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Abstract

A regime dependent VAR model is suggested that allows long memory (fractional
integration) in each of the regime states as well as the possibility of fractional cointegra-
tion. The model is relevant in describing the price dynamics of electricity prices where the
transmission of power is subject to occasional congestion periods. For a system of bilat-
eral prices non-congestion means that electricity prices are identical whereas congestion
makes prices depart. Hence, the joint price dynamics implies switching between essen-
tially a univariate price process under non-congestion and a bivariate price process under
congestion. At the same time it is an empirical regularity that electricity prices tend
to show a high degree of fractional integration, and thus that prices may be fractionally
cointegrated. An empirical analysis using Nord Pool data shows that even though the
prices strongly co-move under non-congestion, the prices are not, in general, fractional
cointegrated in the congestion state.
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1 Introduction

Over the past decade or so electricity markets have been strongly liberalized throughout the
world. In particular, the Nordic power market consisting of Norway, Sweden, Finland, and
Denmark has developed remarkably towards liberalization and the establishment of competi-
tive market conditions, and today this market serves as a model for the restructuring of other
power markets. The Nordic power market is characterized by a grid of physical exchanges
of power across geographical regions where the actual exchange is constrained by the �ow
capacity. Naturally, this has implications for the way prices are formed: When there are no
bilateral capacity restrictions then there is a free �ow of power, and prices will be identi-
cal. On the other hand, when there is congestion prices tend to depart to meet the supply
and demand conditions subject to restricted access to power from other regions. In order
to model electricity prices it is thus natural to consider regime dependent price processes
re�ecting the presence or absence of �ow congestion. This particular feature of the market
has been addressed in recent work by Haldrup and Nielsen (2006a,b). Another important
property of electricity prices modeled in these works is the presence of long memory. Statis-
tical tests strongly reject price series to be I(0) and I(1), whereas I(d) processes with d being
fractional (see Granger (1980), Granger and Joyeux (1980) and Hosking (1981)) provide a
nice characterization of the data.

The combination of fractional integration and regime switching gives rise to some chal-
lenges. Ding and Granger (1996), Diebold and Inoue (2001), and Granger and Hyung (2004)
argue that under certain conditions time series variables can spuriously have long memory
when measured in terms of their fractional order of integration, when in fact the series ex-
hibit non-linear features such as regime switching. In the model framework of Haldrup and
Nielsen (2006a,b) separate long memory price dynamics is allowed in adjacent power regions
depending upon whether the power exchange is subject to congestion or non-congestion. The
model is of the Markov switching type originally de�ned by Hamilton (1989). However, be-
cause the de�ning property of e.g. a non-congestion state is that prices are identical, the
state variable is observable as opposed to being a latent variable. An important feature of
the model is that the price processes in the di¤erent regimes can have di¤erent degrees of
long memory, which gives rise to a number of interesting possibilities. For instance, consider
the state with non-congestion and assume that the associated bivariate prices are fractionally
integrated of a given order. It follows that prices are fractionally cointegrated in this case,
i.e. extending the notion of Granger (1981, 1986) and Engle and Granger (1987), in the
sense that individual prices are fractionally integrated but price di¤erences are identically
zero. Thus, an extreme form of cointegration occurs in this situation because the prices are
identical and hence are governed by exactly the same price shocks. The price behavior in the
congestion state can (and typically will) be very di¤erent. That is, the bivariate prices can
be fractionally cointegrated in a more conventional way or the prices can appear not to coin-
tegrate. Hence the model can potentially exhibit state dependent fractional cointegration.
By not appropriately conditioning on the congestion state, i.e. when having a model with
no regime switching, the full sample estimates are likely to be a convex combination of the
behavior in the individual states and hence misleading inference is likely to result. In fact,
this is one of the major empirical �ndings in Haldrup and Nielsen (2006a).

The modeling approach used in Haldrup and Nielsen (2006a) is limited in the sense that
the individual price series and the relative price series are analyzed separately as univariate
models. When the focus of analysis is the potential (fractional) cointegration amongst mul-
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tiple series a system approach is more natural, but clearly also more complex in the present
context given the particular features the model should allow. In principle, the full set of price
series should be modeled jointly, and, depending upon the market conditions, should shrink
to a limited number of price series re�ecting periods with non-congestion at some grid points.

We distinguish between price areas and geographical regions. Each geographical region
corresponds to a physical exchange (e.g., West Denmark, South Norway, etc.) and is therefore
constant over time. On the other hand, a price area is de�ned simply as an area with the
same price and may therefore clearly change over time. Thus, West Denmark and South
Norway always constitute two geographical regions, but in the case of non-congestion the
same price prevails in both geographical regions and they hence constitute just one price
area.

In this paper we model multiple price series jointly in a vector autoregression (VAR),
which allows for fractionally integrated time series that potentially cointegrate in the con-
gestion state. In the non-congestion state, prices are identical by de�nition and hence a
univariate model for the price process is applied in this particular regime. Thus, our VAR
model for fractionally cointegrated processes allows for the possibility of regime switching,
and in particular di¤ers from other speci�cations o¤ered in the literature in the sense that
our VAR model collapses to a pseudo-univariate model when a speci�c state arises.

