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Abstract

We propose a new concept of modulated bipower variation for diffusion models

with microstructure noise. We show that this method provides simple estimates for

such important quantities as integrated volatility or integrated quarticity. Under

mild conditions the consistency of modulated bipower variation is proven. Under

further assumptions we prove stable convergence of our estimates with the optimal

rate n
−

1

4 . Moreover, we construct estimates which are robust to finite activity

jumps.
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1 Introduction

Continuous time stochastic models represent a widely accepted class of processes

in mathematical finance. Ito diffusions, which are characterised by the equation

Xt = X0 +

∫ t

0

asds +

∫ t

0

σsdWs , (1.1)

are commonly used for modeling the dynamics of interest rates or stock prices.

Here W denotes a Brownian motion, a is a locally bounded predictable drift

function and σ is a càdlàg volatility process. A key issue in econometrics is the

estimation (and forecasting) of quadratic variation of X

IV =

∫ 1

0

σ2
sds ,

which is known as integrated volatility or integrated variance in the econometric

literature. In the last years the availability of high frequency data on financial

markets has motivated a huge number of publications devoted to measurement

of integrated volatility. The most conspicuous idea of estimation of integrated

volatility is the realised volatility (RV), which has been proposed by Andersen,

Bollerslev, Diebold & Labys [4] and Barndorff-Nielsen & Shephard [8]. RV is

the sum of squared increments over non-overlapping intervals within a sampling

period. The consistency result justifying this estimator is a simple consequence of

the definition of quadratic variation. Theoretical and empirical properties of the

realised volatility have been studied in numerous articles (see Jacod [25], Jacod

& Protter [26], Andersen, Bollerslev, Diebold & Labys [4], Barndorff-Nielsen &

Shephard [8] among many others).

More recently, the concept of realised bipower variation has built a non-

parametric framework for backing out several variational measures of volatility

(see, e.g., Barndorff-Nielsen & Shephard [9] or Barndorff-Nielsen, Graversen,

Jacod, Podolskij & Shephard [6]), which has led to a new development in econo-

metrics. Realised bipower variation, which is defined by

BV (X, r, l)n = n
r+l
2

−1

n−1
∑

i=1

|∆n
i X|r|∆n

i+1X|l , (1.2)

with ∆n
i X = Xi/n − X(i−1)/n and r, l ≥ 0, provides a whole class of estimators

for different (integrated) powers of volatility. Another important feature of re-

alised bipower variation is its robustness to finite activity jumps when estimating

integrated volatility (in the case r ∨ l < 2). This property has been used to con-

struct tests for jumps (see Barndorff-Nielsen & Shephard [10] or Christensen &

Podolskij [17]).
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However, in finance it is widely accepted that the true price process is contam-

inated by microstructure effects, such as price discreteness or bid-ask spreads,

among others. This invalidates the asymptotic properties of RV, and in the pres-

ence of microstructure noise RV is both biased and inconsistent (see Bandi &

Russel [5] or Hansen & Lunde [22] among others). Nowadays there exist two

concurrent methods of estimating integrated volatility in the presence of i.i.d.

noise. Zhang [33] has proposed to use a multiscale estimator as a generalisation

of the concept of two scale estimators, which was introduced by Zhang, Mykland

& Ait-Sahalia [34] based on a subsampling procedure. Another method is a re-

alised kernel estimator which has been proposed by Barndorff-Nielsen, Hansen,

Lunde & Shephard [7]. Both methods provide consistent estimates of integrated

volatility in the presence of i.i.d. noise and achieve the optimal rate n− 1
4 (whereas

the two scale approach achieves the rate n− 1
6 ). However, these procedures can

not be generalised in order to obtain estimators of other (integrated) powers of

volatility, such as integrated quarticity, which is defined by

IQ =

∫ 1

0

σ4
sds.

This quantity is of particular interest, because, properly scaled, it occurs as

conditional variance in the central limit theorem for estimators of IV and has

to be estimated. Moreover, both methods are not robust to jumps in the price

process.

In this paper we propose a new concept of modulated bipower variation

(MBV) for diffusion models with (i.i.d.) microstructure noise. The novelty of this

concept is twofold. First, this method provides a whole class of estimates for ar-

bitrary integrated powers of volatility. Second, modulated multipower variation,

which is a direct generalisation of MBV, turns out to be robust to finite activity

jumps (when the powers are appropriately chosen). In particular, starting with

MBV we construct estimators of IV and IQ which are robust to finite activity

jumps. To the best of our knowledge these are the first consistent estimates of

IV and IQ when both microstructure noise and jumps are present. An easy

implementation of MBV is another nice feature of our method.

This paper is organised as follows. In Section 2 we state the basic notations

and definitions. In Section 3 we show the consistency of our estimators and

prove a central limit theorem for its normalized versions with an optimal rate

n− 1
4 . In particular, we construct some new estimators of integrated volatility and

integrated quarticity, and present the corresponding asymptotic theory. More-

over, we demonstrate how the assumptions on the noise process can be relaxed.
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Section 4 illustrates the finite sample properties of our approach by means of

a Monte Carlo study. Some conclusions and directions for future research are

highlighted in Section 5. Finally, we present the proofs in the Appendix.

2 Basic notations and definitions

We consider the process Y , observed at time points ti = i/n, i = 0, . . . , n. Y

is defined on the filtered probability space (Ω,F , (Ft)t∈[0,1], P ) and exhibits a

decomposition

Y = X + U , (2.1)

where X is a diffusion process defined by (1.1), and (Ui)0≤i≤n is an i.i.d. noise

process with

EUi = 0 , EU2
i = ω2. (2.2)

Further, we assume that X and U are independent.

The core of our approach is the following class of statistics

MBV (Y, r, l)n = n
(r+l)

4
− 1

2

M
∑

m=1

|Ȳ (K)
m |r|Ȳ (K)

m+1|l r, l ≥ 0 , (2.3)

Ȳ (K)
m =

1
n
M

− K + 1

mn
M

−K
∑

i=
(m−1)n

M

(

Y i+K
n

− Y i
n

)

. (2.4)

with

K = c1n
1
2 , M =

n

c2K
=

n
1
2

c1c2

(2.5)

for some constants c1 > 0 and c2 > 1 (which will be chosen later).

The intuition behind the quantity Ȳ
(K)
m can be explained as follows. Since X

is a continuous process and (Ui)0≤i≤n is an i.i.d. process with EUi = 0 we deduce

that

1
n
M

− K + 1

mn
M

−K
∑

i=
(m−1)n

M

Y i
n

= Xm−1
M

+ op(1) ,

1
n
M

− K + 1

mn
M

−K
∑

i=
(m−1)n

M

Y i+K
n

= Xm−1
M

+ K
n

+ op(1).

This means that the quantity Ȳ
(K)
m behaves like the increment Xm−1

M
+ K

n
−Xm−1

M
,

and consequently it contains information about the volatility process σ.

3



M. Podolskij and M. Vetter: Estimation of Volatility Functionals

The constants K and M control the stochastic order of the term Ȳ
(K)
m . In

particular, we have that

Ū (K)
m = Op

(√

1
n
M

− K

)

, (2.6)

X̄(K)
m = Op

(

√

K

n

)

, (2.7)

where U
(K)
m and X

(K)
m are defined analogously to Y

(K)
m in (2.4). By (2.5) the

stochastic orders of the quantities in (2.6) and (2.7) are balanced, and we obtain

Ȳ (K)
m = Op(n

− 1
4 ) , (2.8)

which explains the normalizing factor in (2.3).

More generally, we define the modulated multipower variation by setting

MMV (Y, r1, . . . , rk)n = n
r+
4
− 1

2

M−k+1
∑

m=1

k
∏

j=1

|Ȳ (K)
m+k−1|rj ,

where k is a fixed natural number, rj ≥ 0 for all j and r+ = r1+· · ·+rk. This type

of construction has been intensively used in a pure Ito diffusion framework (see,

for instance, Barndorff-Nielsen & Shephard [11] or Christensen & Podolskij [17]

among others). Later on we will show that the modulated multipower variation,

for an appropriate choice of k and r1, . . . , rk, turns out to be robust to finite

activity jumps when estimating arbitrary powers of volatility.

