 are being just
identified. It is, however, a consequence of Lemma 5 that this is not the case.

Theorem 8 Let = (f54,...,0,) be identified by Ry, ..., R,, and assume that [3, is
just identified. Then the asymptotic conditional variance for the vector Tvec(B1 —
B, - 7Br—1 —fB,_1) does not depend on how 3, is just identified, and it is estimated
by the relevant block of (16).

PROOF. Let p;; = ajQ'a;, and M = g.c fol WW'duC'3, . The asymptotic
conditional variance of Tvec(fﬂl — Py, ... ,fﬂr,l —),_4) is given by the inverse of a
matrix with 4, j'th block

piH'BL MB' H — p, H"B, MB'| H' (p,, H"3, MB\ H") " p,; H" B, M’ H
— Leledy b, Mg D,

rr

= (pij

where we use that H”, is (p — ) x (p — r) of full rank, see Lemma 5, for any
choice of a just identifying H". Next we show that the coefficient p;; — % does
not depend on the choice of H". We find
PirPrj -1 rQ-1 'O Lo ) lo/ 0!
Pij — ,0— = o — Qo (a7 o) T oy
= ajap (), Qo) ar
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so that the adjustment coefficient «,. only enters through its orthogonal complement.
If gy = >, Bvi (v, # 0) is chosen so that 3 is just identified by some other
restrictions R, = 0, then

Zazﬁ Z 6+ar—5 —Zaﬁ +arfBy,

which shows that the adjustment coefficient to 3} is af = a; — &r;’—i, and the coeffi-
cient to [, is af = ozr , so that o, = a, . Therefore

pzrpr'

* ] */ ok 1 % 1 7

Pij — p = o’ (o Qo) o af = aj Yo (ol Qo) o, aj
rr

pirprj

o ’ / -1 1 _
= oo (ah, Qo) ah o5 = py; — P
rr

This shows that the asymptotic conditional variance does not depend on how the
last vector is just identified. m

5 Identification of 3 using linear restrictions on «

Another possibility for identifying ( is to identify the r cointegrating relations as
the first r rows of the matrix II. This corresponds to identifying 5 by choosing
o = (I,,ah), see (14). A general formulation of this is

O[/L' — a/z_'_Alwz, /l/}Z E Rmiil, Z: 17...’T’
or (a;, A", a; = 0, see (13). We give the asymptotics of § and & in this case.

5.1 Asymptotic distribution of & and B with identifying re-
strictions on «

Theorem 9 Under the identification o; = a; + A%, the limit of the information
matriz in the directions B/(dﬁl, o dB) dy, . dY, s

T {ela’Q ae; 855} {Spsercia’ Q™ 1Al} (18)
{A/Q 1a€j€k255} {ekzﬂﬂelA Q- Al}

which has full rank. The asymptotic distribution of T(vec(B (3 — B))) is mized
Gaussian with asymptotically conditional variance

1
(@0t B,C / WIW'duC'8,)"! (19)
0

and Tl/Q(vec(B/(@—ﬁ))’, 1}1 — Uy, ,{pT —1),.) 1s asymptotically Gaussian with mean
zero and variance matriz T, see (18).

11
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In the special case where A; = A, i = 1,...,r, the covariance matrix Z=' becomes

{e;(o/AL(A’LQAL)*lA'La)*lejE/gﬁl} —{Zg/éele;(O/Qfla)*lo/QflAM} (20)
—{MAQ a(a/Q ) Neje N5} {erXgzeM} ’

where M = (A'a (o) Qo) o/ A)~. When we identify 5 by a = (I, )" we have
A=(0,1,.,), and find the asymptotic variance matriz for TV/?(vec(5' (5 — B)))

Zgé ® Ql:r,l:r-

PRrROOF. Proof see the appendix =

The results of Theorem 9 show that the asymptotic distribution of B has two
components: one in the direction of 3 which is T%/? consistent and one in the
direction of 5, which is T consistent. It follows that

T3 — B) =TY?*8B'(B — B) + TY?*B.B, (B — B) = T*BB'(B — B) + op(1).

Thus, the distribution of T/ 2(3 —[3) is asymptotically Gaussian, but with a singular
covariance matrix, so there are some hypotheses that one cannot test using the
Gaussian distribution. We illustrate by an example.

