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Abstract

The Pearson diffusions is a flexible class of diffusions defined by having linear drift
and quadratic squared diffusion coefficient. It is demonstrated that for this class
explicit statistical inference is feasible. Explicit optimal martingale estimating func-
tions are found, and the corresponding estimators are shown to be consistent and
asymptotically normal. The discussion covers GMM, quasi-likelihood, and non-
linear weighted least squares estimation too, and it is discussed how explicit likeli-
hood or approximate likelihood inference is possible for the Pearson diffusions. A
complete model classification is presented for the ergodic Pearson diffusions. The
class of stationary distributions equals the full Pearson system of distributions.
Well-known instances are the Ornstein-Uhlenbeck processes and the square root
(CIR) processes. Also diffusions with heavy-tailed and skew marginals are included.
Special attention is given to a skew t-type distribution. Explicit formulae for the
conditional moments and the polynomial eigenfunctions are derived. The analyti-
cal tractability is inherited by transformed Pearson diffusions, integrated Pearson
diffusions, sums of Pearson diffusions, and stochastic volatility models with Pearson
volatility process. For the non-Markov models explicit optimal prediction based
estimating functions are found and shown to yield consistent and asymptotically
normal estimators.
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1 Introduction.

In applications of diffusions the Ornstein-Uhlenbeck process and the square-root process
(a.k.a. the CIR process) are often used, more because of their tractability than because
they fit the data particularly well. The aim of this paper is to communicate that these
two diffusion processes belong to a versatile class of tractable diffusion models, which
we call the Pearson diffusions. For these diffusion models moments and conditional mo-
ments can be calculated explicitly. Moreover, the optimal martingale estimating functions
based on eigenfunctions of the generator, introduced by Kessler & Sørensen (1999), can be
found explicitly. Thus statistical inference using this method is straightforward. Recently,
Sørensen (2007) has proved that optimal martingale estimating functions give estimators
that are efficient in a high frequency asymptotics and therefore often offer a simpler alter-
native to maximum likelihood estimation with high efficiency. This is certainly the case
for many financial data for which the speed of mean reversion is slow so that, for instance,
daily observations can be considered high frequency sampling. Because of the versatility
of the Pearson class of diffusions, it is often reasonable to use a Pearson diffusion as statis-
tical model instead of another similar, but less tractable, diffusion process. By choosing
a Pearson diffusion model and using an optimal martingale estimating function an esti-
mation method can be achieved that is both of high efficiency and easy to implement.
Other estimation methods based on conditional moments like the generalized method of
moments, quasi-likelihood and non-linear weighted least squares estimation are also easy
to use and are covered in the discussion as particular cases. Likelihood or approximate
likelihood inference is more complicated to implement, but is relatively simple for the
Pearson diffusions compared to most other diffusion models. Parameter estimation is
also easy for some diffusion-type models obtained using the Pearson diffusions as building
blocks such as transformations and sums of Pearson diffusions, integrated Pearson diffu-
sions, and Pearson stochastic volatility models. Most of these models are non-Markovian
processes, for which we derive explicit optimal prediction-based estimating functions, see
Sørensen (2000).

We shall use the term Pearson diffusion for any stationary solution of a stochastic
differential equation specified by a mean reverting linear drift and a squared diffusion
coefficient which is a second order polynomial of the state. The motivation is that when a
stationary solution exists, then its invariant density belongs to the Pearson system, Pear-
son (1895). In fact, the class of stationary distributions equals the full Pearson system of
distributions. The class of Pearson diffusions is thus highly flexible and therefore suited
for many different applications. Just like the Pearson densities the diffusions can be pos-
itive, negative, real valued, or bounded, symmetric or skewed, and heavy- or light-tailed.
We give special attention to the Pearson diffusion with type IV marginals (the type IV
Pearson distribution is a skewed kind of t-distribution). This process has received little
attention in the literature, see however Nagahara (1996), and has a noteworthy poten-
tial in, for instance, financial applications because of its skew and heavy-tailed marginal
distribution. The basic reason for the tractability of the Pearson diffusions is that the
generator maps polynomials into polynomials of (at most) the same degree.

Most of the Pearson diffusions were derived and studied from a probabilistic viewpoint
by Wong (1964) using a different approach and with another aim. In particular, he did not
consider the nice statistical properties of the Pearson diffusions on which the present paper
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focuses. The Pearson diffusions form a subset of the class of jump-diffusions investigated
by Zhou (2003), who derived formulae for conditional polynomial moments and used
these for generalized method of moments estimation. Most of the Pearson diffusions
are among the diffusion models studied in Bibby, Skovgaard & Sørensen (2005), where no
attention was, however, given to statistical inference. The affine diffusions form a subclass
of the Pearson diffusions. Affine processes have attracted a lot of attention because for
these an expression is available for the characteristic function of the transition distribution
which implies a number of explicit estimators, see e.g. Singleton (2001), Chacko & Viceira
(2003) and Carrasco et al. (2002). General affine processes were studied thoroughly by
Duffie, Filipović & Schachermayer (2003). Note, however, that in the context of the
one-dimensional processes without jumps considered in this paper, the class of affine
processes consist only of a small subset of the Pearson diffusions, namely the Ornstein-
Uhlenbeck process and the CIR-process and affine transformations of these. Meddahi
(2001), Meddahi (2002b), and Meddahi (2002a) has proposed and studied an eigenfunction
approach to stochastic volatility modelling, where the volatility process is a weighted sum
of eigenfunctions of a diffusion process applied to that process (or a similar construction
for two processes). In this context he considered the Pearson diffusions.

The paper is organized as follows. In Section 2 we give a complete classification of the
Pearson diffusions and demonstrate their tractability. We show that all Pearson diffusions
have polynomial eigenfunctions that can be found explicitly. It is also demonstrated that
transformations of Pearson diffusions are similarly tractable so that estimation is easy
for such models too. Likelihood inference and statistical inference based on conditional
moments are studied in Section 3. Optimal martingale estimating functions based on
eigenfunctions of the generator are investigated in detail including asymptotic results.
This discussion also covers other estimation methods such as the generalized method of
moments, quasi-likelihood and non-linear weighted least squares estimation. A simula-
tion study investigates the efficiency of the estimators. In Section 4 we explicitly find
optimal prediction-based estimating functions for integrated Pearson diffusions, for sums
of Pearson diffusions and for stochastic volatility models where the volatility process is a
Pearson diffusion or a sum of Pearson diffusions. Also asymptotics for these models are
considered. Proofs of the asymptotic results are given in the appendix.

2 The Pearson diffusions.

A Pearson diffusion is a stationary solution to a stochastic differential equation of the
form

dXt = −θ(Xt − µ)dt+
√

2θ(aX2
t + bXt + c)dBt, (2.1)

where θ > 0, and where a, b and c are such that the square root is well defined whenXt is in
the state space. The parameters of (2.1) are referred to as the canonical parameterisation:
θ > 0 is a scaling of time that determines how fast the diffusion moves. The parameters µ,
a, b, and c determine the state space of the diffusion as well as the shape of the invariant
distribution. In particular, µ is the mean of the invariant distribution.

Let us first briefly outline, why the stationary density of the diffusion (2.1) belongs to
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the Pearson system. The scale and speed densities of the diffusion (2.1) are

s(x) = exp

(
∫ x

x0

u− µ

au2 + bu+ c
du

)

and m(x) =
1

s(x)(ax2 + bx+ c)

where x0 is a fixed point such that ax2
0 + bx0 + c > 0. Let (l, r) be an interval such that

ax2 + bx + c > 0 for all x ∈ (l, r). A unique ergodic weak solution to (2.1) with values
in the interval (l, r) ∋ x0 exists if and only if

∫ r

x0
s(x)dx = ∞,

∫ x0

l
s(x)dx = ∞, and

∫ r

l
m(x)dx <∞. Its invariant distribution has density proportional to the speed density,

m(x). Since
dm(x)

dx
= −(2a+ 1)x− µ+ b

ax2 + bx+ c
m(x),

we see that when a stationary solution to (2.1) exists, the invariant distribution belongs
to the Pearson system, which is defined as the class of probability densities obtained by
solving a differential equation of this form. If

∫ r

x0
s(x)dx < ∞, the boundary l can with

positive probability be reached in finite time. In this case a solution for which the invariant
distribution has density proportional to the speed density is obtained if the boundary l is
made instantaneously reflecting. Similarly for the other boundary, r.

2.1 Classification of the stationary solutions.

In the following we present a full classification of the ergodic Pearson diffusions. Needless
to say, the squared diffusion coefficient must be positive on the state space of the diffusion.
We consider six cases according to whether the squared diffusion coefficient is constant,
linear, a convex parabola with either zero, one or two roots, or a concave parabola with
two roots. The classification problem can be reduced by first noting that the Pearson
class of diffusions is closed under translations and scale-transformations. To be specific,
if (Xt)t≥0 is an ergodic Pearson diffusion, then so is (X̃t)t≥0 where X̃t = γXt + δ. The
parameters of the stochastic differential equation (2.1) for (X̃t)t≥0 are ã = a, b̃ = bγ−2aδ,
c̃ = cγ2 − bγδ + aδ2, θ̃ = θ, and µ̃ = γµ+ δ.
Hence, up to translation and transformation of scale the ergodic Pearson diffusions can
take the following forms. Note that we consider scale transformations in a general sense
where multiplication by -1 is allowed, so that to each case of a diffusion with state space
(0,∞) there corresponds a diffusion with state space (−∞, 0). Note also that the enu-
meration of cases does not correspond to the types of the Pearson system.

Case 1: σ2(x) = 2θ.
For all µ ∈ R there exists a unique ergodic solution to (2.1). It is an Ornstein-Uhlenbeck
process, and the invariant distribution is the normal distribution with mean µ and vari-
ance 1. In the finance literature this model is sometimes referred to as the Vasiček model.

Case 2: σ2(x) = 2θx.
A unique ergodic solution to (2.1) on the interval (0,∞) exists if and only if µ > 1.
The invariant distribution is the gamma distribution with scale parameter 1 and shape
parameter µ. In particular µ is the mean of the invariant distribution. If 0 < µ ≤ 1,
the boundary 0 can with positive probability be reached at a finite time point, but if the
boundary is made instantaneously reflecting, we obtain a stationary process for which
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the invariant distribution is the gamma distribution with scale parameter 1 and shape
parameter µ. The process goes back to Feller (1951), who introduced it as a model of
population growth. It is often referred to as the square-root process. In the finance liter-
ature it is often refereed to as the CIR-process; Cox, Ingersoll & Ross (1985).

Case 3: a > 0 and σ2(x) = 2θa(x2 + 1).