There are di¤erent reasons why the identi�cation of separate price dynamics is impor-
tant. The operation of electricity markets is similar to the operation of �nancial markets
with electricity power derivatives being priced and traded in highly competitive markets and
hence appropriate modeling of both means and variances is crucial. Furthermore, the price
dynamics is of interest with respect to competition analysis of electricity markets where mar-
ket delineation is a central issue, see e.g. Sherman (1989) and Motta (2004). Even though
most power markets are highly liberalized there is still scope for regulating authorities to
closely follow the market behavior, see also Fabra and Toro (2005). Under non-congestion
there is obviously a single price existing in the market and the relevant geographical market
consists of the regions with identical prices. However, when there is congestion it is of interest
to follow the price dynamics closely because suppliers can have a dominating position. The
geographical market delineation thus becomes less straightforward in this case. If the price
dynamics appears to be very di¤erent there is scope for further examination of the market
conditions by regulatory authorities.

In our empirical analysis we �nd that generally the behavior of electricity prices in ge-
ographical price regions are di¤erent across states. The analysis shows that it is important
to condition on congestion/non-congestion as non-switching models can generate misleading
conclusions with regard to the fractional integration orders and potential fractional coin-
tegration. Three leading types of misclassi�cation of the model dynamics may arise. First,
non-switching models may indicate that the price series are fractionally cointegrated, whereas
when conditioning on states this is only the case in the non-congestion state (which is coin-
tegrated by de�nition). Secondly, the non-switching model could indicate that there is no
fractional cointegration when in fact there is cointegration in the non-congestion state. Fi-
nally there is the possibility of fractional cointegration in both regimes, but not in the non-
switching model. Conditioning on states is also important when looking at the adjustment
coe¢ cients, as the non-switching models can lead to wrong conclusions about the convergence
of geographical price regions towards equilibrium.

The remainder of the paper is structured as follows: We next o¤er a brief description of
the structure of the Nordic electricity market. Section 3 introduces the data and argues for
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the importance of allowing for long memory, regime switching and seasonality when building
a model to describe the geograhical region price processes. In section 4 the VAR modeling
framework with long memory and regime switching is presented. In section 5 the empirical
results are discussed and section 6 concludes.

2 The operation of the Nordic power market

Within the Nordic countries (Denmark, Finland, Norway, and Sweden), major electricity
reforms were implemented during the 1990s. The deregulation process started in Norway in
1991, continued in Sweden 1996, in Finland 1998, and was �nally completed in Denmark in
2000. As part of the liberalization the national electricity markets were opened up for cross-
border trade by establishment of a common power exchange, Nord Pool. Today all member
countries of the Nordic power market have adapted to the new competitive environment
and the Nordic exchange serves as a model for the restructuring of other power markets
throughout the world.1

The per capita consumption of electricity is very high in Norway and Sweden, slightly
lower in Finland and at EU average in Denmark. The relatively high consumption level in
the Nordic countries is caused by a relatively electricity intensive industrial production, a
cold climate, and extensive use of electric heating in homes and o¢ ces, especially in Norway
and Sweden. The sources of electricity power production are rather mixed in the Nordic area
as a whole. The major energy source is hydropower supplying approximately 65% of total
electricity in years with normal precipitation. On the national level the power generation
systems di¤er signi�cantly and are generally dominated by one or two technologies. In
Norway the share of hydropower is close to 100%, in Sweden it is close to 50%, in Finland
around 15% and in Denmark 0%. With respect to nuclear power the share is 50% in Sweden
30% in Finland, and 0% in Denmark and Norway. Power generation from fossil fuels is of
major signi�cance in Denmark and Finland, minor in Sweden, and close to non-existent in
Norway. In Denmark 15-20% of the power supply originates from wind power turbines.2

Because hydropower production is mainly found in the northern parts of the Nordic power
web and thermal power plants are located in the south, the relatively cheap hydropower
generation is transmitted to the heavily populated southern region which of course requires
a well established power grid transmission capacity to facilitate the �ow. When the reservoir
levels are adequate, the less costly hydropower production causes low spot prices. In these
cases national and cross-border transmission systems will be used to their capacity in order
to level out price discrepancies across regions. On the other hand, when reservoir levels are
low there will be a net �ow from south to north, and the market will see relatively high prices
for thermally generated electricity.

>From an institutional point of view there is a common Nordic market for electricity;
however, even though key market institutions are common this does not mean that the Nordic
electricity market is an integrated market in the sense that �the law of one price� applies.
The reason is that the transmission of power is subject to possible capacity constraints.
The Nordic electricity market constitutes a number of distinct geographical regions di¤erent

1For a detailed description of the Nordic power market, see Nord Pool (2003a) or Amundsen and Bergman
(2007).

2 Increasing the relative production of electricity by renewable energy sources has considerable political
focus in Denmark. According to o¢ cial energy plans 50% of the Danish electricity production will come from
wind power in 2030.
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from the countries themselves and several price areas may coexist. Whenever the relevant
interconnector capacity is insu¢ cient, the Nord Pool area is divided into two or more price
areas. The separate power regions consist of Sweden (SWE), Finland (FIN), West Denmark
(WDK), East Denmark (EDK), North Norway (NNO), Mid Norway (MNO), and South
Norway (SNO). Thus Denmark and Norway are each divided into multiple geographical
regions in Nord Pool.3 This division re�ects the grid of physical exchanges of power and the
bidding areas with respect to the pricing of electricity as we shall explain shortly. Figure 1
displays the actual electricity exchange points.

