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Abstract

Understanding the process of economic growth involves comparing competing the-
oretical models and evaluating their empirical relevance. Our approach is to take the
neoclassical stochastic growth model directly to the data and make inferences about the
model parameters of interest. In this paper, output follows a jump-diffusion process.
By imposing parameter restrictions we derive two solutions in explicit form. Based on
them, we obtain transition densities in closed form and employ maximum likelihood
techniques to estimate the model parameters. In extensive Monte Carlo simulations
we demonstrate that population parameters of the underlying data generating process
can be recovered. We find empirical evidence for jumps in monthly and quarterly data
on industrial production for the UK, the US, Germany, and the euro area (Eurol2).
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1 Introduction

Research on technological change and economic growth has been always on top of the research
agenda. A better understanding involves comparing competing theoretical approaches and
evaluating their empirical relevance.

From a theoretical perspective, discrete changes in factor productivity - or jumps - are
the key ingredients in macro models where growth and fluctuations can emerge endogenously
(cyclical growth models in Bental and Peled 1996, Matsuyama 1999, Francois and Lloyd-
Ellis 2003, Wilde 2005). In these models, output volatility is something natural, inherently
linked to a country’s growth process. This is in sharp contrast to the literature with steady
technological improvements at the aggregate level (acyclical models & la Romer 1990)." While
output growth emerges either through accumulation of knowledge or product variety, all
models of the latter type share the view of a balanced growth path. An econometric model
therefore should account for both, a steady accumulation and for jumps in technology.

From an econometric perspective, often jumps are introduced in finance and financial
econometrics to account for empirical features of the data which would not be captured by
pure diffusions (among others Das 2002, Johannes 2004). Statistically, the presence of jumps
would imply that diffusion models are misspecified. Macroeconomic series of growth rates
also demonstrate considerable non-normalities such as skewness and excess kurtosis which
makes a case for jump models.

Although theoretical contributions as well as empirical features support the presence
of jumps in growth rates, an empirical investigation or econometric validation of growing
through cycles models in macro is pending. In this line of research, the empirical question
should be to what extent the growth process actually is driven by discrete innovations.
Fortunately, the literature on estimating jump-diffusions is large, and the methods currently
widely used in financial economics/econometrics (recent contributions include Bandi and
Nguyen 2003, Johannes 2004, Ait-Sahalia 2004).

The main contribution of this paper is the structural estimation of parameters of the
underlying stochastic processes. Our approach is to take the continuous-time stochastic
macro model directly to the data and make inferences about the model parameters of inter-
est. Using continuous time allows to solve a much broader class of interesting models and
enables us to handle stochastic dynamic models easily without linearization and certainty

analysis.? For this purpose, the stochastic neoclassical growth model seems to be a natural

n Francois and Lloyd-Ellis (2003), the outcome is either cyclically or acyclically.

2The is a tradition of stochastic models in continuous-time macroeconomics (starting with Brock and
Mirman 1972, Merton 1975, Eaton 1981). An introduction can be found in Turnovsky (2000). Moreover,
examples of stochastic processes in economics provide Dixit and Pindyck (1994) and Wilde (2006).



first choice. In this paper, output follows a jump-diffusion process. In that view, we extend
diffusion models (Merton 1975), allowing for jumps in productivity. By imposing parameter
restrictions, we obtain two solutions in explicit form.

As a starting point, we abstract from the endogeneity of jumps as in the cyclical growth
models. Nonetheless, our econometric model incorporates the idea of discrete changes by
introducing an exogenous jump process. It therefore captures the dynamics of intrinsically
different models, as the interpretations of the impulses are multi-facetted. For example,
while in Wilde (2005) a new technology arrives in form of a prototype machine opening the
possibility of accumulating better capital goods, in Francois and Lloyd-Ellis (2003) the joint
implementation of productivity improvements across many sectors cause jumps in aggregate
technology. Nevertheless, both models have in common that discrete changes are rare events.
Similarly, the idea of steady improvements in technology (or variety) of Romer type models
is captured by an exogenous deterministic drift component.

For estimation of the model parameters of interest, we make use of output growth rates.
In this paper, our focus is on (i) approximate methods as well as (ii) exact methods. Both
approaches make use of the Markov property of original or ‘modified” output growth rates,
respectively. As a drawback, the latter approach demands the growth rate of the capital
stock to be observable. Based on explicit solutions, we obtain transition densities in closed
form and employ maximum likelihood (ML) estimation. Standard likelihood ratio tests are
used to test for the presence of jumps. In extensive simulation studies we demonstrate that
population parameters of the underlying data generating process indeed can be recovered.
Using data on monthly industrial production we find strong empirical evidence for jumps
and obtain reasonable parameter estimates.

Beside there is a tradition in macro estimating continuous-time models (Phillips 1972,
1974, Hansen and Sargent 1980) at least two apparent questions emerge. First, how can
we estimate continuous-time macro models given the stochastic process is observed only at
discrete dates? Second, with discretely sampled data all changes are jumps: how to distin-
guish small jumps resulting from the Brownian noise from large jumps of rare technological
improvements? In recent years, new methods emerged in the financial literature to estimate
continuous-time models using discrete-time observations (among others Ait-Sahalia 2002b).
Moreover, Ait-Sahalia (2004) demonstrates that it is possible to disentangle Brownian noise
from jumps even if the jump process exhibits an infinite number of small jumps in any finite
time interval. Our Monte Carlo experiments demonstrate that these estimation methods can
be applied to macroeconomics and macro data as well.

A related popular research field is the (discrete-time) real business cycle model (Long

and Plosser 1983) and its various extensions. Using the traditional approach, one considers



a stationary system of equations and analyzes linearized transitional dynamics around some
non-stochastic steady state (see King et al. 1988, Uhlig 1995, Ireland 2004). In this paper
we show that particularly with asymmetric shocks, one should avoid linearizing accordingly
since non-stochastic steady-state values do not coincide with their mean values.

The remainder of the paper is structured as follows: In Section 2, we set out the model
used for both simulations and estimations. Section 3 focuses on the estimation strategy. In
Section 4, we report the results of Monte Carlo experiments, while we present the empirical

results in Section 5. Some concluding remarks are in Section 6.

2 The model

We consider a standard stochastic continuous-time neoclassical model.

2.1 Technology and households

Production possibilities. The single production good is produced according to a standard

Cobb-Douglas function,
Yy = A K (X L)', (1)

where L denotes total constant labor supply. In the tradition of standard macro models
(King et al. 1988), A; denotes total factor productivity and X; labor augmenting technology.
Output Y; is used for producing consumption goods C; and investment goods I;. Aggregate

capital stock increases if gross investment I; exceeds depreciation 0 Ky,

To keep the model simple, technological progress is exogenous. Motivated by competing
growth theories, uncertainty enters via two independent stochastic processes: a (geometric)
diffusion with drift, A;, driven by a standard Brownian motion z;, and a (geometric) jump

process, X;, driven by a standard Poisson process ¢,

dAt = /LAtdt+77AtdZt, (3)
dX, = ((exp(Jt))ﬁ —1) X,_dq, (4)

respectively.> Both stochastic processes are homogenous linear SDEs (multiplicative noise)

with explicit solutions (Kloeden and Platen 1999), and belong to the family of Lévy processes

3Note that the standard Poisson process ¢; can either be zero or one with mean and variance At. Since
2z is a standard Brownian motion, zg = 0, ze4n — 2¢ ~ N(0,A), t € [0, 00[, A > 0.



with stationary and independent increments.? We model the jump size proportional to its
value an instant before the jump, X;_ , while the independent random variable J; with
constant mean v and variance 7y specifies the jump size distribution.

Preferences. The economy is populated by a large number of infinitely-lived identical
individuals, each sufficiently small to neglect effects on aggregate variables. Each consumer
maximizes expected utility, Uy, given by the integral over instantaneous utilities, u, resulting

from consumption flows, ¢;, discounted at the rate of time preference, p,

o0
Up = Eo/ e u(c;)dt, (5)
0
where instantaneous utility is characterized by constant relative risk aversion,
lea
u(e;) = —+—, o>0. (6)
1—0o

The standard budget constraint of the representative household reads
dat = ((Tt — 5)@15 + wy — Ct)dt, (7)

where r; denotes the rental rate of capital and w; the real wage rate, respectively.
Equilibrium properties. In equilibrium, factors are rewarded by w; = Y7, and r; = Y

(value marginal product), respectively. The market clearing condition demands
Y, = Cy+ 1. (8)

Solving the model requires the first order condition for consumption, the aggregate capital
accumulation constraint (2), the goods market equilibrium (8), and optimality conditions of
perfectly competitive firms. Thus we obtain a system of differential equations determining,

given initial conditions, the time paths of C}, K;, Y;, as well as of w; and r;.

2.2 Explicit solutions

The traditional approach is to consider a stationary system of equations and linearize the
system to analyze transitional dynamics often around the non-stochastic steady state (e.g.
Uhlig 1995). In this paper we restrict ourself to particular parameter restrictions under
which the model has explicit solutions. Thus, simulations can be done without relying on

5

numerical methods, linearization or certainty analysis.” Given a realization of stochastic

4An extension to multiple jump and diffusion terms poses no conceptional difficulty but is notationally
more cumbersome. In that, the aggregate jump process g; can also be thought of the sum of several poisson
processes q; = ZZ qi,; with arrival rates \; (for a multisector version see also Wélde 2005).

5Since most of the literature neglect uncertainty, care must be taken in using certainty analysis even as
a first-order approximation theory as the first-moment of the steady-state distribution does not equal the
certainty estimate (Merton 1975, p.382).



processes, the complete equilibrium path can easily be computed. Most notably, we can
directly take the model to the data in order to estimate the parameters of interest.
Applying It6’s formula (or change of variables formula, cf. Protter 2004, Sennewald 2007),

the assumed technology in (1) implies that output evolves according to

dY; = YadAi+ (Y=Y )dg + YidK,,
= (p+ a(dK/dt) ) Ky) Yidt + nYidz + (exp(Jy) — 1)Y;_dg;. 9)

It describes a stochastic differential equation (SDE), more precisely a jump-diffusion process
which, for solving, demands more information about the behavior of households. In that the
instantaneously growth rate of the capital stock is determined by the consumers. The effects
of shocks or impulses will be propagated contemporaneously as well as inter-temporally via
capital accumulation. In the absence of shocks, standard textbooks show that this economy
would converge to a balanced growth path (Barro and Sala-i-Martin 2003). Along such
non-stochastic path (dK,/dt)/K, = - is constant (see Appendix A.6). Below we use this
result to generalize the econometric approach.

As it is well known from deterministic continuous-time models, at least for two cases we
obtain unique explicit analytical solutions. In both cases log-output is a linear SDE in the
narrow sense (additive noise). Note that restrictions on the parameter range are widely used
in economics to study explicit dynamics (among others Xie 1991). We focus on the o = o

solution in the text and refer another solution to the appendix.®

Theorem 2.1 If the output elasticity of the capital stock equals the parameter of the utility

function, a = o, consumption is a linear function of the capital stock, Cy = ¢ Ky, where

b = M. (10)

g

Proof. Appendix A.7. m
Corollary 2.2 The rental rate of capital follows a reducible SDE,
dry = 11y (g — 1) dt + nrydzy + (exp(Jy) — 1)ri_dq, (11)

— l—«

where we defined c; = =%, and ¢y = %+ p+9.

6The parameter restriction & = ¢ implies a relatively high inter-temporal elasticity of substitution o~!.

While there is supporting empirical evidence (Vissing-Jgrgensen 2002, Gruber 2006), our results are not
intrinsically tied to this assumption. As shown in Appendix A.9, another solution with o > 1 gives the same
structure of the SDE for the rental rate of capital as well as for the growth rate of output.