In the sequel we mainly focus on the asymptotic theory of the modulated

bipower variation, but we also state the corresponding results for MMV (Y, r1, . . . , rk)n

for the sake of completeness.

3 Asymptotic theory

In this section we study the asymptotic behaviour of the class of estimators

MBV (Y, r, l)n, r, l ≥ 0. Before we state the main results of this section we

introduce the following notation:

µr = E[|z|r], z ∼ N(0, 1). (3.1)

3.1 Consistency

Theorem 1 Assume that E|U |2(r+l)+ǫ < ∞ for some ǫ > 0. If M and K satisfy

(2.5) then the convergence in probability

MBV (Y, r, l)n
P−→ MBV (Y, r, l) =

µrµl

c1c2

∫ 1

0

(ν1σ
2
u + ν2ω

2)
r+l
2 du (3.2)

4
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holds. The constants ν1 and ν2 are given by

ν1 =
c1(3c2 − 4 + (2 − c2)

3 ∨ 0)

3(c2 − 1)2
,

ν2 =
2((c2 − 1) ∧ 1)

c1(c2 − 1)2
. (3.3)

Note that the limit MBV (Y, r, l) in (3.2) depends only on the second moment

ω2 of U , and no higher moments are involved. This can be illustrated as follows.

Observe that due to the choice of the constants in (2.5) we have

n
1
4 Ū (K)

m
D−→ N (0, ν2ω

2) , (3.4)

which is justified by a standard central limit theorem. Under the regularity

condition of Theorem 1 the moments of Ū
(K)
m can be (asymptotically) replaced

by the corresponding moments of the normal distribution in (3.4), which only

depend on ω2.

In fact, the estimation of higher moments of U turns out to be difficult in prac-

tice, because they are extremely small. Note, for instance, that the asymptotic

results for the twoscale (multiscale) estimator of integrated volatility depend on

the fourth moment of U . Since only the second moment ω2 is involved in our

approach, we do not face these problems.

Finally, we present the convergence in probability of the modulated multi-

power variation MMV (Y, r1, . . . , rk)n.

Theorem 2 Assume that E|U |2r++ǫ < ∞ for some ǫ > 0. If M and K satisfy

(2.5) then the convergence in probability

MMV (Y, r1, . . . , rk)n
P−→ MMV (Y, r1, . . . , rk) =

µr1 · · ·µrk

c1c2

∫ 1

0

(ν1σ
2
u+ν2ω

2)
r+
2 du

(3.5)

holds.

3.1.1 Consistent estimates of integrated volatility and integrated quartic-

ity

Theorem 1 shows that MBV (Y, r, l)n is inconsistent when estimating arbitrary

(integrated) powers of volatility. Though, when r + l is an even number (this

condition is satisfied for the most interesting cases) a slight modification of

MBV (Y, r, l)n turns out to be consistent. Let us illustrate this procedure by

providing consistent estimates for integrated volatility and integrated quarticity.

5
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As already mentioned in Zhang, Mykland & Ait-Sahalia [34] the statistic

ω̂2 =
1

2n

n
∑

i=1

|Y i
n
− Y i−1

n
|2 (3.6)

is a consistent estimator of the quantity ω2 with the convergence rate n− 1
2 . Con-

sequently, we obtain the convergence in probability of the modulated realised

volatility

MRV (Y )n :=
c1c2MBV (Y, 2, 0)n − ν2ω̂

2

ν1

P−→
∫ 1

0

σ2
u du (3.7)

as a direct application of Theorem 1 and (3.6).

Now we are in a position to construct a consistent estimator of integrated

quarticity. By (3.7) and Theorem 1 we obtain consistency of the modulated

realised quarticity, namely

MRQ(Y )n :=
c1c2

3
MBV (Y, 4, 0)n − 2ν1ν2ω̂

2MRV (Y )n − ν2
2(ω̂

2)2

ν2
1

P−→
∫ 1

0

σ4
u du.

(3.8)

Note, however, that Theorem 1 gives a whole class of new estimators of integrated

volatility and integrated quarticity.

Remark 1 The constant ν1 corresponds to the second moment of the term n
1
4 W̄

(K)
m ,

where W is a Brownian motion. More precisely, we have

n
1
4 W̄ (K)

m ∼ N(0, ν
(n)
1 ) ,

with

ν
(n)
1 = ν1 +

(3 − c2) ∧ 1
c2−1

(c2 − 1)
√

n
+ O(

1

n
). (3.9)

Clearly, it holds that ν
(n)
1 → ν1. However, we can reduce the bias of the estimates

MRV (Y )n and MRQ(Y )n by replacing ν1 by ν
(n)
1 .

3.1.2 Robustness to finite activity jumps

As already mentioned in the introduction one of our main goals is finding con-

sistent estimates of volatility functionals when both microstructure noise and

jumps are present. For this purpose we consider the model

Z = Y + J , (3.10)

where Y is a noisy diffusion process defined by (2.1) and J denotes a finite activity

jump process, i.e. J exhibits finitely many jumps on compact intervals. Typical

examples of a finite activity jump process are compound Poisson processes.

6
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The next result gives us conditions on r1, . . . , rk under which the modulated

multipower variation MMV (Z, r1, . . . , rk)n is robust to finite activity jumps.

Proposition 3 If the assumptions of Theorem 2 are satisfied, max(r1, . . . , rk) <

2 and Z is of the form (3.10) then we have

MMV (Z, r1, . . . , rk)n
P−→ MMV (Y, r1, . . . , rk) , (3.11)

where MMV (Y, r1, . . . , rk) is given by (3.5).

Proposition 3 is shown by the same methods as the corresponding result in the

noiseless model (i.e. U = 0). We refer to Barndorff-Nielsen, Shephard & Winkel

[12] (Proposition 1, page 799) for a detailed proof.

Now we can construct consistent estimates for integrated volatility and inte-

grated quarticity which are robust to noise and finite activity jumps. Since ω̂2 is

robust to jumps, the convergence in probability

MBV (Z)n :=

c1c2
µ2

1
MBV (Z, 1, 1)n − ν2ω̂

2

ν1

P−→
∫ 1

0

σ2
u du (3.12)

holds as a direct consequence of Proposition 3. Similar to the previous subsection,

a robust (tripower) estimate of the integrated quarticity is given by

MTQ(Z)n :=

c1c2
µ3

2/3
MMV (Z, 4

3
, 4

3
, 4

3
)n − 2ν1ν2ω̂

2MBV (Z)n − ν2
2(ω̂

2)2

ν2
1

P−→
∫ 1

0

σ4
u du.

(3.13)

Remark 2 Recall that the realised volatility RV converges in probability to in-

tegrated volatility plus the sum of squared jumps in the jump-diffusion model. It

is interesting to see that the presence of jumps destroys the consistency of the

estimator MRV (Z)n, which can be interpreted as an analogue of RV . To show

this let us consider a simple model Z = J (i.e. X = U = 0), where J is a deter-

ministic jump process that possesses one jump at point t0 ∈ (0, 1). Moreover, we

set c2 = 2 and c1 = 1 for simplicity.

From the definition of the quantity Ȳ
(K)
m we deduce that the jump of Z occurs

in the statistic MRV (Z)n with a very small weight when t0 lies at the boundaries

of some interval [m−1
M

, m
M

] and with weight 1 when t0 lies in the middle of some

interval [m−1
M

, m
M

]. Thus, the statistic MRV (Z)n does not converge in probability

when there are jumps.