Figure 1 about here

The power spot market4 operated by Nord Pool Spot A/S is an exchange where market
participants trade power contracts for physical delivery the next day. This is referred to as
a day-ahead market. The spot market is based on an auction with bids for purchase and
sale of power contracts of one hour duration covering the 24 hours of the following day. At
the deadline for the collection of all buy and sell orders the information is gathered into
aggregate supply and demand curves for each power delivery hour. From these supply and
demand curves the equilibrium spot prices - referred to as the system prices - are calculated.5

Therefore, the system price is determined under the assumption that no transmission con-
straint is binding, and thus in a situation where no grid congestions exist across neighboring
interconnectors there will be a single identical price across the areas with no congestions.

The actual trade is not necessarily carried out at the system price. When there is in-
su¢ cient transmission capacity in a sector of the grid, a grid congestion will arise and the
market system will establish di¤erent price areas across the geographical division of the Nord
Pool area. The Nordic market is then partitioned into separate bidding areas which there-
fore become separate price areas when the contractual �ow between bidding areas exceeds
the capacity allocated by the transmission system operators for spot contracts. Within each
price area the buyers pay, and the generators are paid, the corresponding area price. The
di¤erence between the area prices in two adjacent price areas determines the congestion
charge. Because separate prices may coexist depending upon regional supply and demand
conditions, the relevant market de�nition will vary with time. In practice, several price area
combinations will occur. Some hours there will only be a single price area (given by the
system price), other hours there will be two or more price areas.

3 Data

The data used in this paper are (log transformed) hourly electricity spot prices for the Nord
Pool area; West Denmark (WDK), East Denmark (EDK), South Norway (SNO), Sweden
(SWE) and Finland (FIN).6 The data set is the same as that analyzed in Haldrup and Nielsen
(2006a,b) and covers the period 3 January 2000 to 25 October 2003, including weekends and

3For the purpose of analysis of the Norwegian regions, only the SNO link is considered in the present paper.
4Since only the spot market will be relevant for the present study, only this market will be described here,

see also Nord Pool (2003b). Nord Pool (2003c) describes the futures and forward markets of the Nordic power
exchange which are used for price hedging and risk management.

5The system price is the reference price in the �nancial power contracts like futures, forwards, and options
traded at Nord Pool.

6Mid and North Norway are also member areas of Nord Pool, but are left out from the present analysis
because these areas coincide with South Norway for most of the year.
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holidays. This yields a total of 33,404 observations. For EDK the sample period starts 1
October 2000 and thus covers 26,880 sample points. The data series are displayed in Figure
2. Some stylized facts about the data are reported in Haldrup and Nielsen (2006a).

Figure 2 about here

A pronounced characteristic of electricity markets is the abrupt and generally unantic-
ipated extreme changes in spot electricity prices. These jumps or spikes generally occur
within a very short period of time, implying that the general level of the di¤erent series tend
to be highly persistent possible with mean reversion, see Escribano et al. (2002), Haldrup
and Nielsen (2006a,b) and Koopmann et al. (2007). In Haldrup and Nielsen (2006a) a range
of tests document that prices are neither I(0) nor I(1). Estimating the memory parameter for
fractionally integrated, FI(d), processes shows that the series generally exhibit long memory
with d in the range 0.31-0.52 with the SNO area being most persistent and in fact being
nonstationary. The remaining areas have estimates of d in the stationary region. It should
be noted, however, that these estimates do not allow for regime dependence.

Another important aspect of electricity prices is the very strong seasonal behaviour char-
acterizing the series. Seasonality is mainly driven from the demand side and appears as
seasonal variation within the day, within the week, and over the year. However, the sup-
ply side also contributes to seasonal variation as electricity production is highly dependent
upon weather conditions. In particular, the seasonal variation in precipitation a¤ects water
reservoir levels in the generation of hydropower, and seasonal variation in wind conditions
also plays an increasing role due to the growing number of wind turbines, especially in West
Denmark.

Figure 3 about here

In Figure 3 scatter plots of log prices for adjacent Nord Pool areas are shown. When
there are no capacity contraints across neigboring regions the prices will be identical, whereas
congestion makes prices di¤er. Observations on the 45� line therefore represent non-congestion
hours, whereas observations o¤ the 45� line represent congestion hours. It is especially this
marked di¤erence in observations that motivates the present analysis.

4 Modeling of regime dependent long memory

4.1 A univariate model

We here brie�y discuss the univariate model setup used in Haldrup and Nielsen (2006a).
The main features that the estimation model should allow include seasonality, long memory,
and regime switching of the type described above. Assume that individual electricity prices
across adjacent regions are fractionally integrated in the non-congestion state. This means
that an extreme form of fractional cointegration will exist in this state because the prices
are identical across the two areas and thus price di¤erences will be identically zero. On the
other hand, the behavior of the two individual price series in the congestion state can be very
di¤erent. If prices are compared without considering the di¤erent regime possibilities it is
unclear what to expect from the data. However, the mixing of the two processes is likely to
produce price series with a behavior that is a convex combination of the two state processes.
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Consider the following model speci�cation, which we denote a regime switching multi-
plicative RS-SARFIMA7 model:

Ast (L)
�
1� astL24

�
(1� L)dst

�
yt � �st

�
= "st;t; "st;t � nid

�
0; �2st

�
: (1)

Here Ast (L) is a lag polynomial and st 2 fc; ncg denotes the regime (c :congestion, nc:
non-congestion), determined by a Markov chain with transition probabilities

P =

�
p11 1� p11

1� p22 p22

�
: (2)

Thus, for example, p11 denotes the probability that a congestion state will follow a congestion
state. Note that because identical prices mean that we are in a non-congestion state, all
regimes are observable, which contrasts the standard regime switching model of Hamilton
(1989) where the regimes follow a latent Markov process.