The SDE in (11) is a geometric reverting jump-diffusion process known as stochastic
Verhulst equation (Sgrensen 1991, p.97). Most notably, since (11) denotes a reducible SDE
(with polynomial drift n = 2), its solution reads (cf. Theorem A.1),

t —1
Ty = @t (Tol —+ Cl/ @SdS) (12)
0

1 S
O, = exp ((0102 — 57)2) s+ nzs —l—/ Jsdqs) )
0

Similar reverting processes are well studied and widely applied in financial economics

with

to model the short-rate and the behavior of prices (as in Sundaresan 1984, Metcalf and
Hassett 1995). Accordingly, ¢, defines the non-stochastic steady state or tendency parameter
to which r; reverts, and c¢; is the speed of reversion. Note that capital rewards, r;, cannot
become negative: a jump induces a discontinuity in the sample path whose size depends
on its value an instant before the jump, r, = exp(J;)r;_, while between jumps r; grows

logistically augmented by lognormal distributed noise.

Corollary 2.3 The growth rate of output per unit of time, ga, reads

1 t t
g = A (,u —p—06— —772> —1—/ rsds +n(z — 2i-n) —I—/ Jedgs. (13)
2 t—A t—A

Intuitively, the growth rate consists of an obvious deterministic part, the integral over the
rental rate of capital which propagates impulses inter-temporally, the Brownian motion com-

ponent, and the integral over the jump size distribution per unit of time.

2.3 Theory meets empirical facts

A stylized fact in the literature is that output growth is positively autocorrelated over short
horizons and has weak and possibly insignificant negative autocorrelation over longer hori-
zons (Cochrane 1988). An often addressed critique to RBC models is that if they rely on
capital accumulation and inter-temporal substitution only, as in this paper, fail to reproduce
the positive autocorrelation pattern (Cogley and Nason 1995). Below we show that the
degree of autocorrelation in neoclassical models crucially depends on the speed of reversion
of capital rewards. Because estimates of the underlying parameter of risk aversion range
substantially (cf. Gruber 2006), the proposition that neoclassical models suffer from weak

internal propagation mechanism does not hold in general.”

"Others suggest to rely on external sources of dynamics, e.g. various kinds of adjustment lags or costs,
temporal aggregation, correlated increments to total factor productivity, and higher-order autoregressive
representations for transitory shocks (Cogley and Nason 1995).



Figure 1: Speed of reversion and the evolution of capital rewards.
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Notes: This figure illustrates the evolution of capital rewards, r¢, in the case of high speed of reversion, @« = ¢ = .1 (upper
panel), and low speed of reversion, @ = o = .9 (lower panel). The parameters are (v, A\,n,v,u) = (.05,.05,0,0,.01) and
(p,,0,68) = (.03,-,-,0). Note that the non-stochastic equilibrium, c2, does not necessarily reflect the the mean.

For illustration, we set the variance for the Brownian motion and jump-size distribution
to zero, (n,7v) = 0, and simulate the evolution of the rental rate of capital for different
values of & = ¢ which determines the speed of reversion in (11). Since the Poisson jumps
are rare, the effect is easily visible (cf. Figure 1). This intuition helps to understand why
positive autocorrelation and ‘mean reversion’ of growth rates in (13) could be observed.
Summarizing, if the speed of reversion was high, the persistence in capital rewards is low.
In contrast, a low speed of reversion implies that the rental rate of capital has a longer
memory with output growth rates being positively autocorrelated over short horizons (with
weak and insignificant negative coefficients over longer horizons). This exactly resembles the
empirical observation for output (as in Cogley and Nason 1995). To proof our conjecture,
we use a ceteris paribus analysis with parameters implying high speed of reversion. Now the

autocorrelation pattern is similar to that of an unit root process (cf. Appendix A.10).



3 Estimation strategy

In this paper, we tie in with a tradition estimating continuous-time macro models starting
with Phillips (1972). To estimate the model parameters of interest, we make use of output
growth rates and the Markov property. This approach leads to a considerable simplification
in the calculation of the likelihood function. We obtain the Markov property via approxi-
mations for the general case as well as exact for specific cases using the Solow residual. In
subsequent sections we demonstrate that both methods are able to recover the parameters of
the underlying stochastic processes. Using Monte Carlo experiments we illustrate the power
of these estimation strategies to distinguish small jumps resulting from the Brownian noise
from large jumps of rare technological improvements (Ait-Sahalia 2004).

Since we will be working with maximum likelihood techniques, the jump-size distribution,
Ji, has to be fully specified. In this study we assume a binomial distribution, where in a
lottery a positive jump in factor productivity (success), vs > 0, occurs with probability p,

and a negative jump (failure), —v; < 0 occurs with probability 1 — p,

vs with

Ji :{ —1/; with le—p ' (14)
Although this assumption goes beyond growing through cycles models with (degenerated)
positive jumps only, there is clear evidence of negative jumps in the data. A non-degenerated
jump distribution therefore seems more plausible for estimation purposes. Nevertheless, the
degenerated case is captured as a special case with p = 1. Below we report estimates based
on both, the more empirically motivated binomial jump-size distribution, as well as on the
degenerated case. It is straightforward to show that the assumption of constant mean v and

variance 7 is fulfilled for both assumptions.®

3.1 Approximate methods

Basically, we assume that (dK;/dt)/K; from (9) in general, or ftiA rsds from (13) in spe-
cific, are constants and thus we simply neglect autocorrelation in the data. Two scenarios
are plausible. First, as in traditional approaches, we assume that (a) capital rewards are
near to their non-stochastic equilibrium value (to which they tend to revert). Second, we
consider (b) the variables near to their mean values. While the first assumption may im-
ply inconsistent estimates, the second assumption assures consistency which therefore is the
preferred strategy. Unfortunately, the mean value of capital rewards cannot be obtained in

the general case but relies on our explicit solutions.

8Note that J; is stationary with mean v = vysp — v¢(1 — p) and variance v = (vs + v¢)?p(1 — p).



In either approach, growth rates can be approximated by (cf. Appendix B.1),

t
gan = Aw+n(ze —zi-n) + / Jedgs, (15)

t—A
where w € (wy,ws) is wy = ﬁ — %772 and wy = wy + % (V)\ — %772) , respectively. While

wy emerges from the first assumption (in the general case), wsy is implied by the second
assumption (for both explicit solutions). Obviously, ws denotes a refined approximation of
ftt_ A Tsds which accounts for the shift in the mean caused by (asymmetric) jumps as well as
caused by the Jensen’s inequality term weighted by the inverse of the speed of reversion.

It is remarkably that the equation (15) with w; also emerges if we used another explicit
solution (cf. Appendix A.9), using the assumption that capital rewards are at their non-
stochastic steady state. Indeed, similarly we could assume variables for any given policy
function either near their tendency values for stationary variables, or near their balanced
growth paths of non-stationary variables, in the absence of shocks. As mentioned above,
along such non-stochastic paths, (dK;/dt)/K,; = ~-p. Inserting in equation (9), solving
and computing the output growth rate, we obtain approximate growth rates (15) with w;
also for the general case. Thus, although motivated by explicit solutions, the first approach

can well be used to estimate the underlying parameters for the general model.

3.2 Exact methods

For solutions where the growth rate of the capital stock is known explicitly, the Markov
property of output growth rates can be obtained exact.? Using Monte Carlo experiments as
well as empirically, we therefore can study the power of approximate versus exact methods.
Recalling that consumption is linear in the capital stock (Theorem 2.1), growth rates in
(13) can be simplified further. In this case, f; A Tsds corresponds to the growth rate of
consumption (cf. Appendix B.1.2), which is observable,

t

a(lnCy—InCy_p) = —A(p+5)+/ Arsds.
t—

Simply speaking, it describes a ‘discrete version’ of the optimal consumption rule. We use
this result to obtain the Markov property without imposing additional assumptions. For this

we use an intuitive modification of original growth rates,

t
gx"d = gr—a(lnCy—InCi_p) = Aws +n(2ze — ze-n) + / Jsdgs, (16)
t—A

9 A similar empirical approach is to construct a series of capital rewards and use this to compute f:f A Tsds.



where w3 = pu — %772. Note that modified growth rates simply denote the growth rates of
the Solow residuals: from (1), use In SR, = In A; + (1 — ) In X; and insert the solutions
to the SDEs in (4) and (3), respectively. Hence, the log-differences, In SR, — In SR;_x,
are Markovian consisting of a deterministic drift component, A(ws + Av), and white noise,
n(ze — ze-n) + f;; A(Js = v)dg,. Intuitively, by subtracting consumption growth rates from
original growth rates as in (16), we remove autocorrelation patterns or simply get rid of all
movements in the data captured by the underlying model. What remains is a constant and
white noise, or the proportional change of the Solow residual. In that sense, the approach
can be understood as a reduced form of a more complex model using, after correcting for
various effects, its Solow residuals for estimation. In contrast to approximative methods, all

cyclical effects resulting from capital accumulation are now considered.

3.3 The distribution of output growth rates

For reading convenience we define

A
XA = Aw + 77(225 - thA) + / JsdQSa (17)
0

mod

where XA € (ga, gh°%) either denotes growth rates in (15) or modified growth rates in (16),
and w € (w1,wq,ws). Given the assumed distribution in (14), we can define the parameter
vector 0 = (vg, vy, A\, 1, 11, p)’, where vy and vy are the jump-sizes for positive and negative
jumps (v is the average size of jumps), A the arrival rate of the Poisson process, 1 the
standard deviation of the Brownian process, p the drift of the Brownian process, and p the
probability that a jump is of size v,. For the general estimation problem to be well defined,
we restrict (vs, v, A, n,p) > 0 to be positive.

To obtain the transition density, we follow a similar approach as in Ait-Sahalia (2004).
Conditioned on the event QA = ¢ — ¢t_a = n, there must have been exactly n times, say
Ty © = 0,...,n, between 0 and A such that dg,, = 1. Thus, fOA Jsdgs =0 Jr, is the sum
of n independent jumps. Further using (14), we condition on the event, Sa = k (number of
successful jumps), to obtain > J,, = vsk —ve(n — k).

Using this result, we condition on the number of jumps as well as on the number of

successful jumps per unit of time, and apply Bayes’ rule to obtain

> ) (P(Xa < 2|Qa =n,Sa =k;0) x P(Qa =n, Sa = k;0))
n=0 k=0

:Z (P(XA S:L‘,QA:TL,SA:]C;Q)) = P(XA S:L‘,OSQA <O0,0SSA <OO;0),

n=0 k=0

10



which simply is the marginal distribution, P(Xa < z;6). Now we can determine

P(Xa <alQa=nSx=kf) = Plz—z-a< (- wA— (vk—vp(n—k)/n;6)
= ¢{(r —wA—-vik+vi(n—Fk))/n}

(z—wA—vsk+vs(n—k))/n 1 u?
= exp | —— | du,
/_oo VoA p( QA)

where ® {(x — wA — vk + vp(n — k))/n} denotes the Normal distribution with mean zero

and variance A. Inserting this expression back into the marginal distribution, we finally

obtain the unconditional distribution of XA as

o n (z—wA—-vsk+vs(n—k))/n 6_% e_AA()\A)n
P(Xa <5:0) — / du P -p)" ),
Zz%( . Vorn k(i — k)]

where we used

P(QAIH,SAIK;9> = P(SA :k]QA:n;G) XP(QA :n;e)
exp(—AA)(AA)"

n!

= W R nl
OISO

Applying the Leibnitz rule, we now can derive the density (transition density of XA) as

o n  (@—wA—vshktvy(n—k))? 1 e M20A) >
T) = e 2An2 1 — n—k . 18
fxa () nzzog( 21 A k;!(n—k)!p (1-p) (18)

This expression shows that the distribution of growth rates is a mizture density. Intuitively,

three components are involved, (1) the density of the normal distribution, augmented by (2)
terms of the Poisson distribution as well as (3) elements of the binomial distribution. Similar

formulas for the transition density are contained in Lo (1988) or in Ait-Sahalia (2004).