The scale and speed densities are given by s(x) = (x2 +1)
1

2a exp(−µ
a

tan−1 x) and m(x) =

(x2 +1)−
1

2a
−1 exp(µ

a
tan−1 x). Hence, for all a > 0 and all µ ∈ R a unique ergodic solution

to (2.1) exists on the real line. If µ = 0 the invariant distribution is a scaled t-distribution

with ν = 1 + a−1 degrees of freedom and scale parameter ν−
1

2 . If µ 6= 0 the invariant
distribution is skew and has tails decaying at the same rate as the t-distribution with
1+ a−1 degrees of freedom. A fitting name for this distribution is the skew t-distribution.
It is also known as Pearson’s type IV distribution. In either case the mean is µ and the
invariant distribution has moments of order k for k < 1 + a−1. With its skew and heavy
tailed marginal distribution, the class of diffusions with µ 6= 0 is potentially very useful
in many applications, e.g. finance. It was studied and fitted to the Nikkei 225 index, the
TOPIX index and the Standard and Poors 500 index by Nagahara (1996) using the local
linearization method of Ozaki (1985). The skew t-distribution with mean zero, ν degrees
of freedom, and skewness parameter ρ has (unnormalized) density

f(z) ∝ {(z/√ν + ρ)2 + 1}−(ν+1)/2 exp
{

ρ(ν − 1) tan−1
(

z/
√
ν + ρ

)}

, (2.2)

which is the invariant density of the diffusion Zt =
√
ν(Xt − ρ) with ν = 1 + a−1 and

ρ = µ. An expression for the normalizing constant when ν is integer valued was derived
in Nagahara (1996). By the transformation result above, the corresponding stochastic
differential equation is

dZt = −θZtdt+

√

2θ(ν − 1)−1{Z2
t + 2ρν

1

2Zt + (1 + ρ2)ν}dBt. (2.3)

For ρ = 0 the invariant distribution is the t-distribution with ν degrees of freedom. Fig-
ure 2.1 shows the density for a range of ρ values.

Case 4: a > 0 and σ2(x) = 2θax2.

The scale and speed densities are s(x) = x
1

a exp( µ
ax

) and m(x) = x−
1

a
−2 exp(− µ

ax
). The

integrability conditions hold if and only if µ > 0. Hence, for all a > 0 and all µ > 0 a
unique ergodic solution to (2.1) exists on the positive halfline. The invariant distribution
is an inverse gamma distribution with shape parameter 1 + 1

a
and scale parameter a

µ
.

In particular the mean is µ and the invariant distribution has moments of order k for
k < 1 + 1

a
. This process is sometimes referred to as the GARCH diffusion model.

Case 5: a > 0 and σ2(x) = 2θax(x+ 1).

The scale and speed densities are s(x) = (1 + x)
µ+1

a x−
µ
a and m(x) = (1 + x)−

µ+1

a
−1x

µ
a
−1.

The integrability conditions hold if and only if µ
a
≥ 1. Hence, for all a > 0 and all µ ≥ a

a unique ergodic solution to (2.1) exists on the positive halfline. The invariant distribu-
tion is a scaled F-distribution with 2µ

a
and 2

a
+ 2 degrees of freedom and scale parameter

µ
1+a

. In particular the mean is µ and the invariant distribution has moments of order k

for k < 1 + 1
a
. If 0 < µ < 1, the boundary 0 can with positive probability be reached
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Figure 2.1: Densities of skew t-distributions (Pearson type IV distributions) with zero
mean for ρ = 0, 0.5, 1, and 2 respectively.

at a finite time point, but if the boundary is made instantaneously reflecting, a station-
ary process is obtained for which the invariant distribution is the indicated F-distribution.

Case 6: a < 0 and σ2(x) = 2θax(x− 1).

The scale and speed densities are s(x) = (1 − x)
1−µ

a x
µ

a and m(x) = (1 − x)−
1−µ

a
−1x−

µ

a
−1.

The integrability conditions hold if and only if µ
a
≤ −1 and 1−µ

a
≤ −1. Hence, for all

a < 0 and all µ > 0 such that min(µ, 1 − µ) ≥ −a a unique ergodic solution to (2.1)
exists on the interval (0, 1). The invariant distribution is a Beta distribution with shape
parameters µ

−a ,
1−µ
−a . In particular the mean is µ. If 0 < µ < −a, the boundary 0 can with

positive probability be reached at a finite time point, but if the boundary is made instan-
taneously reflecting, a stationary process is obtained with the indicated Beta distribution
as invariant distribution. Similar remarks apply to the boundary 1 when 0 < 1−µ < −a.
These diffusions are often referred to as the Jacobi diffusions because the related eigen-
functions are Jacobi polynomials, see below. The model was used (after a position and
scale transformation) by De Jong, Drost & Werker (2001) (with µ = 1

2
) and Larsen &

Sørensen (2007) to model the logarithm of exchange rates in a target zone. Multivariate
Jacobi diffusions were considered by Gourieroux & Jasiak (2006).

2.2 Mixing and moments.

Common to the stationary solutions of (2.1) is that they are ergodic and ρ-mixing with
exponentially decaying mixing coefficients. This follows from Genon-Catalot, Jeantheau
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& Laredo (2000) theorem 2.6 by the fact that the drift is linear, see Hansen, Scheinkman
& Touzi (1998), section 5. If the marginal distribution has finite second order moment,
the linear drift implies, moreover, that the autocorrelation function is given by

r(t) = Cor(Xs, Xs+t) = e−θt

see for instance Bibby, Skovgaard & Sørensen (2005). Another important and appealing
feature is that explicit expressions of the marginal and conditional moments can be found.
We saw in subsection 2.1 that E(|Xt|κ) < ∞ if and only if a < (κ − 1)−1. Thus if a ≤ 0
all moments exist, while for a > 0 only the moments satisfying that κ < a−1 + 1 exist. In
particular, the expectation always exists. By Ito’s formula

dXn
t = −θnXn−1

t (Xt−µ)dt+ θn(n− 1)Xn−2
t (aX2

t + bXt + c)dt+nXn−1
t σ(Xt)dBt, (2.4)

and if E(X2n
t ) is finite, i.e. if a < (2n− 1)−1, the integral of the last term is a martingale.

Thus, the moments of the invariant distribution satisfy

E(Xn
t ) = a−1

n {bn ·E(Xn−1
t ) + cn · E(Xn−2

t )} (2.5)

where an = n{1−(n−1)a}θ, bn = n{µ+(n−1)b}θ, and cn = n(n−1)cθ for n = 0, 1, 2, . . ..
Initial conditions are given by E(X0

t ) = 1, and E(Xt) = µ.

Example 2.1 Equation (2.5) allows us to find the moments of the skewed t-distribution,
in spite of the fact that the normalising constant of the density (2.2) is unknown. In

particular, for the diffusion (2.3), E(Z2
t ) = Var(Zt) = (1+ρ2)ν

ν−2
,

E(Z3
t ) =

4ρ(1 + ρ2)ν
3

2

(ν − 3)(ν − 2)
, E(Z4

t ) =
24ρ2(1 + ρ2)ν2 + 3(ν − 3)(1 + ρ2)2ν2

(ν − 4)(ν − 3)(ν − 2)
.

Recall that the mean of Zt is zero. △
The conditional moments qn(x, t) = E(Xn

t |X0 = x) satisfy the recursive system of first
order linear differential equations

d

dt
qn(x, t) = −anqn(x, t) + bnqn−1(x, t) + cnqn−2(x, t).

This follows from (2.4), again under the condition that the 2n’th moment is finite. Solving
for the initial condition qn(x, 0) = xn yields

qn(x, t) = xne−ant + bnIn−1(an, x, t) + cnIn−2(an, x, t)

where Iη(α, x, t) = exp(−αt)
∫ t

0
eαsqη(x, s)ds. Using once more the recursion, we get

Iη(α) =
xη{e−aηt − e−αt} + bη{Iη−1(aη) − Iη−1(α)} + cη{Iη−2(aη) − Iη−2(α)}

α− aη
.

To calculate I1(α, x, t) we use that I0(α, x, t) = α−1{1 − e−αt} as q0(x, t) = 1 and that
c1 = 0. We see that qn(x, t) is a polynomial of order n in x for any fixed t. A somewhat
easier derivation of this result comes by means of the eigenfunctions considered below.
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2.3 Eigenfunctions.

Recall that for a diffusion process

dXt = b(Xt)dt+ σ(Xt)dBt

the generator is the second order differential operator

L = b(x)
d

dx
+

1

2
σ2(x)

d2

dx2
.

A function h is an eigenfunction if there exist a positive number λ > 0, an eigenvalue, such
that Lh = −λh. Under mild regularity conditions, see e.g. Kessler & Sørensen (1999), it
follows from Ito’s formula that

E(h(Xt)|X0 = x) = e−λth(x). (2.6)

This relationship can be used to construct martingale estimating functions. In case of the
Pearson diffusions that have a linear drift and a quadratic squared diffusion coefficient,
the generator maps polynomial into polynomials. It is therefore natural to search for
eigenfunctions among the polynomials

pn(x) =

n
∑

j=0

pn,jx
j .

The polynomial pn(x) is an eigenfunction if an eigenvalue λn > 0 exist satisfying that
θ(ax2 + bx+ c)p′′n(x) − θ(x− µ)p′n(x) = −λnpn(x), i.e.

n
∑

j=0

{λn − aj}pn,jxj +

n−1
∑

j=0

bj+1pn,j+1x
j +

n−2
∑

j=0

cj+2pn,j+2x
j = 0.

where aj = j{1− (j− 1)a}θ, bj = j{µ+ (j− 1)b}θ, and cj = j(j− 1)cθ for j = 0, 1, 2, . . ..
Without loss of generality, we assume pn,n = 1. Thus, equating the coefficients we find
that the eigenvalue is given by λn = an = n{1−(n−1)a}θ. If further we define pn,n+1 = 0,
then the coefficients {pn,j}j=0,...,n−1 solve the linear system

(aj − an)pn,j = bj+1pn,j+1 + cj+2pn,j+2 (2.7)

Equation (2.7) is equivalent to a simple recursive formula if an − aj 6= 0 for all j =
0, 1, . . . , n−1. Note that an−aj = 0 if and only if there exists an integer n−1 ≤ m < 2n−1
such that a = m−1 and j = m − n + 1. In particular, an − aj = 0 cannot occur if
a < (2n− 1)−1. It is important to notice that λn is positive if and only if a < (n− 1)−1.
This is exactly the condition ensuring that pn(x) is integrable with respect to the invariant
distribution. If the stronger condition a < (2n−1)−1 is satisfied, the first n eigenfunctions
belong to the space of functions that are square integrable with respect to the invariant
distribution, and they are orthogonal with respect to the usual inner product in this space.
The space of functions that are square integrable with respect to the invariant distribution
(or a subset of this space) is often taken as the domain of the generator.
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From equation (2.6) the conditional moments can be derived. Sufficient conditions
that (2.6) holds is that the drift and diffusion coefficients, b and σ, are of linear growth
and that the eigenfunction h is of polynomial growth, see e.g. Kessler & Sørensen (1999).
These conditions are clearly satisfied here. Thus,

E(Xn
t |X0 = x) = e−ant

n
∑

j=0

pn,jx
j −

n−1
∑

j=0

pn,jE(Xj
t |X0 = x). (2.8)

For any fixed t the conditional expectation is a polynomial of order n in x the coefficients
of which are linear combinations of 1, e−λ1t, . . . , e−λnt. Let λ0 = 0 and

E(Xn
t |X0 = x) = qn(x, t) =

n
∑

k=0

qn,k(t)x
k =

n
∑

k=0

n
∑

l=0

qn,k,l · e−λlt · xk. (2.9)

Initially q0(x, t) = 1. From the above it follows that qn,n(t) = e−ant and for k = 0, . . . , n−1,

qn,k(t) = pn,ke
−ant −

n−1
∑

j=k

pn,jqj,k(t). (2.10)

In particular, qn,k,n = pn,k and qn,k,l = −∑n−1
j=l pn,jqj,k,l for l = 0, . . . , n− 1.