Example 3 Suppose we have four variables and two cointegrating relations, and
we identify using o/ = (I3, a4) so that the first two rows of II are the identified
cointegrating parameters. Now assume that the true value 5 has ;; = 0. We can
test this hypothesis by applying the asymptotic Gaussian distribution of 3 1

V23,

—L___ % N(0,1), (21)
\/6/19616/1623_/@16 e1

where
6,15255361 = (ﬁlbﬁu)z@%(ﬁmﬁlz)l = (07512)2551(07ﬁ12)/ = (512)2(2551)22-

Thus we see that (21) only holds if 3,, # 0. In this case we let By = (8, T~Y283))
and find a consistent estimator of ¢} 3~ 713'e; from

6/13;1161 = €llBT(B§ﬂSHBT)7lB%€1 (22)
= e’lﬂng}ﬁ'el + T_le’l L(T_lﬁlsllﬂﬁ_lﬁlel + Op(l) £> 6/162555/61.

Thus a simulation experiment will show that i 11 1s approximately Gaussian in
case f3;, # 0. If, however, 3,, = 0, that is, 5 has the first row equal to zero, 3'e; = 0,
we cannot use the asymptotic result (21), and find instead that

T3y = Tey(B—Per =Tei B (B — Bles + Tei B, B (B — Ber = Tei3, B (B — Be
1 1
Lapuene [ Wwaes ) e [ wanyea,
0 0
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and because €] = 0, we have €3, # 0. Thus in case 5, = 0, the simulation above
will show that 311 is not approximately Gaussian, but mixed Gaussian, which means
that we no longer want to normalize by the standard error, but by an estimate of
the asymptotic conditional standard error. Thus in this case inference is not based
on the asymptotic distribution of B 11 but on the joint asymptotic distribution of B 1
and the observed information ¢/ Qe; e} Si;tes.

Thus, the mixed Gaussian limit has to be used to make inference on ;. Note,
however, that one can use the same statistic:

A

T1/2311 Tﬁll

e Q-1 e ! (—
\/€1Qeie] Sy e \/elﬁelel(T 1S11)e;

because in this case, it follows from (22) that when €}3 = 0,
AT Sn) et = B (T FLSuBL) ™ Bler +op(1)

1
4 3 (8,0 / WWduC'B,) 3 ex.
0

< N(0, 1),

so that TBH is normalized by an estimator of the square root of its asymptotic
conditional variance, which is the appropriate scaling factor, and the limit is again
N(0,1).

The difference between the situation S5, = 0 and 4, # 0, is that if 3,5, # 0, the
hypothesis 3;; = 0 does not change the cointegration space. When (5, # 0, it is
possible to change the coordinate system inside sp(f) and obtain 3,; = 0, that is
find a linear combination of 3, and (3, with first coefficient zero. If 3,; = 0, however,
this is not possible in general and the hypothesis 3,; = 0, becomes a hypothesis on
the cointegrating space leading to mixed Gaussian inference.ll

5.1.1 Discussion.

The mathematical formulation of all this is that it is the cointegration space which
is estimated superconsistently and the estimator is mixed Gaussian and asymptoti-
cally independent of the limit of the remaining parameters. The problem is how to
reformulate this statement into something that is economically useful. This is what
is done by the identifying restrictions of the form R.3, = 0, whereby the cointegrat-
ing space is parameterized using economically meaningful parameters. On the other
hand, identifying the cointegration space as the first two rows, say, of the matrix II,
that is, as the stationary linear combination to which the first two variables react, is
clearly an identification of the cointegration space, but it also specifies which vectors
in that space we are interested in. Thus if the first two rows of 1I are

6/:(611 621 631 641)
612 622 BSQ 542 ’

it is clear that by multiplying by the matrix

< 622 _621 )
_512 511 7

13
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we get

0 B11892 — B12far *

This does not change the cointegrating space, but we can achieve zeros at the po-
sitions 12 and 21. Thus the hypothesis that, say, 8,5, = 85 = 0, is clearly testable,
because the parameters are identified, but it is not a hypothesis on the cointegration
space and hence does not involve mixed Gaussian inference.