In contrast to our approach the multiscale estimator of Zhang [33] and the realised

kernel estimator of Barndorff-Nielsen, Hansen, Lunde & Shephard [7] converge

7
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in probability to the quadratic variation of the jump-diffusion process X + J (in

the presence of noise). In principle, it is possible to test for jumps in the noisy

model by comparing the multiscale estimator or the realised kernel estimator

with the robust statistic MBV (Z, 1, 1)n (see, for instance, Barndorff-Nielsen &

Shephard [10] or Christensen & Podolskij [16] for more details on such tests in

the noiseless models), although we will not further discuss this idea in the paper.

Another important object of study is the impact of infinite activity jumps

on the modulated bipower (multipower) variation. Such studies can be found in

Barndorff-Nielsen, Shephard & Winkel [12], Woerner [32] and in a recent paper

of Ait-Sahalia & Jacod [1] for the noiseless framework. We are convinced that

similar results hold also for the noisy model, although a more detailed analysis

is required.

3.1.3 Relaxing the assumptions on the noise process U

So far we assumed that U is an i.i.d. sequence and is independent of the diffusion

X. Hansen & Lunde [22] have reported that both assumptions are somewhat

unrealistic for ultra-high frequency data. In the following we demonstrate how

these conditions can be relaxed.

First, note that the i.i.d assumption is not essential to guarantee the stochastic

order of Ū
(K)
m in (2.6). When we assume, for instance, that U is a q-dependent

sequence, the result of Theorem 1 holds, although higher order autocorrelations

of U appear in the limit. In this case we require a stationarity condition on U for

the estimation of the autocorrelations and a bias-correction of the limit in (3.2).

Further, by using other constants M and K the influence of the noise process

U can be made negligible, and independence between X and U is not required.

(2.6) and (2.7) imply that in particular, when we set

K = c1n
1
2
+γ , M =

n

c2K
(3.14)

for some 0 < γ < 1
2
, the quantity X̄

(K)
m driven by the diffusion process dominates

the term Ū
(K)
m . More precisely, the convergence in probability

n
(1−2γ)(r+l)

4
− 1−2γ

2

M
∑

m=1

|Ȳ (K)
m |r|Ȳ (K)

m+1|l
P−→ µrµlν

r+l
2

1

c1c2

∫ 1

0

|σu|r+l du (3.15)

holds. The convergence in (3.15) has another useful side effect. It provides

consistent estimates for arbitrary integrated powers of volatility. However, since

the diffusion term X̄
(K)
m dominates the noise term Ū

(K)
m , the above choice of K

and M leads to a slower rate of convergence.

8
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3.2 Central limit theorems

In this subsection we present the central limit theorems for a normalized version

of MBV (Y, r, l)n. For this purpose we need a structural assumption on the pro-

cess σ.

(V): The volatility function σ satisfies the equation

σt = σ0 +

∫ t

0

a′
sds +

∫ t

0

σ′
s−dWs +

∫ t

0

v′
s−dVs. (3.16)

Here a′,σ′ and v′ are adapted càdlàg processes, with a′ also being predictable and

locally bounded, and V is a new Brownian motion independent of W .

Condition (V) is a standard assumption that is required for the proof of the

central limit theorem for the pure diffusion part X (see e.g., Barndorff-Nielsen,

Graversen, Jacod, Podolskij & Shephard [6] or Christensen & Podolskij [16, 17].

When X is a unique strong solution of a stochastic differential equation then

under some smoothness assumption on the volatility σt = σ(t, Xt) condition (V)

(with v′
s = 0 for all s) is a simple consequence of Ito’s formula. Therefore, as-

sumption (V) is fulfilled for many widely used financial models (see Black &

Scholes [13], Vasicek [31], Cox, Ingersoll & Ross [18] or Chan, Karolyi, Longstaff

& Sanders [15] among others).

For technical reasons we require a further structural assumption on the noise

process U . We assume that the filtered probability space (Ω,F , (Ft)t∈[0,1], P )

supports another Brownian motion B = (Bt)t∈[0,1] that is independent of the

diffusion process X, such that the representation

Ui =
√

nω(B i
n
− B i−1

n
) (3.17)

holds.

Remark 3 Condition (3.17) ensures that both processes X and U are measurable

with respect to the same type of filtration. This assumption enables us to use

the central limit theorems for high frequency observations (see Jacod & Shiryaev

[27]). The same assumption has already been used in Gloter & Jacod [19, 20].

The normal distribution of the noise induced by (3.17) is not crucial for our

asymptotic theory, and other functions of rescaled increments of B can be con-

sidered. Of course, this leads to a slight modification of the central limit theorems

presented below.

9
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In the central limit theorems which will be demonstrated below we use the con-

cept of stable convergence of random variables. Let us shortly recall the defini-

tion. A sequence of random variables Gn converges stably in law with limit G

(throughout this paper we write Gn
Dst−→ G), defined on an appropriate extension

(Ω′,F ′, P ′) of a probability space (Ω,F , P ), if and only if for any F -measurable

and bounded random variable H and any bounded and continuous function g

the convergence

lim
n→∞

E[Hg(Gn)] = E[Hg(G)]

holds. This is obviously a slightly stronger mode of convergence than conver-

gence in law (see Renyi [29] or Aldous & Eagleson [2] for more details on stable

convergence).

Now we present a central limit theorem for the statistic MBV (Y, r, l)n.

Theorem 4 Assume that U is of the form (3.17) and condition (V) is satisfied.

If M and K satisfy (2.5), and

1. r, l ∈ (1,∞) ∪ {0} or

2. r or l ∈ (0, 1], and σs 6= 0 for all s,

then we have

n
1
4

(

MBV (Y, r, l)n − MBV (Y, r, l)
)

Dst−→ L(r, l) ,

where L(r, l) is given by

L(r, l) =

√

µ2rµ2l + 2µrµlµr+l − 3µ2
rµ

2
l

c1c2

∫ 1

0

(ν1σ
2
u + ν2ω

2)
r+l
2 dW ′

u. (3.18)

Here W ′ denotes another Brownian motion defined on an extension of the filtered

probability space (Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

Since ω̂2 − ω2 = Op(n
− 1

2 ) we obtain the central limit theorems for the estimates

MRV (Y )n and MBV (Y )n defined by (3.7) and (3.12), respectively, as a direct

consequence of Theorem 4.

Corollary 1 Assume that U is of the form (3.17) and condition (V) is satisfied.

If M and K satisfy (2.5) then we have

n
1
4

(

MRV (Y )n −
∫ 1

0

σ2
u du

)

Dst−→
√

2c1c2

ν1

∫ 1

0

(ν1σ
2
u + ν2ω

2) dW ′
u , (3.19)

where W ′ is another Brownian motion defined on an extension of the filtered

probability space (Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

10
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Corollary 2 Assume that U is of the form (3.17) and condition (V) is satisfied.

If M and K satisfy (2.5), and σs 6= 0 for all s, then we have

n
1
4

(

MBV (Y )n−
∫ 1

0

σ2
u du

)

Dst−→
√

c1c2(µ2
2 + 2µ2

1µ2 − 3µ4
1)

µ4
1ν

2
1

∫ 1

0

(ν1σ
2
u+ν2ω

2) dW ′
u ,

(3.20)

where W ′ is another Brownian motion defined on an extension of the filtered

probability space (Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

Now let us demonstrate how Corollary 1 and 2 can be applied in order to obtain

confidence intervals for the integrated volatility. Note that the central limit

theorem in (3.19) is not feasible yet. Nevertheless, we can easily obtain a feasible

version of Corollary 1. Since the Brownian motion W ′ is independent of the

volatility process σ, the limit defined by (3.19) has a mixed normal distribution

with conditional variance

β2 =
2c1c2

ν2
1

∫ 1

0

(ν1σ
2
u + ν2ω

2)2 du.

By an application of Theorem 1 the statistic

β2
n =

2c2
1c

2
2

3ν2
1

MBV (Y, 4, 0)n

is a consistent estimator of β2.

Now we exploit the properties of stable convergence (see Podolskij [28], Lemma

1.9) to obtain a standard central limit theorem

n
1
4

(

MRV (Y )n −
∫ 1

0
σ2

u du
)

βn

D−→ N (0, 1). (3.21)

From the latter confidence intervals for the integrated volatility can be derived.