For the diffusions of form (2.1) with a ≤ 0 there are infinitely many polynomial eigenfunc-
tions. In these cases the eigenfunctions are well-known families of orthogonal polynomials.
In case 1, where the marginal distribution is the normal distribution, the eigenfunctions
are the Hermite polynomials. In case 2, with gamma marginals, the eigenfunctions are the
Laguerre polynomials, and finally in case 6, where the marginals are Beta-distributions,
the eigenfunctions are Jacobi polynomials (on the interval (0, 1)). For these cases all mo-
ments of the marginal distribution exists.
In the remaining cases, 3, 4, and 5, a > 0 which implies that there is only a finite number
of polynomial eigenfunctions. The number is the integer part of 1+a−1, which is also the
order of the highest finite moment of the marginal distribution. In these cases the marginal
distributions are the inverse gamma distributions, the F-distributions, and the skew (and
symmetric) t-distributions, respectively. Wong (1964) showed that the spectrum of these
diffusions is not discrete. The spectrum has a continuous part with eigenvalues that are
larger than those in the discrete part of the spectrum. The polynomials associated with
the inverse gamma distribution are known as the Bessel polynomials. It is of some histor-
ical interest that Hildebrandt (1931) derived the polynomials above from the viewpoint
of Gram-Charlier expansions associated with the Pearson system. Some special cases had
previously been derived by Romanovsky (1924).

Example 2.2 The skew t-diffusion (2.3) has the eigenvalues λn = n(ν−n)(ν − 1)−1θ for
n < ν. The four first eigenfunctions are p1(z) = z,

p2(z) = z2 − 4ρν
1

2

ν − 3
z − (1 + ρ2)ν

ν − 2
,

p3(z) = z3 − 12ρν
1

2

ν − 5
z2 +

24ρ2ν + 3(1 + ρ2)ν(ν − 5)

(ν − 5)(ν − 4)
z +

8ρ(1 + ρ2)ν
3

2

(ν − 5)(ν − 3)
,
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and

p4(z) = z4 − 24ρν
1

2

ν − 7
z3 +

144ρ2ν − 6(1 + ρ2)ν(ν − 7)

(ν − 7)(ν − 6)
z2

+
8ρ(1 + ρ2)ν

3

2 (ν − 7) + 48ρ(1 + ρ2)ν
3

2 (ν − 6) − 192ρ3ν
3

2

(ν − 7)(ν − 6)(ν − 5)
z

+
3(1 + ρ2)2ν(ν − 7) − 72ρ2(1 + ρ2)ν2

(ν − 7)(ν − 6)(ν − 4)
,

provided that ν > 4. Conditional moments are readily obtained from equation (2.8). The
most simple cases are E(Zt|Z0 = z) = ze−θt and

E(Z2
t |Z0 = z) = e−

2ν−4

ν−1
θtz2 +

4ρν
1

2

ν − 3
(e−θt − e−

2ν−4

ν−1
θt)z +

(1 + ρ2)ν

ν − 2
(1 − e−

2ν−4

ν−1
θt).

These formulae are used in Examples 4.1 and 4.4 below. △

2.4 Transformations.

For any diffusion obtained from a solution to (2.1) by a twice differentiable and invert-
ible transformation T , the eigenfunctions of the generator are pn{T−1(x)}, which have
the same eigenvalues as the original eigenfunctions pn. Thus the estimation methods
discussed below can be used for the much broader class of diffusions obtained by such
transformations. Their stochastic differential equations can, of course, be found by Ito’s
formula. We will just give a couple of examples.

Example 2.3 For the Jacobi-diffusion (case 6) with µ = −a = 1
2
, i.e.

dXt = −θ(Xt − 1
2)dt+

√

θXt(1 −Xt)dWt

the invariant distribution is the uniform distribution on (0, 1) for any θ > 0. For any
strictly increasing and twice differentiable distribution function F we therefore have a
class of diffusions given by Yt = F−1(Xt) or

dYt = −θ (F (Yt) − 1
2
)f(Yt)

2 + 1
2
F (Yt){1 − F (Yt)}

f(Yt)3
dt+

θF (Yt){1 − F (Yt)}
f(Yt)

dWt,

which has invariant distribution with density f = F ′. A particular example is the logistic
distribution

F (x) =
ex

1 + ex
x ∈ R,

for which
dYt = −θ

{

sinh(x) + 8 cosh4(x/2)
}

dt+ 2
√
θ cosh(x/2)dWt.

If the same transformation F−1(y) = log(y/(1 − y)) is applied to the general Jacoby
diffusion (case 6), then we obtain

dXt = −θ
{

1 − 2µ+ (1 − µ)ex − µe−1 − 8a cosh4(x/2)
}

dt+ 2
√
−aθ cosh(x/2)dWt,
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a diffusion for which the invariant distribution is the generalized logistic distribution with
density

f(x) =
eαx

(1 + ex)α+βB(α, β)
, x ∈ R,

where α = −(1 − µ)/a, β = µ/a and B denotes the Beta-function. This distribution was
introduced and studied in Barndorff-Nielsen, Kent & Sørensen (1982). △

Example 2.4 Let again X be a general Jacobi-diffusion (case 6). If we apply the trans-
formation T (x) = sin−1(2x− 1) to Xt we obtain the diffusion

dYt = −ρsin(Yt) − ϕ

cos(Yt)
dt+

√

−aθ/2dWt,

where ρ = θ(1 + a/4) and ϕ = (2µ − 1)/(1 + a/4). The state space is (−π/2, π/2). The
model was proposed and studied in Kessler & Sørensen (1999) for ϕ = 0, where the drift
is −ρ tan(x). The general asymmetric version was proposed in Larsen & Sørensen (2007)
as a model for exchange rates in a target zone. △

3 Estimation for Pearson diffusions.

Suppose {Yi}i=0,1,...,n is a sequence of observations from an ergodic Pearson diffusion made
at the time points ti = i∆ for i = 0, . . . , n, and that we wish to estimate a parameter
ψ belonging to the parameter space Ψ ⊂ R

d. The parameter ψ might be the parameter
(θ, µ, a, b, c) of the full class of Pearson diffusions, or it might be a subclass, e.g. a class
corresponding to one of the Pearson types. In this section we discuss estimations methods
that are simpler for Pearson diffusion that for general diffusions. We do not consider
methods for which no simplification is achieved by using the Pearson diffusions.

3.1 Maximum likelihood estimation.

For the Ornstein-Uhlenbeck process it is well-known that the transition is Gaussian with
a simple expression for the first and second conditional moments. For the CIR process
it is equally well-known that the transition density is a non-central χ2-distribution which
can be expressed in terms of a modified Bessel function. Thus exact likelihood inference
is relatively easy for these models. For a diffusion with a discrete spectrum representation
of the transition density exists in terms of the eigenfunctions, see Karlin & Taylor (1981),

π(∆, x, y) = m(y)
∞
∑

j=1

e−∆λjpj(x)pj(y)cj. (3.1)

Here y 7→ π(∆, x, y) is the transition density, i.e. the conditional density of Xt+∆ given
that Xt = x, pj is the jth eigenfunction with eigenvalue λj, and c−1

j =
∫ r

ℓ
pj(x)

2m(x)dx.
For the Ornstein-Uhlenbeck process this is just a classical formula for Hermite polynomials
(Mehler’s formula) that yields the well-known Gaussian transition density. For the CIR
process it is a classical expansion of the modified Bessel function. Zhou (2001) pointed out
that in this case the series can be interpreted as a Poisson-mixture of gamma-distribution
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and found that good numerical performance was obtained by using the first 100 terms in
the series provided that the diffusion coefficient was not too small. Approximate likelihood
inference is similarly feasible by truncating the expansion of the transition density for the
Jacobi diffusion.

The remaining Pearson diffusion have only finitely many discrete eigenvalues and the
spectrum comprises a continuous part. For the diffusions with a symmetric t-distribution
or an inverse Gamma distribution, Wong (1964) gave a spectral expression of the tran-
sition density with two parts: a finite sum similar to (3.1) and an integral over the
continuous spectrum involving eigenfunctions corresponding to this part of the spectrum.
The latter eigenfunctions are quite complicated, so a possible approach to approximate
likelihood inference would be to use the sum involving only the polynomial eigenfunc-
tions. It is however a problem that the number of terms, and hence the accuracy of
the approximation, depends on the value of the parameter a. For the Pearson diffusion
with a classical symmetric t-distribution as stationary distribution Wong (1964) pointed
out that the eigenfunctions for both parts of the spectrum simplify considerably for even
degrees of freedom. Nagahara (1996) used the simplified version of Wong’s expression
for the transition density to obtain maximum likelihood estimates with the parameter ν
restricted to be even.

For invertible transformations of Pearson diffusions expression for the likelihood func-
tion or the approximate likelihood function can be obtained by the transformation theo-
rem.

A number of general techniques for doing likelihood inference for discretely observed
diffusions are available, see e.g. Beskos et al. (2006) and the references in that paper.
These methods do not simplify for the Pearson diffusion, and will therefore not be con-
sidered in the present paper.