( B11892 — B128a1 0 * % > ‘
*

6 Shocks and their effect

The cointegrated vector autoregressive model associates with each variable X;; a
contemporaneous shock €;;, which is the unanticipated part of X;; given the past.
The identification of shocks is often done by postulating an ordering of the variables,
and therefore the corresponding shocks, and perform a Cholesky decomposition of
the variance Q. If we decompose the shock into a permanent o/, ¢; and a transitory
part, o/Q1le,, there is no natural ordering because of the lack of identification of
(v, cry ). We propose to give names to the permanents shocks by considering their
effects on the process, that is, by analyzing the long-run variance

cac,

see (3). Similarly we give names to the transitory shocks by considering their effect
on the equations given the long-run shocks. This leads to an analysis of the short-run
variance

BOB' = a(d/Q o)t

If we apply a Cholesky decomposition of CQQC" or BB’ we find linear combinations
of shocks. We end this section by finding the asymptotic variances of these estimated
linear combinations.

6.1 Permanent and transitory shocks and their contempo-
raneous and permanent effects

Model (1) can be written as

k
Xt = (]p + Oéﬁl)Xt_l + Z FiAXt_Z' + €.

=1

This shows that a change in &, (g, — &; + ¢) is equivalent to a change in X; (X; —
X, + ¢). We now discuss the effect of such a change on later values X;,;, using the
Granger representation theorem (2). We find

t+h 9]

Xipn =0C Z € + Z Cictpni + A,

1=1 1=0



IDENTIFICATION IN THE COINTEGRATED VAR 15

which shows that the effect at time ¢ 4+ h of a change ¢ € RP to ¢, (or X;) is

0Xiin

9z, c=(C+Ch)e— Cc,h — 0.

A change ¢ to the system at time ¢ propagates through the system and becomes C'c
in the long run, that is, the permanent effect of a change is C'c. Moreover from the
expression for C| see (3), we see that the part of the shock &;, which has an effect
in the long run is o/ &;.

We note the decomposition of ¢; into independent components

gr = a(d/Q 1) 1d/Q 7 ey + Qay (o Qay ) gy (23)
Based on this we use the definitions

Definition 10 We call €; the shock at time t, and define the permanent shock as
o' & and the transitory shock as o/Q1'e;. We define the contemporaneous effect of
g as Ip.

From the decomposition (23) of the shock €;, we find the contemporaneous effect
of the permanent shock, o e, is Qa (o), Qa )™t and that of a transitory shock,
Q7 ey, is a(d/Q 7 a) 7L

Finally the long-run effect of a shock ¢; is defined to be C, of a permanent shock it
is CQa (o Qay )™t =B (a/\TB )Y, and of a transitory shock it is Ca(a/Q ta)™t =
0.

7 Identification of permanent shocks

We start by an example.

Example 4 Let us assume we have among others the real variable y; and the
nominal variable p;, and that we have two permanent shocks, which we want to call
a real shock and a nominal shock. The Granger representation of the variables is

t t
y[ = 6'10261- + 21t = Cll ZSZ‘ + 21t
i=1 i=1
t t
D= B/QCZ&‘ + 2 = C’ng‘?i + 22,
i=1 i=1
It seems clear that we want the permanent shocks to be defined by o, ¢;. The problem

is to identify which shock can influence which variable.
Let us assume that

A nominal shock cannot have a permanent influence on a real variable
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From this it follows that the only permanent shock which appears in a real
variable is a permanent real shock.

Thus we define (or identify) the permanent real shock as that which generates
the random walk in the real variable, that is, the linear combination given by the
row of C' which corresponds to the real variable.

