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Abstract

We propose a new test for the parametric form of the volatility function in continuous

time diffusion models of the type dXt = a(t, Xt)dt + σ(t, Xt)dWt. Our approach involves

a range-based estimation of the integrated volatility and the integrated quarticity, which

are used to construct the test statistic. Under rather weak assumptions on the drift and

volatility we prove weak convergence of the test statistic to a centered mixed Gaussian

distribution. As a consequence we obtain a test, which is consistent for any fixed alter-

native. Moreover, we present a parametric bootstrap procedure which provides a better

approximation of the distribution of the test statistic. Finally, it is demonstrated by means

of Monte Carlo study that the range-based test is more powerful than the return-based test

when comparing at the same sampling frequency.
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1 Introduction

Continuous time stochastic processes are essential tools for theoretical asset and option pricing.

Ito diffusions, which are solutions of the stochastic differential equation

dXt = a(t,Xt)dt + σ(t,Xt)dWt t ∈ [0, 1] , (1)

where the interval [0, 1] typically represents a trading day, constitute a commonly used class

of processes for modelling the dynamics of asset prices or interest rates. Here W denotes

the Brownian motion, a is the drift function and σ is the volatility function, and the process

X = (Xt)t∈[0,1] is assumed to be observed at time points ti = i/N , i = 0, . . . , N .

In the last decades various parametric models have been proposed for different types of

options (see, for instance, Black & Scholes (1973), Vasicek (1977), Cox, Ingersoll & Ross (1985),

Karatzas (1988) or Constantinides (1992) among many others). An adequate modelling of the

volatility function σ in (1) is crucial for the option pricing and misspecification leads to serious

errors in the data analysis.

Surprisingly, there are only few theoretical results on tests of the parametric form of the

volatility in the high frequency setting (see Corradi & White (1999), Dette & von Lieres und

Wilkau (2003), Dette, Podolskij & Vetter (2006) and Dette & Podolskij (2006)). In the following

we present a consistent (range-based) test for the null hypothesis that the true volatility σ2 lies

in a vector space U , which is spanned by given volatility functions

σ2
1 , . . . , σ

2
d : [0, 1] × IR → IR , (2)

based on the high frequency observations Xi/N . The key issue of our approach is the quantity

M2 = min
α1,...,αd∈IRd

∫ 1

0

(

σ2(s,Xs) −
d

∑

j=1

αjσ
2
j (s,Xs)

)2
ds , (3)

which measures the L2-distance between σ2 and U . We construct a range-based estimator M2
N

of M2 and derive a central limit theorem for a standardised version of M2
N . We reject the null

hypothesis for large values of M2
N .

This method is similar in spirit to the procedure proposed by Dette, Podolskij & Vetter

(2006), who estimated M2 by means of return-based statistics (see also Dette & Podolskij

(2006) for an empirical process approach). However, practitioners usually use return-based

statistics based on moderate frequencies, say 5- or 10-minutes frequency, due to microstructure

noise which contaminates the true price process (indeed, Hansen & Lunde (2006) demonstrate

empirically that the microstructure noise can be ignored at moderate frequencies). Instead of

using 5- or 10-minutes returns we propose to use 5- or 10-minutes ranges which turn out to be

much more efficient. For this reason we expect to obtain a more powerful test than the one

proposed by Dette, Podolskij & Vetter (2006).
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This paper is organised as follows. In Section 2 we state the main assumptions and define

the range-based estimator M2
N of the distance measure M2. Furthermore, we prove a stable

central limit theorem for a standardised version of M2
N . As a result we obtain a consistent

test of the hypothesis that σ2 ∈ U . In Section 3 we study the finite sample performance of

our test by means of Monte Carlo simulations. Moreover, we introduce a parametric bootstrap

procedure which improves the power of the test. Finally, we demonstrate the proofs of the

asymptotic results in the Appendix.

2 Set-up and test procedure

We start with a filtered probability space (Ω,F , (Ft)t∈[0,1], P ). Here and throughout this paper

we assume that the stochastic differential equation (1) admits a unique strong solution X =

(Xt)t∈[0,1] with starting value X0 (X0 is assumed to be deterministic), which is adapted to

the filtration (Ft)t∈[0,1] (see e.g. Karatzas & Shreve (1991) p. 289 for sufficient conditions for

existence and uniqueness of a strong solution). In this case the process X has a representation

Xt = X0 +

∫ t

0
a(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , t ∈ [0, 1]. (4)

In this article we construct a new test for the hypothesis that the true volatility function σ2

can be represented as a linear combination of the functions σ2
1, . . . , σ

2
d given by (2), i.e.

σ2(t,Xt) =

d
∑

j=1

αjσ
2
j (t,Xt) ∀ t ∈ [0, 1] , (5)

for some α = (α1, . . . , αd)
T ∈ IRd, along the observed path (Xt(ω))t∈[0,1].

Remark 1 Let us consider an ideal situation of a complete observation of the path (Xt)t∈[0,1].

In this case we can of course tell whether (5) is true or not, but it is impossible to decide

whether the function σ2 can be represented as a linear combination of the functions σ2
1, . . . , σ

2
d

outside the set {Xt(ω)| t ∈ [0, 1]} or not. However, when the fuctions σ2, σ2
1 , . . . , σ

2
d are analytic

on [0, 1]× IR, then verifying (5) is obviously enough to conclude the corresponding assertion for

all (t, x) ∈ [0, 1] × IR (if the observed path of X is not constant).

Note that the representation (5) holds if and only if M2 = 0 along the observed path (Xt(ω))t∈[0,1].

Consequently, we define the null hypothesis and the alternative by

H0 : ω ∈ Ω0 = {ω ∈ Ω| M2(ω) = 0} , H1 : ω ∈ Ω1 = {ω ∈ Ω| M2(ω) > 0} , (6)

respectively.