3.2 Estimation based on conditional moments.

We have seen that likelihood inference is, at least approximately, feasible for the Pearson
diffusions. However, much simpler estimators can be obtained by using that explicit
expressions are available for the conditional polynomial moments. When the sampling
frequency is not too small, these estimators have, if properly chosen, an efficiency close
to that of the maximum likelihood estimator.

If the Pearson diffusion has moments of order N , then the N first eigen-polynomials
p1(·, ψ), . . . , pN(·, ψ) are well defined. Thus, we can apply a martingale estimating function
of the type introduced by Kessler & Sørensen (1999),

Gn(ψ) =
n
∑

i=1

N
∑

j=1

αj(Yi−1, ψ){pj(Yi, ψ) − e−λj(ψ)∆pj(Yi−1, ψ)} (3.2)

where α1, . . . , αN are weight functions and λ1(ψ), . . . , λN(ψ) are the eigenvalues. Written
on matrix form the associated estimating equation take the form

Gn(ψ) =

n
∑

i=1

α(Yi−1, ψ)h(Yi−1, Yi, ψ) = 0. (3.3)
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where α is the d × N weight matrix and hj(x, y, ψ) = pj(y, ψ) − e−λj(ψ)∆pj(x, ψ), j =
1, . . . , N . In order to apply a cental limit theorem to prove asymptotic normality of
estimators, we will later assume that the diffusion has finite moment of order 2N .

We shall focus on the optimal estimating function of the type (3.3). Optimality is in
the sense of Godambe & Heyde (1987), which means that the weight matrix α is chosen
to minimize the asymptotic variance of the related estimator. An account of the general
theory of optimal estimating functions can be found in Heyde (1997). For other choices
of weight functions we refer to Bibby, Jacobsen & Sørensen (2004). Other estimators
based on the conditional polynomial moments have been proposed in the literature. The
generalized method of moments (GMM) by Hansen (1982) is often used in the economet-
ric literature. The way it is usually implemented, see e.g. Campbell, Lo & MacKinlay
(1997), yields an estimator with a lower efficiency than the optimal martingale estimating
function, unless instruments are chosen in such a way that the estimator is equal to the
estimator obtained from the optimal martingale estimating function, see Christensen &
Sørensen (2007). Thus optimal GMM is covered by the following discussion. Another
popular method is quasi-maximum-likelihood (in the econometric sense), where the tran-
sition density is approximated by a Gaussian density with the exact first and second order
conditional moments inserted. It is obviously easy to use this method for the Pearson
diffusions because the conditional moments are explicitly available. However, the quasi-
score function obtained by differentiation of the log-quasi-likelihood is of the form (3.3)
with N = 2 and is in fact an approximation to the optimal martingale estimating function
that is very good when the sampling frequency is high, see Bibby, Jacobsen & Sørensen
(2004). Hence also quasi-maximum-likelihood estimation is covered by a discussion of
(3.3). Finally the estimators obtained from (3.3) can be expressed as non-linear weighted
least squares estimators, a method that is thus also covered by our discussion.

As discussed in the previous subsection, the transition probabilities of an ergodic dif-
fusion have series expansions in terms of the eigenfunctions of the generator. As the
expansion (3.1) depends mainly on the first eigenfunctions, the optimally weighted mar-
tingale estimating function can be interpreted as an approximation to the score function.
In fact the optimal martingale estimating function is the L2 projection of the score func-
tion onto the set of square integrable martingale estimating functions given by the various
selections of weights as was proved by Kessler (1996), see also Sørensen (1997). In fact,
Sørensen (2007) has proved that optimal martingale estimating functions give estimators
that are efficient in a high frequency asymptotics provided that N ≥ 2. For financial data
the speed of mean-reversion is usually so slow that the sampling frequence need not be
particularly high for the estimators to have a high efficiency. Calculations of asymptotic
variances in Larsen & Sørensen (2007) indicate that for the weakly observations consid-
ered in that paper the estimators based on the two first eigenfunctions for the Jacobi
diffusion are close to being efficient. Also the simulation study below demonstrates the
high efficiency of the estimators obtained from (3.3).

3.3 Optimal martingale estimating function.

A feature of the Pearson diffusions that makes relatively efficient inference easy is that the
optimal weights in the sense of Godambe & Heyde (1987) are simple and explicit. Assume
that the Pearson diffusion is ergodic and has moments of order 2N . In particular, a <
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(2N−1)−1. Further assume that the mapping ψ 7→ τ = (θ, µ, a, b, c) is differentiable. Then
the optimal weights for the martingale estimating function (3.2) are given by proposition
3.1 of Kessler & Sørensen (1999) as

α⋆(x, ψ) = −S(x, ψ)T · V (x, ψ)−1 (3.4)

where T denotes transposition and

Sj,k(x, ψ) = −Eψ{∂ψk
pj(Yi, ψ)|Yi−1 = x} + ∂ψk

{e−λj(ψ)∆pj(x, ψ)}
Vj,k(x, ψ) = Eψ{pj(Yi, ψ)pk(Yi, ψ)|Yi−1 = x} − e−{λj(ψ)+λk(ψ)}∆pj(x, ψ)pk(x, ψ).

Note that the indicated conditions imply that S and V are well defined. The proof that
V is invertible is implicitly given as part of the proof of Theorem 3.1 below. Moreover,
the formula defining the optimal weights can be made explicit by means of the recursive
formula (2.8) and (2.7) of Section 2. Note that

Vj,k(x, ψ) =

j
∑

j′=0

k
∑

k′=0

pj,j′(ψ)pk,k′(ψ)qj′+k′(x,∆, ψ) − e−(λj (ψ)+λk(ψ))∆pj(x, ψ)pk(x, ψ)

Sj,k(x, ψ) = pj(x, ψ)e−λj(ψ)∆∂ψTλj(ψ) +

j
∑

j′=0

{qj′(x,∆, ψ) − e−λj(ψ)∆xj
′}∂ψT pj,j′(ψ).

where qj(x, t, ψ) = Eψ(Xj
t |X0 = x) is specified by equations (2.8) and (2.9). Hence, the

j, k’th element of V (x, ψ) is a polynomial vj,k(x) =
∑j+k

l=0 vj,k,lx
l with coefficients given by

vj,k,l =

j
∑

j′=0

k
∑

k′=0

pj,j′pk,k′ · (qj′+k′,l(∆) − e−(λj+λk)∆I{j′+k′=l}),

where I{j′+k′=l} denotes the indicator function. Similarly, the j, k’th element of S(x, ψ) is

the j’th order polynomial sj,k(x) =
∑j

l=0 sj,k,lx
l the coefficients of which are

sj,k,l = e−λj∆(pj,l∂ψk
λj − ∂ψk

pj,l) +

l
∑

j′=0

∂ψk
pj,j′ · qj′,l(∆).

It is important to notice that the derivatives dj,l = ∂ψT pj,l satisfy the recursion

dj,l =
bl+1dj,l+1 + cl+2dj,l+2 + pj,l∂ψT (al − aj) + pj,l+1∂ψT bl+1 + pj,l+2∂ψT cl+2

al − aj

for l = j − 1, j − 2, . . . , 0 where initially dj,j = dj,j+1 = 0.

In practice, it is often a good idea to replace the weight matrix α⋆(x, ψ) by

α̃n(x) = α⋆(x, ψ̃n), (3.5)

where ψ̃n is a
√
n-consistent estimator of ψ. For instance ψ̃n could be an estimator

obtained from (3.3) for some simple choice of the weight matrix α independent of ψ. The
resulting estimating equations are much easier to solve numerically because of the simpler
dependence on θ and because the weight matrix need only be evaluated once for every
observation. Moreover, replacing the weights by estimates does not affect the asymptotic
distribution of the estimator so there is no loss of efficiency (see Theorem 3.1 below).
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3.4 Asymptotic theory.

The optimally weighted martingale estimating function (3.2) provides consistent and
asymptotically normal estimators of the parameters of a Pearson diffusion under mild
regularity conditions. In what follows ψ0 denotes the true parameter value.

Theorem 3.1 Suppose that the following hold true:

R0: The Pearson diffusion is ergodic and has moments of order 2N where N ≥ 2.

R1: ψ0 belongs to the interior of Ψ.

R2: The mapping ψ 7→ τ = (θ, µ, a, b, c) is differentiable and ∂ψτ(ψ0) has full rank d.

Then with probability tending to one as n→ ∞ there exist a solution ψ̂n to the estimating
equation (3.3) with weights specified by either (3.4) or (3.5) such that ψ̂n converges to ψ0

in probability and √
n(ψ̂n − ψ0)

D→ N (0,W (ψ0)
−1)

where W (ψ0) = Eψ0
{S(Yi, ψ0)

TV (Yi, ψ0)
−1S(Yi, ψ0)}.

The proof of Theorem 3.1 is given in the appendix. Condition R0 ensures that the
eigenfunctions are well defined and that h1, . . . , hN have finite variance so that Gn(ψ0) is
indeed a martingale. In fact, R0 implies that Gn(ψ0) is a square integrable martingale.

Example 3.2 For the skewed t-diffusion with parameter ψ = (θ, ν, ρ) the canonical pa-
rameter is

(θ, µ, a, b, c) =

(

θ, 0,
1

ν − 1
,
2ρν

1

2

ν − 1
,
(1 + ρ2)ν

ν − 1

)

and

∂τ

∂ψT
=









1 0 0 0 0

0 0 − 1
(ν−1)2

ρ

ν
1
2 (ν−1)

− 2ρν
1
2

(ν−1)2
1+ρ2

(ν−1)
− ν(1+ρ2)

(ν−1)2

0 0 0 2ν
1
2

ν−1
2νρ
ν−1









which has full rank three. Hence, consistent and asymptotically normal estimators are
obtained by means of the optimally weighted martingale estimating function under the
further assumption that ν0 > 2N . △

3.5 A simulation study.

In this section we present a small simulation study in order to compare the variance
of the optimally weighted martingale estimator based on the two first eigenfunctions to
that of the maximum likelihood estimator. We will refer to the former estimator as
the optimal martingale estimator. Save for the case of the Ornstein-Uhlenbeck process,
calculation of the maximum likelihood estimator is complicated and no expression is
available for the Fisher information. Therefore we exploit that Gobet (2002) has shown
that discretely observed diffusion processes are locally asymptotically normal in the high
frequency limit where ∆ → 0 and n∆ → ∞ and has given an expression for the Fisher
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information. Instead of finding the finite sample variance of the maximum likelihood
estimator by a time consuming simulation study, we compare the finite sample variance
of the optimal martingale estimator to the inverse high frequency Fisher information for
sampling frequencies that are not too low.