It seems natural then to define (or identify) the permanent nominal shock as
the linear combination given by that row of C' which corresponds to the nominal
variable but orthogonalized to the permanent real shock.ll

If we want to announce that the cumulated (permanent) shocks which enter into
the ‘real’ variable Xy, is generated by the ‘permanent real’ shocks to the economy,
we can define the ‘permanent real’ shock as

vy = e = €1Cey, (24)

where ¢ is the first row of the matrix C' corresponding to Xy;. If we next want to
define the ‘permanent nominal’ shock as that part of the cumulated shock in the
‘nominal’ variable Xy, which is independent of ¢|e; we define

vy = cher — hQer () ey (25)

If more orthogonalized shocks are needed the Cholesky decomposition is contin-
ued by choosing further variables, that is, rows of C' until we have identified p — r
shocks. We have to choose the variables so that the rows ¢; are linearly independent,
that is, so that the next vector chosen is linearly independent of those previously
chosen, or so that the next variable is not cointegrating with those already chosen.
In general when we have chosen ¢, = (c1, ..., ¢y), we define

/ / / / —1
U1t = Crpi1 1:m€t = Cmn16t — Cpp12C1m (€1 QC1m) ™ Lt
Note that we can estimate Ce; from
A A~ N N
CRot = C(Oéﬁ th + 615) = Oét.

The above discussion of defining the permanent shocks by their long-run properties,
is of course not new, see Blanchard and Quah (1989), but here the different terms are
defined in the cointegrated VAR. A discussion of long-run propositions as restrictions
on 3, is found in the paper by Lin (2007).

Thus, instead of the Cholesky decomposition of €2, based upon an ordering of
the variables, one may choose a Cholesky decomposition of the long-run variance
CQC’, in order to identify the permanent shocks.

7.1 The variance of the weights of the permanent shocks

We find here the asymptotic Gaussian distribution of the estimators of the weights
found by the Cholesky decomposition of the long-run variance CQC".
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Theorem 11 The asymptotic variance of the coefficients
¢ =eC
1S given by
asVar(é¢)) = £X71¢d Qe (26)

whereas the asymptotic variance of ¢o1 is given by

asVar(Ga1) = o1 (Q+ QT Q) ey O} (27)
(g1 Qe21)Q T CrLEETIECL QT

where we have used the notation

S = EZ7,

Zl{ - (nglﬁa Athfla SR 7AX1{7]€+1)7
¢ = ((CT - L)a,C',...,C"

Cy = c1(diQe)) e

/ —1 -1
Cio=c (], Q er) ),

; ; / / / / _ A
The general case zslfound by replacing c| by c\.,, and cy1 by €, 1 10m = Crpr —
/ / -1/
Cm+1QCLm(Cl:mQClim> Clim -

PROOF. See the Appendix. =

8 Identification of transitory shocks

Having now exploited the matrix C' for p—r linearly independent rows to define p—r
permanent shocks, we next want to identify the r transitory shocks. These can be
found in the conditional model for AX; given the past and o/, AX;, or equivalently
given the permanent shocks o/, g4, that is, in model (4).

Thus to each equation is associated a transitory shock through the corresponding
row of the matrix

B =a(dQ'a) t/Q 7

With this notation, the formulae for identifying the transitory shocks by a
Cholesky decomposition of BB’ are the same as for the permanent shocks, only C'
is replaced by B.

Thus, whereas the permanent shocks are ordered according to variable, the tran-
sitory shocks are ordered according to equation.

A Cholesky decomposition is then found as before

Ut = Glle‘:t = b,1€t, (28)

where e; is the unit vector corresponding to the first equation chosen. Next we
choose another equation and define

Ugy = (bly — byQby (B Q1) 7'b) )y, (29)
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and continue the Cholesky decomposition up to r shocks.
The transitory shocks, Be;, can be found from

N A
Roy = &3 Ryy + @&, Roy + B2,

8.1 The variance of the weights of the transitory shocks

We find here the asymptotic Gaussian distribution of the estimators of the weights
found by the Cholesky decomposition of the short-run variance BQB'.

Theorem 12 The asymptotic variance of BI1 18

asVar(hy) = (QAL Q)11 Q7' 800 Q7 + Q718 0e1€/ QAL (30)
+ ALQelelleQ_l + AL(EO@ + A)ll

where
A=a(@dQ ) o and AL = oy (¢ Qo) | (31)
which satisfy AQ™1 + QA =1, and
Saa = a(@'Q ) TTE 5 (0'Q7 ) (32)