Before we proceed with the discussion of the testing procedure we state some assumptions

which are required to prove the asymptotic results of this paper.
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(A1) The processes at = a(t,Xt), σt = σ(t,Xt), σ1t = σ1(t,Xt), . . . , σdt = σd(t,Xt) are contin-

uous.

(A2) The assumption (A1) holds and σ ∈ C1,2([0, 1] × IR) (i.e. the function σ is once contin-

uously differentiable in t and twice continuously differentiable in x). Furthermore, the process

σt does not vanish.

(A3) The functions σ2
1, . . . , σ

2
d are linearly independent on [0, 1] × [a, b] for any a < b.

Next, we demonstrate an equivalent representation of the quantity M2 given in (3). For this

purpose we define an inner product for (square integrable) functions f, g : [0, 1] × IR → IR by

[f, g] =

∫ 1

0
f(s,Xs)g(s,Xs)ds.

Notice that M2 is the L2-distance (induced by [·, ·]) between the function σ2 and the vector

space spanned by σ2
1 , . . . , σ

2
d. By standard arguments of the Hilbert space theory (see e.g.

Achieser (1956)) we immediately obtain the identity

M2 = C0 − (C1, . . . , Cd)D
−1(C1, . . . , Cd)

T ,

where the quantities C0, C1, . . . , Cd and D = (Dij)1≤i,j≤d are given by

C0 = [σ2, σ2] =

∫ 1

0
σ4(s,Xs)ds , (7)

Ci = [σ2
i , σ

2] =

∫ 1

0
σ2

i (s,Xs)σ
2(s,Xs)ds , 1 ≤ i ≤ d ,

Dij = [σ2
i , σ

2
j ] =

∫ 1

0
σ2

i (s,Xs)σ
2
j (s,Xs)ds , 1 ≤ i, j ≤ d.

Note that assumption (A3) implies the invertibility of the random matrix D as long as the

process X is not constant with positive probability.

In the following we use the range-based method discussed in Christensen & Podolskij

(2006a,b) to construct the empirical analogues of the terms defined in (7). Let us briefly

recall the basic ideas of this concept.

2.1 Range-based estimation

Assume that N = nm with n and m being two natural numbers. The observed range of the

process X on the interval [ i−1
n , i

n ] is defined by

si,n,m = sup
s,t∈[ i−1

n
, i
n

]∩IN

|Xt − Xs| , (8)
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with IN = {j/N | j = 0, . . . , N}. We write si,n,m(X) if we want to emphasise the dependence

on the process X. Note that the range statistic si,n,m is based on m + 1 observations recorded

in the interval [ i−1
n , i

n ], and when m = 1 we simply obtain the absolute returns.

The core of the range-based approach is the class of the realised range-based power variation

given by (r ≥ 0)

RPV (r)n,m = n
r
2
−1

n
∑

i=1

sr
i,n,m. (9)

Theorem 1 Assume that (A1) holds. As n → ∞ we obtain

sup
m

∣

∣

∣RPV (r)n,m − λr,m

∫ 1

0
|σ(s,Xs)|rds

∣

∣

∣

P−→ 0 , (10)

where the constant λr,m is defined by

λr,m = E[ sup
s,t∈[0,1]∩Im

|Wt − Ws|r]. (11)

Proof: See Christensen & Podolskij (2006b).

Remark 2 To the best of our knowledge there is no explicit expression for λr,m (however, it

can be easily computed by simulations). When ”m = ∞” the constant λr = limm→∞ λr,m is

obviously the rth moment of the range of the Brownian motion on the interval [0, 1]. Feller

(1951) showed that the density function of R = sups,t∈[0,1] |Wt − Ws| can be represented as

δ(x) = 8

∞
∑

k=1

(−1)k+1k2φ(kx) ,

where φ denotes the density function of a standard normal distribution. Using this formula we

can deduce that λr < ∞ for all r ∈ IR (!) and for r ≥ 1 we have

λr =
2

r
2
+1(r − 1)√

π
Γ
(r − 1

2

)

∞
∑

k=1

(−1)k+1

kr−1
r > 1 ,

λ1 =
2
√

2√
π

.

We refer to Podolskij (2006) for a detailed proof.

Theorem 1 already gives a hint how to construct the estimates of the terms defined in (7).

However, we need the asymptotic distribution theory to derive a test for the parametric form

of the volatility.

In the following discussion we will intensively use the concept of stable convergence. Let

us shortly recall the definition. A sequence of random variables Yn converges stably in law

with limit Y (throughout this paper we write Yn
Dst−→ Y ), defined on an appropriate extension

4
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(Ω′,F ′, P ′) of the probability space (Ω,F , P ), if and only if for any F-measurable and bounded

random variable Z and any bounded and continuous function g the convergence

lim
n→∞

E[Zg(Yn)] = E[Zg(Y )]

holds. This is obviously a slightly stronger mode of convergence than convergence in law (see

Renyi (1963) or Aldous & Eagleson (1978) for more details on stable convergence).

Theorem 2 Assume that (A2) holds. As n → ∞ (and m is fixed) we have

√
n
(

RPV (r)n,m − λr,m

∫ 1

0
|σ(s,Xs)|rds

)

Dst−→
√

λ2r,m − λ2
r,m

∫ 1

0
|σ(s,Xs)|rdW ′

s , (12)

where W ′ denotes another Brownian motion defined on an extension of the filtered probability

space (Ω,F , (Ft)t∈[0,1], P ) and independent of the σ-field F .

Proof: See Christensen & Podolskij (2006b).

Even though we have formulated Theorem 2 for a fixed m it also holds for the case ”m = ∞”.

Notice that assumption (A2) and the Ito’s formula imply that the volatility process (σt) is

an Ito diffusion, which is in turn a standard condition for stable central limit theorems in high

frequency setting (see, for instance, Barndorff-Nielsen, Graversen, Jacod, Podolskij & Shephard

(2006) or Christensen & Podolskij (2006a,b)).

