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Abstract

We develop an empirically highly accurate discrete-time daily stochastic

volatility model that explicitly distinguishes between the jump and continuous-

time components of price movements using nonparametric realized variation

and Bipower variation measures constructed from high-frequency intraday data.

The model setup allows us to directly assess the structural inter-dependencies

among the shocks to returns and the two different volatility components. The

model estimates suggest that the leverage effect, or asymmetry between re-

turns and volatility, works primarily through the continuous volatility compo-

nent. The excellent fit of the model makes it an ideal candidate for an easy-

to-implement auxiliary model in the context of indirect estimation of empiri-

cally more realistic continuous-time jump diffusion and Lévy-driven stochastic

volatility models, effectively incorporating the interdaily dependencies inherent

in the high-frequency intraday data.
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1 Introduction

Modeling of financial market volatility has been one of the most active areas of research in

empirical finance and time series econometrics over the past two decades. A current theme

in this literature concerns the question of whether financial prices, and equity prices in

particular, may be adequately described by continuous sample path processes, or whether

the price movements exhibit discontinuities, or jumps.1

One strand of the literature has sought to answer the question through the estimation

of specific parametric continuous time models. This literature dates back to the early work

of Merton (1976), with more recent contributions allowing for both jumps and time-varying

stochastic volatility including Andersen et al. (2002), Bates (2000), Chernov et al. (2003),

Eraker (2004), Eraker et al. (2003), and Pan (2002), among others. Still, the estimation

of parametric jump diffusion models remains difficult, and the existing empirical results

based on daily or coarser frequency data typically do not allow for a very clear distinction

between pure diffusion multi-factor stochastic volatility models and lower-order models

with jumps. Of course, given the often large within-day price movements, the daily data

most often used in the estimation of the models may simply not be informative enough

to provide a firm answer. At the same time, the direct estimation of specific parametric

volatility models with large samples of high-frequency intraday data remains extremely

challenging from a computational perspective and moreover requires that all of the market

microstructure complications inherent in the high-frequency data be properly incorporated

into the model.

This in turn has motivated a second more recent strand of the literature in which the

intraday data is used in the construction of lower-frequency nonparametric daily volatility

measurements. This literature, beginning with the work of Andersen and Bollerslev (1998),

Andersen et al. (2001b) and Barndorff-Nielsen and Shephard (2002b) builds on the general

result that under ideal conditions the sum of successively finer sampled high-frequency

squared returns converges to the quadratic variation of the price process.2 The quadratic

variation, of course, includes both the continuous sample path variation and the jumps.

However, combining the realized variation with the realized Bipower variation measure

first introduced by Barndorff-Nielsen and Shephard (2004, 2005), allows for a direct non-

parametric decomposition of the total price variation into its two separate components.

Utilizing these ideas, Andersen et al. (2007) and Huang and Tauchen (2005) both report

empirical evidence in support of non-trivial contributions to the overall daily price variation

1In addition to the implications for the direct modeling of the price process pursued in the present
paper, the answer to the question has important implications for risk management and asset pricing more
generally.

2Earlier important related contributions include the work by Dacorogna et al. (1993) and Müller et al.
(1990).
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coming from the jump component.

The nonparametric volatility measures have also inspired the development of a series

of new and simple-to-implement reduced form volatility forecasting models in which the

realized volatilities are modeled by standard discrete-time time series procedures, exam-

ples of which include Andersen et al. (2003, 2007), Corsi (2004), Corsi et al. (2007), Deo

et al. (2006), Koopman et al. (2005) and Martens et al. (2004), among others. By effec-

tively incorporating the high-frequency data into the volatility measurements, these simple

discrete-time models generally out-perform existing more complicated parametric volatility

models based on the corresponding return observations only. The simplicity of these meth-

ods, however, comes at the cost of disregarding information about the different volatility

components. With the exception of Andersen et al. (2007), who simply included lagged

measures for the jump component into a univariate linear forecasting model for the total

realized variation, none of the above listed studies have made use of the decomposition

of the total variation into its separate continuous and jump components. Meanwhile, the

apparent relevance of jumps along with the distinctly different distributional features of

the continuous and jump components, supports the idea of a more structured approach to

realized volatility modeling.