3.5.1 The Ornstein-Uhlenbeck process.

For the Ornstein-Uhlenbeck process the score function is a quadratic martingale esti-
mating function, so the optimal martingale estimating function based on the two first
eigenfunctions is necessarily equal to the score function and hence yields the maximum
likelihood estimator. Therefore in this case the estimator is efficient and no simulation
study seems necessary. However, we intend to compare finite sample variances to a high
frequency limit result, which may underestimate the efficiency of the optimal martingale
estimator. To get a feeling for what deviations to expect, we make a similar comparison
for the maximum likelihood estimator for the Ornstein-Uhlenbeck process. The results
are reported in Table 3.1 where also bias is considered. We see that the finite sample size
variances are larger than the limit values by from a few up to 10 per cent depending on
the sampling frequency.

Mean Variance
∆ Parameter True MLE MLE Asymptotic Ratio

1 θ 0.1 0.1002 2.192·10−5 2·10−5 1.096
1 ρ2 0.2 0.2000 8.841·10−6 8·10−6 1.105

0.5 θ 0.1 0.1005 4.273·10−5 4·10−5 1.068
0.5 ρ2 0.2 0.2001 8.386·10−6 8·10−6 1.048
0.2 θ 0.1 0.1010 1.032·10−4 1·10−4 1.032
0.2 ρ2 0.2 0.2001 8.239·10−6 8·10−6 1.030
0.1 θ 0.1 0.1020 2.109·10−4 2·10−4 1.055
0.1 ρ2 0.2 0.2000 8.087·10−6 8·10−6 1.011

Table 3.1: Empirical means and variances of the maximum likelihood estimator for the
Ornstein-Uhlenbeck process dXt = −θXtdt+ ρdBt based on 10,000 independent samples
of {Xi∆}i=1,...,n with sample size n = 10, 000 and varying sampling frequencies.

3.5.2 The t-diffusion.

As an example we consider the t-diffusion given by

dXt = −θXtdt+
√

αX2
t + β dBt

where θ, α, β > 0. The invariant distribution is the scaled t-distribution with ν = 2θ/α+1
degrees of freedom and scale parameter γ =

√

β/(2θ + α). The diffusion has moment of
order k if k < 2θ/a + 1. The variance is given by γ2ν/(ν − 2) whenever α < 2θ. The
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high-frequency Fisher information is given by







∫∞
0

(x2π(x)
αx2+β

dx 0 0

0 1
2

∫∞
0

x4π(x)
(αx2+β)2

dx 1
2

∫∞
0

x2π(x)
(αx2+β)2

dx

0 1
2

∫∞
0

x2π(x)
(αx2+β)2

dx 1
2

∫∞
0

π(x)
(αx2+β)2

dx







where π denotes the invariant density π(x) = B(ν/2, 1/2)−1(νγ2)ν/2(x2 + νγ2)−(ν+1)/2.
The integrals can readily be found explicitly.

For our simulation study we have chosen the parameter values θ = 0.1, α = 0.025, and
β = 0.175. This ensures that the diffusion is well defined and ergodic. Further the implied
variance is equal to one so that the diffusion is comparable to the Ornstein-Uhlenbeck
process considered previously. The invariant distribution is

√

9/7 · T (9) and has finite
moment of order eight but not of order nine. Results for ∆ = 1 are reported in Table
3.2. As expected the optimal martingale estimator seems to be less efficient than the
maximum likelihood estimator, but not by much.

Mean Variance
Parameter True OME OME Asymptotic Ratio

θ 0.1 0.1009 2.818·10−5 2.250·10−5 1.252
α 0.025 0.0253 8.340·10−6 7.403·10−6 1.127
β 0.175 0.1768 1.254·10−5 1.099·10−5 1.140

Table 3.2: Empirical means and variances of the optimal martingale estimator (OME)

for the t-diffusion dXt = −θXtdt +
√

αX2
t + βdBt based on 5,000 independent samples

of {Xi∆}i=1,...,n with sample size n = 10, 000 and ∆ = 1.

4 Derived diffusion-type models.

The Pearson diffusion processes can be used as building blocks to obtain more general
diffusion-type models. In what follows we consider inference for integrated diffusions,
sums of diffusions, and stochastic volatility models. These derived processes are not
Markovian. Therefore explicit martingale estimating functions are no longer available. In
stead we suggest to base the statistical inference on prediction based estimation functions,
introduced in Sørensen (2000). We will demonstrate that such estimating functions can
be found explicitly for models based on Pearson diffusions. We start by briefly reviewing
the method of prediction based estimating functions.

4.1 Prediction based estimating functions.

Here we focus on estimating functions based on prediction of powers of the observations
of the process. Suppose that we have observed the random variables Y1, . . . , Yn that form
a stationary stochastic process the distribution of which is parametrised by Ψ ⊆ R

d.
Assume that Eψ(Y 2m

i ) < ∞ for all ψ ∈ Ψ for some m ∈ N. For each i = r + 1, . . . , n

and j = 1, . . . , m let the class {Z(i−1)
jk | k = 1, . . . , qj} be a subset of the random variables
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{Y κ
i−ℓ | ℓ = 1, . . . , r, κ = 0, . . . , j}, where Z

(i−1)
j1 is always equal to 1. We wish to predict Y j

i

by means of linear combinations of the Z
(i−1)
jk -s for each of the values of i and j listed above

and then to use suitable linear combinations of the prediction errors to estimate the para-
meter ψ. Let Pi−1,j denote the space of predictors of Y j

i , i.e. the space of square integrable

random variables spanned by Z
(i−1)
j1 , . . . , Z

(i−1)
jqj

. The elements of Pi−1,j are of the form

aTZ
(i−1)
j , where aT = (a1, . . . , aqj) and Z

(i−1)
j = (Z

(i−1)
j1 , . . . , Z

(i−1)
jqj

)T are qj-dimensional
vectors.

We will use estimating functions of the type

Gn(ψ) =

n
∑

i=r+1

m
∑

j=1

Π
(i−1)
j (ψ)

[

Y j
i − π̂

(i−1)
j (ψ)

]

(4.1)

where Π
(i−1)
j (ψ) is a d-dimensional data dependent vector of weights, the coordinates of

which belong to Pi−1,j , and where π̂
(i−1)
j (ψ) is the minimum mean square error predictor

of Y j
i in Pi−1,j , which is the usual L2-projection of Y j

i onto Pi−1,j . When ψ is the true

parameter value, we define Cj(ψ) as the covariance matrix of (Z
(r)
j2 , . . . , Z

(r)
jqj

)T and bj(ψ) =

(Covψ(Z
(r)
j2 , Y

j
r+1), . . . ,Covψ(Z

(r)
jqj
, Y j

r+1))
T . Then we have

π̂
(i−1)
j (ψ) = âj(ψ)TZ

(i−1)
j

where âj(ψ)T = (âj1(ψ), âj∗(ψ)T ) with âj∗(ψ)T = (âj2(ψ), . . . , âjqj(ψ)) defined by

âj∗(ψ) = Cj(ψ)−1bj(ψ) (4.2)

and

âj1(ψ) = Eψ(Y j
1 ) −

qj
∑

k=2

âjk(ψ)Eψ(Z
(r)
jk ). (4.3)

Thus to find π̂
(i−1)
j (ψ), j = 1, . . . , m, we need to calculate moments of the form

Eψ(Y κ
1 Y

j
k ), 0 ≤ κ ≤ j ≤ m, k = 1, . . . , r. (4.4)

Once we have calculated these moments, the vector of coefficients âj can easily be found by
means of the m-dimensional Durbin-Levinson algorithm applied to {(Yi, Y 2

i , . . . , Y
m
i )}i∈N,

see Brockwell & Davis (1991). The non-Markovian diffusion-type models considered in
this paper inherit the exponential ρ-mixing property from the Pearson diffusions. There-
fore constants K > 0 and λ > 0 exist such that

∣

∣Covψ(Y j
1 , Y

j
k )
∣

∣ ≤ Ke−λk (λ is typically
the smallest speed of mean reversion of the involved Pearson diffusions). Therefore r will
usually not need to be chosen particularly large. If Y j

i is restricted to have mean zero, we
need not include a constant in the space of predictors, i.e. we need only the space spanned
by Z

(i−1)
j2 , . . . , Z

(i−1)
jqj

.

In many situations m = 2 with Z
(i−1)
jk = Yi−k, k = 1, . . . , r, j = 1, 2 and Z

(i−1)
2k = Y 2

i+r−k,
k = r + 1, . . . , 2r, will be a reasonable choice. In this case the minimum mean square
error predictor of Yi can be found using the Durbin-Levinson algorithm for real processes,
while the predictor of Y 2

i can be found by applying the two-dimensional Durbin-Levinson
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algorithm to the process (Yi, Y
2
i ).

Including predictors in the form of lagged terms Yi−kYi−k−l for a number of lags l’s might
also be of relevance. These terms enter into the least squares estimator of Forman (2005),
which produces good estimates for a sum of Ornstein-Uhlenbeck processes.

The choice of the weights Π
(i−1)
j (ψ) in (4.1) for which the asymptotic variance of the

estimators is minimized is the Godambe optimal prediction-based estimating function,
that was derived in Sørensen (2000). An account of the theory of optimal estimating
functions can be found in Heyde (1997). The optimal estimating function of the type
(4.1) can be written in the form

G∗
n(ψ) = A∗

n(ψ)

n
∑

i=r+1

H(i)(ψ), (4.5)

where

H(i)(ψ) = Z(i−1)
(

F (Yi) − π̂(i−1)(ψ)
)

, (4.6)

with F (x) = (x, x2, . . . , xm)T , π̂(i−1)(ψ) = (π̂
(i−1)
1 (ψ), . . . π̂

(i−1)
m (ψ))T and

Z(i−1) =















Z
(i−1)
1 0q1 · · · 0q1

0q2 Z
(i−1)
2 · · · 0q2

...
...

...

0qm 0qm · · · Z
(i−1)
m















. (4.7)

Here 0qj denotes the qj-dimensional zero-vector. Finally,

A∗
n(ψ) = ∂ψâ(ψ)T C̄(ψ)M̄n(ψ)−1, (4.8)

with

M̄n(ψ) = Eψ

(

H(r+1)(ψ)H(r+1)(ψ)T
)

+ (4.9)

n−r−1
∑

k=1

(n− r − k)

(n− r)

[

Eψ

(

H(r+1)(ψ)H(r+1+k)(ψ)T
)

+Eψ

(

H(r+1+k)(ψ)H(r+1)(ψ)T
)]

,

C̄(ψ) = Eψ
(

Z(i−1)(Z(i−1))T
)

, (4.10)

and

â(ψ)T =
(

â1(ψ)T , . . . , âm(ψ)T
)

, (4.11)

where âj(ψ) is given by (4.2) and (4.3). A necessary condition that the moments in (4.9)
exist is that Eψ(Y 4m

i ) <∞ for all ψ ∈ Ψ. For (4.5) to be optimal we need that the matrix
∂ψâ(ψ)T has full rank. The matrix M̄n(ψ) is always invertible.