The asymptotic variance of 5’21 18

~

asVar(bh,) (33)
= (0.1 Qb21) by (V1 21) 710
+ (b1 Saaba.1)b1 (V1201) " et QLA | Qeq (0,02b1)7'0)
+(eh1QA419e21)Q ' B1 Q' 800 QB QT + (Baa + A)2A |
QB Q1 Y ne0165 QAL+ AL Qey el Y0a) B QT
+(eh QAL Qe ) (W Q1) QT B Q7 S 0bo 1 V)
+(€h 1 Daab21 ) By AL Qe (Vb)) 10,
where
By = by (b,Q1) 7', and By = by (b, Q7)Y
which satisfy I, = B1Q+ Q7' Byy, and ey, = e} — byQby (b1 Qby) el

The result for lA)mH.l:m 1s given by replacing by, ba1, bY bim, bmat1:m-

PROOF. See the Appendix. =

9 Appendix

9.1 Proof of Theorem 1

We give here a calculation of the information with respect to the parameters (53, o)
and its limit. We find the components of the information matrix and their limits in
the directions

(T8, B (dB), T"*BB (dB), T~ dav).
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2 .
1. D2, :

T'D2 lr(av, B)(dev, dov) = tr[Q (da) B' S B(der)] D tr[Q " (do) Sas(dar)],

2. DiB:
T7'D%5lr(a, B)(da, BF'AB)) = —tr[Q "S85 (dB)(d)]
+tr[Q ta(dB) BB S1B(da)],
T-*2D2slr(, B)(do, B, B1dB)) = =T ?tr[27'5.45, 8 (dB(da))]

+T 1[0/ (dBY BB S B(da)'].
We apply the convergence S.13 - 0, and 3513 — S45, and find
T7'D2 5l (o, B)(dov, BB'dB)) = tr[Q 7 a(dB) BSss(da)’],
T32D2 (o, B)(dav, B, B dB)) 5 0.
3. D%,
T 'D3slr(, B)(BF'dB, BBB) = tra’Q " a(dB) BB Su BB (dB)]

T=D3slr(c, B)(BF'AB, BB dB) = T tr[a'Q " a(dB) BE'S 1B LB (dB)
T_QD%BZT(O‘:B)WLBILdﬁa[ﬂBldﬁ) = tr[O/Q_la(dﬂ),BLT_lﬁlSHELBIL(dﬁ)]

Here we apply the convergence 3'.51,/3 A Y55, B'Sup, € Op(1), and T_lﬁlSuﬁL d,
g\.C fol WW'duC'3 | to see that

T7'D5lr (o, B)(BB'dB, BB'dB) = trla/ Q" a(dB) B 558 (dB)).
T30 (o, B)(BB'AB, B, B dB) = 0,

1
T *D3slr(a, B)(BLBLdB, BLB L dB) > trla'Q a(dB) C / WW'duC'(dj)).
0

Collecting these terms we find the results.

9.2 Proof of Theorem 9

The result (19) follows as in Theorem 1. We find the score functions for o and 3 in
the direction T-V2(3'(dB,), A;(di);)) to be

T 2Dglr(, B)(BB(dB,) = —tr[Q ' TY?S.185'(dB;)a]
T2Dylr(a, B)(Asldiy;)) = —tr[(d,) AQ'TV?S,8,)

which are asymptotically jointly Gaussian with mean zero with a variance matrix
as given in (20).
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In the special case where A; = A we can invert the information matrix and find
{6;0/9_104(2]‘255} {25561620/9_114} - o MH M12
{A’Q_laejekﬁ} {622556114’9_114} N Moy Moys '
We first find that {e}Xgze,A/Q A} = {e[ X 5e,(A'QTA)~1}, and therefore, for
Pij = 0‘29710‘]'7
(Mﬁ1>ij = pijEf;@ — Z EBBele;a’QflAe;Egﬁlel(A/QflA)’lA'Qflaeje;Egﬁ
Lk
= pii¥ps — Z Saperer Y gzeier Spslei/ QT AAQTTA)TTAQ ey
Lk
Now Zl,k Eﬁgelefzgﬁleke;E@g = 25/32551255 = 255, and hence
(M) = eld/Q a—adQTAAQTA)TAQ Tale; Y55
= 6; [O{/AJ_<A/J_QAJ_)71AJ_04]€j256
and therefore
My = {eg(o/AL(AlQAL)_lALa)_lejE/gé}.
Similarly we find
(M;zl)kl = O'klAlgilA — Z(A’Q’laeje;cil/gﬁe;(O/Qfla)*lejﬁgéE/ggelego/Q*lA
i,
= oA QA — €} Sgse Z(A'Q’lozeje;(O/Qfla)’leje;a’Q’lA
2
o[AQTTA — (AQ a(d/Q 7 a) T/ QA
= ou[Aa (o) Qo) ta Al
Hence
My = {e;8g5er[Aars (o Qay ) o/ A7
The off-diagonal elements are found from
{piEs5} Mz + {Zgpere;a’ Q™ A} My = 0,
which implies that