From Theorem 1 we can conclude that the statistic λ−1
2,mRPV (2)n,m is a consistent estimator

of the quantity
∫ 1
0 σ2(s,Xs)ds, which is often called the integrated volatility in the econometric

literature, whereas Theorem 2 gives the central limit theorem for this statistic. Note also that
∫ 1
0 σ2(s,Xs)ds is the quadratic variation of the process X at time 1. Now let us compare the

efficiency of the above range-based estimator with the efficiency of the ”usual” estimator of the

integrated volatility. Recall that the estimator

RVn =

n
∑

i=1

(X i
n
− X i−1

n

)2 , (13)

which is often referred to as the realised volatility, is also a consistent estimator of the integrated

volatility. In fact, it is a very natural estimator because RVn converges in probability to
∫ 1
0 σ2(s,Xs)ds by the definition of the quadratic variation. From Barndorff-Nielsen, Graversen,

Jacod, Podolskij & Shephard (2006) and Theorem 2 we deduce the following stable central

limit theorems:

√
n
(

RVn −
∫ 1

0
σ2(s,Xs)ds

)

Dst−→ MN
(

0, 2

∫ 1

0
σ4(s,Xs)ds

)

,

√
n
(

λ−1
2,mRPV (2)n,m −

∫ 1

0
σ2(s,Xs)ds

)

Dst−→ MN
(

0,
λ4,m − λ2

2,m

λ2
2,m

∫ 1

0
σ4(s,Xs)ds

)

.

5
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Here MN(0, η2) denotes the mixed normal distribution with conditional variance η2 (in fact, the

above stable convergence is an equivalent way of determining the stable limit). In Christensen

& Podolskij (2006a) we have shown that

lim
m→∞

λ4,m − λ2
2,m

λ2
2,m

≈ 0.4 ,
λ4,m − λ2

2,m

λ2
2,m

≤ 2 for all m.

This means that the range-based estimator λ−1
2,mRPV (2)n,m is more efficient than RVn.

Note, however, that statistically the above comparison is unfair, because λ−1
2,mRPV (2)n,m is

based on nm observations whereas RVn is based only on n observations (actually RVn is known

to be the maximum likelihood estimator of the integrated volatility when the drift function a

is zero and the volatility is constant). Nevertheless, the range-based estimator λ−1
2,mRPV (2)n,m

has some practical advantages. It is widely accepted in the econometric literature that the

price process X is contaminated by microstructure noise (see e.g. Barndorff-Nielsen & Shep-

hard (2007)). This means that the realised volatility becomes an inadequate measure of the

integrated volatility when using all observed data. For this reason practitioners usually use

moderate frequencies, like 5- or 10-minutes frequencies, to compute the realised volatility, since

the influence of the noise at those frequencies can be ignored (see Hansen & Lunde (2006) for

empirical justification of this procedure). Christensen & Podolskij (2006a) have proposed to

use 5- or 10-minutes ranges instead of 5- or 10-minutes returns to construct an estimator of the

integrated volatility (see also Martens & van Dijk (2005) for empirical comparison between the

range-based and return-based approach). The above-mentioned central limit theorems approve

the advantages of the range-based method.

2.2 Testing procedure

We are now in a position to construct consistent estimates of the quantities C0, C1, . . . , Cd and

D defined by (7). We consider the statistics

Cn,m
0 = λ−1

4,mn
n

∑

k=1

s4
k,n,m , (14)

Cn,m
i = λ−1

2,m

n
∑

k=1

σ2
i (

k − 1

n
,Xk−1

n

)s2
k,n,m , 1 ≤ i ≤ d ,

Dn
ij =

1

n

n
∑

k=1

σ2
i (

k − 1

n
,Xk−1

n

)σ2
j (

k − 1

n
,Xk−1

n

) , 1 ≤ i, j ≤ d.

Under assumption (A1) Cn,m
0 , Cn,m

1 , . . . , Cn,m
d and Dn converge in probability to C0, C1, . . . , Cd

and D, respectively, and we obtain

M2
N = Cn,m

0 − (Cn,m
1 , . . . , Cn,m

d )(Dn)−1(Cn,m
1 , . . . , Cn,m

d )T (15)

6
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as a consistent estimator of the distance measure M2. The next theorem demonstrates the

stable convergence of the vector
√

n(Cn,m
0 − C0, C

n,m
1 − C1, . . . , C

n,m
d − Cd)

T .

Theorem 3 Assume that conditions (A2) and (A3) holds. As n → ∞ (and m is fixed) we

have

Dn − D = op(n
− 1

2 ) ,

and

√
n















Cn,m
0 − C0

Cn,m
1 − C1

...

Cn,m
d − Cd















Dst−→
∫ 1

0
Σ

1

2

s dW ′
s , (16)

where Σs is (d + 1)-dimensional matrix given by

Σs =















v(s) v1(s) · · · vd(s)

v1(s) v11(s) · · · v1d(s)
...

...
. . .

...

vd(s) vd1(s) · · · vdd(s)















(17)

with

v(s) =
λ8,m − λ2

4,m

λ2
4,m

σ8(s,Xs) , (18)

vi(s) =
λ6,m − λ4,mλ2,m

λ4,mλ2,m
σ2

i (s,Xs)σ
6(s,Xs) , 1 ≤ i ≤ d (19)

vij(s) =
λ4,m − λ2

2,m

λ2
2,m

σ2
i (s,Xs)σ

2
j (s,Xs)σ

4(s,Xs) , 1 ≤ i, j ≤ d , (20)

and W ′ is a (d + 1)-dimensional Brownian motion defined on an extension of the filtered

probability space (Ω,F , (Ft)t∈[0,1], P ) and independent of the σ-field F .

Proof: see Appendix.

As we have already mentioned we can alternatively identify the stable limit in Theorem 3 as

being mixed normal with conditional variance
∫ 1
0 Σsds. By a ∆-method for stable convergence

(see Podolskij (2006) for more details on the ∆-method) we deduce the following result.