The (univariate) series yt may denote one of two individual log price series or the asso-
ciated log relative price. The series yt has been corrected for deterministic seasonality prior
to the estimation whilst allowing interaction with the two observable regimes, that is, the
coe¢ cients on the dummy variables are allowed to di¤er across states. When yt denotes a
log relative price, all parameters are put to zero when st = nc; including �2nc. Estimation of
the above model is by conditional maximum likelihood and is discussed in detail in Haldrup
and Nielsen (2006a).

4.2 A bivariate model

A disadvantage of the model described above is that parameters are estimated separately
when in fact the price series to a large extent are governed by the same price shocks. We
therefore consider the following fractional error correction model speci�cation for a bivariate
regime switching vector stochastic process subject to being in the congestion state:�

�d1 0
0 �d2

��
p1t
p2t

�
=

�
�1
�2

�
�(p1;t�1 � p2;t�1) (3)

+
kX
i=1

�c;i�
�st�i

�
p1;t�i
p2;t�i

�
+ "c;t;

where "c;t � N(0;
) and

�c;i =

�
�c11;i �c12;i
�c21;i �c22;i

�
;

�
�st�i =

�
diag

�
�d1 ;�d2

�
if st�i = c;

�dnc if st�i = nc;

such that the lagged fractional di¤erences re�ect whether a particular observation is as-
sociated with a congestion or non-congestion state. Thus, dnc is the common fractional
integration order in the non-congestion state, whereas d1 and d2 are the integration orders
of the two price areas in the congestion state.

7RS-SARFIMA: Regime Switching Seasonal Autoregressive Fractionally Integrated Moving Average.
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In the non-congestion state bilateral prices are identical, p1t = p2t = pt; and hence the
bivariate setup collapses to a pseudo-univariate model, i.e.

�dncpt =
kX
i=1

�nc;i�
�st�i

�
p1;t�i
p2;t�i

�
+ "nc;t (4)

where "nc;t � N(0; �2) and
�nc;i =

�
�nc11;i;�

nc
12;i

�
:

Essentially, the price process switches between being generated from (3) or (4) where switch-
ing takes place in accordance with the transition probabilities (2).

We limit our study to the bivariate setup and disregard potential spill-overs from the
other areas. From a theoretical point of view, it is conceptually easy to extend the present
bivariate model to the multivariate case, and thereby model spill-overs using more advanced
dynamics. However, from a computational point of view this appears infeasible as the number
of regimes, and thereby the number of parameters, grows very fast. Indeed, in a multivariate
setup with M geographical regions, there are 2M�1 di¤erent regimes.

A number of remarks are in order. Consider �rst the non-congestion state. In this
regime the two price series are forced to be governed by the same process (4) and hence any
conditional forecast for this regime will remain identical for both price series. This feature is
not captured in the univariate model of Haldrup and Nielsen (2006a) and indeed requires our
multivariate setup. Thus, in particular, forecasts of each price series in the non-congestion
state may appear di¤erent when based on (1), whereas forecasts based on (4) will be identical
for the two price series in the non-congestion state. Note that in the non-congestion state the
prices are fractionally integrated of order dnc and fractionally cointegrated in the sense that
the series perfectly co-move. This notion of (fractional) cointegration is somewhat di¤erent
than originally suggested by Granger (1986) and Engle and Granger (1987).

Next, consider the congestion regime. We will discriminate between two situations, i.e.
when p1t and p2t cointegrate or do not cointegrate. (i) Assume �rst the situation with
fractional cointegration. In this case it must hold that d1 = d2 = d, i.e. the price series
have to be of the same order of fractional integration. Notice that whilst the single price
series are FI(d), the log relative prices are FI() where  < d: At the same time we require
that (�1; �2)0 6= (0; 0)0 with either �1 < 0 and/or �2 > 0 such that the model is truly error
correcting. (ii) When prices do not cointegrate in the congestion regime nothing guarantees
that d1 = d2 = d: Most importantly, there is no error correction towards equilibrium in this
case and the usual interpretation of the parameters (�1; �2)0 and  is invalid.

The adjustment coe¢ cients, (�1; �2)0; may give an indication of whether the speci�c
price areas adjust towards equilibrium, which we expect them to do under cointegration.
Speci�cally, if �1 > 0 then p1t is moving away from equilibrium (non-congestion), whereas
if �2 > 0 then p2t is moving towards equilibrium. Note that the full stability of the model
requires that the entire system dynamics is included in the calculation, but in any case
the values of �1 and �2 give a rough idea of the system dynamics under a ceteris paribus
assumption. An alternative interpretation of the adjustment coe¢ cients follows from the
market setup and varying costs of electricity production in di¤erent geographical regions. For
example, if there is no congestion between SNO and WDK prices are identical and electricity
�ows from the cheaper area (usually SNO because of the hydropower) to the more expensive
area (WDK). However, if there is congestion, prices in WDK will be higher re�ecting the
higher costs of electricity production. This increase in price in WDK corresponds to �1 > 0
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in the WDK-SNO bivariate model, i.e. a move away from equilibrium. Importantly, this is
not due to system instability but rather to electricity being more expensive to produce in
WDK compared to SNO.