(Mi2)ay = —ZpikEEéEﬁgemeZQ'QflAamlM

k,m
= — Z eme;nzgﬁlel Z ei(a/Q ) tere,d QT AM
m k
= —Ygee Q7 a) Td/ QT AM.
In particular for A = (0,1,_,)" we find, using /A, = I,, and A, = (I,,0)
Mll == {6;(@/AJ_(AlQAL)_lALOZ)_lejZE,Bl}
= {Q7e,x7 1 =0 @ 5.
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9.3 Proof of Theorem 11

We want to derive the asymptotic distribution in Theorem 11 using the d—method.
For this we need the asymptotic distribution of (C’, Q), which is asymptotically
Gaussian with variance matrix given by the next lemma and an expansion of ¢y as
function of C' and ).

Lemma 13 The asymptotic variance and covariance matriz of ) and C' are given

by
asVar(k'Qn) = (K'QR) (7 Qn) + (/Qk)?,
asVar(k'Cn) = (7752 Len) (K'CQCK),
asCov(Q, C) =

where

Y =EZZ,
Z?i = (X£7137 A)(14717 ety AX£7k+1)7
¢ =(CT - L)a,c, ... C.

see Paruolo (1997). We also need the derivatives of
cyy = cy — hQei ()i, = [ — e,C0C e (e,CNCer) el |C
with respect to C' and €.

Lemma 14 We have the expansion

d(cy — cyQei (i Qey) 7 )
= (e — Qi () Qey) 1) (dC)OL L Q™ — & 1 (dQ)Ch — ¢ 1 Q(dC) €1 () Qer) e,

where Cy = ¢1(c)Qey) 7 ) and Cry = c11 (¢, Q7 e )72,
ProoOF. By Taylor’s expansion we find

d(cy — hQey (¢ Qer) 1)
= (dey)' — (dey)'Qey ()71 — (dQ)ei (i Qey) e, — hQ(der ) (5 Qer) e,

+ Qe (¢1Qe1) M (dey)'Qey + ¢ (dQ) ey + ¢Q(dey)) (5 Qer) e, — Qei (i Qer) ™ (dey)

= (dC) (1, ~ 0C1) = &, (INC — AL, = Cif)
(dCY e1 (¢, Q1) e, — Qe (¢)Qey) 1 (dC) e, Oy Q71

= eh(dC)CLL Y — &) l(dQ)Cl

— ¢y Q(dO) e1(d)Qer) ) — Qi (i Qe) e (dC)Cr Q7

which reduces to the result.

21
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We start the proof of Theorem 11 by (26), which follows directly from the ex-
pression for the asymptotic variance of C' :

asVar(én) = asVar(e,Cn) = (W) (,CQAC"e;) = (€'S7¢n)(¢,Qcy).

We next prove (27). We find from Lemma 14 that, for €} ; = e} — c4Qe1 (¢ Q) 7 te],
it holds that

(dea.1)'n = =51 (dQ)Cin + €51 (dC)CL L Q™ — 17'er (¢ Qer) ~H el (dC)Qean,
so that
asVar(é,n) = asVar(—c,,QCin + €5, ,CCLLQ ™y — /ey (¢,Qey) 7L, ey )
=asVar(Kq+ K; + K5).

We first find the variances

asVar(Kq) = (¢51Q2021) (11 C1QC1n) + (c5,,Q201m)? = (1 Qe2.1) (' Cin)
because C1QC, = C and ¢, ,QC; = 0. Next

asVar(Ky) = (fQ 10 €570 Q7 ) (¢ Qo).