Corollary 1 Assume that conditions (A2) and (A3) hold. As n → ∞ (and m is fixed) we

have
√

n
(

M2
N − M2

)

Dst−→
(

1,−2(C1, . . . , Cd)D
−1

)

∫ 1

0
Σ

1

2

s dW ′
s , (21)

where W ′ is a (d + 1)-dimensional Brownian motion defined on an extension of the filtered

probability space (Ω,F , (Ft)t∈[0,1], P ) and independent of the σ-field F .

7
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Now we demonstrate how Corollary 1 can be applied in order to obtain a feasible (standard)

central limit theorem. Notice that the stable limit in (21) is mixed normal with conditional

variance

ρ2 =
(

1,−2(C1, . . . , Cd)D
−1

)

∫ 1

0
Σsds

(

1,−2(C1, . . . , Cd)D
−1

)T
.

Using again a version of Theorem 1 we obtain

ρ2
N =

(

1,−2(Cn,m
1 , . . . , Cn,m

d )(Dn)−1
)

ΣN

(

1,−2(Cn,m
1 , . . . , Cn,m

d )(Dn)−1
)T

,

where ΣN is given by

ΣN =















vN vN
1 · · · vN

d

vN
1 vN

11 · · · vN
1d

...
...

. . .
...

vN
d vN

d1 · · · vN
dd















with

vN =
λ8,m − λ2

4,m

λ2
4,mλ8,m

n3
n

∑

k=1

s8
k,n,m ,

vN
i =

λ6,m − λ4,mλ2,m

λ4,mλ2,mλ6,m
n2

n
∑

k=1

σ2
i (

k − 1

n
,Xk−1

n

)s6
k,n,m , 1 ≤ i ≤ d

vN
ij =

λ4,m − λ2
2,m

λ2
2,mλ4,m

n

n
∑

k=1

σ2
i (

k − 1

n
,Xk−1

n

)σ2
j (

k − 1

n
,Xk−1

n

)s4
k,n,m , 1 ≤ i, j ≤ d ,

as a consistent estimator of ρ2. The properties of stable convergence immediately imply the

stable convergence √
n
(

M2
N − M2

)

ρN

Dst−→ W ′
1.

With this result in hand we are able to test for the parametric form of the volatility function.

The null hypothesis H0 : ω ∈ Ω0 is rejected at level α when

√
nM2

N

ρN
> c1−α ,

where c1−α denotes the (1 − α)–quantile of a standard normal distribution. Indeed, the inde-

pendence between W ′ and F implies the convergence

P
(

√
nM2

N

ρN
> c1−α|Ω0

)

→ α.

On the other hand it holds that

P
(

√
nM2

N

ρN
> c1−α|Ω1

)

→ 1 ,

and consequently the resulting test is consistent against any fixed alternative.

8
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Remark 3 In practice, it is quite unrealistic to expect the true volatility function σ2 to be

representable as a linear combination of the given functions σ2
1, . . . , σ

2
d. A much more interesting

question is: how close is σ2 to the vector space spanned by σ2
1 , . . . , σ

2
d? Notice, however, that

the quantity M2 is not an adequate measure for this problem until we put it in relation to the

norm of σ2 induced by [·, ·]. This leads to precise neighborhood hypotheses

H0 : ω ∈ Ω0(ǫ) = {ω ∈ Ω| M2(ω)

[σ2, σ2](ω)
≤ ǫ} , H1 : ω ∈ Ω1(ǫ) = {ω ∈ Ω| M2(ω)

[σ2, σ2](ω)
> ǫ} ,

(22)

where 0 < ǫ < 1 is a given constant (recall that [σ2, σ2] = C0 =
∫ 1
0 σ4

sds). Hypotheses of this

type have been discussed by Hodges & Lehmann (1954) in a classical setting.

By Theorem 3 and the ∆-method for stable convergence we obtain

√
n
( M2

N

Cn,m
0

− M2

C0

)

Dst−→ MN(0, ρ̃2) ,

with

ρ̃2 =
((C1, . . . , Cd)D

−1(C1, . . . , Cd)
T

C2
0

,
−2(C1, . . . , Cd)D

−1

C0

)

∫ 1

0
Σsds

×
((C1, . . . , Cd)D

−1(C1, . . . , Cd)
T

C2
0

,
−2(C1, . . . , Cd)D

−1

C0

)T
.

The conditional variance ρ̃2 can be consistently estimated by

ρ̃2
N =

((Cn,m
1 , . . . , Cn,m

d )(Dn)−1(Cn,m
1 , . . . , Cn,m

d )T

(Cn,m
0 )2

,
−2(Cn,m

1 , . . . , Cn,m
d )(Dn)−1

Cn,m
0

)

ΣN

×
((Cn,m

1 , . . . , Cn,m
d )(Dn)−1(Cn,m

1 , . . . , Cn,m
d )T

(Cn,m
0 )2

,
−2(Cn,m

1 , . . . , Cn,m
d )(Dn)−1

Cn,m
0

)T
.

Consequently, the null hypothesis H0 : ω ∈ Ω0(ǫ) is rejected at level α when

√
n
(

M2

N

Cn,m
0

− ǫ
)

ρ̃N
> c1−α.

Note that the independence between W ′ and F implies

P
(

√
n
(

M2

N

Cn,m
0

− ǫ
)

ρ̃N
> c1−α|Ω0(ǫ)

)

≤ P
(

√
n
(

M2

N

Cn,m
0

− M2

C0

)

ρ̃N
> c1−α|Ω0(ǫ)

)

→ α (23)

and

P
(

√
n
(

M2

N

Cn,m
0

− ǫ
)

ρ̃N
> c1−α|Ω1(ǫ)

)

→ 1.

As a consequence of the latter convergence the test is consistent against any alternative.

9
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3 Parametric bootstrap and finite sample properties

3.1 Parametric bootstrap

In order to improve the finite sample properties we introduce a parametric bootstrap procedure.