The model analyzed in this paper is unique in the literature on regime switching and/or
(fractionally) cointegrated models since it collapses to a pseudo-univariate model in one of
the regimes. The error correction model speci�cation (3)-(4) re�ects the particular structure
and features of the market design. For discussions of representation theory in the context
of (non-switching) fractional cointegration, see Granger (1986), Davidson (2002), Robinson
and Yajima (2002), and Johansen (2007).

4.3 Estimation

In our case congestion/non-congestion is an observed state such that regimes are observable,
and the maximum likelihood estimates of the transition probabilities are

p̂11 =
nc;c

nc;c + nc;nc
; (5)

p̂22 =
nnc;nc

nnc;c + nnc;nc
; (6)

where nij is the number of times we observe regime i followed by regime j for i; j 2 fc; ncg :
Estimation of the remaining parameters of the two states is done by conditional maximum

likelihood. The regime-speci�c log-likelihood functions, omitting the constant, is

lc (dc; �c) = �
P
t 1 fst = cg

2
log j
j � 1

2

X
t

trace
�

�1"st;t1 fst = cg "0st;t1 fst = cg

�
;

lnc (dnc; �nc) = �
P
t 1 fst = ncg

2
log �2 � 1

2

X
t

�
��2"st;t1 fst = ncg "0st;t1 fst = ncg

�
;

where 1fAg is the indicator function of the event A. The full-sample log-likelihood function
is given by

l (dc; dnc; �) = �
T

2
log (2�) + lc (dc; �c) + lnc (dnc; �nc) : (7)

When using a numerical optimization algorithm to maximize the log-likelihood function,
concern must be given to the selection of starting values. The reason for concern is that the
log-likelihood function is not globally concave and hence the results of the selected numerical
optimization algorithm may depend on the choice of starting values. In our case we have
used the fractional integration estimates from Haldrup and Nielsen (2006a) as our starting
values. For the remaining parameters, i.e. autoregressive and variance-covariance terms etc.,
we �nd starting values by letting the fractional integration parameters be �xed at their initial
values and maximizing the log-likehood with respect to the remaining parameters.

Finally, we remark that our model framework assumes that states are observable and that
the cointegrating vector in the congestion state, � = (1;�1), is given. Therefore, asymptotic
distribution theory for the remaining parameters will be standard under suitable regularity
conditions on the errors "st;t, such as serial independence and moment conditions. In partic-
ular, Gaussianity of the errors is not a necessary condition for the asymptotic distribution
theory, but is used only to derive the likelihood function.
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Table 1: Estimated transition probabilities (mean duration of states)

EDK-SWE WDK-SWE
congestion non-congestion congestion non-congestion

congestion 0:7848 (4:65) 0:2152 congestion 0:8216 (5:60) 0:1784
non-congestion 0:0131 0:9869 (76:57) non-congestion 0:1259 0:8740 (7:94)

WDK-SNO SNO-SWE
congestion non-congestion congestion non-congestion

congestion 0:9247 (13:28) 0:0753 congestion 0:9478 (19:16) 0:0523
non-congestion 0:1221 0:8779 (8:19) non-congestion 0:0462 0:9538 (21:64)

SWE-FIN
congestion non-congestion

congestion 0:8505(6:51) 0:1495
non-congestion 0:0210 0:9790(48:78)

5 Empirical Results

Prior to estimation, each log price series had deterministic seasonality removed by regression
on a constant, a time trend, dummy variables for hour-of-day, day-of-week, month-of-year,
and a holiday dummy. The parameter estimates for the constant, trend, and dummy variables
are allowed to di¤er across states. For computational reasons we have selected to set k = 4 to
capture the within-the-day e¤ects and also include a 24th lag, to capture the daily stochastic
seasonality. The gain from introducing more lags and/or e.g. a weekly lag instead of a
daily, was not signi�cant enough in terms of whiteness of the residuals to compensate for the
considerable estimation time.

5.1 Estimation of transition dynamics

Since the states are observable, as discussed earlier, estimates of the transition probabilities
for each state are easily calculated and are reported in Table 1. It is clear that some grid
points are more subject to congestion than others. This fact may be explained by demand
and supply �uctuations, but there is also the possibility that congestion may be caused by
exploitation of market power.

The estimated transition probabilities indicate a high degree of persistence in the states.
The probability of staying in the congestion regime, p̂11, is highest for the grid point SNO-
SWE, 0:9478, whereas it is lowest for EDK-SWE link, 0:7848. This corresponds to a mean
duration of 19:16 and 4:65 hours, respectively. In general, the probability of staying in the
non-congestion regime, p̂22, is higher, estimated at 0:8740 � 0:9870, corresponding to mean
duration of 7:94� 76:57 hours.

5.2 Estimation of fractional integration and cointegration parameters

In Tables 2-6 we present the estimates of the fractional integration d for a number of di¤erent
cases. The models estimated under the heading �No switching�use pooled data, i.e. there is
no separation of data connected with congestion and non-congestion periods. The estimates
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Table 2: Estimates for the EDK-SWE link
Switching

No switching Non-congestion Congestion
Model d̂1 d̂2 ̂ d̂nc1 d̂nc2 ̂nc d̂c1 d̂c2 ̂c

Univariate 0:43
(0:012)

0:43
(0:012)

0:05
(0:018)

0:46
(0:012)

0:46
(0:011)

0 0:03
(0:013)

0:03
(0:012)

�0:26
(0:077)

VAR estimates 0:45
(0:011)

0:49
(0:018)

0:21
(0:019)

0:32
(0:011)

0 0:09
(0:021)

0:10
(0:038)

0:04
(0:04)

VAR estimates
Restricted d1=d2

0:49
(0:009)

0:21
(0:047)

0:32
(0:013)

0 0:09
(0:040)

0:00
(0:049)

Notes: Subscripts denote the geographical region and superscripts denote the state. Standard errors
are given in parentheses.