3.4 Inferring jumps from large realized growth rates

In this section, we assign ‘probabilities’ of occurred jumps to realized output growth rates.
In principle, we could use these empirical probabilities to identify jumps in the data: Given

an observation of magnitude z, what is the likelihood that such a change involved a jump?

11



For this, we use Bayes’ rule to compute the probability of one positive jump as

P(Qa=1,5a=1,Xa > 1;0)
P(Xa > x;0)
P(Xa > 2[Qa =1,54 = 1;0) x P(Qa = 1,51 = 1;0)
P(Xa > z;0)
(1 — P(XA < x\QA = 1,SA = 1,9)) X P(QA = 1,SA = 1,(9)
1— P(XA < x; 9)

(1@ (==2=)) perora

00 n r—wA—vsk+vr(n—k e~ A (AA)P e )
1— Zn:O Zk:o <(I) { n 4 )} k!(n(—k)? pk<1 - p) k)

P(Qa =1,5r=1|Xa =2 3;0) =

given that

P(Qa=1,5a=1;0) = pe A,

2
(z—wA—vsk)/n efgiA

du.
0 V 27TA

P(Xa <2|Qa=1,8r=1,0) = /
Similarly, the probability of one negative jump is

n
0o n z—wA—vsk+ve(n—k) | e A (AA)" AN
oo Y (@ Cho | e DOM () et

Hence, empirical probabilities could be used to identify jumps in the data as follows. After

PG = ) {7%“}A+Vf} (1 —pleAAA

obtaining estimates for the parameter vector 8, we can assign the likelihood of one positive
and one negative jump to the observed growth rates. Note that using quarterly data, in
principle, one should also consider computing the probability of observing two or more
jumps. However, our empirical estimates suggests that multiple jumps would be identified

by visual examination already.

3.5 Maximum likelihood estimation

This section presents the methods used for estimation parameters of the underlying model
making use of growth rates of macroeconomic variables only.

Because the stochastic processes, Xa, in (15) and (16) are Markovian, and because that
property carries over to any discrete subsample from the continuous-time path, the log-

likelihood function has the form

In(0) =N Z In{fxa(2)}, (19)

12



where 0 = (v, vf, A\, 1, 1, p)’ denotes the parameter vector that maximizes ¢y(¢). Owing to
difficulties that arise as a result of the complexity of the infinite series representation, the
ML estimation approach does not yield explicit estimators in this problem (Press 1967).

We obtain the parameter estimates via numerical evaluation of the log-likelihood in (19).
Asymptotic standard errors are obtained via the outer-product estimate using estimates of
the information matrix (Hamilton 1994, Ait-Sahalia 2004),

Jor = N7V3 {h(0, Xa)}{h(0. X4)Y.

i=1

where
Oln{ fx, ()}
00 0—p ’

If the sample size is sufficiently large, the central limit theorem implies that the distribution
of the ML estimate, 6, is approximately A (6p, AN"1771). Our results have been checked

by computing standard errors via the second-derivative estimate of the information matrix.

h0,Xa) =

Both approaches give for most cases values reasonably close to each other indicating that
the empirical data were really generated from the assumed density (Hamilton 1994).

Using the closed form transition density in (18), we can apply standard techniques to
test for jumps. Hence, denoting 6 as the unrestricted ML estimate, and 6 as the estimate

satisfying the restriction Hy: A = 0, asymptotically (Sgrensen 1991, Hamilton 1994, p.144)
2(¢n(0) — En(0)) = X*(1). (20)

In case of a single restriction, if the test statistic in (20) exceeds 3.8415 (2.7055), we can
reject the null hypothesis of no jumps (Hy : A = 0) in favor of the hypothesis that jumps are
present at the 5% (10%) significance level.

4 Monte Carlo evidence

In this section we report the results of Monte Carlo experiments in order to recover sample
parameters. These experiments answer two separate questions. Firstly, how accurate are
the asymptotic distributions in practice? The asymptotic distribution of ML estimators
does not imply that the resulting parameter estimates would in practice necessarily be close
to the sample parameter if the sample size is small or moderate. While this question is
fairly standard emerging in any study that makes use of asymptotic properties, the second
question is more peculiar for macroeconomics. Do general equilibrium effects complicate or
circumvent the estimation of parameters? We tackle the latter question by comparing the

performance of approximate versus exact estimation methods.

13



In finance, there is a large literature on disentangling the jump component from the
diffusion (among others Ait-Sahalia 2004). We also make use of the fact that the jump size
does not depend on the frequency of observations, so increasing the frequency of observations
reduces the Brownian noise holding the jump size constant. Ait-Sahalia (2004) demonstrates
that it is possible to perfectly disentangle Brownian noise from jumps when using high
frequency data. Macroeconomists, however, can make use of monthly or quarterly data only,
thus a simulation study where the parameters of the continuous-time process are estimated
using discrete observations seems inevitable.

Using the explicit solution in Theorem 2.1, we perform M = 5000 simulations of the
sample paths generated by the model, each containing 1050 observations where we cut off
the first 500 as a burn in period (N = 550). Hence, the length of each series coincides
with observable monthly data on which most of the empirical results will be based on. The
population parameters of the model, (v, v, A\,n, 1, p) = (.025,.025,.8,.025,.02,.5), and
other parameters, (p,«,0,0)" = (.03,.5,.5,.02), were chosen such that they denote ‘annual’
rates, while the frequency was set to A = 1/10. Given the realizations of stochastic processes
{A;}, {Xi}, and {J;}, sample parameters, (vs, vy, A*,n°, 1°, p®), are computed (sample and
population parameters for the jump-size are identical by construction).

From output growth rates in (13) with the assumption of a binomial jump-distribution
in (14), the data generating process is uniquely determined. Nevertheless, we employ two
models with different assumptions on the jump size to study the effects on other parameter
estimates. For this purpose, on the one hand, we simply neglect negative jumps and falsely
assume a degenerated distribution (model I'). On the other hand, we correctly assume that
the jump size has a binomial distribution (model IT). We then employ different estima-
tion strategies, i.e. the Approrimate method with approximation around the non-stochastic
steady state (a) as well as around mean values (b), and the Ezact method based on modified
growth rates, respectively (cf. Section 3). In Table 1 we summarize results of the Monte
Carlo averages for the sample parameters and their estimates.

As a result, model I on average clearly underestimates the sample arrival rate while on
average it overestimates the sample noise: 1/M 37, \; = .2457 < 1/M 3, X = 7898, while
L/MY >, n = .0305 > 1/M Y .0} = .0250 (model Ib). It is even substantially lower than
the average arrival rate of successful jumps, 1/M > .(p;A;) = .3953. Obviously, neglected
negative shocks simply are captured by a too high estimate for the diffusion term, 7. Because
this term is overestimated, fewer realizations are implicitly referred to as jumps, thus A on
average is too low. Further, neglecting negative jumps also has implications for the estimate
of the deterministic trend: 1/M > . ji; = .01563 < 1/M ). ;17 = .0199 (model Ib), that is on

average it is estimated too small. This is because a substantial part of the growth simply
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Table 1: Comparison of Monte Carlo estimates and sample parameters

Method Parameter estimate averages
2 Zi A i j p
Sample averages 0.0250  0.0250  0.7898  0.0250  0.0199  0.5005
(0.0000) (0.000) (0.1218) (0.0008) (0.0033) (0.0774)
MLE Approximate Ia  0.0248 0.2400  0.0305  0.0173
(0.0168) (0.1074) (0.0016) (0.0040)
b 0.0230 0.2457  0.0305  0.0153
(0.0192) (0.1104) (0.0016) (0.0056)

Ila 0.0247 0.0247 1.0206 0.0246 0.0198  0.5003
(0.0039) (0.0039) (1.2244) (0.0016) (0.0049) (0.1357)

IIb  0.0224 0.0272 09352  0.0247 0.0212  0.4998
(0.0040) (0.0034) (0.4284) (0.0013) (0.0055) (0.1313)

MLE Ezact I 0.0221 0.2478  0.0303  0.0155
(0.0201) (0.1053)  (0.0015) (0.0059)

II 00246 0.0247 1.0224  0.0245  0.0199  0.4997
(0.0039) (0.0039) (1.2470) (0.0016) (0.0079) (0.1355)

Notes: This table reports the averages over M = 5000 Monte Carlo simulations. It compares averages of MLE for degenerated
jumps (model I), and binomial jump-size distribution (model IT) using Approzimate methods: (a) around the non-stochastic
steady-state and (b) around the mean values, and the Ezact method based on Solow residuals, respectively, with sample
averages. Standard deviations of estimates are in parentheses. Calibrated parameters are («, o)’ = (.5,.5); A = 1/10; N = 550.

is attributed to the stochastic trend (though actually there is no stochastic growth involved
in the sample path). Given the discussion and problems due to the false specification, the
jump size, v,, on average is surprisingly accurately estimated.'®

In the correct model specification (model /7), we obtain an arrival rate which on average
is estimated too high: 1/M Y2, A; = 0.9352 > 1/M 3, ¢ = .7898 (model I7b). As shown
below, this phenomenon can be attributed to a well known identification problem that may
arise if the sample size is small or moderate (cf. Ait-Sahalia 2004). From Figure 2, the finite
sample distribution (histogram) of estimates for the arrival rate, ), is skewed right while
for the Brownian noise, 7, the histogram is skewed left. This is because in some cases, the
jumps cannot be correctly disentangled from the Brownian noise. In such cases we obtain
an (extremely) high estimate for the arrival rate along with tiny estimates for the jump-
size, while the estimate of the Brownian noise is too small. Fortunately, such problems of

identification arise not very often in practice (cf. Figure 2). For illustration, ordering the

10Note, however, that in a few cases, the estimated size of ‘successful jumps’ is negative. In that simply
speaking the local maximum around the jump-size of negative jumps becomes the global maximum.
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Figure 2: Finite sample distribution (histogram) of estimation errors
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Notes: These figures reports the histogram of differences for estimates and sample parameters over M = 5000 Monte Carlo
simulations for vs, v¢, A, 1, i, and p (column by column, from top left to bottom right) resulting from the MLE for the binomial
jump-size distribution (model Ila) with approximation around the non-stochastic steady-state (compare with Table 1).

estimates with respect to ;\, and considering the .95 quantile of estimates only, this ‘small
sample bias’ is negligible (cf. Appendix C, Table 8). Roughly speaking, in 95 out of 100
cases, we are able to correctly disentangle jumps from diffusions.!!