Throughout this subsection we assume that the functions σ2, σ2
1 , . . . , σ

2
d are analytic on [0, 1]×

IR. In a first step we consider a coefficient vector αmin = (αmin
1 , . . . , αmin

d )T defined by

αmin = argmin(α1,...,αd)T ∈IRd

∫ 1

0

(

σ2(s,Xs) −
d

∑

j=1

αjσ
2
j (s,Xs)

)2
ds. (24)

Applying Hilbert space arguments we obtain the representation

αmin = D−1(C1, . . . , Cd)
T ,

where the quantities D and C are defined by (7), and consequently a consistent estimator of

αmin is given by

αmin
N = (Dn)−1(Cn,m

1 , . . . , Cn,m
d )T .

In a second step we generate the data X∗j
i
N

(i = 0, . . . , N , j = 1, . . . , B) from the stochastic

differential equation

dXt =

d
∑

j=1

αmin
jN σj(t,Xt)dWt , t ∈ [0, 1]

(recall that the drift function a does not influence the distribution theory) and compute the

bootstrap analogues √
nM2

N (1)

ρN (1)
, . . . ,

√
nM2

N (B)

ρN (B)

of the statistic
√

nM2
N/ρN . Finally, the value of

√
nM2

N/ρN is compared with the corresponding

quantiles of the bootstrap distribution. Note that this bootstrap procedure makes sense due

to the fact that the functions σ2, σ2
1 , . . . , σ

2
d are analytic on [0, 1] × IR.

In the following we compare the finite sample performance of the range-based test with one

proposed by Dette, Podolskij & Vetter (2006). Let us briefly recall the construction of the test

proposed in this article. The distance measure M2 is estimated by the return-based statistic

M̃2
n = C̃n

0 − (C̃n
1 , . . . , C̃n

d )(Dn)−1(C̃n
1 , . . . , C̃n

d )T ,

with

C̃n
0 =

n

3

n
∑

k=1

(X k
n

− Xk−1

n

)4 ,

C̃n
i =

n
∑

k=1

σ2
i (

k − 1

n
,Xk−1

n

)(X k
n

− Xk−1

n

)2 , 1 ≤ i ≤ d.

10
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Recall that the quantity M̃2
n is based on a moderate frequency 1/n (rather than 1/N), be-

cause return-based statistics computed at ultra-high frequencies are not adequate estimators

in practice (due to microstructure noise). Dette, Podolskij & Vetter (2006) have shown that
√

n(M̃2
n − M2) is asymptotically mixed normal with conditional variance

ρ̃2 =
(

1,−2(C1, . . . , Cd)D
−1

)

∫ 1

0
Σ̃sds

(

1,−2(C1, . . . , Cd)D
−1

)T
,

where Σ̃s is defined by

Σ̃s =















ṽ(s) ṽ1(s) · · · ṽd(s)

ṽ1(s) ṽ11(s) · · · ṽ1d(s)
...

...
. . .

...

ṽd(s) ṽd1(s) · · · ṽdd(s)















with

ṽ(s) =
32

3
σ8(s,Xs) ,

ṽi(s) = 4σ2
i (s,Xs)σ

6(s,Xs) , 1 ≤ i ≤ d

ṽij(s) = 2σ2
i (s,Xs)σ

2
j (s,Xs)σ

4(s,Xs) , 1 ≤ i, j ≤ d.

By defining a return-based estimator ρ̃2
n of ρ̃2 Dette, Podolskij & Vetter (2006) have obtained

a standard central limit theorem
√

n(M̃2
n − M2)

ρ̃n

D−→ N(0, 1) ,

which is used to construct the test for null hypothesis. Furthermore, Dette, Podolskij & Vetter

(2006) have also proposed to use a parametric bootstrap, similar to the described above, to

improve the finite sample properties.

3.2 Monte-Carlo simulations

We investigate the performance of the bootstrap procedure for the problem of testing various

linear hypotheses.

First, we demonstrate the simulated level of the range-based test obtained by applying the

parametric bootstrap. In Tables 1-3 we present the results for the null hypothesis

H0 : σ2(t,Xt) = αX2
t

and various drift functions a(t, x). We generate the process X from the stochastic differential

equation (1) with σ2(t, x) = x2 and initial value X0 = 1 (throughout this section we always

choose X0 = 1). The sample size (or the number of ranges) is n = 100, 200, 500, while the

number of observations used to compute the range is m = 10, 20, 50. We use 1000 simulation

11



M. Podolskij and D. Ziggel: Range-Based Test

runs and B = 500 replications to simulate the rejection probabilities. We observe a rather

accurate approximation for all drift functions even for small sample sizes. Quite surprisingly,

the results do not depend much on m. In Table 7 we present the level approximation for the

return-based test proposed by Dette, Podolskij & Vetter (2006) (which corresponds to the case

m = 1). We observe similar approximation accuracy as demonstrated in Tables 1-3. Next, we

present the corresponding results for the null hypothesis

H0 : σ2(t,Xt) = α1 + α2X
2
t ,

where the process X is generated from the stochastic differential equation (1) with σ2(t, x) =

1 + x2. In Tables 4-6 we state the simulated level of the range-based test while in Table 8 we

present the simulated level of the return-based test. Again we conclude that the approximation

accuracy does not significantly depend on m.

Next, we demonstrate the simulated power of the bootstrap method. In Tables 9-11 we

present the simulated rejection probabilities for the null hypothesis of constant volatility and

various alternatives. The drift function is a(t, x) = (2 − x)/10 and the simulation design is

chosen as above. We observe a very high power of the range-based test even for n = 100.

Furthermore, the power is increasing in m. For the sake of comparison we present in Table 15

the corresponding results for the return-based test. The power of the return-based test is high;

however, it is lower than the power of the range-based test at all sampling frequencies. This

fact is not surprising since the return-based test corresponds to the case m = 1.