Because the processes considered below inherit the exponential ρ-mixing property from
the Pearson diffusions, there exist constants K > 0 and λ > 0 such that the absolute
values of all entries in the expectation matrices in the sum in (4.9) are dominated by
Ke−λ(k−r−1) when k > r. Therefore, the sum in (4.9) can in practice often be truncated
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so that fewer moments need to be calculated. The matrix M̄n(ψ) can also be approximated
by a truncated version of the limiting matrix

M̄(ψ) = Eψ

(

H(r+1)(ψ)H(r+1)(ψ)T
)

+ (4.12)

∞
∑

k=1

[

Eψ

(

H(r+1)(ψ)H(r+1+k)(ψ)T
)

+ Eψ

(

H(r+1+k)(ψ)H(r+1)(ψ)T
)]

,

obtained for n→ ∞. In practice, it is usually also a good idea to replace A∗
n(ψ) by A∗

n(ψ̄n),
where ψ̄n is a

√
n-consistent estimator of ψ (and similarly for approximations to A∗

n(ψ)).
This has the advantages that (4.9) or (4.12) need only be calculated once and that a
simpler estimating equation is obtained, while the asymptotic variance of the estimator is
unchanged. The estimator ψ̄n can, for instance, be obtained from an estimating function
similar to (4.5), where A∗

n(ψ) has been replaced by a suitable simple matrix independent
of ψ, but such that the estimating equation has a solution. Usually it is enough to use
the first d coordinates of H(i)(ψ), where d is the dimension of the parameter. In order to
calculate (4.9) or (4.12), we need mixed moments of the form

Eψ[Y k1
1 Y k2

t1 Y
k3
t2 Y

k4
t3 ], 1 ≤ t1 ≤ t2 ≤ t3 k1 + k2 + k3 + k4 ≤ 4m (4.13)

where ki, i = 1, . . . , 4 are non-negative integers. In the following subsections we demon-
strate that in three diffusion-type models derived from Pearson diffusions, explicit ex-
pressions can be found for the necessary moments, (4.4) and (4.13). Thus the optimal
prediction-based estimating functions are explicit.

4.2 Integrated Pearson diffusions.

Let X be a stationary Pearson diffusion, i.e. a solution to (2.1). Suppose that the diffusion
has not been observed directly, but that the data are

Yi =
1

∆

∫ i∆

(i−1)∆

Xs ds, i = 1, . . . , n (4.14)

for some fixed ∆. Such observations can be obtained if the process X is observed after
passage through an electronic filter. Another example is provided by ice-core records.
The isotope ratio 18O/16O in the ice, measured as an average in pieces of ice, each piece
representing a time interval with time increasing as a function of the depth, is a proxy
for paleo-temperatures. The variation of the paleo-temperature can be modelled by a
stochastic differential equation, and it is natural to model the ice-core data as an integrated
diffusion process, see Ditlevsen, Ditlevsen & Andersen (2002). A third example is the
realized volatility of financial econometrics, see e.g. Bollerslev & Zhou (2002). Estimation
based on data of the type (4.14) was considered by Gloter (2000), Bollerslev & Zhou
(2002), Ditlevsen & Sørensen (2004), and Gloter (2006). SinceX is stationary, the random
variables Yi, i = 1, . . . , n form a stationary process with the same mixing properties
as X, i.e. it is exponentially mixing. However, the observed process is not Markovian,
so martingale estimating functions are not available in a tractable form, but explicit
prediction-based estimating functions can be found.
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Suppose that 4m’th moment of Xt is finite. The moments (4.4) and (4.13) can be
calculated by

E
[

Y k1
1 Y k2

t1 Y
k3
t2 Y

k4
t3

]

=

∫

A
E[Xv1 · · ·Xvk1

Xu1
· · ·Xuk2

Xs1 · · ·Xsk3
Xr1 · · ·Xrk4

] dt

∆k1+k2+k3+k4

where 1 ≤ t1 ≤ t2 ≤ t3 , A = [0 , ∆]k1 × [(t1 − 1)∆ , t1∆]k2 × [(t2 − 1)∆ , t2∆]k3 ×
[(t3 − 1)∆ , t3∆]k4, and dt = drk4 · · · dr1 dsk3 · · · ds1 duk2 · · · du1 dvk1 · · · dv1. The domain
of integration can be reduced considerably by symmetry arguments, but here the point
is that we need to calculate moments of the type E(Xκ1

t1 · · ·Xκk

tk
), where t1 < · · · < tk.

Since E(Xn
t |X0 = x) is a polynomial in x given by (2.9), it follows that we can find the

needed moments iteratively

E(Xκ1

t1 · · ·Xκk
tk

) =

κk
∑

j=1

qκk,j(tk − tk−1)E(Xκ1

t1 · · ·Xκk−1+j
tk−1

),

where qκk,j(tk − tk−1) is given by (2.10). The coefficient depends on time through an
exponential function, so E(Xκ1

t1 · · ·Xκk

tk
) depends on t1, . . . , tk through sums and products

of exponential functions. Therefore the integral above can be explicitly calculated.

Example 4.1 Integrated skew t-diffusion. Let us see how this works by calculating an
optimal estimating function for the integrated skew t-diffusion (2.3). To simplify the

exposition we consider the simple case where m = 2, Z
(i−1)
1,1 = Yi−1, Z

(i−1)
2,1 = 1, and

Z
(i−1)
2,2 = Y 2

i−1 (i.e. q1 = r = 1, q2 = 2). The estimating equations take the form

Gn(θ, ρ, ν) =
n
∑

i=2





Yi−1Yi − β1Y
2
i−1

Y 2
i − σ2(1 − β2) − β2Y

2
i−1

Y 2
i−1Y

2
i − σ2(1 − β2)Y

2
i−1 − β2Y

4
i−1



 = 0, (4.15)

with σ2 = Var(Yi−1) and βj = Cov(Y j
i−1, Y

j
i ) · Var(Y j

i−1)
−1 for j = 1, 2. In particular,

σ2 =
2ν(1 + ρ2)

ν − 2
·
{

1

θ∆
− 1 − e−θ∆

(θ∆)2

}

, β1 =
(1 − e−θ∆)2

2(θ∆ − 1 + e−θ∆)
.

In order to get an explicit expression of β2 let fn(x) = x−n(1 − e−x), then

Cov(Y 2
i−1, Y

2
i ) = 4γ1(λ∆− θ∆)−2{f1(λ∆)− f1(θ∆)}2 + 4γ2(θ∆)−2{1− (1 + θ∆)f1(θ∆)}2

where λ = 2θ(ν−2)
ν−1

, γ1 = (3ν3−10ν2−4ν)ρ2σ2

(ν−4)(ν−3)2
+ 3νσ2

ν−4
− σ4, and γ2 = 16νρ2σ2

(ν−3)2
. Likewise,

Var(Y 2
i−1) = 24γ1[(λ∆ − θ∆)−2{f2(θ∆) − f2(λ∆)} + (θ∆)−2{(λ∆)−1 + (λ∆ − θ∆)−1}]

− 24γ1(θ∆)−1(θ∆ − λ∆)−1(2 + θ∆)f2(θ∆)

+ 12γ2(θ∆)−2[1 + 6(θ∆)−1 − {(θ∆)2 + 4θ∆ + 6}f2(θ∆)]

+ 12σ4(θ∆)−2{1 − 6(θ∆)−1 + (2θ∆ + 6)f2(θ∆)} − 4σ4(θ∆)−2{1 − f1(θ∆)}2.

Solving equation (4.15) for β1, β2, and σ2 we get

β̂1 =
1

n−1

∑n
i=2 Yi−1Yi

1
n−1

∑n
i=2 Y

2
i−1

, β̂2 =
1

n−1

∑n
i=2 Y

2
i−1Y

2
i − ( 1

n−1

∑n
i=2 Y

2
i−1)(

1
n−1

∑n
i=2 Y

2
i )

1
n−1

∑n
i=2 Y

4
i−1 − ( 1

n−1

∑n
i=2 Y

2
i−1)

2
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and
σ̂2 = 1

1−β̂2

1
n−1

∑n
i=2 Y 2

i−1 + β̂2

1−β̂2

1
n−1

∑n
i=2 Y 2

i .

Hence, if 0 < β̂1 < 1, which happens eventually with probability one, the expression of
β1 yields a unique estimate θ̂ > 0 satisfying

2β̂1{θ̂∆ − (1 − e−θ̂∆)} − (1 − e−θ̂∆)2 = 0.

The remaining equations are solved by substituting ρ̂(ν)2 = ν−2
2ν

{(θ̂∆)−1 − f2(θ̂∆)}−1 − 1

into the equation β2(θ̂, ρ̂(ν)
2, ν) = β̂2, which has to be solved numerically. To estimate

the sign of ρ, note that for instance E(Y 3
1 ) = 24

√
νρσ2

ν−3
· (θ∆)−2{2 − (2 + θ∆)f1(θ∆)} has

the same sign as ρ. △

4.3 Sums of diffusions.

The simple exponentially decreasing autocorrelation function of the Pearson diffusions is
too simple in some applications, but we can obtain a much richer autocorrelation structure
by considering sums of Pearson diffusions:

Yt = X1,t + . . .+XM,t (4.16)

dXi,t = −θi(Xi,t − µi) + σi(Xi,t)dBi,t, i = 1, . . . ,M, (4.17)

where θ1, . . . , θM > 0 and B1, . . . , BM are independent Brownian motions. The diffusion
coefficients σ1, . . . , σM are of the form of a Pearson diffusion (2.1). Suppose all Xi,t have
finite second moment. Then the autocorrelation function of Y is

ρ(t) = φ1 exp(−θ1t) + . . .+ φM exp(−θM t) (4.18)

with

φi =
Var(Xi,t)

Var(X1,t) + · · · + Var(XM,t)
.

Thus φ1 + . . .+ φM = 1. The expectation of Yt is µ1 + · · ·+ µM . Sums of diffusions with
a pre-specified marginal distribution of Y were considered by Bibby & Sørensen (2003),
Bibby, Skovgaard & Sørensen (2005) and Forman (2005). Here we specify instead the
distributions of the Xi,t’s, which implies that the models are simpler to handle. Sums of
Ornstein-Uhlenbeck processes driven by Lévy processes were introduced and studied in
Barndorff-Nielsen, Jensen & Sørensen (1998). An autocorrelation function of the form
(4.18) fits turbulence data well, see Barndorff-Nielsen, Jensen & Sørensen (1990) and
Bibby, Skovgaard & Sørensen (2005).