A feasible version of Corollary 2 can be obtained similarly.

With the above formulae for β2 and β2
n in hand we can choose the constants c1

and c2 that minimize the conditional variance. In order to compare our asymp-

totic variance with the corresponding results of other methods we assume that

the volatility process σ is constant. In that case the conditional variance β2 is

minimized by

c1 =

√

18

(c2 − 1)(4 − c2)
· ω

σ
(3.22)

c2 =
8

5
, (3.23)

11
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and is equal to
256

3
√

18
· σ3ω ≈ 20.11σ3ω.

Note that the limits in Corollary 1 and 2 are the same up to a constant. Conse-

quently, the asymptotic conditional variance of MBV (Y )n is minimized for the

same choice of c1 and c2 as above, and is approximately equal to

26.14σ3ω ,

when the volatility function is constant.

As already mentioned in Ait-Sahalia, Mykland & Zhang [34] (see also Gloter &

Jacod [19, 20]) the maximum likelihood estimator (when U is normal distributed)

converges at the rate n− 1
4 and has an asymptotic variance

8σ3ω ,

which is a natural lower bound. The cubic kernel, Tukey-Hanning kernel and

modified Tukey-Hanning kernel estimator which have been proposed by Barndorff-

Nielsen, Hansen, Lunde & Shephard [7] possess the asymptotic variances 9.04σ3ω,

9.18σ3ω and 8.29σ3ω, respectively. This shows that our estimator is somewhat

inefficient in comparison to the listed kernel based estimators. A natural direc-

tion of future research is to modify our procedure in order to achieve a higher

efficiency.

However, the concept of modulated bipower (multipower) variation has been

established to provide estimates of arbitrary powers of volatility for the noisy

diffusion model, which are additionally robust to finite activity jumps. These

are properties which are not captured by multiscale or realised kernel approach.

For the sake of completeness we state a central limit theorem for the modu-

lated multipower variation MMV (Y, r1, . . . , rk)n.

Theorem 5 Assume that U is of the form (3.17) and condition (V) is satisfied.

If M and K satisfy (2.5), and

1. r1, . . . , rk ∈ (1,∞) ∪ {0} or

2. one of ri ∈ (0, 1], and σs 6= 0 for all s,

then we have

n
1
4

(

MMV (Y, r1, . . . , rk)n − MMV (Y, r1, . . . , rk)
)

Dst−→ L(r1, . . . , rk) ,

12
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where L(r1, . . . , rk) is given by

L(r, l) =

√

A(r1, . . . , rk)

c1c2

∫ 1

0

(ν1σ
2
u + ν2ω

2)
r+l
2 dW ′

u , (3.24)

with

A(r1, . . . , rk) =

k
∏

l=1

µ2rl
− (2k − 1)

k
∏

l=1

µ2
rl

+ 2
k−1
∑

j=1

j
∏

l=1

µrl

k
∏

l=k−j+1

µrl

k−j
∏

l=1

µrl+rl+j

Here W ′ denotes another Brownian motion defined on an extension of the filtered

probability space (Ω,F , (Ft)t∈[0,1], P ) and is independent of the σ-field F .

Note that the constant A(r1, . . . , rk) also appears in the central limit theorem

for multipower variation in a pure diffusion framework (see Barndorff-Nielsen,

Graversen, Jacod, Podolskij & Shephard [6]).

4 Simulation study

In this section, we inspect the finite sample properties of various proposed es-

timators for both integrated volatility and quarticity through Monte Carlo ex-

periments. Moreover, we compare our estimators’ behaviour with the properties

of the corresponding kernel-based estimators from Barndorff-Nielsen, Hansen,

Lunde & Shephard [7]. To this end, we choose the same stochastic volatility

model as in their work, namely

dXt = µdt + σtdWt, σt = exp(β0 + β1τt) (4.1)

dτt = ατtdt + dBt, corr(dWt, dBt) = ρ

with µ = 0.03, β0 = 0.3125, β1 = 0.12, α = −0.025 and ρ = −0.3. (Ui)0≤i≤n is

assumed to be i.i.d. normal distributed with variance ω2.

4.1 Simulation design

We create 20, 000 repetitions of the system in equation (4.1), for which we use

an Euler approximation and different values of n. Whenever we have to estimate

ω2, we choose ω̂2 as defined in (3.6).

Since we state propositions for a whole class of estimators, we do not focus on

one special estimator. To be precise, we investigate the finite sample properties

in three different situations.

13
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First we study the performance of MRV (Y )n as an estimator for the inte-

grated volatility and compare it with the corresponding kernel-based statistic

of Barndorff-Nielsen, Hansen, Lunde & Shephard [7], using the modified Tukey-

Hanning kernel. We denote this estimator by KB(Y )n. In Table 1 we present

the Monte Carlo results for both mean and variance of the two statistics for

n = 256, 1024, 4096, 9216, 16384, 25600 and ω2 = 0.01, 0.001, which is a reason-

able choice, since IV is about 2 in model (4.1). Moreover, Table 2 gives the finite

sample distribution of the standardised statistic in (3.21), which converges sta-

bly in law to a normal distribution. Table 3 shows the results of the asymptotic

analysis of the statistic

n
1
4

(

log
(

MRV (Y )n

)

− log
(

∫ 1

0
σ2

u du
))

βn/MRV (Y )n

D−→ N (0, 1), (4.2)

which is obtained via an application of the delta method.

Secondly, we analyse the performance of the estimation of the integrated

volatility in the presence of jumps. In this case we use the bipower estimator

MBV (Z)n, which is robust to jumps. We present the Monte Carlo results for

MBV (Z)n in Table 4.

At last, we analyse how well MRQ(Y )n works as an estimator for the in-

tegrated quarticity in contrast to the proposed bipower variation estimator in

Barndorff-Nielsen, Hansen, Lunde & Shephard [7], which we call BP (Y )n. Note

that BP (Y )n has a convergence rate of n− 1
6 , which is obviously slower than the

convergence rate of our estimator MRQ(Y )n. The Monte Carlo results for model

(4.1) are given in Table 5, whereas Table 6 shows the results in the quite simple

setting

dXt = µdt + dWt (4.3)

with µ = 0.03 as above, which we consider additionally.

As mentioned in (3.22), the asymptotic (conditional) variance of the estima-

tors MRV (Y )n and MBV (Y )n can be minimized for an appropriate choice of c1

and c2, which in principal can be estimated from the data. Nevertheless, since

K, M and n
M

all have to be integers, it is pretty uncertain that an optimal choice

of c1 and c2 is feasible, when n is fixed. In practice, one should therefore estimate

both IV and ω2 from the data and choose reasonable values of c1 and c2, which

yield feasible K and M . In these simulations the described procedure leads to

c1 = 0.25 for ω2 = 0.01 and c1 = 0.125 for ω2 = 0.001, whereas c2 = 2. Since the

computation of the optimal values of c1 and c2 for the estimation of IQ involves

14
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the solution of polynomial equations with higher degrees than two, we have dis-

pensed with this analysis and set c1 = 1 and c2 = 1.6, both for ω2 = 0.01 and

ω2 = 0.001. To produce the process J we allocate one jump in the interval [0,1].

The arrival time of this jump is considered to be uniformly distributed, whereas

the jump size is N(0, h2) distributed with h = 0.1, 0.25.

4.2 Results

Since our aim is mainly to give an idea of how well the different estimators work,

we content ourselves with computing the estimated mean and variance of the

bias-corrected statistics. Except for MRV (Y )n we therefore do not evaluate the

accuracy of the stated central limit theorems.