Finally

asVar(Ky) = (cy Q' S71€Qe1) (1 (i Qer) 1, COC e1 (¢, 02e1) " em)

= (¢4, Q85 71EQee1) (/' Chn).

We have Cov(Kq; K1) = Cov(Kq; K;) = 0, because C' and ) are asymptotically
independent, see Lemma 13, and find
asCov(Ky; Ky) = —asCovlel ,CO Q7 ;' ey (¢,Qc1) el CQeaq]
= (€2100C e1 (¢ Qer) " 1) (1 QT EC1LQ )
= (5, QC1) (5, QETTIEC Q1) = 0,
because ¢, ;Q2C, = 0. Collecting the result, we have proved (27). The general case is

proved the same way by replacing ¢; by ¢y.,,. This completes the proof of Theorem
11. =

9.4 Proof of Theorem 12

We first find an expansion of B as a function of 2 and «, and apply this to find the
asymptotic distribution of (B, ().

Lemma 15 We have the expansions
dB = d(a(d/Q ta)td/Q7h) (34)
= QA (da)(/Q ) T+ a7 Ta) T (da) AL — AQTHAQ) AL,

where A = a(a/Q7ra) ™ a/ and A; = o) (o, Qa ) d).



IDENTIFICATION IN THE COINTEGRATED VAR
ProoOF. By Taylor’s expansion we find
dQ ™t = -Q 1 (d)Q!
and
d(a'Q ') = —(0/Q7'a) H(da)Qra — Q7 HdD)Q  a + Q7 da) ] (/2 a) T
so that
d(a(a/Q ) td/Q7Y)

= (da)(a'Q ') Q7 4 a(d/Q7 ) T Hda)' QT — a(dQ 7 a) QT dQ) QT
—a(d/Q7 ) H(da)Q ta — /QHAD)Q o + Q7 da) ] (/2 Ta) T/ Q

This expression is the same as in (34), as can be seen by multiplying both by the
matrix (Qa,a). =
The asymptotic variance of &, see Johansen (1996), is given by

asCov(k'am; €'ag) = (K'QE)(10'2559)
Eﬁﬁ = Va’r‘(ﬁlXt|AXt, Ce 7AXt—k‘+l)7
asCov(é; Q) =0,

Lemma 16 The asymptotic variance of B = &(&'Qflo})*lé/ﬂfl 8

asCov(k' Bn; € Bo) (35)
= (KQALQE) (A '80a'0) + (NQ'80aé) (K QA L)
+ (1 ALQE) (K Baa 1 0) + (1 ALY) (K [Baa + AJ€),

and the covariance with §) is
asCouv(s'Bn; €'09) = — (k' A€) (' AL Q9). (36)
where A and A, are given in Lemma 15, and
Saa = a(@'Q ) TTE(0'Q7 )
PROOF. We find from the expansion of B in Lemma 15 that (aq = a(af271a)™)

asCov(k'Bn; € Bo)
= asCov(K' QAL 60y Q'+ Kagd/ Al — K AQ QA n;
EQAL 60O o+ Eagd’ AL ¢ — EAQTIOA, ),

23
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We first take the terms with € :
asCov(k' AQ QA n; € AQ QA ¢)
= (KAQ'QO A (W ALQAL @) + (KAQ QAL ) (€ AQTQA )
= (KA (n'AL9),
because
AQTIQA, =0, AQTA= A AQA = A,
Next consider the terms involving & and &'
asCov(K' QAL aagQ 'y + K agd’ ALn; € QAL aanQ 1o+ Eagd AL )
= asCov(K'QA Loy ' + 0 ALdagk; EQAL 6o Q1o + ¢ AL dagf)
= (K'QALQE) (1Q g Y 5500071 9) + (KWQAL) (Y anX5006€)
(1 AL96) (W a1 16) + (7 AL6) (< aa S a6

Introducing ¥, = 0492551042 we have proved (35), because & and Q are asymptoti-
cally independent.
~ Next consider (36), where we again use the asymptotic independence of & and
(2 to find
asCov(r'Bn; €Q¢)
= asCov(K' QAL 6 Q' + Kagd A n — K AQ QA n; €Q0)
= —asCov(K AQ QA 7, €'Q¢) = — (K AQTIQE) (1) AL Qo).
|
We start the proof of Theorem 12 by (30). We apply (35) of Lemma 16 with
k=& =-e1, and n = ¢ = 1 to find the asymptotic variance of b :
asCov(e, Bi; €, Bi)
= QALY Q800 + W' QTS he1€) QALY
+ wIAJ_Qelellzaagilw + (Zaa + A)llw/AJ_wa
which shows (30).