Example 4.2 Sum of Ornstein-Uhlenbeck processes. If σ2
i (x) = 2θici, the stationary

distribution of Yt is a normal distribution with mean µ1+· · ·+µM and variance c21+· · ·+c2M .
△

Example 4.3 Sum of CIR processes. If σ2
i (x) = 2θibx and µi = αib, then the stationary

distribution of Yt is a Gamma-distribution with shape parameter α1 + · · ·+αM and scale
parameter b. The weights in the autocorrelation function are φi = αi/(α1 + · · ·+αM). △
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In the other cases of Pearson diffusions, the class of marginal distributions is not closed
under convolution, so the stationary distribution of Yt is not in the Pearson class and is,
in fact, not any of the standard distributions. It has recently been proven that the sum
of two t-distributions with odd degrees of freedom is a finite mixture (over degrees of
freedom) of scaled t-distributions, see Berg & Vignat (2006). In the case of the Jacobi-
diffusions it might be preferable to consider Yt/M to obtain again a process with state
space (0, 1).

A sum of diffusions is not a Markov process, so also for this type of model we use
prediction-based estimating functions rather than martingale estimating functions. Sup-
pose that the process Y has been observed at the time points ti = ∆i, i = 1, . . . , n. The
necessary moments of the form (4.4) and (4.13) can, provided they exist, be obtained
from the mixed moments of the Pearson diffusions because by the multinomial formula
we find, for instance

E(Y κ
t1
Y ν
t2

) =
∑∑

(

κ

κ1, . . . , κM

)(

ν

ν1, . . . , νM

)

E(Xκ1

1,t1X
ν1
1,t2) . . . E(XκM

M,t1
XνM

M,t2
)

where
(

κ

κ1, . . . , κM

)

=
κ!

κ1! · · ·κM !

is the multinomial coefficient, and where the first summation is over 0 ≤ κ1, . . . , κM such
that κ1 + . . . κM = κ and the second summation is the same just for the ν’s. The higher
order mixed moments of the form (4.13) can be found by a similar formula with four sums
and four multinomial coefficients. Such formulae may appear daunting, but are easy to
programme. Mixed moments of the form E(Xκ1

t1 · · ·Xκk
tk

) can be calculated iteratively as
explained in Subsection 4.2.

Example 4.4 Sum of two skew t-diffusions. If, for i=1,2, σ2
i (x) = 2θi(νi − 1)−1{x2 +

2ρ
√
νix+ (1 + ρ2)ν}, the stationary distribution of Xi,t is a skew t-diffusion. The distri-

bution of Yt is a convolution of skew t-diffusions,

Var(Y ) = (1 + ρ2)

(

ν1

ν1 − 2
+

ν2

ν2 − 2

)

,

and φi = νi(νi−2)−1/{ν1(ν1 −2)−1 +ν2(ν2 −2)−1}. To simplify the exposition we assume
that the correlation parameters θ1, θ2, φ1, and φ2 are known or have been estimated in
advance (the least squares estimator of Forman (2005) applies and so does the predictions

based estimating function with m = 1, Z
(i−1)
1,k = Yi−k, k = 1, . . . , r). We will find the

optimal estimating function in the simple case where predictions of Y 2
i are made based

on Z
(i−1)
1,1 = 1 and Z

(i−1)
1,2 = Yi−1. The estimating equations take the form

Gn(θ, ρ, ν) =

n
∑

i=2

[

Y 2
i − σ2 − β21Yi−1

Yi−1Y
2
i − σ2Yi−1 − β21Y

2
i−1

]

= 0, (4.19)

with σ2 = Var(Yi−1) and β21 = Cov(Yi−1, Y
2
i ) · Var(Yi−1)

−1. To be specific

σ2 = (1 + ρ2)

{

ν1

ν1 − 2
+

ν2

ν2 − 2

}

, β21 = 4ρ

{ √
ν1

ν1 − 3
φ1e

−θ1∆ +

√
ν2

ν2 − 3
φ2e

−θ2∆

}

.
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Solving equation (4.19) for β21 and σ2 we get

β̂21 =
1

n−1

∑n
i=2 Yi−1Y

2
i − ( 1

n−1

∑n
i=2 Yi−1)(

1
n−1

∑n
i=2 Y

2
i )

1
n−1

∑n
i=2 Y

2
i−1 − ( 1

n−1

∑n
i=2 Yi−1)2

,

σ̂2 = 1
n−1

∑n
i=2 Y 2

i + β̂21
1

n−1

∑n
i=2 Yi−1.

In order to estimate ρ we restate β21 as

β21 =
√

32(1 + ρ2) · ρ ·
{

√

9(1 + ρ2) − φ1σ2

3(1 + ρ2) − φ1σ2
φ1e

−θ1∆ +

√

9(1 + ρ2) − φ2σ2

3(1 + ρ2) − φ2σ2
φ2e

−θ2∆

}

and insert σ̂2 for σ2. Thus, we get a one-dimensional estimating equation, β21(θ, φ, σ̂
2, ρ) =

β̂21, which can be solved numerically. Finally by inverting φi = 1+ρ2

σ2

νi

νi−2
we find the

estimates ν̂i = 2φiσ̂2

φiσ̂2−(1+ρ̂2)
, i = 1, 2. △

A more complex model is obtained if the observations are integrals of Y in analogy
with the previous subsection:

Zi =
1

∆

∫ i∆

(i−1)∆

Ys ds =
1

∆

(
∫ i∆

(i−1)∆

X1,tds+ · · ·+
∫ i∆

(i−1)∆

XM,tds

)

, (4.20)

i = 1, . . . , n. Also here the moments of form (4.4) and (4.13) can be found explicitly
because each of the observations Zi is a sum of processes of the type considered in the
previous subsection. To calculate E(Zk1

1 Z
k2
t1 Z

k3
t2 Z

k4
t3 ), first apply the multinomial formula

to express this quantity in terms of moments of the form E(Y ℓ1
j,1Y

ℓ2
j,t1
Y ℓ3
j,t2
Y ℓ4
j,t3

), where

Yj,i =
1

∆

∫ i∆

(i−1)∆

Xj,s ds.

Now proceed as in Subsection 4.2.

4.4 Stochastic volatility models.

A stochastic volatility model is a generalization of the Black-Scholes model for the loga-
rithm of an asset price dXt = (κ + βσ2)dt+ σdWt, that takes into account the empirical
finding that the volatility σ2 varies randomly over time:

dXt = (κ+ βvt)dt+
√
vtdWt. (4.21)

Here the volatility vt is a stochastic process that cannot be observed directly. If the
data are observations at the time points ∆i, i = 0, 1, 2, . . . , n, then the returns Yi =
Xi∆ −X(i−1)∆ can be written in the form

Yi = κ∆ + βSi +
√

SiAi, (4.22)

where

Si =

∫ i∆

(i−1)∆

vtdt, (4.23)
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and where the Ai’s are independent, standard normal distributed random variables. Here
we consider the case where v is a sum of independent Pearson diffusions with state-space
(0,∞) (the cases 2, 4 and 5). Barndorff-Nielsen & Shephard (2001) demonstrated that
an autocorrelation function of the type (4.18) fits empirical autocorrelation functions of
volatility well, while an autocorrelation function like that of a single Pearson diffusion is
too simple to obtain a good fit. Stochastic volatility models where the volatility process
is a sum of independent CIR-processes (Pearson diffusions with gamma marginals) were
considered by Bollerslev & Zhou (2002) and Bibby & Sørensen (2003). Meddahi (2001)
and Meddahi (2002a) studied models where the volatility process is a more complicated
function of one or two diffusion processes. We assume that v and W are independent, so
that the sequences {Ai} and {Si} are independent.

By the multinomial formula we find that

E
(

Y k1
1 Y k2

t1 Y
k3
t2 Y

k4
t3

)

=

∑

Kk11,...,k43E(S
k12+k13/2
1 S

k22+k23/2
t1 S

k32+k33/2
t2 S

k42+k43/2
t3 )E(Ak131 )E(Ak23t1 )E(Ak33t2 )E(Ak43t3 ),

where the sum is over all non-negative integers kij, i = 1, 2, 3, 4, j = 1, 2, 3 such that
ki1 + ki2 + ki3 = ki (i = 1, 2, 3, 4), and where

Kk11,...,k43 =

(

k1

k11, k12, k13

)(

k2

k21, k22, k23

)(

k3

k31, k32, k33

)(

k4

k41, k42, k43

)

(κ∆)k·1βk·2

with k·j = k1j +k2j +k3j +k4j. The moments E(Aki3

i ) are the well-known moments of the
standard normal distribution. When ki3 is odd, these moments are zero. Thus we only
need to calculate the mixed moments of the form E(Sℓ11 S

ℓ2
t1 S

ℓ3
t2S

ℓ4
t3 ), where ℓ1, . . . , ℓ4 are

integers. However, when the volatility process is a sum of independent Pearson diffusions,
Si of the same form as Zi in (4.20) (apart from 1/∆), so we can proceed as in the pre-
vious section. Thus also for the stochastic volatility models defined in terms of Pearson
diffusions we can explicitly find the optimal estimating function based on prediction of
powers of returns.

4.5 Asymptotics.

In this subsection we give a result on the asymptotic distribution of the estimators ob-
tained from prediction based estimating functions for the model types discussed above.
We assume that the estimating function has the form

Gn(ψ) = A(ψ)

n
∑

i=r+1

H(i)(ψ) (4.24)

with H(i)(ψ) given by (4.6), and that it is based on predicting powers up to m of the
observations. The observations are either Yi given by (4.14), (4.16) or (4.22) or Zi given
by (4.20). We denote the true value of ψ by ψ0. The following theorem is proved in the
appendix.
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Theorem 4.5 Assume that the underlying Pearson diffusions have finite (4m + ǫ)’th
moment (a < (4m − 1 + ǫ)−1) for some ǫ > 0. Suppose, moreover, that A(ψ) is twice
continuously differentiable, and that the matrices A(ψ), A(ψ)M̄(ψ)A(ψ)T and ∂ψT â have
full rank, d, where â(ψ) is given by (4.11) and M̄(ψ) by (4.12). Then with probability
tending to one as n→ ∞ there exists a solution ψ̂n to the estimating equation Gn(ψ) = 0
such that ψ̂n converges to ψ0 in probability and

√
n(ψ̂n − ψ0)

D→ N
(

0,W−1(ψ0)V (ψ0)(W
−1(ψ0))

T
)

,

where W (ψ0) = A(ψ0)C̄(ψ0)∂ψT â(ψ0) and V (ψ0) = A(ψ0)M̄(ψ0)A(ψ0)
T with C̄(ψ) given

by (4.10). For the optimal matrix A∗(ψ) = ∂ψâ(ψ)T C̄(ψ)M̄(ψ)−1, the asymptotic covari-

ance matrix of ψ̂n simplifies to

[

∂ψâ(ψ0)
T C̄(ψ0)M̄(ψ0)

−1C̄(ψ0)∂ψT â(ψ0)
]−1

.