[ INSERT TABLE 1 ABOUT HERE ]

Table 1 shows that MRV (Y )n works quite well as an estimator of the inte-

grated volatility in the noisy diffusion setting, since both bias and variance are

rather small, at least for sample sizes larger than n = 1024. For large values of

n and ω2 = 0.01 it provides even better finite sample properties than KB(Y )n,

whereas the kernel-based estimator improves a lot, when the variance of the noise

terms becomes smaller. Nevertheless, MRV (Y )n is a serious alternative to the

kernel-based estimator, especially for large values of ω2.

[ INSERT TABLES 2 AND 3 ABOUT HERE ]

Table 2 indicates that the behaviour of the standardised statistic depends

slightly on ω2. For a large variance of the noise term the distribution seems

to be shifted to the left, since there is a negative bias and all quantiles are

overestimated. For ω2 = 0.001 the estimator’s properties improve, since both

bias and variance diminish. However, it has a small positive bias, whereas all

quantiles are still overestimated. In both cases it takes rather large samples

to provide a good approximation of a standard normal distribution. We suggest

that these effects are caused by a large variance of the estimator of the integrated

quarticity. A more detailed analysis of this issue is stated below.

The transition to the log-transformed statistic given by (4.2) yields an obvious

improvement in the approximation of the limiting normal distribution. Table

3 shows that this statistic provides very good finite sample properties in the

case of ω2 = 0.01, even for small sample sizes. For ω2 = 0.001 there is less

improvement, but still the estimation of the quantiles becomes more accurate.
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Therefore, it is preferable to use the log-transformation in practice, when one

constructs confidence sets or tests.

[ INSERT TABLE 4 ABOUT HERE ]

From Table 4 we conclude that in the noisy jump-diffusion framework the pro-

posed bipower estimator MBV (Z)n works quite well. The bias and the variance

of MBV (Z)n are both rather small even for moderate values of n.

[ INSERT TABLES 5 and 6 ABOUT HERE ]

Table 5 demonstrates the finite sample properties of MRQ(Y )n and BP (Y )n

as estimates of the integrated quarticity in the noisy diffusion model. While

the bias of our estimator MRQ(Y )n is much smaller than the bias of BP (Y )n

for all n and ω2, the variance of both estimators is rather large. This feature

is explained by a large value of
∫ 1

0
σ8

udu in model (4.1), which appears in the

variance term for the integrated quarticity.

To reduce the impact of
∫ 1

0
σ8

udu we present the finite sample properties of

MRQ(Y )n and BP (Y )n in Table 6 in the less complex model (4.3). We ob-

serve that the variance of BP (Y )n is smaller than that of MRQ(Y )n, although

BP (Y )n has a slower rate of convergence. However, we think that the efficiency

of MRQ(Y )n can be improved by choosing the constants c1 and c2 optimally.

5 Conclusions and directions for future research

In this paper we proposed to use the modulated bipower (multipower) varia-

tion to estimate some functionals of volatility in the simultaneous presence of

noise and jumps. We constructed some estimates of integrated volatility and

integrated quarticity and proved their consistency. Furthermore, we showed the

stable convergence of the modulated bipower variation with an optimal conver-

gence rate n− 1
4 . Finally, the Monte Carlo study indicates that our estimators are

quite efficient at sampling frequencies normally used in applied work.

This paper highlights the potential of the modulated bipower approach, and

we are convinced that many unsolved problems in a noisy (jump-)diffusion frame-

work can be tackled by our methods. Let us mention some most important di-

rections for future research. First, we intend to modify our approach by putting

different weights on the increments of the process Y in order to obtain more

efficient estimators of integrated volatility and integrated quarticity. Second, we

plan to derive a multivariate version of the current approach. This can be used
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to estimate the quadratic covariation, which is a key concept in econometrics

(see Brandt & Diebold [14], Griffin & Oomen [21] or Sheppard [30]), in the pres-

ence of noise. An interesting and very important modification of this problem is

the estimation of the quadratic covariation for non-synchronously observed data

in the presence of noise (see Hayashi & Yoshida [23] for more details in a pure

diffusion case). Further, a joint asymptotic distribution theory for multiscale

estimator (or realised kernel estimator) and the robust estimator MBV (Y, 1, 1)n

would allow to test for finite activity jumps in a noisy jump-diffusion model.

6 Appendix

In the following we assume without loss of generality that a, σ, a′, σ′ and v′ are

bounded (for details see e.g. Barndorff-Nielsen, Graversen, Jacod, Podolskij &

Shephard [6]). Moreover, the constants that appear in the proofs are all denoted

by C.

First, we show that replacing ν
(n)
1 defined in (3.9) by ν1 does not influence

the consistency and the central limit theorem.

Lemma 1 We have
∫ 1

0

(ν1σ
2
u + ν2ω

2)
r+l
2 du −

∫ 1

0

(ν
(n)
1 σ2

u + ν2ω
2)

r+l
2 du = op(n

− 1
4 )

for all r, l ≥ 0.

Proof of Lemma 1 For r+l
2

≥ 1 we obtain by the mean value theorem and

boundedness of σ
∫ 1

0

(ν1σ
2
u + ν2ω

2)
r+l
2 du −

∫ 1

0

(ν
(n)
1 σ2

u + ν2ω
2)

r+l
2 du ≤ C(ν1 − ν

(n)
1 ) = op(n

− 1
4 ).

When 0 < r+l
2

< 1 we have

∫ 1

0

(ν1σ
2
u+ν2ω

2)
r+l
2 du−

∫ 1

0

(ν
(n)
1 σ2

u+ν2ω
2)

r+l
2 du ≤ (ν2ω

2)
r+l
2

−1(ν1−ν
(n)
1 ) = op(n

− 1
4 ) ,

and the proof is complete. �

Before we start with the proofs of main results, we introduce some more no-

tations and prove some simple Lemmata. We consider the quantities

βn
m = n

1
4 (σm−1

M
W̄ (K)

m + Ū (K)
m ) β

′n
m = n

1
4 (σm−1

M
W̄

(K)
m+1 + Ū

(K)
m+1), (6.1)
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which approximate Ȳ
(K)
m and Ȳ

(K)
m+1, respectively, by using the associated incre-

ments of the underlying Brownian motion W . We further define

ξn
m = n

1
4 Ȳ (K)

m − βn
m ξ

′n
m = n

1
4 Ȳ

(K)
m+1 − β

′n
m (6.2)

as the differences between the true quantities and their approximations. We

further set f(x) := |x|r and g(x) := |x|l. In the next Lemma we study the

stochastic order of the terms βn
m and ξn

m.

Lemma 2 We have

E[|ξn
m|q] + E[|ξ′n

m |q] + E[|n 1
4 X̄(K)

m |q] < C (6.3)

for any q > 0, and

E[|βn
m|q] + E[|β ′n

m |q] + E[|n 1
4 Ȳ (K)

m |q] < C (6.4)

for any 0 < q < 2(r + l) + ǫ with ǫ as stated in Theorem 1. Both results hold

uniformly in m.

Proof of Lemma 2 We begin with the proof of (6.3). In the case q ≥ 1 this

property follows from

E[|ξn
m|q] = E

[
∣

∣

∣

n
1
4

n
M

− K + 1

nm
M

−K
∑

i= n(m−1)
M

(X i+K
n

− X i
n
) − σm−1

M
(W i+K

n
− W i

n
)
∣

∣

∣

q]

(6.5)

≤ 1
n
M

− K + 1

nm
M

−K
∑

i=
n(m−1)

M

E
[
∣

∣

∣
n

1
4 ((X i+K

n
− X i

n
) − σm−1

M
(W i+K

n
− W i

n
))
∣

∣

∣

q]

=
1

n
M

− K + 1

nm
M

−K
∑

i=
n(m−1)

M

E
[
∣

∣

∣
n

1
4

(

∫ i+K
n

i
n

asds +

∫ i+K
n

i
n

(σs − σm−1
M

)dWs

)
∣

∣

∣

q]

,

the boundedness of the functions a and σ, and a use of Burkholder’s inequality.

For q < 1 Jensen’s inequality yields

E[|ξn
m|q] ≤ E[|ξn

m|]q ,

and we obtain (6.3) just as above. The corresponding assertion for n
1
4 X̄

(K)
m can

be shown analogously.