Interestingly, the alleged advantage of approximations around mean values (model 171b)
are compensated by a sensitivity with respect to the arrival rate and jump sizes (which
enters distortionary if the arrival rate was not estimated correctly). Thus, the deterministic
component of the growth rate as well as the jump-sizes are estimated on average more
precisely using approximations around the non-stochastic steady state (model I7a). But

these findings, of course, depend on the parametrization determining the speed of reversion,

HOften, problems of identification can be detected in practice from an insignificant parameter estimate
along with an implausible high arrival rates and tiny jump sizes.
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Table 2: Comparison of Monte Carlo estimates and sample parameters (fixed jump-sizes)

Method Parameter estimate averages
s oy A U i p
Sample averages 0.025 0.025 0.7898 0.0250 0.0199 0.5005
(0.0000) (0.000) (0.1218) (0.0008) (0.0033) (0.0774)
MLE Approximate Ia  0.0250 0.2680 0.0307  0.0165
(0.0000) (0.1104) (0.0017) (0.0037)
b 0.0250 0.2680  0.0307  0.0134
(0.0000) (0.1104) (0.0017) (0.0039)

IIa 0.0250 0.0250 0.8022  0.0251  0.0198  0.4992
(0.0000) (0.0000) (0.1648) (0.0010) (0.0035) (0.1009)

IIb 0.0250 0.0250 0.7781  0.0252 0.0213  0.4515
(0.0000) (0.0000) (0.1560) (0.0011) (0.0042) (0.1118)

MLE  Ezact I 0.0250 0.2675  0.0306  0.0134
(0.0000) (0.1100) (0.0016) (0.0042)

II 00250 0.0250 .7989  0.0250 0.0199  0.4993
(0.0000) (0.0000) (0.1641) (0.0010) (0.0041) (0.1009)

Notes: This table reports the averages over M = 5000 Monte Carlo simulations with fixed jump sizes. It compares aver-
ages of MLE for degenerated jumps (model I) and binomial jump-size distribution (model II) using Approzimate methods:
(a) around the non-stochastic steady-state and (b) around the mean values, and the Ezact method based on Solow resid-
uals, respectively, with sample averages. Standard deviations of estimates are in parentheses. Calibrated parameters are
(vs,vy,0,0) = (.025,.025,.5,.5); A =1/10; N = 550.

as well as on the assumption of symmetric jumps. For example, asymmetric jumps moves
the non-stochastic steady state farther away from the expected value, which would favor
model 17D to the more general model I/a. While these considerations should be explored in
more detailed for richer models, for the present model and with the available sample sizes,
both estimation strategies should be employed and are useful.

Comparing the estimates of Approrimate method versus the Fzract estimation methods
from Table 1, we conclude that correctly accounting for the reversion in capital rewards does
not necessarily give better estimates. The identification problem seems by far more important
in the Monte Carlo experiments of the given model specification. In that, approximative
methods are powerful and general equilibrium effects in macroeconomics do not complicate
the estimation of parameters too much.

Another way of accommodating the identification problem in practice is fixing jump-sizes
to plausible values, while estimating other parameters by maximum likelihood. The results

are summarized in Table 2 and Figure 3. Intuitively, the bias due to the wrong jump-size
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Figure 3: Finite sample distribution (histogram) of estimation errors (fixed jump-sizes)
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Notes: These figures reports the histogram of estimation errors over M = 5000 Monte Carlo simulations for vs, v¢, A, n,
i, and p (column by column, from top left to bottom right) with fixed jump-sizes resulting from the MLE for the binomial
jump-size distribution (model Ila) with approximation around the non-stochastic steady-state (compare with Table 2).

distribution assumption (model I) still remains. Though the sample size is still moderate,
however, there are no longer problems of identification in the correct jump-size specification
(model I7), and parameter estimates on average are unbiased (cf. Table 2). Hence, fixing
the size of the jumps or equivalently giving more a priori information, does not only yield in
better finite sample distributions of estimates in the sense of lower dispersion of estimates,
but also removes identification problems that arise due to the sample size.

Summarizing the Monte Carlo experiments, in principle, jumps in macro series can be de-
tected. General equilibrium effects do not prevent us from estimating the model parameters
of interest. For illustration, we plot an arbitrary realization of the Monte Carlo experiment
with ‘identified” and realized jumps (cf. Appendix C, Figure 6). Identification of jumps is

done in assigning probabilities to jump arrivals. Most of the jumps are identified using an
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appropriate probability threshold. We obtain reliable estimates for the sample parameters
also for moderate sample sizes if ‘monthly frequency’ was considered (results on ‘quarterly
frequency’ are available on request). In cases with problems of identification, further re-
strictions on the jump-size are useful and should be employed for correctly disentangling
the jumps from the Brownian noise. It seems that for our model specification approximate
methods are powerful, while exact methods do not necessarily improve on the accuracy of

estimates if the sample size is small or moderate.

5 Empirical results

In this section, we obtain empirical estimates and search for jumps in output growth rates
using industrial production (IP).'? For convenience, descriptive statistics of IP growth rates
for the United Kingdom, United States, Germany, and the euro area (Eurol2) are contained
in the data appendix (cf. Appendix D, Table 9). Before estimating, the only parameter
we have to calibrate is the output elasticity of capital, a. An extensive sensitivity analysis
on the effects of o on parameter estimates, é, is provided below (cf. Section 5.3). For the

empirical part, without loss in generality we set it to a = .5.

5.1 Taking the model to the data

Before we apply our estimation techniques and interpret the results, we have to keep in mind
the limitations of our simple model.

For simplicity we use random walks specifications for both stochastic processes in (4)
and (3). Thus, impulses with temporary effects on productivity are ruled out by construc-
tion. Phenomena such as strikes with inventory building in anticipation of the strike, inven-
tory depletion during the strike, and replacement production afterwards cannot be captured
(Gunderson and Melino 1987). Interpreting those events as temporary (not permanent)
shocks to productivity, we would expect a negative jump during the strike, possibly posi-
tive jumps before and after the strike. In that, impulses display patterns of autocorrelation
themselves. Furthermore, structural changes such as the adoption of a new exchange rate
regime (Bretton-Woods) affect the volatility of shocks and their propagation (Posch 2007).
Such phenomena could be addressed with time varying volatility models.

The aim of this paper, however, is to adopt methods developed for high-frequency data to
macroeconomics to estimate the parameters of the stochastic continuous-time growth model.

Several extensions such as the introduction of autocorrelated impulses with temporary effects

12Despite the fact that industrial production contributes only minor parts to total output, nevertheless
production indices are often used and play an important role in assessing the state of the economy.
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on variables and /or time-varying volatility could be implemented in the future but go beyond
the scope of this paper. The challenge for empirical research therefore is to filter the data
to get rid of effects that are not captured by the model, while the challenge for theoretical

research is to model all important effects without loosing the big picture.

5.2 Empirical estimates using industrial production

In this section we report empirical estimates using data on industrial production for the
United Kingdom (UK), the United States (US), Germany (DE), and the euro area (Eurol2).
In most cases, we use monthly observations instead of quarterly data, though consumption
data (as needed for the FEzact method) often is not available at this frequency, for the
following reasons. As from the Monte Carlo study, the problem of disentangling jumps from
diffusions using quarterly data becomes more severe (Ait-Sahalia 2004). As an example, we
report estimates for quarterly UK data (starting in 1948Q1). Moreover, the experiments
suggest that methods based on Solow residuals do not necessarily improve on the accuracy
of estimates at least for our model specification and sample size. For the US where monthly
consumption data is available, we also provide estimates using modified growth rates.

All plots of (modified) growth rates as well as exemplarily computed jump probabilities
can be found in Appendix D. Because our estimation methods are sensitive to the correct
model specification and outliers (observations not explained by the model), we omit observa-
tions during the oil crises in the case of the specification with degenerated jumps (model I).
Omitted observations coincide with the related US business cycle contractions identified by
the NBER'’s Business Cycle Dating Committee.'® Proceeding suchlike, we get rid of singular
effects and biases in the estimates, as negative jumps are not captured by model I. For the

binomial jump-size specification (model /1) all observations are included.

UK industrial production

Based on quarter-to-quarter UK industrial production (manufacturing sector) of the period
from 1948Q1 to 2005Q4, we find strong empirical evidence of jumps (cf. Table 3).

As a result, using model I, Approrimate methods suggest that positive jumps in output
growth rates occur about every 1/.2066 = 4.8 years, that means at business cycle frequency.'*
Accordingly, the annual growth rate jumps by .032 or 3.2 percentage points. Statistically,

the likelihood ratio test (20) rejects the null of no jumps in favor of the jump-diffusion model,

131n the case of quarterly data we omit periods 1973Q4 to 1975Q2 and 1980Q1 to 1980Q4 (11 observations),
for monthly data we discard 1973:11 to 1975:04 and 1980:01 to 1980:08 (26 observations).

Note that using standard errors based on the outer-product estimate of the information matrix, the
parameter estimate A is not significant at the 5% significance level. Using White’s (1982) quasi-maximum
likelihood standard errors, however, \is significant even at the .1% significance level.
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Table 3: UK quarterly IP (manufacturing sector) from 1948Q1 to 2005Q4

Method Parameter estimates
2 Z A U i p
MLE Approximate Ia  0.0323 0.2066  0.0271 0.0078
(0.0070) (0.1115) (0.0010) (0.0016)
In(0) 609.4 (5.75)
Ib 0.0323 0.2066 0.0271 0.0047
(0.0070) (0.1115) (0.0010) (0.0026)
In(0) 609.4 (5.75)
IIa  0.0339 0.0407 0.5036 0.0243 0.0085 0.5423
(0.0033) (0.0033) (0.0958) (0.0010) (0.0011) (0.0779)
In(0) 616.3 (24.17)
IIb  0.0276 0.0461 0.5276 0.0241 0.0098 0.5578
(0.0049) (0.0039) (0.1599) (0.0012) (0.0030) (0.1259)
In(0) 616.4 (24.38)
MLE Ezxact I 0.0124 1.4694 0.0222 —0.0134
(0.0102) (3.3956) (0.0036) (0.0274)
In(0) 557.1 (2.47)
I 0.0225 0.0371 0.6750 0.0223 —0.0041 0.7201
(0.0049) (0.0036) (0.3322) (0.0018) (0.0045) (0.1213)
In(0) 561.2 (15.01)

Notes: This table reports the ML estimates for degenerated jumps (model I), and binomial jump-size distribution (model IT)
using Approzimate methods: (a) around the non-stochastic steady-state and (b) around the mean values, and the Ezact method
based on Solow residuals, respectively. Standard errors and likelihood ratio tests against the null of no jumps in parentheses.
Omitting periods of oil crises in model I Calibrated parameters are (o, )’ = (.5,.5); A = 1/4; N = 231 (N = 220), for the
Ezact method N = 203 (N = 192).

~ ~

2(0n(0) — €N (0)) = 5.75. In contrast, using the Fract estimation method based on modified
growth rates, the likelihood ratio test does not reject the null of no jumps. We refer this
to identification problems indicated by the high (but insignificant) value for the arrival rate
in combination with a small value of the jump-size and the smaller sample size (quarterly
data for consumption is not available prior to 1955, thus N = 192). Fixing the jump-sizes,
that means assuming more plausible values, v, = .03 and vy = .04, as from Table 3, gives
more reliable estimates for the Ezact estimation approach (cf. Table 4). Nonetheless, the
estimate for the deterministic trend remains insignificant.