Next we prove (33). We apply Lemma 14 with C' replaced by B to find the
expansion

(dbg.l)/w = —bél(dQ)Blw—f—(@;—béle (bllﬂbl)716/1)(dB)BM_Qilw—¢/b1 (b,lgb1>71€,1 (dB)ngl,
so that

asVar(by 1) = asVar(—by QB
+ (el — byQby (6,Qby) el ) BBy Q1) — by (W Qby) Le, BQb, 1)
=asVar(Lqg+ Ly + L)
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9.4.1 The variances

We first find the variances:

asVar(Lg) = asVar(—=b, QB1) = (b Qb1 (¢ BiQB1) + (b, ,QB11))?
= (b, Q221 ) (V' B19),

because B1Q2B; = By and b, ,Q2B; = 0.

Next we consider asVar(Ly) = asVar((ey,—b,Qby (W, Qby)~'e}) BBy Q~14p) which
follows from (35) for k = & = €}, — by (V1) te] = €y, say, and n = ¢ =
By

asVar(Ly)
= (¢/Q_1BlLQ_lxaaQ_lBlLQ_lw)(6’2_1QAJ_962,1) + (6’2.12aa62'1)(¢,AL’¢1)
+2(¢' Q7 B Saae01) (€5, QALY) + (e Aean) (W ALY),

using A By, = A Q.
Similarly we find asVar(Lsy) = asVar(y'by (0,Qb;) e} BQby1) from (35) for x =
£ = e (0102b1) 010 and n = ¢ = Qs

asVar(Ls)

(0 Q0 S0 Qb 1) (401 (B, 21) el QLA Qey (B, Q) 28, 00)
(b (B, 2D1) 72!, Saaer (B,001) 16,00 (B, LA, Qb 1)

42, QS e (B ) 1) (4 by (B,001) L, QAL Qba )

(b (B, 20,) "2 Ay (B, Q1) 1,40 (B ;2L Qb )

— (B, Db ) (b (B,001) "Lt QAL Qer (,001)16,0),

because A by = 0, so that only the first term is non-zero.

9.4.2 The covariances

We first take the covariance asCov(Ly; Lg) = —asCov(el, BBy Q ;b ,QBy1))
which we calculate from (36) for kK = eg1, £ =boy, 7= B Q ', and ¢ = By

asCov(Lg; L1) = —(eh | Aby1)(W/'Q B AL QBv) = 0.

because A QB; = 0. X X
Next asCov(Lgy; Lg) = asCov(1)'bye) BQby 1; by 1Q2B11)) can be found for

k= e (b)Qby) b, € =byy, n=Qbyy, ¢ = By,
which gives

&SCOU(LQ; Lg) = ("Lp/(bllgbl)ilbllellAbgl)(bIQ1QAJ_Bl¢) = 0,
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because b, QA = 0.

asCov(k'Br; € Bo)
= (KQAL Q) (N ' E0aQ710) + (N QU 18008 (K QAL @)
+ (AL (W B0a710) + (1" ALY) (K [Saa + AJ€)

Finally asCov(Ly; Ly) = Cov(el BBy Q~4p; ¢0'by (1,Qby) e} BQb, 1) can be found
from (35) for k' = ey, & = Y'b (V1) ey, n = B Q N, ¢ = Qbyy. We note
that A, ¢ = A, Qbs; = 0, so we only need to consider the terms

(K'QAL Q) (N Q'S0 0) + (1 ALQE) (K Saa2 1 0)
= (?ﬂ,Q_lBlLQ_lEaabg_l)(6/2.1QALQ€1)(bllﬂbl)_lbll’gb
+ (6/2.120[041)2.1)(Q/J/QilBu_Alﬁel(b/Ile)ilblll/J)

Collecting the terms we have proved the result.ll
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