Now let us prove (6.4). For q ≥ 1 we have

E[|n 1
4 Ȳ (K)

m |q] ≤ C(E[|n 1
4 Ū (K)

m |q] + E[|n 1
4 X̄(K)

m |q])
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Investigating the asymptotic behaviour of Ū
(K)
m it can be shown that n

1
4 Ū

(K)
m can

be rewritten as a weighted sum of independent random variables, for which the

convergence in distribution

n
1
4 Ū (K)

m
D−→ N (0, ν2ω

2)

holds. Using the continuity theorem and the moment assumption for each

0 < q < 2(r + l) + ǫ we obtain by uniform integrability of |n 1
4 Ū

(K)
m |q that

E[|n 1
4 Ū

(K)
m |q] is bounded. This proves (6.4) for n

1
4 Ȳ

(K)
m . The corresponding result

for the quantities βn
m and β

′n
m can be shown analogously. �

The next Lemma will be used later to obtain (6.9) from (6.10). For a more

general setting see Lemma 5.4 in Barndorff-Nielsen, Graversen, Jacod, Podolskij

& Shephard [6].

Lemma 3 If

Zn
m := 1 + |µn

m| + |µ′n
m| + |µ′′n

m |

satisfies E[|Zn
m|q] < C for all 0 < q < 2(r + l) + ǫ and if further

1

M

M
∑

m=1

E[|µ′n
m − µ

′′n
m |2] → 0 (6.6)

holds, then we have

1

M

M
∑

m=1

E[f 2(µn
m)(g(µ

′n
m) − g(µ

′′n
m ))2] → 0.

Proof of Lemma 3 We define

θn
m := f 2(µn

m)(g(µ
′n
m) − g(µ

′′n
m ))2

and

mA(δ) := sup{|g(x) − g(y)| : |x − y| < δ, |x| ≤ A}.

For all A > 1 and 0 < δ < 1 we have

θn
m ≤ C(A2rmA(δ)2 + A2(r+l)1{|µ′n

m−µ′′n
m |>δ} + (Zn

m)2(r+l)(1{|µn
m|>A} + 1{|µ′n

m |>A} + 1{|µ′′n
m |>A}))

≤ C(A2rmA(δ)2 + A2(r+l) |µ
′n
m − µ

′′n
m |2

δ2
+

(Zn
m)2(r+l)+ǫ′

Aǫ′
)

for some ǫ′ < ǫ. Since E[(Zn
m)2(r+l)+ǫ′ ] is bounded, we obtain

1

M

M
∑

m=1

E[θn
m] ≤ C(A2rmA(δ)2 +

M
∑

m=1

A2(r+l)

Mδ2
|µ′n

m − µ
′′n
m |2 +

1

Aǫ
).
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For each A we have mA(δ) → 0. Therefore the assertion follows from (6.6). �

Proof of Theorem 1

We introduce the quantities

MBV n :=
M
∑

m=1

ηn
m and MBV

′n :=
M
∑

m=1

η
′n
m ,

where ηn
m and η

′n
m are defined by

ηn
m :=

n
r+l
4

c1c2
E[|Ȳ (K)

m |r|Ȳ (K)
m+1|l|Fm−1

M
]

and

η
′n
m :=

µrµl

c1c2
(ν1σ

2
m−1

M
+ ν2ω

2)
r+l
2 ,

respectively. Riemann integrability yields

1

M
MBV

′n P−→ MBV (Y, r, l),

so we are forced to prove

MBV (Y, r, l)n − 1

M
MBV n P−→ 0 (6.7)

and

1

M
(MBV n − MBV

′n)
P−→ 0 (6.8)

in two steps.

Considering the first step we recall the identity
√

n = c1c2M and obtain therefore

MBV (Y, r, l)n − 1

M
MBV n =

M
∑

m=1

(

γm − E[γm|Fm−1
M

]
)

,

where γm is given by

γm = n
(r+l)

4
− 1

2 |Ȳ (K)
m |r|Ȳ (K)

m+1|l.

Using Lenglart’s inequality (for details see Lemma 5.2 in Barndorff-Nielsen, Gra-

versen, Jacod, Podolskij & Shephard [6]) we find that the stochastic convergence

stated in (6.7) follows from

M
∑

m=1

E[|γm|2|Fm−1
M

] =
1

n

M
∑

m=1

E[|n 1
4 Ȳ (K)

m |2r|n 1
4 Ȳ

(K)
m+1|2l|Fm−1

M
]

P−→ 0.
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Using Hölder’s inequality we find

E[|n 1
4 Ȳ (K)

m |2r|n 1
4 Ȳ

(K)
m+1|2l|Fm−1

M
]

≤ (E[|n 1
4 Ȳ (K)

m |2(r+l)|Fm−1
M

])
1
p 1(E[|n 1

4 Ȳ
(K)
m+1|2(r+l)|Fm−1

M
])

1
p 2

with p1 = l
r
+1 and p2 = r

l
+1. We therefore obtain the desired result by noting

that

E[|n 1
4 Ȳ (K)

m |2(r+l)] = O(1)

holds (uniformly in m), which is an application of Lemma 2. This completes the

proof of (6.7).

To prove the assertion in (6.8) we recall that f(x) = |x|r and g(x) = |x|l and

observe the identity

E[n
r+l
4 f(σm−1

M
W̄ (K)

m +Ū (K)
m )g(σm−1

M
W̄

(K)
m+1+Ū

(K)
m+1)|Fm−1

M
] =

µrµl

c1c2
(ν

(n)
1 σ2

m−1
M

+ν2ω
2)

r+l
2 .

By Lemma 1 we obtain

1

M
(MBV n − MBV

′n) =
1

M

M
∑

m=1

E[ζn
m|Fm−1

M
] + op(1)

with

ζn
m =

n
r+l
4

c1c2
(f(Ȳ (K)

m )g(Ȳ
(K)
m+1) − f(σm−1

M
W̄ (K)

m + Ū (K)
m )g(σm−1

M
W̄

(K)
m+1 + Ū

(K)
m+1)).

To obtain the desired result it suffices to show

1

M

M
∑

m=1

E[|ζn
m|] → 0.

We use the Cauchy-Schwarz inequality to obtain

1

M

M
∑

m=1

E[|ζn
m|] ≤

( 1

M

M
∑

m=1

E[|ζn
m|2]

)
1
2

,

from which we deduce that the assertion holds when

1

M

M
∑

m=1

E[|ζn
m|2] → 0. (6.9)

In a first step we obtain for some constant C > 0

|ζn
m|2 =

1

c2
1c

2
2

(f(ξn
m + βn

m)g(ξn
m+1 + βn

m+1) − f(βn
m)g(β

′n
m ))2

≤ C(g2(ξn
m+1 + βn

m+1)(f(ξn
m + βn

m) − f(βn
m))2

+ f 2(βn
m)(g(ξn

m+1 + βn
m+1) − g(βn

m+1))
2 + f 2(βn

m)(g(βn
m+1) − g(β

′n
m ))2) ,
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where the quantities βn
m and ξn

m are defined by (6.1) and (6.2), respectively. Since

we have shown in (6.3) and (6.4) that the conditions on the boundedness of Zn
m

in our application of Lemma 3 are fulfilled, it suffices to prove

1

M

M
∑

m=1

E[|ξn
m|2 + |ξn

m+1|2 + |βn
m+1 − β

′n
m |2] → 0 (6.10)

to obtain the assertion.