For model 11 with binomial jump-size distribution, the Approzimate approach suggests
jumps roughly every 1/.5036 = 2 years (model /7/a). With a probability of 54 percent, we
observe a positive jumps of the size .034 (roughly every 3.7 years), and with probability
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Table 4: UK quarterly IP (manufacturing sector) with fixed jump-sizes

Method Parameter estimates
2 Z A U i p
MLE Approximate Ia  0.0300 0.2370  0.0270  0.0076
(0.0000) (0.0662) (0.0009) (0.0013)
In(0) 609.3 (5.69)
Ib 0.0300 0.2370 0.0270 0.0043
(0.0000) (0.0662) (0.0009) (0.0021)
In(0) 609.3 (5.69)
IIa  0.0300 0.0400 0.5913 0.0238 0.0079 0.5958
(0.0000) (0.0000) (0.0791) (0.0009) (0.0011) (0.0589)
In(0) 616.2 (23.97)
IIb  0.0300 0.0400 0.5003 0.0243 0.0092 0.5317
(0.0000) (0.0000) (0.0707) (0.0009) (0.0020) (0.0654)
In(0) 615.6 (22.89)
MLE Ezxact I 0.0300 0.1081 0.0251 0.0016
(0.0000) (0.0507) (0.0008) (0.0022)
N (0) 556.7 (1.68)
I 0.0300 0.0400 0.3500 0.0243 0.0004 0.5510
(0.0000) (0.0000) (0.0700) (0.0010) (0.0023) (0.0877)
In(0) 561 (14.42)

Notes: This table reports the ML estimates for degenerated jumps (model I), and binomial jump-size distribution (model
IT) using Approzimate methods: (a) around the non-stochastic steady-state and (b) around the mean values, and the Ezact
method based on Solow residuals with fixed jump-sizes, respectively. Standard errors and likelihood ratio tests against the null
of no jumps in parentheses. Omitting periods of oil crises in model I. Calibrated parameters are (o, 0)’ = (.5,.5); A = 1/4;
N =231 (N = 220), for the Ezact method N = 203 (N = 192).

of 46 percent the complementary event of a negative jump of size .041 occurs. Using, the
estimates in the Ezract approach, we obtain smaller jump-sizes while the arrival rate is
higher. As already discussed, it indicates some problems of identification. Fixing the jump
size, jumps arrive every 1/.35 = 2.9 years with probability of success at 55 percent. In other
words, positive jumps again arrive at business cycle frequency roughly every 5.3 years.
Using month-to-month UK industrial production (manufacturing sector) of the period
from 1968:01 to 2006:03, we also find evidence of jumps. To save space, the results are
referred to the appendix (Appendix D, Figure 14, Tables 11 and 12). Note, however, that
monthly UK data seems to be contaminated with outliers, thus results should be interpreted

with care. Fixing the jump-sizes to plausible values as obtained from quarterly data helps
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Table 5: US monthly IP (manufacturing sector) from 1960:01 to 2006:03

Method Parameter estimates
2 Z A U i p
MLE Approximate Ia  0.0175 0.2335  0.0250  0.0183
(0.0036) (0.1118) (0.0003) (0.0009)
In(0) 1831.0 (4.26)
Ib 0.0175 0.2335 0.0250 0.0164
(0.0036) (0.1118) (0.0003) (0.0014)
In(0) 1831.0 (4.26)
Ila 0.0160 0.0227 0.8023 0.0228 0.0181 0.5058
(0.0018) (0.0007) (0.1401) (0.0004) (0.0008) (0.0764)
In(0) 1894.8 (58.0)
IIb  0.0140 0.0240 0.8499 0.0227 0.0201 0.5120
(0.0020) (0.0008) (0.1999) (0.0004) (0.0019) (0.1060)
In(0) 1895.0 (58.27)
MLE Ezxact I 0.0209 0.2160 0.0258 0.0171
(0.0019) (0.0488) (0.0003) (0.0014)
N (0) 1722.3 (8.66)
I 0.0170 0.0211 0.7840 0.0232 0.0189 0.4370
(0.0016) (0.0009) (0.1107) (0.0004) (0.0015) (0.0658)
In(0) 1800.9 (46.16)

Notes: This table reports the ML estimates for degenerated jumps (model I), and binomial jump-size distribution (model IT)
using Approzimate methods: (a) around the non-stochastic steady-state and (b) around the mean values, and the Ezact method
based on Solow residuals, respectively. Standard errors and likelihood ratio tests against the null of no jumps in parentheses.
Omitting periods of oil crises in model I. Calibrated parameters are (o, o)’ = (.5,.5); A = 1/12; N = 555 (N = 529), for the
Ezact method N = 529 (N = 503).

to get more reliable results but the estimated jump frequency seems to be too high.®

US industrial production

For the US, we use monthly industrial production (manufacturing sector) from the Bureau
of Economic Analysis from 1960:01 to 2006:03 (cf. Table 5). For the ease of interpretation,
we obtain annual parameter estimates by setting A = 1/12.

From model I, the Approzimate method gives jump arrivals every 1/.2335 = 4.3 years,
causing discrete changes in the annual growth rate of .018 or 1.8 percentage points. Note

that the jump-size seems substantially smaller than in the UK data. Similarly, using the

15When fixing the jump-size to smaller values, ‘outliers’ are implicitly still considered as jumps, with high
probability of having occurred more than once within a period and the arrival rate being estimated too high.
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FEzact method, positive jumps arrive every 1/.216 = 4.6 years of size .021 or 2.1 percentage
points. Again, estimates of positive jump arrivals are again at business cycle frequency, and
likelihood ratio tests in (20) clearly reject the null hypothesis of no jumps. Nevertheless, the
deterministic trend captures a substantial part of the growth rate.!

Using model II, the jump arrival rate is substantially higher, with jumps occurring roughly
every 1/.784 = 1.3 years. Positive jumps of are half a percentage point smaller than negative
jumps and arrive with probability 51 percent (about every 2.5 years) using Approzimate
methods or 44 percent (about every 2.9 years) in the Fzact method, respectively. Having in
mind the results of Monte Carlo experiments that estimates of the true arrival rate may be
positively biased, one is inclined to restrict the jump-sizes to higher values. Such strategies

would deflate the arrival rate, but any choice of plausible jump-sizes seems arbitrary.

DE industrial production

For the Germany (DE), we use monthly industrial production from the Federal Statistical
Office from 1960:01 to 2003:07 (cf. Table 6).'7

The results of model I indicate the presence of jumps as the likelihood ratio test (20)
rejects the null of no jumps, 2(¢x () — x(A)) = 4.06. Accordingly, we obtain that positive
jumps in IP growth rates compared to the UK and the US are extremely rare but drastic
events, jumping every 1/.0701 = 14.3 years by .049 or 4.9 percentage points. However, the
estimate of the noise parameter, = .054, is also substantially higher compared to the other
countries, where 1 = .025 or 1) = .027, as from Tables 5 and 3, respectively.

In that view, using model /7 allowing for negative jumps in the data, however, we can
draw a different conclusion in line with previous estimates. Now jumps are more frequent,
1/.8132 = 1.2 years and less severe. A positive jumps of size .037 comes at the probability
of 26.8 percent, while negative jumps of size .03 are more frequent with complementary
probability of 71.2 percent. Intuitively, positive jumps arrive therefore on average every
1/(.8132 x .2679) = 4.6 years again at business cycle frequency. These results impressively
demonstrate that, similar to the Monte Carlo experiments, neglecting the negative jumps

comes at the cost that the Brownian noise is overrated (compare .539 to .047).

16Note, however, that the rate of population growth (remember that labor supply is constant in the model)
has not been considered. Thus conclusions with respect to the importance of discrete innovations versus
continuous type accumulation cannot be drawn from this result.

1"Two obvious outliers (1967:10/1967:11 and 1984:05/1984:06) identified in Flaig (2005) have been removed
before the estimation procedure. Thanks to Gebhard Flaig for pointing out these irregularities.
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Table 6: DE monthly IP (Federal Statistical Office) from 1960:01 to 2003:07

Method Parameter estimates
2 Z A U i p

MLE Approximate Ia  0.0489 0.0701 0.0539  0.0134
(0.0082) (0.0319) (0.0005) (0.0014)

In(0) 1352.1 (4.06)
Ib 0.0489 0.0701 0.0539 0.0124
(0.0082) (0.0319) (0.0005) (0.0017)

In(0) 1352.1 (4.06)

IIa 0.0373 00298 08132 0.0472 00174  0.2679
(0.0033) (0.0036) (0.2322) (0.0011) (0.002) (0.0697)

(n(6) 1429.3 (12.45)

IIb 0.0343 0.0338 0.7631 0.0473 0.0231 0.2834
(0.0036) (0.0034) (0.1804) (0.0011) (0.0029) (0.0749)

NG 1429.2 (12.36)

Notes: This table reports the ML estimates for degenerated jumps (model I), and binomial jump-size distribution (model
IT) using Approzimate methods: (@) around the non-stochastic steady-state and (b) around the mean values, respectively.
Standard errors and likelihood ratio tests against the null of no jumps in parentheses. Omitting periods of oil crises in model
I. Calibrated parameters are (o, o)’ = (.5,.5); A =1/12; N = 523 (N = 497).

Euro area (Eurol2) industrial production

Finally we study euro area (Eurol2) monthly industrial production from the EABCN Real
Time Database (Eurostat) from 1985:01 to 2005:05.'® Note that estimates are based on a
relatively small number of observations (N = 244), which as shown above could result into
problems of identification. Nonetheless, our estimates are reasonable and in line with the
previous results finding empirical evidence for jumps (cf. Table 7).

As from model I, positive can be observed every 1/.2001 = 5 years causing a discrete
change in the growth rate of .026 or 2.6 percentage points. Moreover, the Brownian noise
component as well as the deterministic drift, 7 = .029 and & = .005 (model Ib), are about
the same order of magnitude as the UK estimate (compare with Table 3).

For model 11, we obtain jumps every 1/.3679 = 2.7 years. In that, positive jumps occur
at probability 63 percent, which means they should be observed every 1/(.3679 x .63) = 4.3
years jumping by .025 or 2.5 percentage points. The complement event of negative jumps

occurs at probability of 37 percent jumping by .026 or 2.6 percentage points.

8GSince 1999 the euro area includes 12 member countries: Austria, Belgium, Finland, France, Germany,
Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain.

25



Table 7: Eurol2 monthly IP (EABCN Real Time Database) from 1985:01 to 2005:05

Method Parameter estimates
2 Z A U i p
MLE Approximate Ia  0.0261 0.2001 0.0292  0.0064
(0.0051) (0.0697) (0.0004) (0.0011)
In(0) 804.5 (5.82)
Ib 0.0261 0.2001 0.0292 0.0040
(0.0051) (0.0697) (0.0004) (0.0014)
In(0) 804.5 (5.82)
Ila 0.0254 0.0262 0.3679 0.0273 0.0078 0.6300
(0.0036) (0.0062) (0.0973) (0.0006) (0.001) (0.1119)
In(0) 807.3 (11.28)
IIb  0.0248 0.0268 0.3680 0.0273 0.0069 0.6301
(0.0035) (0.0064) (0.098) (0.0006) (0.0015) (0.1069)
In(0) 807.3 (11.29)

Notes: This table reports the ML estimates for degenerated jumps (model I), and binomial jump-size distribution (model IT)
using Approzimate methods: (a) around the non-stochastic steady-state and (b) around the mean values, respectively. Standard
errors and likelihood ratio tests against the null of no jumps in parentheses. Calibrated parameters are (a,0)’ = (.5,.5);
A =1/12; N = 244.

5.3 Sensitivity analysis

This section provides a sensitivity analysis of empirical results with respect to the output
elasticity of capital, a. Of course, « is an important parameter of the macro model, say, but
as we show below not in the specific context of this analysis.

From the transition density of Xa in (18), we find that « is contained in w only. In other
words, using wy = £~ — %772 the parameter does not play any role in determining the arrival
rate, A, the jump-sizes v, and vy, the probability of positive jumps, p, well as the variance
of the Brownian noise, 7, respectively, employing approximations around the non-stochastic
steady state (model Ia or model I7a). Accordingly, the only parameter which would be
affected is the deterministic trend, p. If the calibrated value of o was too low, the estimate
of the deterministic trend, u, would be too high. This is the case as p measures the drift for
total factor productivity, A;. Specified as the drift of labor augmenting technology, X;, the
parameter would be independent of « as well. Because empirically only one deterministic
trend can be identified, its rather a question of interpretation than of estimation.

Using approximations around expected values (model Ib or model I1b), that means with

wy = w1 + 772 (1//\ — %nQ), all parameters estimates could be affected by «. At least in
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our model specification, however, Monte Carlo simulations (not shown) suggest that effects
on all estimates but of p are small (model 7). For model I, similar to approximations
around the non-stochastic steady state, a does not affect estimates of A\, v, and n. This is
because these parameters are already determined by higher moments independently of the
mean which denotes the only moment that is affected by « (cf. Appendix B.2).