A Proofs and general asymptotics.

Theorem 3.1 can be established using standard asymptotic techniques. Regularity condi-
tions to ensure the existence of a consistent and asymptotically normal sequence of solu-
tions to a general martingale estimating equation of form (3.3) can be found in Sørensen
(1999). In case estimates are inserted for the parameter in the weights, as in (3.5), we
need somewhat stronger conditions. The following result is taken from Jacod & Sørensen
(2007).

Theorem A.1 Suppose that {Yi}i∈N0
is a stationary ergodic process with state-space D

and that

Gn(ψ) =

n
∑

i=1

α(Yi−1, ψ)h(Yi−1, Yi, ψ)

is a martingale estimating function such that the following holds.

A1: The true parameter ψ0 belongs to the interior of Ψ.

A2: For all ψ in a neighborhood of ψ0 each of the variables α(Yi−1, ψ0)h(Yi−1, Yi, ψ) is
Pψ0

-integrable and α(Yi−1, ψ0)h(Yi, Yi−1, ψ0) is square integrable.

A3: The mappings ψ 7→ α(x, ψ) and ψ 7→ h(x, y, ψ) are continuously differentiable in a
neighborhood of ψ0 for all x, y ∈ D.

A4: For all ψ, ψ′ in a neighborhood of ψ0 each of the entries of ∂ψk
α(Yi−1, ψ)h(Yi−1, Yi, ψ0),

α(Yi−1, ψ0)∂ψk
h(Yi−1, Yi, ψ), and ∂ψk

α(Yi−1, ψ)∂ψk′
h(Yi−1, Yi, ψ

′) (k, k′ = 1, . . . , d) is
dominated by a Pψ0

-integrable function.

A5: The d× d matrix W (ψ0) = Eψ0

{

∂ψT [α(Yi−1, ψ)h(Yi−1, Yi, ψ)]
}

is invertible.

Then with probability tending to one as n→ ∞ the estimating equation Gn(ψ) = 0 has a
solution, ψ̂n, satisfying that ψ̂n → ψ0 in probability and

√
n(ψ̂n − ψ0)

D→ N (0,W (ψ0)
−1V (ψ0)W (ψ0)

−1)
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where V (ψ0) = Eψ0
{α(Yi−1, ψ0)h(Yi−1, Yi, ψ0)h(Yi−1, Yi, ψ0)

Tα(Yi−1, ψ0)
T}. The same re-

sult holds for the estimating function

G̃n(ψ) =

n
∑

i=1

α(Yi−1, ψ̃n)h(Yi−1, Yi, ψ),

where ψ̃n is a
√
n-consistent estimator of ψ.

Proof of Theorem 3.1:

Preliminarily we demonstrate that V (x, ψ) is positive definite for all (x, ψ) and that the
smallest eigenvalue is bounded away from zero uniformly in (x, ψ) when ψ belongs to a
compact subset Ψ0 ⊂ Ψ. Clearly V (x, ψ) is positive semidefinite for all (x, ψ). Moreover,
for z ∈ R

N it holds that zTV (x, ψ)z = 0 if and only if

N
∑

j=1

zj{pj(y, ψ) − e−λj(ψ)∆pj(x, ψ)} = 0

for almost every y with respect to the conditional distribution of Yi given Yi−1 = x under
ψ. However, the above is a polynomial in y and thus cannot equal zero almost surely
unless the order is zero. As pj(y, ψ) is a j’th order polynomial with leading coefficient
pj,j = 1 we deduce that that zTV (x, ψ)z = 0 if and only if z = 0. Hence, V (x, ψ) is
positive definite. By continuity the smallest eigenvalue

ε1{V (x, ψ)} = inf{zTV (x, ψ)z : |z| = 1}

is bounded away from zero on compact subsets of Ψ × X where X is the state space.
To make the bound valid for all x ∈ X we need only check that it holds as |x| → ∞.
To this end note that zTV (x, ψ)z is a non-zero polynomial in x of order at most 2N the
coefficient of which are given as continuous functions of z and ψ. If a sequence (xn, zn, ψn)
were to exist such that zTn V (xn, ψn)zn → 0, |xn| → ∞, |zn| = 1, and {ψn} ⊂ Ψ0, then
we would find an accumulation point (z0, ψ0) such that zT0 V (xn, ψ0)z0 → 0 although
zT0 V (x, ψ0)z0 defines a non-zero polynomial in x. By contradiction we conclude that
inf{ε1{V (x, ψ)} : x ∈ X , ψ ∈ Ψ0} > 0.

As to the regularity conditions, A1 holds true by assumption, and A3 follows from
R2 as α⋆(x, ·) and h(y, x, ·) are continuously differentiable with respect to the canonical
parameter.
In order to check the integrability condition A2 let Ψ0 be a compact neighbourhood of
ψ0 and denote by ||B|| = maxj,k |Bj,k| the max-norm of a matrix. A diagonalization
argument shows that

||V (x, ψ)−1|| ≤ N2

C1(Ψ0)

for all x and all ψ ∈ Ψ0 where C1(Ψ0) is the lower bound on the smallest eigenvalue of
V (x, ψ) on X × Ψ0. Thus, by continuity of the coefficients a constant C2(Ψ0) exist such
that

|α⋆(Yi−1, ψ0)h(Yi, Yi−1, ψ)| ≤ d ·N · ||S(Yi−1, ψ0)|| · ||V (Yi−1, ψ0)
−1|| · |h(Yi, Yi−1, ψ)|

≤ C2(Ψ0)(1 + Y 2N
i−1 + Y 2N

i )
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for all ψ ∈ Ψ0. The latter is integrable by R0. Further we note that

Eψ0
{α⋆(Yi−1, ψ0)h(Yi, Yi−1, ψ0)h(Yi, Yi−1, ψ0)

Tα⋆(Yi−1, ψ0)
T}

= Eψ0
{S(Yi−1, ψ0)

TV (Yi−1, ψ0)
−1S(Yi−1, ψ0)},

which by R0 is finite because

||S(x, ψ0)
TV (x, ψ0)

−1S(x, ψ0)|| ≤ N2 · ||S(x, ψ0)||2 · ||V (x, ψ0)
−1|| ≤ C3(ψ0)(1 + x2N )

for some constant C3(ψ0).
Similar bounds can be established for the derivatives of A4.
Finally, let us check that A5 holds true. Clearly, W (ψ0) is negative semidefinite as

W (ψ0) = −Eψ0
{S(Yi−1, ψ0)

TV (Yi−1, ψ0)
−1S(Yi−1, ψ0)}.

Let z ∈ R
d be such that zTW (ψ0)z = 0. The task is to demonstrate that z = 0. As

V (x, ψ0) is positive definite for all x the assumption is that S(x, ψ0)z = 0 for almost
every x. We assume without loss of generality that ψ = τ = (θ, µ, a, b, c) is the canonical
parameter. The general case follows readily as

S(x, ψ0) = S(x, τ0) · ∂ψT τ(ψ0)

where by R3 ∂ψT τ(ψ0) has full rank d. Hence, the assumption is

Eτ0(∂τT {pj(Yi, τ0) − e−λj(τ0)∆pj(Yi−1, τ0)} · z|Yi−1 = x) = 0

for j = 1, . . . , N and almost every x. The first equation reads

z1(x− µ0)∆e
−θ0∆ + z2(e

−θ0∆ − 1)
a.e.x
= 0

which only holds true if z1 = z2 = 0. As N ≥ 2 at least one more equation is available,
namely

z3S2,3(x, τ0) + z4S2,4(x, τ0) + z5S2,5(x, τ0) = 0

where

S2,3(x, τ0) = −2θ∆e−2(1−a)θ∆p2(x, τ0) +
4(µ+ b)

(2a− 1)2
(e−2(1−a)θ∆ − e−θ∆)x

−4µ(µ+ b)

(2a− 1)2
(1 − e−θ∆) +

{

µ(µ+ b)(4a− 3)

(2a− 1)2(a− 1)2
+

c

(a− 1)2

}

(e−2(1−a)θ∆ − 1),

S2,4(x, τ0) =
2

2a− 1
(e−θ∆ − e−2(1−a)θ∆)x+

2µ

2a− 1
(1 − e−θ∆) +

µ(1 − e−2(1−a)θ∆)

(2a− 1)(a− 1)
,

S2,5(x, τ0) =
1

a− 1
(1 − e−2(1−a)θ∆)

from which we deduce that z3 = z4 = z5. �

Proof of Theorem 4.5:

The result follows from Theorem 6.2 in Sørensen (2000). We just need to check the
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conditions of that theorem. First, we note that the observations are exponentially α-
mixing. In the cases of integrated Pearson diffusions and sums of Pearson diffusions,
this follows immediately from the exponential α-mixing of the Pearson diffusions. That
the sequence of observations of a stochastic volatility model with exponentially α-mixing
volatility process is exponentially α-mixing, was proven in Sørensen (2000) in the case
κ = β = 0. The proof holds in the more general case too, see also the more general result
in Genon-Catalot, Jeantheau & Laredo (2000). Secondly, we need that H (i)(ψ), given by
(4.6), has finite (2 + δ)’th moment for some δ > 0. In the case of an integrated Pearson
diffusion this follows from Jensen’s inequality and Fubini’s theorem:

Eψ

(

∣

∣

∣

∣

∫ ∆

0

Xsds

∣

∣

∣

∣

2m(2+δ)
)

≤
∫ ∆

0

Eψ
(

|Xs|2m(2+δ)
)

ds = ∆Eψ
(

|X0|2m(2+δ)
)

<∞.

In the case of a sum of Pearson diffusions, it follows from Minkowski’s inequality that
the (2 + δ)’th moment of H (i)(ψ) is finite. For Pearson stochastic volatility models,
Minkowski’s inequality shows that it is sufficient that the integrated volatility process
has finite (4m + ǫ)’th moment, and integrated Pearson diffusion were considered above.
Finally, it follows from (2.5) that the (finite) moments of a Pearson diffusion are twice
continuously differentiable, so that â is twice continuously differentiable, cf. (4.2) and
(4.3). Now all conditions of Theorem 6.2 in Sørensen (2000) have been shown to hold.

�
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