This is the main theme of the present paper, in which we develop an empirically highly

accurate multivariate discrete-time volatility model for the returns and the realized con-

tinuous sample path and jump variation measures. Our joint modeling of the returns and

the two volatility components in turn allows us to directly assess the importance of the

often documented asymmetric relationship between returns and volatility, and whether the

observed so-called ”leverage effect” is caused by a negative correlation of the lagged returns

with the current continuous volatility component and/or current jumps.3 We initially esti-

mate the model equation-by-equation under the implicit assumption that the disturbances

are independent across the three equations. However, our univariate estimation results

reveal important nonlinear contemporaneous dependencies among the residuals, and we

go on to account for these in a general recursive simultaneous equation system, explicitly

allowing for contemporaneous nonlinear inter-dependencies. Despite the general and very

flexible structure of the model, full information maximum likelihood estimation remains

relatively straightforward. The recursive structure also makes simulations from the model

easy to implement, which we use in checking different aspects of our final preferred specifi-

cation. Our model estimates are based on daily realized volatilities and returns constructed

from high-frequency five-minute S&P500 index futures over the 1985 to 2004 sample pe-

riod. As part of our analysis, we also highlight some of the key distributional features of the

corresponding daily Bipower variation and relative jump measures that any satisfactory

3The recent empirical analysis in Bollerslev et al. (2006b) also points toward the existence of a contem-
poraneous leverage effect in the form of cross-correlated high-frequency returns and absolute returns.
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fully specified continuous or discrete-time model will have to account for.

The remainder of the paper is organized as follows. Section 2 provides a short review

of the relevant theory and construction of the pertinent volatility measures. Section 3

discusses the data and summary statistics for the different measures motivating the speci-

fication of our empirical model. The formulation of the three basic model equations for the

returns, Bipower variation and relative jump series is detailed in Section 4. The resulting

equation-by-equation estimates are presented in Section 5, along with an assessment of the

cross-equation dependencies in the disturbances. Section 6 describes the joint recursive

model and corresponding maximum likelihood estimates. Simulations from the model are

used in Section 7 to further investigate the adequacy of the fit. Section 8 concludes with

a brief summary and some suggestions for future research.

2 Realized Volatility, Bipower Variation and Jumps

We begin by a brief review of the relevant theory underlying the different variation measures

employed in our empirical model. A more thorough theoretical treatment can be found in

Andersen et al. (2001b), Barndorff-Nielsen and Shephard (2002a) and Protter (2004).

2.1 Quadratic Variation

Our analysis builds on the theory of quadratic variation. Let pt denote the logarithmic

price of a financial asset. Assume that pt follows the continuous-time semimartingale jump

diffusion process:

pt =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW(s) +

N(t)
∑

j=1

κ(sj), (1)

where the mean process µ(t) is continuous and of finite variation, σ(t) > 0 denotes the

càdlàg instantaneous volatility, W (t) is a standard Brownian Motion, and the N(t) process

counts the number of jumps occurring with possibly time-varying intensity λ(t) and jump

size κ(sj). The theory of quadratic variation then permits the derivation of nonparametric

volatility measures that allow us to decompose the total price variation into its continuous

and jump part. In particular, the quadratic variation process of (1),

[p]t = plim
n−1∑

j=0

(pτj+1
− pτj

)2, (2)
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where τ0 = 0 ≤ τ1 ≤ . . . ≤ τn = t denotes a sequence of partitions with supj{τj+1−τj} → 0

for n→ ∞, may be expressed as,

[p]t =

∫ t

0

σ2(s)ds+

N(t)
∑

j=1

κ2(sj), (3)

that is, the integrated variance and the sum of the squared jumps. Of course, in the popular

pure diffusion case where the N(t) counting process is identically equal to zero, the second

term disappears and the quadratic variation is simply equal to the integrated variance.