The results look different for the simulated power for the null hypothesis

H0 : σ2(t,Xt) = αX2
t .

In Tables 12-14 we observe that the power of the range-based test crucially depends on the

alternative. While we obtain rather good results for the alternative σ2(t, x) = 1, the power

of the test for the alternative σ2(t, x) = 5|x|3/2 is rather low and similar conclusions are true

for the return-based test presented in Table 16. However, the low power for the alternative

σ2(t, x) = 5|x|3/2 is not very surprising. Clearly, for rather small values of the process X (recall

that X0 = 1) the test can hardly detect the difference between the volatility functions of the

form |x|3/2 and x2. Moreover, it is worthwhile to mention that the power increases in m, which

implies that the range-based test is more powerful than the return-based test.

Finally, we demonstrate the simulated level and power of the test (22). First, note that

we are not able to apply a bootstrap procedure, because we can not generate the data under

H0 : ω ∈ Ω0(ǫ). So we use the central limit theorem presented in Remark 3 as an approximation

of the distribution of M2

[σ2,σ2] . In Tables 17 and 18 we present the results for the null hypothesis

H0 :
M2

[σ2, σ2]
≤ 0.1

12
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with σ2(t, x) = (1+x)2, a(t, x) = 0 and σ2
1(t, x) = x2. We use 5000 simulation runs to simulate

the rejection probabilities. In each run we have to calculate in a first step if the null hypothesis

holds (level simulation) or not (power simulation). Our choice of ǫ = 0.1 ensures that there are

approximately the same number of level and power simulations. The number of ranges and their

size are chosen as above. As expected from the inequality (23) we observe a quite conservative

behaviour of the test (22) for all sample sizes. Moreover, the simulated level is decreasing in m

and n. On the other hand we obtain a reasonable power, which is increasing in m and n. Note,

however, that the corresponding bootstrap results for the hypothesis H0 : M2 = 0 (Tables

12-14) are slightly better than those presented in Table 18, which can be explained by a better

performance of the bootstrap method compared to a normal approximation.

4 Appendix

Proof of Theorem 3: First, let us note that we can assume (by stopping techniques and assump-

tion (A1)) without loss of generality that the processes at = a(t,Xt) and σt = σ(t,Xt), σ1t =

σ1(t,Xt), . . . , σdt = σd(t,Xt) are bounded (see Barndorff-Nielsen, Graversen, Jacod, Podolskij

& Shephard (2006) for the justification of this assumption). Moreover, the constants that

appear in the proofs are all denoted by C.

In Dette, Podolskij & Vetter (2006) we have already shown that

Dn − D = op(n
− 1

2 ) ,

and so we are left to proving the stable central limit theorem of Theorem 3. For this purpose

we approximate the quantity si,n,m(X) by |σ i−1

n
|si,n,m(W ). Indeed, Christensen & Podolskij

(2006b) have proven that under assumption (A2) the assertion

√
n















Cn,m
0 − C0

Cn,m
1 − C1

...

Cn,m
d − Cd















=

















∑n
i=1

(

ξ
(0)
i,n,m − E[ξ

(0)
i,n,m|F i−1

n

]
)

∑n
i=1

(

ξ
(1)
i,n,m − E[ξ

(1)
i,n,m|F i−1

n

]
)

...
∑n

i=1

(

ξ
(d)
i,n,m − E[ξ

(d)
i,n,m|F i−1

n
]
)

















+ op(n
−1/2) , (25)

with

ξ
(0)
i,n,m =

n3/2

λ4,m
σ4

i−1

n

s4
i,n,m(W )

ξ
(k)
i,n,m =

n1/2

λ2,m
σ2

k, i−1

n

σ2
i−1

n

s2
i,n,m(W ) k = 1, . . . , d ,

holds. Observe that

n
∑

i=1

(

E[ξ
(k)
i,n,mξ

(l)
i,n,m|F i−1

n

] − E[ξ
(k)
i,n,m|F i−1

n

]E[ξ
(l)
i,n,m|F i−1

n

]
)

P−→
∫ 1

0
Σk+1,l+1

s ds (26)

13
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for 0 ≤ k, l ≤ d, and

E[|ξ(k)
i,n,m|4|F i−1

n

] ≤ C

n2
k = 0, . . . , d (27)

since the processes σt, σ1t, . . . , σdt are bounded. Next, notice that the identity

E[ξ
(k)
i,n,m(W i

n
− W i−1

n

)|F i−1

n

] = 0 k = 0, . . . , d (28)

holds, because the functionals s2
i,n,m(W )(W i

n
−W i−1

n
) and s4

i,n,m(W )(W i
n
−W i−1

n
) are both odd

in W .

Finally, let N be any bounded martingale on (Ω,F , (Ft)t∈[0,1], P ) which is orthogonal to W

(i.e. the covariation < N,W >t= 0 a.s.). Then we deduce

E[ξ
(k)
i,n,m(N i

n
− N i−1

n

)|F i−1

n

] = 0 k = 0, . . . , d , (29)

which has been already shown in Christensen & Podolskij (2006a). Now, the assertion of

Theorem 3 follows from (25)–(29) and Theorem IX.7.28 in Jacod & Shiryaev (2003). �
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Table 1

σ2(t, x) = x2 n = 100,m = 10 n = 200,m = 10 n = 500,m = 10

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 20.1 12.0 7.0 21.5 10.9 4.5 20.8 9.8 4.8

0.2 20.7 11.3 5.2 21.9 11.8 6.9 21.9 11.3 6.4

x/10 21.6 10.9 5.4 20.2 10.1 5.6 20.3 10.0 5.3

(2 − x)/10 20.6 9.6 5.0 19.1 9.9 4.1 22.7 12.6 6.4

tx 25.8 13.8 7.4 23.7 12.5 7.1 23.5 12.3 7.1

Table 2

σ2(t, x) = x2 n = 100,m = 20 n = 200,m = 20 n = 500,m = 20

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 17.4 10.1 5.3 19.0 9.7 5.5 19.7 10.1 5.5