For the first term in (6.10) we have

E[|ξn
m|2] ≤

1
n
M

− K + 1

n
M

−K
∑

i=
n(m−1)

m

E
[
∣

∣

∣
n

1
4 ((X i+K

n
− X i

n
) − σm−1

M
(W i+K

n
− W i

n
))
∣

∣

∣

2]

as in (6.5). Using (2.5) and

(X i+K
n

− X i
n
) − σm−1

M
(W i+K

n
− W i

n
) =

∫ i+K
n

i
n

asds +

∫ i+K
n

i
n

(σs − σm−1
M

)ds

we obtain

E
[
∣

∣

∣
n

1
4 ((X i+K

n
− X i

n
) − σm−1

M
(W i+K

n
− W i

n
))
∣

∣

∣

2]

≤ C
(

n− 1
2 + n

1
2 E
[

∫ i+K
n

i
n

(σs − σm−1
M

)2ds
])

≤ C
(

n− 1
2 + n

1
2 E
[

∫ m
M

m−1
M

(σs − σm−1
M

)2ds
])

.

Consequently,

1

M

M
∑

m=1

E[|ξn
m|2] ≤ C

M
∑

m=1

E
[

∫ m
M

m−1
M

(σs − σm−1
M

)2ds
]

+ o(1)

= C
M
∑

m=1

E
[

∫ m
M

m−1
M

(σs − σ ⌊Ms⌋
M

)2ds
]

+ o(1)

= C

∫ 1

0

E
[

(σs − σ ⌊Ms⌋
M

)2
]

ds + o(1)

follows. Since σ is bounded and càdlàg, Lebesgue’s theorem yields

1

M

M
∑

m=1

E[|ξn
m|2] → 0

and as well for the second term in (6.10). We further have

βn
m+1 − β

′n
m = n

1
4 (σ m

M
− σm−1

M
)W̄

(K)
m+1.
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Since W̄
(K)
m+1 is independent of σt for any t ≤ m

M
we obtain

1

M

M
∑

m=1

E[|βn
m+1 − β

′n
m |2] ≤ C

M

M
∑

m=1

E[|σ m
M
− σm−1

M
|2]

≤ C

M

M
∑

m=1

E[|σ m
M
− σs|2 + |σs − σm−1

M
|2].

The assertion therefore follows with the same arguments as above. That com-

pletes the proof of (6.8). �

Proof of Theorem 2

Theorem 2 can be proven by the same methods as Theorem 1. �

Proof of Theorem 4

Here we mainly use the same techniques as presented in Barndorff-Nielsen, Gra-

versen, Jacod, Podolskij & Shephard [6] or Christensen & Podolskij [17]. We will

state the proof of the key steps and refer to the articles quoted above for the

details.

We define the quantity

Ln(r, l) = n− 1
4

M
∑

m=1

(

f(βn
m)g(β

′n
m ) − E[f(βn

m)g(β
′n
m )|Fm−1

M
]
)

, (6.11)

where the terms βn
m and β

′n
m are given by (6.1), and f(x) = |x|r, g(x) = |x|l. In

the next Lemma we state the central limit theorem for Ln(r, l).

Lemma 4 We have

Ln(r, l)
Dst−→ L(r, l) ,

where L(r, l) is defined in Theorem 4.

Proof of Lemma 4 First, note that

Ln(r, l) =
M+1
∑

m=2

θn
m + op(1) ,

where θn
m is given by

θn
m = n− 1

4

(

f(βn
m−1)

(

g(β
′n
m−1) − µl(ν

(n)
1 σ2

m−2
M

+ ν2ω
2)

l
2

)

+ µl(ν
(n)
1 σ2

m−1
M

+ ν2ω
2)

l
2

(

f(βn
m) − µr(ν

(n)
1 σ2

m−1
M

+ ν2ω
2)

r
2

))

.
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We have that

E[θn
m|Fm−1

M
] = 0 ,

and

M+1
∑

m=2

E[|θn
m|2|Fm−1

M
]

P−→ µ2rµ2l + 2µrµlµr+l − 3µ2
rµ

2
l

c1c2

∫ 1

0

(ν1σ
2
u + ν2ω

2)r+l du.

Next, let Z = W or B. Since θn
m is an even functional in W and B, and

(W, B)
D
= −(W, B), we obtain the identity

E[θn
m(Z m

M
− Zm−1

M
)|Fm−1

M
] = 0.

Finally, let N = (Nt)t∈[0,1] be a bounded martingale on
(

Ω,F , (Ft)t∈[0,1], P
)

,

which is orthogonal to W and B (i.e., with quadratic covariation [W, N ]t =

[B, N ]t = 0 almost surely). By the arguments of Barndorff-Nielsen, Graversen,

Jacod, Podolskij & Shephard [6] we have

E[θn
m(N m

M
− Nm−1

M
)|Fm−1

M
] = 0.

Now the stable convergence in Lemma 4 follows by Theorem IX 7.28 in Jacod &

Shiryaev [27]. �

Now we are left to prove the convergence

n
1
4

(

MBV (Y, r, l)n − MBV (Y, r, l)
)

− Ln(r, l)
P−→ 0. (6.12)

Due to the result of Lemma 1 the convergence in (6.12) is equivalent to

M
∑

m=1

E[ϑn
m|Fm−1

M
]

P−→ 0 , (6.13)

M
∑

m=1

ϑ
′n
m

P−→ 0 , (6.14)

with ϑn
m, ϑ

′n
m defined by

ϑn
m = n− 1

4

[

f(n
1
4 Ȳ (K)

m )g(n
1
4 Ȳ

(K)
m+1) − f(βn

m)g(β
′n
m )
]

,

ϑ
′n
m = n

1
4

∫ m
M

m−1
M

(

(ν1σ
2
u + ν2ω

2)
r+l
2 − (ν1σ

2
m−1

M
+ ν2ω

2)
r+l
2

)

du.

The convergence in (6.14) has been shown in Barndorff-Nielsen, Graversen, Ja-

cod, Podolskij & Shephard [6], and so we concentrate on proving (6.13). Observe

that

ϑn
m = n− 1

4 f(n
1
4 Ȳ (K)

m )
(

g(n
1
4 Ȳ

(K)
m+1) − g(β

′n
m )
)

+ n− 1
4 g(β

′n
m )
(

f(n
1
4 Ȳ (K)

m ) − f(βn
m)
)
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Now we obtain

M
∑

m=1

E[ϑn
m|Fm−1

M
] =

M
∑

m=1

E[ϑn
m(1) + ϑn

m(2)|Fm−1
M

] + op(1) , (6.15)

with ϑn
m(1), ϑn

m(2) defined by

ϑn
m(1) = n− 1

4∇g(β
′n
m )f(n

1
4 Ȳ (K)

m )ξ
′n
m ,

ϑn
m(2) = n− 1

4∇f(βn
m)g(β

′n
m )ξn

m ,

where ξn
m, ξ

′n
m are given by (6.2), and ∇h denotes the first derivative of h. In

fact, it is quite complicated to show (6.15) (especially when r or l ∈ (0, 1]), but

it can be proven exactly as in Barndorff-Nielsen, Graversen, Jacod, Podolskij &

Shephard [6]. Note also that when r or l ∈ (0, 1] the terms ∇g(β
′n
m ) and ∇f(βn

m)

are still well defined (almost surely), because σs 6= 0 for all s. Assumption (V)

implies the decomposition

ξn
m = ξn

m(1) + ξn
m(2) ,

where ξn
m(1), ξn

m(2) are defined by

ξn
m(1) =

n
1
4

n
M

− K + 1

n
M

−K
∑

i= n(m−1)
M

(

∫ i+K
n

i
n

(au − am−1
M

)du +

∫ i+K
n

i
n

(

∫ u

i
n

a′
sds

+

∫ u

i
n

(σ′
s− − σ′

m−1
M

)dWs +

∫ u

i
n

(v′
s− − v′

m−1
M

)dVs

)

dWu

)

,

ξn
m(2) =

n
1
4

n
M

− K + 1

n
M

−K
∑

i=
n(m−1)

M

(K

n
am−1

M
+ σ′

m−1
M

∫ i+K
n

i
n

(Wu − W i
n
)dWu

+ v′
m−1

M

∫ i+K
n

i
n

(Vu − V i
n
)dWu

)