2.2 Realized Variation

Most of our analysis will be focused on daily returns and volatilities. Hence, for notational

simplicity we normalize the daily time interval to unity, denoting the corresponding daily

returns by:

rt = pt − pt−1, t = 1, . . . . (4)

To formally define our empirical volatility measures, denote the day t, jth within-day

return by:

rt,j = pt−1+ j

M

− p
t−1+

(j−1)
M

, j = 1, . . . ,M, (5)

where M refers to the number of returns per day. The sum of the corresponding squared

intradaily returns:

RVt =
M∑

j=1

r2
t,j, (6)

then affords a natural estimator of the realized quadratic variation. Following the recent

literature we will interchangeably refer to this quantity as the realized variance or the

realized volatility. The idea of measuring the ex-post variation of asset prices by summing

over more frequently sampled squared returns dates back at least to Merton (1980), and

was also applied by French et al. (1987), Hsieh (1991) and Poterba and Summers (1986),

and more recently by Taylor and Xu (1997), inter alia. Meanwhile, the notion of realized

variation was first formally related to the theory of quadratic variation within the context of

finance and time-varying volatility modeling by Andersen and Bollerslev (1998), Andersen

et al. (2001b), Barndorff-Nielsen and Shephard (2002b) and Comte and Renault (1998).

In particular, it follows from the theory discussed above that the realized variance

will generally converge uniformly in probability to the quadratic variation as the sampling
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frequency, M , of the underlying returns approaches infinity:

RVt →
∫ t

t−1

σ2(s)ds+

N(t)
∑

j=N(t−1)+1

κ2(sj). (7)

In other words, the realized variance affords an ex-post measure of the true total price

variation, including the discontinuous jump part.

In order to distinguish the continuous variation from the jump component, Barndorff-

Nielsen and Shephard (2004) first proposed the so-called Bipower variation measure, de-

fined by:

BVt =
π

2

M∑

j=2

|rt,j||rt,j−1|. (8)

Importantly, for increasingly finely sampled returns the Bipower variation measure becomes

immune to jumps and consistently (for increasing values of M) estimates the integrated

variance:

BVt →
∫ t

t−1

σ2(s)ds. (9)

Consequently, the difference between the realized variance and the Bipower variation af-

fords a simple nonparametric estimator of the contribution to total price variation coming

from the jump component.

Meanwhile, the extensive simulation evidence in Huang and Tauchen (2005) suggests

that an empirically more robust measure is provided by the relative jump statistic, RJt =

(RVt −BVt)RV
−1
t , or the (approximate) logarithmic version:4

Jt = logRVt − logBVt. (10)

Hence, in the empirical results reported on here, we will rely on a joint model for BVt

and Jt as a way of capturing the distinct components accounting for the total daily price

variation. The Jt measure is in theory restricted to be non-negative. However, in prac-

tice for finite values of M , BVt may exceed RVt so that Jt becomes negative. In the

approach adopted here, we will simply treat these ”measurement errors” as part of the Jt

process. Alternatively, building on the asymptotic (for increasing M) distribution theory

in Barndorff-Nielsen and Shephard (2004), it would be possible to truncate the Jt process,

and only associate the values beyond a certain threshold with the jump component. This

is the approach adopted in Andersen et al. (2007), who rely on a large critical value for

4The empirical evidence in Huang and Tauchen (2005) for the S&P500 index also suggests that the
relative contribution of jumps to the total price variation based upon the RJt measure amounts to roughly
7 percent.
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identifying only the most significant jumps entering a reduced form univariate forecasting

model for RVt. In contrast, by jointly modeling the returns, the relative jump measure and

the Bipower variation, we avoid the arbitrary choice of any pre-specified significance level

affecting the selection of ”significant” jumps.

3 Data and Stylized Facts

The theory discussed in the preceding section underlying the consistency of the BVt and

Jt measures formally hinges on the notion of increasingly finer sampled high-frequency

returns. In practice, however, the sampling frequency is invariably limited by the ac-

tual quotation, or transaction frequency. Moreover, the observed high-frequency prices

are further ”contaminated” by a host of market microstructure frictions, including price

discreteness and bid-ask spreads. These effects combine to render the basic assumption

of a semimartingale price process invalid at the tick-by-tick level. In response to this, a

number of authors, including Andersen et al. (2001a,b, 2007), have advocated the use of

coarser sampling frequencies as a simple way to alleviate these contaminating effects, while

maintaining most of the relevant information in the high-frequency data. This is also the

approach adopted here.5

Specifically, while our primary data consists of tick-by-tick transaction prices for the

S&P500 Index futures contracts traded on the Chicago Mercantile Exchange, ranging from

January 1, 1985 to December 31, 2004, we follow Andersen et al. (2007) in computing our

daily realized variance and jump measures from five-minute returns constructed using the

nearest prices to each five-minute mark for the most actively traded contracts.6 We also

exclude all overnight returns.