0.2 21.6 11.5 6.5 22.8 12.1 6.1 20.4 11.2 6.6

x/10 17.9 9.7 5.1 22.9 11.5 5.3 22.7 11.6 6.4

(2 − x)/10 20.7 10.9 5.1 22.8 12.6 6.8 21.2 11.4 6.6

tx 26.4 14.1 7.7 25.7 12.5 6.4 20.5 11.1 5.8

Table 3

σ2(t, x) = x2 n = 100,m = 50 n = 200,m = 50 n = 500,m = 50

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 17.9 9.6 5.4 21.0 10.2 5.3 20.5 10.4 4.8

0.2 19.8 10.1 5.1 21.7 11.6 5.8 20.0 10.1 5.3

x/10 24.5 11.5 6.2 23.9 12.4 7.3 19.9 11.4 6.3

(2 − x)/10 20.5 10.3 4.8 21.2 10.2 5.5 20.8 10.1 3.9

tx 24.5 14.2 7.4 25.1 13.0 7.3 22.0 11.2 5.4

Table 1-3: Simulated level of the parametric bootstrap test based on the statistic
√

nM2
N/ρN

for the hypothesis H0 : σ2(t,Xt) = αX2
t with n = 100, 200, 500, m = 10, 20, 50 and various

drift functions.
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Table 4

σ2(t, x) = 1 + x2 n = 100,m = 10 n = 200,m = 10 n = 500,m = 10

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 18.6 9.5 4.1 20.8 9.5 5.4 21.1 10.1 5.9

0.2 22.4 12.0 6.3 19.7 10.0 5.6 24.1 11.2 6.5

x/10 21.0 10.5 5.0 19.8 10.2 5.4 19.0 9.8 5.0

(2 − x)/10 20.4 10.4 5.6 20.4 10.3 5.2 20.3 10.2 4.7

tx 21.0 10.2 5.4 23.5 12.3 7.0 20.3 9.4 4.5

Table 5

σ2(t, x) = 1 + x2 n = 100,m = 20 n = 200,m = 20 n = 500,m = 20

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 20.7 10.2 5.0 19.8 9.6 5.0 21.0 10.7 5.4

0.2 20.5 10.2 5.0 21.2 11.1 6.1 21.1 11.2 6.3

x/10 20.9 10.2 5.2 20.7 10.6 5.4 19.4 10.2 4.3

(2 − x)/10 17.7 7.6 3.5 17.6 8.1 4.9 20.1 10.0 6.2

tx 23.0 11.4 6.6 21.6 11.6 5.9 25.7 12.8 6.2

Table 6

σ2(t, x) = 1 + x2 n = 100,m = 50 n = 200,m = 50 n = 500,m = 50

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 20.2 9.9 5.6 18.9 9.5 5.3 22.2 11.6 6.1

0.2 22.4 10.8 6.0 20.1 11.1 5.4 21.5 10.5 5.2

x/10 18.8 8.1 4.1 21.1 11.4 5.8 20.9 10.6 6.9

(2 − x)/10 19.5 9.3 5.5 18.9 8.6 3.8 19.1 9.8 4.7

tx 25.7 13.9 6.5 23.9 11.6 6.6 21.4 11.7 5.1

Table 4-6: Simulated level of the parametric bootstrap test based on the statistic
√

nM2
N/ρN

for the hypothesis H0 : σ2(t,Xt) = α1+α2X
2
t with n = 100, 200, 500, m = 10, 20, 50 and various

drift functions.
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Table 7

σ2(t, x) = x2 n = 100 n = 200 n = 500

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 19.8 11.8 6.9 21.0 12.1 5.8 20.2 10.5 5.8

0.2 22.4 11.3 5.5 20.2 8.8 5.0 23.0 11.4 6.2

x/10 22.6 11.4 5.9 21.3 9.8 4.8 20.1 10.4 5.5

(2 − x)/10 20.9 10.2 5.1 18.8 9.8 4.3 22.4 12.5 6.2

tx 26.6 14.7 8.4 23.8 13.4 8.3 23.1 12.4 6.3

Table 7: Simulated level of the parametric bootstrap test based on the statistic
√

nM̃2
n/ρ̃n for

the hypothesis H0 : σ2(t,Xt) = αX2
t with n = 100, 200, 500 and various drift functions.

Table 8

σ2(t, x) = 1 + x2 n = 100 n = 200 n = 500

a(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

0 19.4 8.6 4.3 20.3 9.1 4.6 20.4 10.2 5.3

0.2 22.4 12.9 6.9 19.3 11.0 6.7 23.5 11.2 5.8

x/10 21.7 11.1 5.3 21.3 10.6 4.9 21.4 10.2 5.3

(2 − x)/10 22.4 10.9 5.8 20.1 9.9 4.9 18.4 9.3 4.8

tx 21.9 12.3 6.8 23.2 13.3 7.1 22.2 10.7 5.6

Table 8: Simulated level of the parametric bootstrap test based on the statistic
√

nM̃2
n/ρ̃n for

the hypothesis H0 : σ2(t,Xt) = α1 + α2X
2
t with n = 100, 200, 500 and various drift functions.
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Table 9

a(t, x) = (2 − x)/10 n = 100,m = 10 n = 200,m = 10 n = 500,m = 10

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 93.0 88.4 84.7 96.9 95.1 93.0 98.9 98.0 97.2

x2 99.4 98.3 97.2 99.9 99.9 99.8 100.0 100.0 100.0

5|x|3/2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5|x| 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(1 + x)2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 10

a(t, x) = (2 − x)/10 n = 100,m = 20 n = 200,m = 20 n = 500,m = 20

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 94.2 89.7 86.2 96.7 95.2 92.9 99.6 99.4 98.2

x2 99.8 99.5 98.6 99.8 99.7 99.7 100.0 100.0 100.0

5|x|3/2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5|x| 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(1 + x)2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 11