Finally, the choice of o does affect the correction needed for obtaining modified growth
rates as in (16) used for Exact estimation methods (model I and model I7). Recalling that
the expected output- and consumption growth rates are identical, a wrong specification of
« has primarily a level effect. A higher value of the output elasticity, «, therefore implies
ceteris paribus a lower estimate of the deterministic trend, . Using w3 = 1 — %772, the choice
of a does not further affect the estimation results. In that, the choice of @ has implications
on the procedure of obtaining Solow residuals, but not on the estimation of parameters.

We can summarize our empirical study as follows. In line with growing trough cycles
theories we find empirical evidence of positive jumps in output growth rates at business cycle
frequency. This finding is independent from the chosen estimation strategy, thus not affected
by the calibrated value for a. Moreover, because approximations around the non-stochastic
steady state (model a and model I7a) hold for the general model, explicit solutions can be
used to assess how approximate methods work for special cases. We also find that negative
jumps are a salient feature of real world data, which in case they are neglected severely bias

the arrival rate of positive jumps.

6 Conclusion

In the paper we develop a continuous-time neoclassical stochastic growth model where the
resulting output growth rate follows an (asymmetric) jump-diffusion process. By imposing
different parameter restrictions we obtain two solutions in explicit form.

Based on the solutions we obtain transition densities in closed form. Two techniques,
an approximate as well as an exact method, are introduced with the consequences of the
approximation error being analyzed. In an extensive Monte Carlo simulation study we
demonstrate that the parameters of the data generating process can be recovered. We also
show that exact methods do not necessarily improve on the accuracy of estimates for the
present model specification if the sample size was small or moderate.

Taking the model directly to the data, we find empirical evidence of jumps in output
growth rates for the United Kingdom, the United States, Germany as well as the euro
area (Eurol2). Standard likelihood ratio tests are used to test for the presence of jumps,

with estimates of positive jump arrivals at business cycle frequency. Though the present
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approach does not differentiate between endogenous and exogenous sources of jumps in factor
productivity, the existence of discrete changes in macro series seems a necessary condition
for the growing through cycles literature. Having identified jumps, one should tackle the
question about the endogeneity or determinants of jumps.

There are a number of interesting directions for future extensions of this work. From
an empirical perspective, time-varying volatility models should be considered extending the
present single factor model to more factors (Johannes 2004). Different versions of modeling
the distortions such as geometric diffusion with mean reversion, arithmetic diffusion could be
implemented. This would allow to have effects like hump-shaped impulse responses. From a
theoretical perspective, studying effects that result into negative jumps in factor productivity
or recessions are necessary to account for empirically features of the data (for example
explicitly modeling demand shocks as in Chen and Funke 2007). From an econometric
perspective, estimating continuous-time models in macro without the use of explicit solution
remains a major goal. Using closed-form sequences of approximations to the transition

density instead seems a promising avenue to follow (Ait-Sahalia 2002a).
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A Technical appendix

A.1 TIto’s formula for non-degenerated jumps

Assume the following jump process
dXt = a,(t, Xt)dt + b(t, Xt—7 Jt)th (21)

or more rigourously X; — X, = fot a(s, Xs)dt + fot b(s, Xs_, Js)dg; where J; denotes the jump
size distribution satisfying mild regularity conditions.!® Using the time derivative together

with (21), and collecting terms, we obtain

t
d (/ b(S, XS_, Js)th) = b(t, Xt—a Jt)th (22)
0

The change of variable formula (Protter 2004, p.78) for any finite variation process, Xy,

with right continuous paths, and f(X;) a function with fx(X;) exists and is continuous, is

F(X) - F(Xo) = / FedX+ 3 {F(X) = F(X. ) — fxAX.}

0<s<t

where AX = X, — X,_ simply denotes the jump at time s. Now insert (21),

X)) — F(Xo) = / fxa(s, X.)ds + / b(s, Xoo . J2) frlas
+ Z {f(Xs) - f(Xs—) - (Xs - Xs—)fX}

0<s<t

which, recalling that X, = X + b(s, X5_, Js), equivalently can be written as
t t
FO0) = 1) = [ frals Xds+ [ bs, X T feda
0 0
t
[ b X 1) = F(Xe) = b, X T Yl
0

- [ s, X.)ds + / (X4 b5, X 1) — F(Xo )} day

where we simply collected terms in the last step. Taking the time derivative using (22), we

obtain the familiar change of variable formula

df (Xy) = fxa(t, X;) + {f(Xt— +0(t, X4, Jy)) — f(Xt—)} dg.

Hence, the usual [t6’s formula (change of variables) can be used for non-degenerated jumps.

9Note that stochastic functions instead of deterministic functions within the stochastic integral are widely
used in the financial literature (e.g. Merton 1973). This derivation, however, shows that the change of variable
formula in Sennewald (2007) also applies to the case of non-degenerated jumps.
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A.2 Theorems on reducible and affine SDEs

We extend the theorems of Kloeden and Platen (1999, p.125) on diffusions for jump-diffusions
with non-degenerated jump size distribution. A rigorous treatment with solutions of SDEs

with Poisson processes can be found in Garcia and Griego (1994).

Theorem A.1 (Reducible SDEs) Consider the general non-linear jump-diffusion process
with polynomial drift of degree n,

dX, = (aX]" + bX,)dt + X, dW, + V. X,_dg,,

where Wy is a Brownian motion, q; is a Poisson process, and V; denotes the independent

Jump size distribution with constant mean and variance. The solution reads

1-n

t
X, =6, (X&" +a(l —n) / @glds) (23)
0

1 S
O, = exp ((b - 502) s+ cWi +/ In(1+ Vu)dqu> )
0

Proof. Define auxiliary variables

with

1 t
g(t, Wi, Vi, q) = (b — 502) t+ cW; + / In(1 + Vj)dgs
0

and
1

t T-n
(Xé" +a(l —n) / @Zlds) ,
0

such that X; = exp(g;)hi = F(g¢, ht). Using the rule d <fg a(s)dqs> = a(t)dq;, we obtain

h(t)

1
dg, = (b — 58) dt + cdW; + In(1 + V;)dgy,

n

t 1—-n
dhy = (Xé_" +a(l — n)/ @Z‘lds) a®}dt.
0

With [to’s formula (change of variables) we finally obtain the evolution of X} as

T 1
a®}dt + exp(g:) (b — —02) dt

t
dX; = exp(g) (Xé” +a(l — n)/ @’;1033) 5
0

1
—1—5 exp(gt)htCth + exp(g¢) hecdWy 4+ {exp (gi— + In(1 4+ V;)) hy— — exp(ge— ) e } dgy

1 1
= hra©dt + (b — 58) X, dt + 5)gcht + X dWe + {(1+V;) — 1} X;_dg;
= a,thdt + bXtdt + CXtth + V;th—th

where we inserted X; = exp(g:)h: and collected terms to obtain (23). =
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Theorem A.2 (Affine SDEs) Consider the general affine jump-diffusion process,
dX, = (a(t) Xy + b(t))dt + c(t)dWy + Vidg,

where Wy is a Brownian motion, q; is a Poisson process, and V; denotes the independent

Jump size distribution with constant mean and variance. The solution reads

t t t
Xt = Oy (Xto +/ @;;Ob(s)ds +/ @;tloc(s)dWs +/ @;;OX/;d%) : (24)
to

to to

¢
Oy, = €Xp (/ a(s)ds) :
to

Proof. Define auxiliary variables

with

and

t t t
h(t, W, Vi, qr) = Xy, —1—/ @;tlob(s)ds —I—/ @;tloc(s)dWs —1—/ @;tloVqus,
to to to

such that X; = exp(g;)hi = F(g¢, hy), with differentials

dgt - a’(t)dt:
dhy = O, b(t)dt + O c(t)dW, + O, Vidg.

Using this result, we finally obtain the evolution of X; as

dXi = exp(g) (@Ztlob(t)dt + 9;t1()c(t)th) + eXp(gt)@Ztlovtth + exp(g¢) hea(t)dt
= a(t)Xedt + b(t)dt + c(t)dW; + Vidgy,

where we inserted X; = exp(g;)h; and collected terms to obtain (24). =

A.3 The evolution of log-output
From (9), the evolution of output inserting dK;/dt from (2) is

ay;, = (p+a(ly/K;—96))Ydt + Yindz + (exp(J;) — 1)Y;_dg,
= (,LL + Oé(}/;/Kt — Ct/Kt — (S))ndt + KﬁdZt + (eXp(Jt) — 1)}/;&761%

Now define log-output, y; = InY;, and use 1t0’s formula to compute the differential dy;,
dy, = (u +a(Y;/K; — Cy /K, — 6) — %772) dt + ndz, + Judg,
= (u +a(ry/a—06—Ci/K;) — %772> dt + ndz; + Jydg;. (25)
where we inserted capital rewards, r; = Yk = aY;/ K, in the last step.
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A.4 The evolution of the rental rate of capital
Using 1t6’s formula (change of variables), capital rewards, r; = a4 (X;L/K;)'~, follow

dry = radAy+ (ry — ) dg + rdKy,
= rudt +rndzy + (exp(Jy) — V)r—dgy + rr (I — 0K,)dt,

Now inserting rx = —(1 — a)r;/ Ky, and replacing Y;/K; = r;/a, we obtain

dry = rypdt + rmdz + (exp(Jy) — Dr—dg — (1 — a)(Yy/ Ky — Cy/ Ky — §)rydt,
= (p— (1 —a)(ri/a—0—Cy/Ky))rdt + rindz + (exp(Jy) — 1)ry_dgy. (26)

A.5 The maximized Bellman equation

The value of an optimal program of (5) is defined by

V(a(0), A(0), X(0)) = rggf{Uo},

which denotes the present discounted value of utility evaluated along the optimal program.

Splitting up the integral gives

At 00
Uy = EO/ e P'u(cy)dt + Em/ e Pu(cy)dt.
0

At

Following Bellman’s idea, the optimal program is

V(a(0), A(0), X(0)) = max {Eou(co)At +

€0

1
a3 400,500}

Multiply by (1 + pAt) gives
(14 pAV(a(0), A(D), X (0)) = max {Euu(co) M (1 + pA1) + EalV (a( A1), A(M)), X (A1)}

Now divide by At and move =V (a(0), A(0), X(0)) to the right hand side

PV (a(0), A(0), X(0)) = max {Eou(co)(l + pAL) + ﬁ [EAtV(a(At), A(AL), X (At))

~(a(0). 40, X(0)] }

Letting At become infinitesimally small, the problem becomes

pV (a(0), A(0), X(0)) = mc%X {u(co) + %EOdV(a(O), A(0), X(O))} )
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Because of X; and A; are independent, [td’s formula (change of variables) yields
1
dVy = Vaday +VadA, + SVaaAfidt + (V(ar, A, Xo) = V(ar, Ay, X)) da,

1
= Vi((ry — 0)ay + wy — ¢p)dt + VaApdt + Vi Andz, + §VAAAfn2dt
+ (V(at7 Ata Xt) - V(a’ta Ata Xt7>> th

where we inserted (7). With Ey(dz) = 0 and Ey(dg;) = A\dt, the Bellman equation reads
1
pV(a(0), A(0), X(0)) = max {u(co) + Va((ro — 0)ag + wo — co) + VaAp + QVAAA?U2
o

+A (E;(V(ao, Ao, Xo)) — V(ao, Ao, Xo-)) },

where E;V (as, Ay, X;) denotes the expected value of the optimal program with respect to
J;, as the level of X; immediately after a jump is X; = (exp(Jt))ﬁXt_.