5Several recent studies have proposed alternative procedures to more effectively make use of all the tick-
by-tick data including the notion of an optimal sampling frequency, M , in the sense of minimizing the MSE
of the resulting realized volatility measure as suggested by Bandi and Russell (2005) and Aı̈t-Sahalia et al.
(2005), business type sampling schemes dictated by the activity of the market, as in, e.g., Oomen (2005),
the use of various pre-filtering or kernel type procedures to explicitly account for the serial correlation
induced by the market microstructure noise as in, e.g., Andersen et al. (2001a), Bollen and Inder (2002),
Corsi et al. (2001), Hansen and Lunde (2006), and Zhou (1996), along with sub-sampling schemes designed
to adjust for the bias and inconsistency in the simple realized volatility estimator for increasing values of
M , as first developed by Zhang et al. (2005). The recent paper by Barndorff-Nielsen et al. (2006) provides
a unified theoretical framework for analyzing most of these estimators within a kernel based representation,
along with a discussion of optimal kernel and bandwidth choices. Meanwhile, to the best of our knowledge
none of these ideas have yet been formally extended to allow for similar measurements of the integrated
variance in form of robust to market microstructure noise modified realized Bipower variation measures.
Hence, in the empirical results reported on below, we simply rely on the same coarse sampling interval in
the construction of both measures.

6The volatility signature plot for the same data depicted in Corsi et al. (2007) suggests that the returns
are largely immune to the contaminating influences of the market microstructure noise at that frequency.
In particular, the ratios of the sample means of the five-minute based realized measures to the ones based
on 15- and 30-minute sampling, equal 0.9936 and 0.9746 for the realized variance, and 0.9732 and 0.9660
for the Bipower variation, respectively.
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The resulting daily series are displayed in Figure 1. All of the series exhibit the widely-

documented volatility clustering effect. Also, the variance of the logarithmic realized vari-

ance exceeds that of the logarithmic Bipower variation series. Consistent with this, the

jump series depicted in the last panel exhibits many, mostly positive, small values. These

small observations, including the small negative values, may be attributed to measurement,

or discretization, errors due to the use of finitely many returns in the construction of the

underlying measures. At the same time, the series also contains a number of more extreme

observations indicative of genuine large-sized jumps on those days.

These visual impressions are confirmed by the summary statistics reported in Table 1.

In particular, the mean and variance of the realized volatility both exceed the corresponding

statistics for the square-root Bipower variation. It follows also from the table that the

unconditional distribution of both volatility measures are highly skewed and leptocurtic.

However, the logarithmic transform renders both approximately normal. This approximate

log-normality is further supported by the kernel density plots presented in Figure 2. Similar

results for the realized volatility from other markets have previously been reported in

Andersen et al. (2001a,b) among others. Meanwhile, the descriptive statistics and the

corresponding kernel density plots for the relative jump measure, Jt, clearly indicate a

positively skewed and leptokurtic distribution.7 The unconditional distribution of the

daily returns also show the expected excess kurtosis and negative skewness. At the same

time, the distribution of the returns standardized by the realized volatility is surprisingly

close to Gaussian, as previously documented by Andersen et al. (2001a).8

Turning to the last column in the table, all of the volatility measures exhibit highly

significant own serial dependencies, as evidenced by the Ljung-Box test statistics for up to

tenth order autocorrelation. Furthermore, the sample autocorrelation functions in Figure

3 for the two logarithmic volatility measures show the characteristic hyperbolic decay with

autocorrelation coefficients being significant (compared to the conservative Bartlett 95%

confidence bands) up to the 125th order, or roughly half-a-year.9 In contrast, the relative

jump measure exhibit much less autocorrelation, with most of the dependency attributable

to the first and the fifth lag, corresponding to jumps that are one day and one week apart,

respectively.