,

and a similar representation holds for ξ
′n
m . Let us now prove that

M
∑

m=1

E[ϑn
m(2)|Fm−1

M
]

P−→ 0. (6.16)

A straightforward application of Burkholder’s inequality shows that

n− 1
4

M
∑

m=1

E[∇f(βn
m)g(β

′n
m )ξn

m(1)|Fm−1
M

]
P−→ 0.
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Next, note that since f is an even function ∇f is odd. Consequently, ∇f(βn
m)g(β

′n
m )ξn

m(2)

is an odd functional of (W, V, B). Since (W, V, B)
D
= −(W, V, B) we obatin

n− 1
4

M
∑

m=1

E[∇f(βn
m)g(β

′n
m )ξn

m(2)|Fm−1
M

] = 0 ,

which implies (6.16). Similarly we can show that

M
∑

m=1

E[ϑn
m(1)|Fm−1

M
]

P−→ 0 ,

which completes the proof of Theorem 4. �

Proof of Theorem 5

Theorem 5 can be proven by the same methods as Theorem 4. �
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ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRV (Y )n

256 0.1363 0.63 0.5245 1.782

1024 0.0433 0.219 0.1717 0.269

4096 0.0113 0.102 0.0478 0.055

9216 0.0045 0.064 0.0243 0.031

16384 0.0059 0.05 0.0129 0.021

25600 0.004 0.039 0.0094 0.017

KB(Y )n

256 -0.022 0.228 -0.0289 0.143

1024 0.0074 0.091 -0.0075 0.042

4096 0.0195 0.046 0.0004 0.015

9216 0.0203 0.038 0.001 0.009

16384 0.0201 0.04 0.001 0.007

25600 0.0178 0.046 0.0013 0.005

Table 1 gives the Monte Carlo results for mean and variance of both MRV (Y )n−
∫ 1

0
σ2

udu and KB(Y )n −
∫ 1

0
σ2

udu for various values of n and ω2. The data are

generated from the model (4.1).
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n Mean Variance 0.5% 2.5% 5% 95% 97.5% 99.5%

ω2 = 0.01

256 -0.1537 1.522 0.0438 0.0817 0.1123 0.9813 0.996 0.9999

1024 -0.107 1.208 0.0271 0.062 0.0924 0.9728 0.992 0.9995

4096 -0.1 1.124 0.02 0.0503 0.0814 0.9697 0.9887 0.9989

9216 -0.076 1.082 0.0161 0.0456 0.073 0.9653 0.9872 0.9987

16384 -0.0762 1.058 0.0139 0.0443 0.0712 0.9628 0.9861 0.9991

25600 -0.0608 1.043 0.0118 0.0398 0.068 0.9627 0.9846 0.9984

ω2 = 0.001

256 0.0024 1.352 0.0343 0.0697 0.0994 0.9948 0.9999 1

1024 0.0875 1.114 0.0189 0.0438 0.0677 0.9744 0.9941 0.9998

4096 0.0671 1.047 0.0122 0.0361 0.059 0.9611 0.9862 0.9981

9216 0.0342 1.032 0.011 0.0323 0.0561 0.9556 0.982 0.9977

16384 0.0186 1.039 0.0103 0.0339 0.0603 0.953 0.9796 0.9972

25600 0.0066 1.049 0.0091 0.0319 0.0578 0.9527 0.9801 0.9969

Table 2 prints mean and variance of the standardised statistic in (3.21) as well

as its simulated quantiles. Precisely, the last columns give the frequency of the

event that the value of the statistic lies below some typical quantiles of a standard

normal distribution. The data are generated from the model (4.1).
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n Mean Variance 0.5% 2.5% 5% 95% 97.5% 99.5%

ω2 = 0.01

256 0.0481 1.19 0.0073 0.0336 0.0631 0.9282 0.9614 0.9919

1024 0.0052 1.087 0.0077 0.0299 0.0582 0.9453 0.9714 0.9935

4096 -0.0103 1.046 0.0067 0.0298 0.0571 0.9484 0.9735 0.9945

9216 -0.0176 1.022 0.0066 0.0264 0.0537 0.9497 0.9745 0.994

16384 -0.019 1.025 0.0056 0.029 0.0565 0.9502 0.9757 0.9954

25600 -0.0207 1.009 0.0043 0.0257 0.0516 0.9509 0.975 0.9949

ω2 = 0.001

256 0.2156 1.345 0.01 0.0382 0.0653 0.8957 0.9549 0.9965

1024 0.1948 1.117 0.0067 0.0267 0.0489 0.9272 0.9718 0.9969

4096 0.1266 1.072 0.0065 0.0272 0.0482 0.9364 0.9707 0.994

9216 0.0938 1.041 0.0056 0.0252 0.0482 0.9376 0.9702 0.9943

16384 0.057 1.034 0.0056 0.0253 0.0505 0.9438 0.9738 0.9946

25600 0.046 1.021 0.0057 0.0233 0.0476 0.9438 0.973 0.9948

Table 3 prints mean and variance of the standardised statistic in (4.2) as well

as its simulated quantiles. Precisely, the last columns give the frequency of the

event that the value of the statistic lies below some typical quantiles of a standard

normal distribution. The data are generated from the model (4.1).
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ω2 = 0.01, h = 0.25 ω2 = 0.001, h = 0.25 ω2 = 0.001, h = 0.1

n Mean Variance Mean Variance Mean Variance

256 0.0582 0.614 -0.0839 0.332 -0.1224 0.29

1024 0.0835 0.295 0.0274 0.133 -0.102 0.112

4096 0.0707 0.15 0.0466 0.063 0.0184 0.056

9216 0.0642 0.102 0.0461 0.043 0.0107 0.038

16384 0.0599 0.076 0.044 0.032 0.025 0.028

25600 0.0566 0.059 0.0415 0.025 0.0181 0.023

Table 4 shows mean and variance of MBV (Z)n −
∫ 1

0
σ2

udu in the presence of

jumps. We choose the sample frequency as before and analyse the finite sample

properties for different values of ω2 and h, where h denotes the variance of the

jump size.

ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRQ(Y )n

256 0.0948 37.568 0.0976 37.282

1024 0.069 21.982 -0.058 14.315

4096 0.0271 8.587 0.0814 10.671

9216 0.0359 6.015 0.0471 5.942

16384 0.049 4.525 0.0532 4.326

25600 0.0279 3.34 0.0293 3.095

BP (Y )n

256 -1.169 8.628 -1.2835 7.595

1024 -0.6031 5.273 -0.6581 5.19

4096 -0.2556 3.286 -0.348 2.98

9216 -0.1304 2.134 -0.2024 2.031

16384 -0.0748 1.6 -0.1428 1.568

25600 0.0456 1.245 -0.1187 1.204

Table 5 shows the finite sample properties of MRQ(Y )n−
∫ 1

0
σ4

udu and BP (Y )n−
∫ 1

0
σ4

udu in model (4.1). Both sample frequency and noise are the same as in Ta-

ble 1.
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ω2 = 0.01 ω2 = 0.001

n Mean Variance Mean Variance

MRQ(Y )n

256 0.0745 1.348 0.0686 1.274

1024 0.0128 0.587 0.0121 0.557

4096 0.0135 0.306 0.0013 0.278

9216 0.0113 0.203 0.015 0.184

16384 0.0159 0.152 0.0155 0.14

25600 0.0088 0.117 0.0077 0.108

BP (Y )n

256 -0.2517 0.304 -0.2803 0.274

1024 -0.1811 0.186 -0.1434 0.169

4096 -0.0312 0.108 -0.0745 0.095

9216 -0.0089 0.077 -0.04 0.065

16384 0.0078 0.059 -0.0287 0.048

25600 0.0148 0.047 -0.0206 0.039

Table 6 shows the finite sample properties of MRQ(Y )n−
∫ 1

0
σ4

udu and BP (Y )n−
∫ 1

0
σ4

udu in model (4.3). Both sample frequency and noise are the same as in Ta-

ble 1.
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