The first order condition reads
u'(co) = Valao, Ao, Xo), (27)
making consumption a function of the state variables. The maximized Bellman equation is

pV (a(0), A(0), X(0)) = wu(c(ao)) + ((ro = d)ao + wo — c(ao))Va + VaAop + %VAAA?)TF
—f-)\ (EJV((I(),A(),XQ) — V(CLQ,A(),XO_)) . (28)

A.6 Long-run growth dynamics

This section derives the (non-stochastic) long-run values to which variables tend to revert
in the absence of stochastic shocks. For this we make use of the concept of balanced growth
well known from the corresponding deterministic standard neoclassical model. In general,

using Ito’s formula (change of variables), output evolves according to

dY}/ = YAdAt + (Y; - Y;F) dqt + YKth,
= d}/;/}/; = 1/AtdAt+ (eXp(Jt> — 1)dq1§+041/thKt,
= udt+ adK;/K; + ndz + (exp(J;) — 1)dg
which can be interpreted as the stochastic growth rate of a variable. In the absence of
shocks, i.e. dz =0 and dq = 0, the economy converges to a balanced growth path similar to

the deterministic version of the model (Barro and Sala-i-Martin 2003). Along such a path
(dK/dt)/ K, is a constant, accordingly from (2), the rental rate of capital, r;, as well as the
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consumption-capital ratio, Cy/K;, converges to a constant in the absence of shocks. As a
corollary, in this situation, consumption and capital stock instantaneously grow at the same
exogenous rate. Moreover, the market clearing condition (8) demands that output grows at
this hypothetical growth rate. Along such growth path, the variables can be differentiated
with respect to time,

(dy;/dt))Y, = p+a(dK,/dt)/K,
1
where in the last step we used the fact that (dY;/dt)/Y; = (dK;/dt)/ K, which is the exoge-

nous balanced growth rate in the deterministic setup.

A.7 Proof of Theorem 2.1

The idea of this proof is to show that together with an educated guess of the value function,

both the maximized Bellman equation (28) and first order condition (27) are fulfilled. We

may guess that the value function reads

oral
l-0o

To start with we rewrite the policy function using the transformation K; = La, as

V(g Ag, X;) = + f(An Xy). (30)

Ct :¢Kt =4 LCt (bLat = = (bat (31)

Using (27) together with (6), and (31), we obtain V, = (¢a;)~?. Moreover, our guess in (30)
implies V4 = fa, Vaa = faa, Vx = fx. Inserting everything into (28) gives

7 1 o 1—0o
¢1 - % + (@)~ ((re = 8)ar + wy — par) + g(Ar, Xy).

where we defined g(A;, X;) = faAun + 5 faaAin? + MNf (A, Xi) — f(A, X)), Note that
f(As, Xy) contains the expectation with respect to the jump J;. Intuitively, this explains the

+pf(An, Xe) =

fact why J; does not enter the value function as an argument.

Using factor rewards w; = Yy, and r; = Y we obtain
Tt = OéAthail(Xt[Jlia, Wi = (1 — Oé)AthathiaLia. (32)

Inserting now (32) together with K; = La, gives

¢ 10 o afAL X)) = % + (0 AXIa — Sa;) (a:) ™
H(1 = ) A Xy %af (@) ™7 — dag(arp) ™ + g(Ar, Xo),
= % + A X a0 (a0) ™7 — dai(ard) 7 — pay(ap) 7
+g(As, Xt).
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Using the condition o = o with pf (A4, X;) = A, X} ¢~ + g(A,, X;) it becomes

—o,1-0 —o
p¢ ay _ ((bat)l . 5aifa¢fo . (¢at>1f¢7

1—0 l1—0

& p = o—(-0)—(1-0)
Finally we can solve for ¢ which is (10).

A.8 Proofs of Corollaries 2.2 and 2.3
Proof of Corollary 2.2

Inserting C; = ¢K; from (31) in (26), we obtain
dry = (p— 1 —a)(r/a—0—¢))rdl +rmdz + (exp(Jy) — L)ri—dg.

We now rewrite the equation by using the condition @ = o, and inserting ¢ from (10) to

1—
dry = (u - a (rp —ad—p—(1— 0)5)) redt + rindzy + (exp(Jy) — 1)r—dgy

11—«
= (,u - (ry — 6 — p)) redt + rndzy + (exp(Jy) — 1)r_dg,

1 —
= — O‘Tt (1 (_Xau +p+0— rt) dt + nridz, + (exp(Jy) — 1)ri—dg.

Using the definitions ¢; and ¢y we finally obtain (11).

Proof of Corollary 2.3

Inserting the policy function Cy = ¢ K into (25) gives
1
dy; = (M +re—a(d+ ) — 5712) dt + ndz; + Jydg.

Applying Theorem A.2 and inserting ¢ from (10) yields,

t 1 t
Yy = yt0+/ (u+rs—a(6—|—¢)_§n2)ds+772t+/Jsdqs
to

to

1 t t
= Y + (t —to) (u —p—0— 5772) + / rsds + Nz + / Jodgs, (33)
t i

0 0

where 7, is known explicitly from its solution in (12). Thus, the growth rate per unit of

time, A, is given by

1 t t
Y — Yn = A (u —p—0— 5772> + / rsds +n(z — 2-n) + / Jsdgs.
t—A t—A
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A.9 An alternative solution

The proofs for the following Theorem A.3, Corollary A.4, and Corollary A.5 are analogous
to Section A.7, and Section A.8, respectively, and are contained in the Referees’ appendix

available on request.

Theorem A.3 If o > 1 and the condition
1
p=(aoc—1))—op+ 5(1 +o)on® + AE; ((exp(Jy))™7) — A

is fulfilled, consumption is a constant fraction of income, C' = 9Y , where

oc—1

9= 34
. (34)
Corollary A.4 The rental rate of capital follows
dr = cary(cq — 1) dt + nrdze + (exp(Jy) — Dre_dgy (35)
where c3 = %, and cy = %+ aod, respectively.

Similarly to Corollary 2.2 in the text, ¢4 is the long-run equilibrium (or the long-run value

towards the rental rate of capital tends to revert), and c3 is the speed of reversion.

Corollary A.5 The growth rate of output per unit of time, ga = Yy — Ys—a, r€GAS
1 t t
ga = A (u —ad — —772) + 1/0/ rsds +n(z — 2-a) +/ Jsdgs. (36)
2 t—A t—A

A.10 ACFs of simulated growth rates

In the simulation study of realized growth rates (cf. Figure 1), we use N = 1050 (A = 1)
where we cut of the first 500 observations to neglect transitional effects. We set parameters
(vs,vp, A\, m, 1, p) = (.05,0,.05,.01, 1) and other parameters (p, o, 0,0)" = (.03, -, -, 0).
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Figure 4: Simulated growth rates and ACF, a =0 = .9

0.25
!

0.10
!

-0.05

0 100 200 300 400 500

0.8

0.4

Figure 5: Simulated growth rates and ACF, a =0 = .1
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Notes: These figures show the ACFs of simulated growth rates with different parameters for the speed of reversion. The upper
figure simulates resulting growth rates with low speed of reversion, whereas the lower figure uses a ceteris paribus analysis with
parameters that imply a high speed of reversion. Simulations are based on parameters (vs,vg, A, n, t, p) = (.05,0,.05,.01,1),
other parameters (p, a, 0,8)" = (.03, -,-,0) and use the same realizations of stochastic processes.
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B Estimation strategy

B.1 Approximate growth rates

This section derives w; and wy, respectively.

B.1.1 Approximation around the non-stochastic steady state

In the near neighborhood of the non-stochastic steady state, i.e. the value towards r; tends
to revert, ftt_ A Tsds in (11) can well be approximated by Acs = A (1% p+ p+ 0). Inserting
this into (13) yields

1 t
gn ~ A <1 a — —772> + 77(Zt — thA) —|—/ Jsdqs. (37)
—a 2 t—A

Hence, we obtain w; = - — in>. When inserting (dK/dt)/K = ~=u of Appendix A.6

—a 2
in equation (9), solving and computing the output growth rate, we obtain (37) also for the
general case. Although motivated by our explicit solution, the approach can well be used to

estimate the underlying parameters for o # o.

B.1.2 Approximation around expected values

We are now interested in obtaining the mean of the output growth rate per unit of time.

Using the expectation operator with (13) yields

1 t t
E(ga) = A(u—p—5—§n2)+E/Arsds+E/AJsdqs,
t— t—

1 t
= A(u—p—d__n2+y)\)+E/ rsds. (38)
2 -A

Now we make use of the fact that the capital stock can be observed because of C; = ¢ K;.

According to (1) logarithmic output, y; = In Y}, is

y = ImA+alnK,+(1—a)(InX;+1InL)
& alnK, = yp—nA—(1—ao)(InX;+Inl)

Insert the solution C' = ¢ K from Theorem 2.1 to obtain growth rates of consumption,

a(lnCy—nCipn) = yu—Ya— (A —InA; A)— (1 —a)(InX; —In X;_A)

= —A(p+5)+/ttArsds (39)
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where we inserted the growth rates per unit of time of the solutions to the SDEs in (4) and
(3), InA; —InAan = (p—30*)A+n(z — z-a), and InX; —In Xy p = = f;A Jydgs as
well as output growth rates from (13), respectively. Defining ¢4 = InC; — In Cy_a,

¢
aBgy = —A(p+9) +E/ rsds
t—A

It follows from the economy’s aggregate resource constraint (8) that consumption and
investment in expectation can only growth at constant rates indefinitely if both grow at the
same rate as expected output. In particular we then observe Ega = Eg¢%, and using (38),

1 1
Egn = A— (u— 2" +1/)\>

With this result, from (38) we obtain

t 1
E/ rsds = A(p—l—é—l—i(u——?f—i—l/)\))
t—A -« 2
« 1
4 E(?”t) = C9+ ﬁ (V)\ — 5772) s (40)

assuming both integrals f:ﬁ ATsds and E J;i A Tsds to exist (cf. Posch and Wélde 2006).%
Intuitively, it reflects the tendency parameter co adjusted for the (asymmetric) jump term
as well as the Jensens-inequality term. Note that the term 2 again refers to the speed of
reversion for capital rewards. If the speed of reversion was high, the expected value would
differ only slightly from its tendency parameter c,.2!

To summarize, ft A T'sds can be approximated by A (02 + == (V)\ — = )) Inserting into

output growth rates (13) yields

1 a 1 !
ga A(u—§n2>+A(1 (u—an +M)>+n(zt—zm)+/ Jsdgs
t—A
N Y R R A +n(z— )+/tJd (41)

Hence, we can define wy, = £ — ﬁ%nQ + 2= A. Contrarily to the previous approach, this

estimation method yields consistent parameter estimates.

20The assumption of r; to be stationary seems plausible both from theoretical and empirical considerations.
21Similarly, using the plausibility consideration that non-zero long-run expected growth rate cannot differ
for other solutions, the first moment of capital rewards in the constant savings-rate solution reads

t
1
E rsds = A O'OéTa-i-UOé(S—‘r&M—I—(p—&—?f—l— 79 U\
—A l1-a 1-a2 l1-a
oo 1
& E = P
(re) cG+1a(” 277)

which reflects the tendency parameter adjusted for positve jumps as well as the Jensens-inequality term.
Again, the term ;%% is the inverse of the speed of reversion for the rental rate of capital. Similar results

using uncertain population growth can be found in Merton (1999, Table 17.2).
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B.2 Alternative estimation methods

Though the following alternative estimation approaches cannot compete in finite sample
sizes with (efficient) maximum likelihood (ML) estimation as the theoretical model provides
the complete specification of the probability distribution of the data, they are introduced to
understand asymptotic properties of estimates.

The first four moments of the process X in (17) are (Press 1967, Ait-Sahalia 2004),

0) = Alw+rvA),
0) = AW+ @ +7)N),
0) = A+ 3y),
0) = AN+ 6029\ +392)) + 3A% (0% + (V2 + )N,

where m; denotes the ith central moment. For 6 unknown parameters in 6, we need at least
6 moment conditions to fully determine the estimates. Unfortunately, it is not possible to
derive explicit expressions for the binomial jump-size specification (model /7). Thus, after
deriving more moments we would have to apply numerical method of moments (MM), or
with a specified weighting matrix using general method of moments (GMM) estimation.
For the degenerated jump-size specification (model I), we obtain explicit conditions for
the parameter vector. Setting v to zero, we can explicitly solve for the parameters as follows.