In addition to the serial correlation in the individual series, any interactions among the

7Note that the sign of the skewness is determined by the specific definition of our jump measure as the
logarithmic ratio of RVt divided by BVt. Barndorff-Nielsen and Shephard (2004) in contrast consider the
inverse ratio resulting in a negatively skewed distribution.

8In the absence of jumps and independence between the innovation processes driving the returns and
the volatility, the standardized returns defined by the stylized model in equation (1) should be normally
distributed.

9This long-memory pattern in equity return volatility has, of course, been observed by many earlier
studies in the ARCH and stochastic volatility literature. Several different parametric models based on the
notion of fractional integration have also been proposed to best account for these dependencies.
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series will also be important in the formulation of a fully satisfactory joint model. In this

regard, a number of previous studies have pointed toward a negative correlation between

past return shocks and current volatility, so that ”bad” news tend to be associated with a

larger increase in volatility than ”good” news of the same absolute magnitude.10 A common

approach for empirically visualizing this asymmetric relationship is provided by the news-

impact curve originally suggested by Engle and Ng (1993). Indeed, the corresponding plots

for the logarithmic realized variance and Bipower variation in Figure 4 both exhibit the

expected slight asymmetric response to past standardized returns. The jumps, meanwhile,

seem to be almost unaffected by the past return shocks, and if anything they respond

negatively to the standardized returns. This also explains, why the asymmetric effect is

more pronounced for the pure continuous volatility BVt component in the second panel, in

comparison to the total realized variation RVt depicted in the first panel.

We next present our discrete-time model designed to account for these different distri-

butional features in the daily return, Bipower variation, and relative jump series.

4 Model

A burgeon literature dating back to Bollerslev (1987) and French et al. (1987) has been con-

cerned with the modeling of daily speculative returns using GARCH and related stochastic

volatility models; see, e.g., the review in Bollerlsev et al. (1994). More recently, several

studies, including Andersen et al. (2003), Martens et al. (2004), Martens and Zein (2004),

Pong et al. (2004), and Thomakos and Wang (2003) among others, have advocated the

use of ARFIMA type models, along with approximate long-memory component type struc-

tures in Andersen et al. (2007) and Corsi (2004), for modeling the dynamic dependencies

in realized volatilities. With the exception of Andersen et al. (2006) we are not aware

of any other studies which have applied these same ideas to the Bipower variation, nor

the relative jump measure considered here. More importantly, we are not aware of any

attempts at jointly modeling the daily rt, BVt and Jt series within a coherent multivariate

framework. We begin our discussion by considering the specification for the integrated

volatility process as measured by the daily Bipower variation, followed by a discussion of

our models for the relative jump component and the daily returns, respectively.

10Although this phenomenon could be explained through financial leverage, the magnitude for equity
index returns is typically too large, and alternative explanations based on a time-varying volatility risk-
premium have been pursued by Bekaert and Wu (2000), Campbell and Hentschel (1992), Tauchen (2005),
among others. However, the causal directions of the leverage and volatility feedback effects are funda-
mentally different, and the recent high-frequency data analysis in Bollerslev et al. (2006b) point toward a
”leverage” type causality. We will return to this issue below.
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4.1 The Bipower Variation Equation

The realized variation only differs from the Bipower variation (by more than measurement

errors) in the presence of jumps. Hence, guided by the recent empirical literature pertaining

to the modeling of RVt cited above, we will here rely on the Heterogenous Autoregressive,

or HAR-RV, type model originally proposed by Corsi (2004), and successfully employed in

closely related contexts by Andersen et al. (2007) and Andersen et al. (2006), for describing

the dynamic dependencies in the BVt series. However, in contrast to the least squares

estimates for the HAR-RV model reported in all of these previous studies, we shall here

rely on more efficient maximum likelihood estimation techniques explicitly accounting for

the time-dependent conditional heteroskedasticity in the residuals from the BVt model

through a separate GARCH type specification for the volatility-of-volatility.11

More specifically, to set up the model we define the logarithmic multiperiod Bipower

variation measures by the sum of the corresponding daily logarithmic measures:

(logBV )t+1−k:t =
1

k

k∑

j=1

logBVt−j, (11)

where k = 5 and k = 22 correspond to (approximately) one week and one month, respec-

tively.12 Our HAR-GARCH-BV model then takes the form:

logBVt = α0 + αd logBVt−1 + αw(logBV )t−5:t−1 + αm(logBV )t−22:t−1 (12)

+θ1
|rt−1|√
RVt−1

+ θ2I[rt−1 < 0] + θ3
|rt−1|√
RVt−1

I[rt−1 < 0] +
√

htut

ht = ω +

q
∑

j=1

αj(logBVt−1 − x′BV βBV )2 +

p
∑

j=1

βjht−j +
s∑

j=1

λjBVt−j, (13)

where xBV denotes the regressors in the logarithmic Bipower variation equation and βBV

are the corresponding coefficients. The lagged daily, weekly and monthly realized variation

measures on the right-hand-side of the logBVt equation could, of course, be augmented

with additional terms to account for the possibility of even longer-run dependencies. How-

ever, the combination of relatively few volatility components often provide a remarkably

close approximation to true long-memory dependencies. The remaining, new vis-a-vis the

original HAR-RV model in Corsi (2004), terms explicitly allow for a leverage effect in the

continuous volatility component through the inclusion of the lagged signed returns. More-

over, motivated by the observation in Barndorff-Nielsen and Shephard (2005) that the

volatility of realized volatility tends to be high when the volatility is high, the model also

11A similar estimation approach has also recently been implemented by Corsi et al. (2007).
12We follow Corsi (2004) in defining the multi-period logarithmic volatility by the sum of the correspond-

ing one-period logarithmic measures. Almost identical empirical results obtain by using the logarithm of
the multi-period realized variances in place of the sum of the logarithms.
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permits a level effect in the GARCH model for the volatility-of-volatility. Lastly, since our

descriptive analysis suggests that the logarithmic Bipower variation is only approximately

normally distributed, we allow the errors to follow a normal-mixture distribution:13

ut
iid∼
{

N1(0, 1) with probability (1 − pu,2)

N2(µu,2, σ
2
u,2) with probability pu,2

. (14)

Having defined the model for the continuous volatility component, we next turn our atten-

tion to the specification of the jump component.

4.2 The Jump Equation

Consistent with the results in Andersen et al. (2007) pertaining to the time series of signif-

icant squared jumps, the descriptive statistics in Section 3 point toward fairly weak, albeit

not zero, own serial dependencies in the relative jump series. To best accommodate this

we specify a standard autoregressive model augmented with the same leverage type terms

used in the BVt equation:

log

(
RVt

BVt

)

= δ0 + ψ1
|rt−1|√
RVt−1

+ ψ2I[rt−1 < 0] + ψ3
|rt−1|√
RVt−1

I[rt−1 < 0]

+
n∑

j=1

δj log

(
RVt−j

BVt−j

)

+ νt. (15)

This in turn allows us to disentangle whether the well-documented asymmetric negative

relationship between total volatility and return innovations is primarily driven by the re-

sponse of the continuous volatility component and/or the reaction of the jump component.

Experimentation suggests that the innovations in the jump equation are well described

by a mixture of a zero mean Normal Inverse Gaussian (NIG) distribution and an Inverse

Gaussian (IG) distribution:

νt
iid∼
{

NIG0(αNIG, βNIG, δNIG) with probability (1 − pν,2)

IG(λIG, µIG) with probability pν,2

. (16)

Given the prevalent skewness and fat right tail of the unconditional distribution of the rel-

ative jumps, other asymmetric distributions, e.g., a skewed student-t, could, of course, be

considered as well. However, the mixture of distributions based on one distribution having

support on the whole real line and the other being defined only on the positive domain

provides a particularly appealing interpretation. Intuitively, the NIG distribution may

be seen as primarily accounting for the small day-to-day fluctuations in the logarithmic

13We also experimented with the use of a standard normal distribution. This distribution, however, was
decisively rejected against the normal-mixture distribution by a standard Likelihood-Ratio test.
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realized variance around the logarithmic Bipower variation attributable to measurement

errors and small jumps, while the positive IG distribution captures the innovations asso-

ciated with large genuine jumps, or the right tail of the distribution. Moreover, the NIG

and IG distributions both have very flexible shapes, and the superior fit afforded by this

particular mixture of distributions is indeed confirmed by our model estimates discussed

below.