Table 3: Estimates for the WDK-SWE link
Switching

No switching Non-congestion Congestion
Model d̂1 d̂2 ̂ d̂nc1 d̂nc2 ̂nc d̂c1 d̂c2 ̂c

Univariate 0:31
(0:015)

0:42
(0:011)

0:27
(0:017)

0:38
(0:024)

0:33
(0:013)

0 0:28
(0:021)

0:46
(0:014)

0:37
(0:015)

VAR estimates 0:31
(0:010)

0:54
(0:020)

0:51
(0:025)

0:19
(0:021)

0 0:12
(0:020)

0:39
(0:012)

0:23
(0:012)

VAR estimates
Restricted d1=d2

0:56
(0:011)

0:53
(0:072)

0:25
(0:018)

0 0:33
(0:033)

0:11
(0:029)

Notes: Subscripts denote the geographical region and superscripts denote the state. Standard errors
are given in parentheses.

of d1, d2 refer to the fractional orders estimated for the �rst and second region, respectively,
whereas the estimate  is the fractional integration order of the log relative price. The
results presented under the heading �Switching� refer to similar estimates when data is
partitioned into congestion and non-congestion periods, where we use superscripts c or nc to
denote estimates under the congestion and non-congestion regimes, respectively. Note that by
de�nition nc = 0 in the non-congestion state because the single price series are identical and
hence the series are fractionally cointegrated in an extreme form. Results are reported using
three di¤erent models. For comparison, �Univariate� reproduces the estimates reported in
Haldrup and Nielsen (2006a), i.e. this corresponds to estimates using the model (1) for both
the regime switching and non-regime switching cases. The row named �VAR estimates�
displays estimates based on the model (3)-(4). Note that, as opposed to the univariate
estimates, dnc1 = dnc2 by construction since the price series follow the same process in these
cases. Finally, VAR estimates are reported where we restrict d1 = d2 in the non-switching
case and dc1 = d

c
2 in the congestion state under the regime switching case.

Consider �rst the East Denmark-Sweden connection exhibited in Table 2, and consider
initially the pooled data set without regime switching. The estimates of d for the two regions
are rather similar regardless of the underlying model being estimated, i.e. estimates are in
the range 0:43� 0:49 and hence on the borderline of the stationary region. The estimates of
 are somewhat lower: 0:05 when the univariate model is used for estimation and 0:21 when
the VAR model is used. These results indicate that when data is not classi�ed according
to regimes, then there is evidence of fractional cointegration amongst the series. Now, the
question is whether this result is caused by the non-congestion state dominating the sample
or whether both regimes contribute to the cointegration �nding. In the regime switching case,
the non-congestion estimates clearly indicate cointegration (as expected) with estimates of d
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Table 4: Estimates for the WDK-SNO link
Switching

No switching Non-congestion Congestion
Model d̂1 d̂2 ̂ d̂nc1 d̂nc2 ̂nc d̂c1 d̂c2 ̂c

Univariate 0:30
(0:015)

0:44
(0:011)

0:28
(0:016)

0:30
(0:026)

0:16
(0:008)

0 0:31
(0:017)

0:63
(0:017)

0:37
(0:015)

VAR estimates 0:30
(0:009)

0:57
(0:018)

0:91
(0:019)

0:43
(0:016)

0 0:20
(0:017)

0:22
(0:013)

- 0:07
(0:015)

VAR estimates
Restricted d1=d2

0:92
(0:012)

1:13
(0:018)

0:37
(0:021)

0 0:34
(0:047)

0:10
(0:032)

Notes: Subscripts denote the geographical region and superscripts denote the state. Standard errors
are given in parentheses.

Table 5: Estimates for the SNO-SWE link
Switching

No switching Non-congestion Congestion
Model d̂1 d̂2 ̂ d̂nc1 d̂nc2 ̂nc d̂c1 d̂c2 ̂c

Univariate 0:45
(0:011)

0:41
(0:012)

0:31
(0:016)

0:38
(0:008)

0:41
(0:012)

0 0:32
(0:013)

0:21
(0:013)

0:39
(0:018)

VAR estimates 0:60
(0:016)

0:59
(0:017)

0:06
(0:010)

0:49
(0:018)

0 0:32
(0:007)

0:18
(0:007)

0:31
(0:013)

VAR estimates
Restricted d1=d2

0:46
(0:007)

0:21
(0:010)

0:39
(0:012)

0 0:28
(0:007)

0:25
(0:015)

Notes: Subscripts denote the geographical region and superscripts denote the state. Standard errors
are given in parentheses.

in the range 0:32� 0:46. In the congestion case, the memory parameter for each of the price
series are similar but somewhat lower, i.e. 0:09 � 0:10. Also, there is indication of a weak
form of fractional cointegration in the congestion state since the relative price is FI(0:04).
When we restrict d1 = d2 over the di¤erent scenarios, we see the same story as not restricting
the parameters.