Inserting msy and mg in my yields

N 2
- my 3m2’ (42)
ms3

which uniquely specifies the jump-size. Using (42) with mg3, we obtain the arrival rate,

4
m
A= : : 43
A(my — 3m3)3 (43)
For the Brownian noise, we use (42) and (43) together with my and get
o _ ma(my — 3m3) —mj (44)

A(mg — 3m3)
The remaining moment condition determine p, which is contained in w € (wy,ws, ws3),
(s — 3m3)° — m
A(mg — 3m3)?
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C DMonte Carlo evidence

Table 8: Comparison of Monte Carlo estimates and sample parameters (.95 quantile)

Method Parameter estimate averages
2 Zi A i j p
Sample averages 0.025 0.025 0.7898  0.0250  0.0199  0.5005
(0.0000) (0.000) (0.1218) (0.0008) (0.0033) (0.0774)
MLE Approximate Ia  0.0258 0.2264  0.0306  0.0172
(0.0156) (0.0881) (0.0016) (0.0039)
Ib  0.0239 0.2312  0.0305  0.0151
(0.0184) (0.0885) (0.0016) (0.0053)
Ilo 0.0251  0.0251  0.8743  0.0248  0.0198  0.4995
(0.0034) (0.0035) (0.2550) (0.0012) (0.0036) (0.1229)
I 0.0228 0.0274  0.8683  0.0248  0.0209  0.5018
(0.0036) (0.0032) (0.2453) (0.0012) (0.0044) (0.1214)
MLE FEzact 1 0.0231 0.2347  0.0304  0.0153
(0.0193) (0.0889) (0.0015) (0.0057)
I 0.0250 0.0250 0.8738  0.0247  0.0199  0.4992
(0.0034) (0.0035) (0.2536) (0.0012) (0.0044) (0.1228)

Notes: This table reports the averages over the .95 quantile of M = 5000 Monte Carlo simulations ordered by ATt compares
averages of MLE for (model I) degenerated jumps and (model II') binomial jump-size distribution using Approzimate methods:
(a) around the non-stochastic steady-state and (b) around the mean values, and the Ezact method based on Solow residuals,
respectively, with sample averages. Standard deviations of estimated parameters in parentheses. Calibrated parameters are

(a,0) = (.5,.5); A =1/10; N = 550.
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Figure 6: Inferring jumps from large realized growth rates
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Notes: This figures reports an arbitrary realization of a Monte Carlo sample path of growth rates (upper panel), the estimated
probability of one positive jump (second panel), the jump-sizes (third panel), and the estimated probability of one negative
jump (lower panel) based on the binomial jump-size distribution (model Ila) with approximation around the non-stochastic
steady-state (compare with Table 1) (A = 1/10; N = 550).
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D Empirical results
D.1 Descriptive statistics

Table 9: Descriptive statistics of IP growth rates.

UK UK US DE Eurol2
A=1/4 A=1/12 A=1/12 A=1/12 A=1/12
Mean 0.0041 0.0006 0.0028 0.0020 0.0015
Standard dev. 0.0177 0.0150 0.0084 0.0159 0.0091
Skewness —0.1402 —0.7204 —0.6612 —0.0419 0.1354
Excess kurtosis  1.4366 10.8683 3.2766 0.8515 1.2020
Minimum —0.0517  —0.1008 —0.0459 —0.0482 —0.0302
Maximum 0.0626 0.0893 0.0295 0.0669 0.0331
Observations 231 459 555 523 244

Table 10: Descriptive statistics of IP growth rates omitting oil crises.

UK UK US DE Eurol2
A=1/4 A=1/12 A=1/12 A=1/12 A=1/12
Mean 0.0055 0.0012 0.0034 0.0024 0.0015
Standard dev. 0.0154 0.0144 0.0076 0.0160 0.0091
Skewness 0.2776 —0.6491 —0.0142 —0.0416 0.1354
Excess kurtosis  0.7592 12.6234 0.9841 0.7945 1.2020
Minimum —0.0377  —0.1008 —0.0233 —0.0482 —0.0302
Maximum 0.0566 0.0893 0.0295 0.0669 0.0331
Observations 220 433 529 497 244

Notes: These tables report the descriptive statistics of growth rates of industrial production (IP) per unit of time, A, for the
United Kingdom (UK), the United States (US), Germany (DE), and the euro area (Eurol2).

D.2 Empirical estimates
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Figure 7: UK industrial production (manufacturing sector), modified quarter-to-quarter
growth rates and jump probabilities (model 1) from 1955Q1 to 2005Q4, seasonally adjusted

T T T T T
1960 1970 1980 1990 2000

Notes: This figure reports the time series of modified growth rates of quarterly UK industrial production (upper panel), the
estimated probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel)
based on the Ezact method (model IT), respectively. The shaded areas coincide with periods of euro area recessions identified
by the CEPR’s Business Cycle Dating Committee. (A = 1/4; N = 203)
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Figure 8: UK industrial production (manufacturing sector), quarter-to-quarter growth rates
and jump probabilities (model I7b) from 1948Q1 to 2005Q4, seasonally adjusted
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Notes: This figure reports the time series of growth rates of quarterly UK industrial production (upper panel), the estimated
probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel) based on the
Approzimate method (model IIb), respectively. The shaded areas coincide with periods of euro area recessions identified by the
CEPR’s Business Cycle Dating Committee. (A =1/4; N = 231)
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Figure 9: UK industrial production (manufacturing sector), quarter-to-quarter growth rates
and jump probabilities (model IIb) using fixed jump-sizes
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Notes: This figure reports the time series of growth rates of quarterly UK industrial production (upper panel), the estimated
probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel) based on the
Approzimate method (model IIb) using fixed-jump sizes (cf. Table 4), respectively. The shaded areas coincide with periods of
euro area recessions identified by the CEPR’s Business Cycle Dating Committee. (A = 1/4; N = 231)
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Figure 10: US industrial production (manufacturing sector), modified month-to-month
growth rates and jump probabilities (model 1) from 1960:01 to 2004:01, seasonally adjusted
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Notes: This figure reports the time series of modified growth rates of monthly US industrial production (upper panel), the
estimated probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel)
based on the Ezact method (model IT), respectively. The shaded areas coincide with periods of US recessions identified by the
NBER’s Business Cycle Dating Committee. (A = 1/12; N = 529)

52



0.00 0.02

-0.04

1.0 00 02 04 06 08 1.0

0.0 02 04 06 038

Figure 11: US industrial production (manufacturing sector), month-to-month growth rates
and jump probabilities (model IIb) from 1960:01 to 2006:03, seasonally adjusted
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Notes: This figure reports the time series of growth rates of monthly US industrial production (upper panel), the estimated
probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel) based on
the Approzimate method (model IIb), respectively. The shaded areas coincide with periods of US recessions identified by the
NBER’s Business Cycle Dating Committee. (A = 1/12; N = 555)
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Figure 12: DE industrial production (Federal Statistical Office), month-to-month growth
rates and jump probabilities (model 71b) from 1960:01 to 2003:07, seasonally adjusted
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Notes: This figure reports the time series of growth rates of monthly DE industrial production (upper panel), the estimated
probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel) based on the
Approzimate method (model IIb), respectively. The shaded areas coincide with periods of euro area recessions identified by the
CEPR’s Business Cycle Dating Committee. (A =1/12; N = 523)
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Figure 13: Eurol2 industrial production (EABCN Real Time Database), month-to-month
growth rates, jump probabilities (model /Ib) from 1985:01 to 2005:05, seasonally adjusted
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Notes: This figure reports the time series of growth rates of monthly euro area industrial production (upper panel), the
estimated probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel)
based on the Approzimate method (model IIb), respectively. The shaded areas coincide with periods of euro area recessions
identified by the CEPR’s Business Cycle Dating Committee. (A = 1/12; N = 244)
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Table 11: UK monthly IP (manufacturing sector) from 1968:01 to 2006:03

Method Parameter estimates
2 Z A U i p
MLE Approximate Ia  0.0678 0.1005  0.0452  0.0041
(0.0017) (0.0160) (0.0002) (0.0013)
In(0) 1243.9 (47.21)
Ib 0.0678 0.1005 0.0452 0.0012
(0.0017) (0.0160) (0.0002) (0.0015)
In(0) 1243.9 (47.21)
Ila 0.0654 0.0535 0.3564 0.0374 0.0073 0.2988
(0.0011) (0.0009) (0.0273) (0.0003) (0.0009) (0.0357)
N (0) 1360.1 (167.79)
IIb  0.0631 0.0553 0.3545 0.0374 0.0111 0.3003
(0.0011) (0.0009) (0.0276) (0.0003) (0.0012) (0.0362)
In(0) 1360.0 (167.57)

Notes: This table reports the ML estimates for degenerated jumps (model I), and binomial jump-size distribution (model

IT) using Approxzimate methods: (a) around the non-stochastic steady-state, and (b) around the mean values, respectively.
Standard errors and likelihood ratio tests against the null of no jumps in parentheses. Omitting periods of oil crises in model
I. Calibrated parameters are (o, 0) = (.5,.5); A = 1/12; N = 459 (N = 433).

Table 12: UK monthly IP (manufacturing sector) with fixed jump-sizes

Method Parameter estimates
2 Zi A i j p
MLE Approximate Ia  0.0300 0.2339  0.0455 0.004
(0.0000) (0.0254) (0.0002) (0.0015)
In(0) 1234.3 (27.93)
Ib 0.0300 0.2339 0.0455 0.0010
(0.0000) (0.0254) (0.0002) (0.0016)
In(0) 1234.3 (27.93)
IIa  0.0300 0.0400 0.7779 0.0356 0.0075 0.4429
(0.0000) (0.0000) (0.0464) (0.0004) (0.001) (0.0274)
In(0) 1348.2 (144.13)
IIb  0.0300 0.0400 1.0681 0.0342 0.0242 0.2450
(0.0000) (0.0000) (0.0593) (0.0004) (0.0015) (0.0194)
In(0) 1349.8 (147.35)

Notes: This table reports the ML estimates for degenerated jumps (model I), and binomial jump-size distribution (model IT)

using Approzimate methods: (a) around the non-stochastic steady-state, and (b) around the mean values with fixed jump-sizes,
respectively. Standard errors and likelihood ratio tests against the null of no jumps in parentheses. Omitting periods of oil
crises in model I. Calibrated parameters are (o, o) = (.5,.5); A = 1/12; N = 459 (N = 433).
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Figure 14: UK industrial production (manufacturing sector), month-to-month growth rates
and jump probabilities (model IIb) from 1968:01 to 2006:04, seasonally adjusted
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Notes: This figure reports the time series of growth rates of monthly UK industrial production (upper panel), the estimated
probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel) based on the
Approzimate method (model IIb), respectively. The shaded areas coincide with periods of euro area recessions identified by the
CEPR’s Business Cycle Dating Committee. (A =1/12; N = 459)
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Figure 15: UK industrial production (manufacturing sector), month-to-month growth rates
and jump probabilities (model I76) with fixed jump-sizes
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Notes: This figure reports the time series of growth rates of monthly UK industrial production (upper panel), the estimated
probability of one positive jump (middle panel), and the estimated probability of one negative jump (lower panel) based on the
Approzimate method (model IIb) using fixed jump-sizes (cf. Table 12), respectively. The shaded areas coincide with periods of
euro area recessions identified by the CEPR’s Business Cycle Dating Committee. (A = 1/12; N = 459)
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