a(t, x) = (2 − x)/10 n = 100,m = 50 n = 200,m = 50 n = 500,m = 50

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 94.1 90.8 88.3 97.5 95.8 93.9 99.5 98.8 97.8

x2 99.6 99.1 98.8 100.0 100.0 100.0 100.0 100.0 100.0

5|x|3/2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5|x| 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(1 + x)2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 9-11: Simulated power of the parametric bootstrap test based on the statistic
√

nM2
N/ρN

for the hypothesis H0 : σ2(t,Xt) = α with n = 100, 200, 500, m = 10, 20, 50 and various alter-

natives.
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Table 12

a(t, x) = (2 − x)/10 n = 100,m = 10 n = 200,m = 10 n = 500,m = 10

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 69.8 55.3 40.5 68.2 54.4 46.3 72.7 61.1 55.6

1 91.9 86.6 79.8 95.9 92.2 88.4 98.4 97.0 95.3

5|x|3/2 33.8 18.5 11.1 39.0 20.0 11.5 42.0 23.3 12.4

5|x| 55.3 38.3 22.6 63.1 44.4 30.0 79.0 61.8 45.1

(1 + x)2 68.4 50.1 33.4 75.9 60.6 48.2 79.2 68.3 57.1

Table 13

a(t, x) = (2 − x)/10 n = 100,m = 20 n = 200,m = 20 n = 500,m = 20

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 69.6 53.6 40.3 68.8 57.6 48.6 73.5 65.2 57.3

1 92.5 87.6 82.6 97.1 94.0 91.6 99.2 98.4 96.7

5|x|3/2 34.0 18.1 9.5 34.6 20.6 10.5 36.2 19.7 9.7

5|x| 55.1 34.7 20.8 63.5 45.8 29.3 79.0 61.9 46.3

(1 + x)2 70.4 50.4 34.3 74.5 60.3 44.6 80.3 67.9 56.0

Table 14

a(t, x) = (2 − x)/10 n = 100,m = 50 n = 200,m = 50 n = 500,m = 50

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 69.1 55.2 44.3 71.0 59.6 49.0 73.5 64.8 57.5

1 95.3 90.0 85.0 97.7 94.9 92.8 99.5 98.6 97.9

5|x|3/2 31.6 16.6 7.6 33.3 16.0 8.1 35.9 20.7 11.5

5|x| 49.3 32.2 17.6 63.2 46.9 30.7 77.0 62.7 47.8

(1 + x)2 72.1 51.3 33.1 76.8 63.8 50.0 79.7 69.9 60.3

Table 12-14: Simulated power of the parametric bootstrap test based on the statistic
√

nM2
N/ρN for the hypothesis H0 : σ2(t,Xt) = αX2

t with n = 100, 200, 500, m = 10, 20, 50 and

various alternatives.

20



M. Podolskij and D. Ziggel: Range-Based Test

Table 15

a(t, x) = (2 − x)/10 n = 100 n = 200 n = 500

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 80.5 73.3 67.9 88.0 84.0 80.2 94.1 92.4 90.3

x2 94.3 91.4 88.9 98.9 97.6 96.4 100.0 99.6 99.4

5|x|3/2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5|x| 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

(1 + x)2 99.8 99.6 98.8 100.0 100.0 99.9 100.0 100.0 100.0

Table 15: Simulated power of the parametric bootstrap test based on the statistic
√

nM̃2
N/ρ̃n

for the hypothesis H0 : σ2(t,Xt) = α with n = 100, 200, 500 and various alternatives.

Table 16

a(t, x) = (2 − x)/10 n = 100 n = 200 n = 500

σ2(t, x) 20% 10% 5% 20% 10% 5% 20% 10% 5%

1 + x2 58.8 44.5 35.6 58.3 46.4 39.0 65.8 56.8 51.5

1 80.7 73.1 67.2 86.6 82.0 77.8 94.0 90.6 88.0

5|x|3/2 36.0 20.2 11.7 37.0 20.0 10.2 36.4 20.2 12.2

5|x| 51.2 34.4 24.3 54.2 34.8 25.0 60.3 45.3 35.4

(1 + x)2 57.0 39.7 28.9 64.0 47.8 37.7 66.0 55.5 48.6

Table 16: Simulated power of the parametric bootstrap test based on the statistic
√

nM̃2
n/ρ̃n

for the hypothesis H0 : σ2(t,Xt) = αX2
t with n = 100, 200, 500 and various alternatives.
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Table 17

a(t, x) = 0 n = 100 n = 200 n = 500

σ2(t, x) = (1 + x)2 20% 10% 5% 20% 10% 5% 20% 10% 5%

m=10 8.4 4.4 2.7 7.1 3.1 1.4 4.4 2.0 1.1

m=20 8.0 3.8 1.5 6.0 2.4 1.1 4.9 1.6 0.6

m=50 6.9 3.3 1.6 6.4 2.6 1.3 3.8 1.4 0.5

Table 17: Simulated level of the test (22) for the hypothesis H0 : M2

[σ2,σ2]
≤ 0.1 with

σ2
1(t, x) = x2, n = 100, 200, 500 and m = 10, 20, 50.

Table 18

a(t, x) = 0 n = 100 n = 200 n = 500

σ2(t, x) = (1 + x)2 20% 10% 5% 20% 10% 5% 20% 10% 5%

m=10 46.6 36.7 31.1 56.2 45.3 38.6 69.6 61.9 55.8

m=20 48.7 39.2 32.9 60.9 51.2 44.3 69.7 61.3 55.0

m=50 52.7 43.1 35.9 61.6 52.2 45.1 73.5 65.8 59.5

Table 18: Simulated power of the test (22) for the hypothesis H0 : M2

[σ2,σ2]
≤ 0.1 with

σ2
1(t, x) = x2, n = 100, 200, 500 and m = 10, 20, 50.
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