Next, we turn to the West Denmark-Sweden link in Table 3. For the model without
regime switching both restricted and unrestriced parameter estimates using the VAR model
indicates no presence of fractional cointegration which is similar to what is found in the
univariate case. Under regime switching there is clearly cointegration in the non-congestion
state, however, for the model with unrestricted integration orders there is no cointegration
in the congestion state. The results from the no switching models are thus some combination
of their regime switching counterparts, and it is clear that by not taking regime switching
into account we falsely conclude that there is no sign of fractional cointegration, whereas it is
evident that fractional cointegration is present in the non-congestion state. When we restrict
d1 = d2 the VAR model in fact shows cointegration also in the congestion state.

The West Denmark-South Norway link with estimates in Table 4 is an interesting case
where there seems to be no fractional cointegration in the non-switching models. However,
looking at the VAR models where we condition on congestion/non-congestion we see that
there is in fact fractional cointegration in both states. That is, an extreme form in the non-
congestion state by de�nition and in the congestion state because d̂c1 � d̂c2 (or d̂c1 = d̂c2) and
we have a reduction of fractional order for the relative price series (̂c). In the univariate
model there is no sign of fractional cointegration.

As seen from Table 5 the link between South Norway and Sweden indicates fractional
cointegration in the model without regime switching. However, when conditioning on states,
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Table 6: Estimates for the SWE-FIN link
Switching

No switching Non-congestion Congestion
Model d̂1 d̂2 ̂ d̂nc1 d̂nc2 ̂nc d̂c1 d̂c2 ̂c

Univariate 0:39
(0:012)

0:38
(0:012)

0:24
(0:017)

0:42
(0:011)

0:43
(0:012)

0 �0:02
(0:012)

�0:02
(0:005)

0:48
(0:022)

VAR estimates 0:52
(0:009)

0:60
(0:015)

0:34
(0:017)

0:31
(0:014)

0 0:02
(0:010)

0:02
(0:009)

0:01
(0:012)

VAR estimates
Restricted d1=d2

0:49
(0:009)

�0:07
(0:037)

0:31
(0:013)

0 0:02
(0:011)

0:01
(0:013)

Notes: Subscripts denote the geographical region and superscripts denote the state. Standard errors
are given in parentheses.

it is seen that it is only in the non-congestion state that cointegration takes place. In the
congestion state the fractional orders of the single price series and the relative price series
are almost identical for all three models.

Finally, for the Sweden-Finland link in Table 6 there is some evidence of fractional cointe-
gration in the non-switching models. For the univariate model, the regime switching results
do not make much sense because ̂c > maxfd̂c1; d̂c2g. The two regime switching VAR models
(with and without the restriction d1 = d2) give identical results in the regime switching case.
There is cointegration the non-congestion state whereas all series seem to be I(0) in the con-
gestion state. Hence, the non-congestion state seems to dominate the data when there is no
conditioning on state.

5.3 Estimation of adjustment coe¢ cients

By modeling the data using the multivariate switching VAR model (3)-(4) we obtain es-
timates of the adjustment coe¢ cients in the congestion state which is not possible when
estimating univariate models. The adjustment coe¢ cients indicate (ceteris paribus) whether
a speci�c geographical price region is moving towards or away from equilibrium in response
to a particular price gap. An alternative interpretation of the adjustment coe¢ cients follows
from the market setup and varying costs of electricity production in di¤erent geographical
regions, i.e. if an inexpensive electricity supply from another geographical region is suddenly
stopped due to a congestion, prices are expected to be higher until non-congestion is restored
which may result in adjustment parameters indicating a move away from equilibrium. Para-
meter interpretation is of course an issue here, because we force the cointegrating vector to
be (1;�1) and the parameter estimates �1; �2, and  do not have the usual interpretation in
the congestion state if in fact there is no cointegration present in that state (due to lack of
identi�cation): Therefore, if cointegration is not present the interpretation of (�̂1; �̂2)

0 should
be made with caution.

In Table 7 the adjustment coe¢ cients (�1; �2) associated with the VAR models are re-
ported, both with restricted and unrestricted d parameters and for the switching and non-
switching cases. Numbers in boldface font indicate situations where, based upon the d1; d2;
and  estimates, some degree of fractional cointegration is likely to take place. In the regime
switching models, boldface indicates situations where there appears to be cointegration in
the congestion state.

Consider �rst the East Denmark-Sweden connection. When we do not condition on
regime switching and d1 6= d2, neither East Denmark nor Sweden appear to correct towards
equilibrium. On the other hand, when d1 = d2 is enforced, East Denmark moves towards
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Table 7: Estimated adjustment coe¢ cients
No switching Switching

d1 6= d2 d1 = d2 d1 6= d2 d1 = d2
Series �̂1 �̂2 �̂1 �̂2 �̂1 �̂2 �̂1 �̂2
EDK-SWE 0:1775�� �0:3526�� �0:3495�� �0:0263 0:1592�� 0:3130�� 0:1987�� 0:2587��

(0:0169) (0:0172) (0:1054) (0:0218) (0:0331) (0:0443) (0:0397) (0:0538)
WDK-SWE 0:0328 0:0576 �0:1239 �0:0647�� 0:4798�� 0:0284 0:0033 0:0059

(0:0943) (0:0678) (0:1244) (0:0321) (0:0374) (0:025) (0:0891) (0:0503)
WDK-SNO 0:9253�� �0:0220 0:0173 �0:0200 0:0429�� �0:0048 0:1247�� �0:0784��

(0:0219) (0:0243) (0:0271) (0:0212) (0:0161) (0:0143) (0:0246) (0:0171)
SNO-SWE �0:0433 �0:0017 0:8682�� 0:0376 �1:039�� 0:3130�� �0:9871�� 0:5623��

(0:0263) (0:0448) (0:0522) (0:0224) (0:1231) (0:1043) (0:1126) (0:1526)
SWE-FIN 0:3106�� 0:9949�� �0:0154� 0:0862�� 0:7152�� �0:2694�� 0:6991�� �0:3479��

(0:0527) (0:0842) (0:0090) (0:0177) (0:0210) (0:0313) (0:0304) (0:0154)

Notes: Subscripts denote the geographical region. Numbers in bold face refer to situations with
indication of fractional cointegration based on the d1; d2, and  estimates reported in Tables 2-6.
Standard errors are given in parentheses. One and two asterisks denote signi�cance at the 10% and

5% levels, respectively.

equilibrium whereas Sweden�s adjustment coe¢ cient is insigni�cant. When we condition on
regime switching, East Denmark moves away from equilibrium, whereas Sweden now moves
towards equilibrium.

Next, we look at the West-Denmark-Sweden link. Only the case with d1 = d2 for the
switching model makes sense in this case, i.e. this is the only situation where some de-
gree of cointegration was found. However, since both adjustment parameters are small and
insigni�cant the power of the error correction mechanism should be questioned in this case.

Looking at the West Denmark-South Norway connection we found no immidiate sign of
cointegration in the non-switching model, see Table 4. When we condition on regimes there is
cointegration, and we see that both areas appear to move away from equilibrium. This would
appear to contradict error correction adjustment. However, there may be other reasons for
these seemingly contradictory results. For example, if there is no congestion between SNO
and WDK prices are identical and electricity �ows from the cheaper area (usually SNO
because of the hydropower) to the more expensive area (WDK). However, when congestion
occurs prices in WDK will be higher re�ecting the higher costs of electricity production. If
demand continues to increase in WDK during the congestion more expensive generators will
be taken into use thus increasing marginal cost of production even further. This increase
in price in WDK corresponds to �1 > 0 in the WDK-SNO bivariate model, i.e. a move
away from equilibrium. Importantly, this is not due to system instability but rather due to
electricity being more expensive to produce in WDK compared to SNO.

The South Norway-Sweden and Sweden-Finland cases are similar in the sense that no coin-
tegration was found in the congestion state. However, in the non-switching model fractional
cointegration was suggested by the data. Enforcing d1 = d2 seems to a¤ect the adjustment
mechanisms rather radically, which we attribute to the lack of conditioning on states.

To sum up, appropriate modeling of the regime switching feature is seen to have a major
impact on the dynamic price adjustment mechanism. In addition to giving estimates of the
adjustment process speci�c to the particular state, conditioning on congestion/non-congestion
allows interpretation of the adjustment coe¢ cients in terms of the prices in each geographic
region under the congestion regime and not necessarily in terms of the stability of the system.
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6 Conclusion

In this paper we have proposed a multivariate extension of the univariate framework of
Haldrup and Nielsen (2006a). This extension enables us to describe the dynamic structure of
congestion and non-congestion of electricity prices within the Nord Pool area. The notions of
congestion and non-congestion are motivated by the organization of the Nord Pool market,
which is characterized by physical exchanges of power across geographical regions. When
the actual transmission of electricity is constrained by the �ow capacity, congestion occurs.
Therefore, the presence or absence of transmission bottlenecks may have implications for the
way prices are formed. Our multivariate modeling framework allows us to explicitly take
into account the fact that, in non-congestion periods, prices are the same across geographical
regions are therefore also subject to the same price shocks. This, in particular, is not possible
in the univariate frameworks in previous studies.

>From our empirical analysis it is clear that conditioning on states, i.e. congestion vs.
non-congestion has a major impact on the implications for the dynamics of the electricity
prices. That is, when not conditioning on the speci�c states, misleading conclusions in regards
to potential fractional cointegration and the adjustment to equilibrium may be drawn.

There are three possible types of misclassi�cation of the model dynamics in the empirical
analysis. That is, (1) non-switching models may indicate that the price series are fractionally
cointegrated, whereas when conditioning on states this is only the case in the non-congestion
state (which is cointegrated by de�nition); (2) the non-switching model could indicate that
there is no fractional cointegration when in fact there is cointegration in the non-congestion
state; and (3) there is the possibility of fractional cointegration in both regimes, but not in
the non-switching model. A feature of our model that is particular to its multivariate nature
is that we are able to estimate adjustment coe¢ cients in the error correction representation.
Again, it is important to condition on congestion/non-congestion, since we may otherwise
draw false conclusion about the adjustment to equilibrium (non-congestion).

Some geographical regions are indirectly connected, e.g. West Denmark and East Den-
mark are indirectly connected through Sweden, so there are regimes where West Denmark
and East Denmark constitute the same price area. The e¤ects of these indirect links between
geographical regions and how they potentially a¤ect fractional cointegration and the adjust-
ment in the system are therefore of major interest. A detailed analysis which includes indirect
links is conceptually straightforward using a higher-dimensional model, but computionally
infeasible and therefore left for future research.
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7 Appendix: Figures

Figure 1: Map of the Nord Pool area.
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Figure 2: Hourly log spot electricity prices for the Nord Pool area covering the period 3
January 2000 to 25 October 2003.
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Figure 3: Scatter plots of hourly log prices across Nord Pool regions.
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