4.3 The Return Equation

Our final model for the distribution of the daily returns relies on the nonparametric RVt

measure for capturing the total price variability. This same idea has previously been used

in the context of modeling daily returns by Forsberg and Bollerslev (2002).14 Specifically,

allowing for up to d’th order serial correlation, we postulate the following simple autore-

gressive model for the daily return process:

rt = γ0 +
d∑

j=1

γjrt−j +
√

RVtǫt, (17)

where the innovations are assumed to be standard normally distributed:

ǫt
iid∼ N(0, 1). (18)

As discussed further below, we also experimented with alternative more flexible mixtures-

of-distributions to allow for deviations from conditional normality. However, broadly con-

sistent with the summary statistics in Table 1, we found that the standard normal distri-

bution provided as good a fit as any of these more complicated distributions.

We next turn to a discussion of the univariate estimation results for this particularly

simple return equation along with the other two sets of equations for the realized variation

measures making up our complete system.

5 Equation–by–Equation Estimation

The recursive structure of the three equation system defined in the preceding sections,

means that as long as the disturbances are independent across equations, each of the

three models may be estimated efficiently in isolation using standard maximum-likelihood

methods. The assumption of independent disturbances is, of course, questionable, and we

14Note that even though we do not directly model RVt, the conditional distribution of the total price
variation is readily inferred from our models for the logarithmic Bipower variation and the relative jumps
based upon the definition in equation (10); i.e., RVt ≡ exp(Jt + log BVt).
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will explicitly investigate the validity of this assumption based upon the single equation

estimates.

The parameter estimates for each of the three equations, along with the corresponding

asymptotic standard errors, are reported in Table 2.15 Figures 5 to 7 show the resulting

residuals, their autocorrelation and partial autocorrelation functions, as well as the QQ

plots and kernel density estimates. The selection of the autoregressive lags in the different

models is based on the Schwarz Bayesian information Criterion (BIC), and all of the lags

are kept the same in the subsequent models.

Starting with the results in the first column and the BVt equation, the estimates directly

mirror earlier results in the literature for the HAR-RV realized volatility model. The daily,

weekly and monthly volatility components are all highly statistically significant, while the

inclusion of the logarithmic Bipower variation measures over biweekly and other horizons

do not improve the fit according to the BIC criteria. A standard GARCH(1,1) model

without any level effects emerges as the preferred specification for the conditional variance.

The estimated GARCH parameters easily satisfy the corresponding stationarity condition

α1σ
2
u + β1 < 1, where σ2

u = 1 + pu,2

(
σ2

u,2 − 1
)
. The asymmetry, or leverage effect, in the

continuous volatility component is directly manifest by the highly significant estimates for

the θ1 and θ3 parameters. As expected, the point estimates imply that a lagged negative

return shock leads to a much larger increase in the volatility than does a positive shock of

the same magnitude. In contrast, the level shift in the volatility equation due to negative

news is not significant. This latter result mirrors earlier findings for the realized volatility

in Martens et al. (2004). The QQ and kernel density plots in Figure 5 also indicate that the

mixture of two normal distributions does a very good job of capturing the slight skewness

and kurtosis inherent in the innovations from the model. Moreover, the autocorrelation and

partial autocorrelation functions for the estimated residuals do not reveal any remaining

systematic serial correlation within a monthly horizon.

Turning to the jump equation, the autoregressive parameter estimates associated with

the first, or daily, and fifth, or weekly, lags are both significant. Still, the magnitude of

both coefficients is very small, thus supporting the aforementioned weak own predictability

in the jump series. Interestingly, and in sharp contrast to the results for the continuous

volatility component, the parameter estimates for ψ2 and ψ3 related to the leverage effect

suggest that jumps are not asymmetrically affected by lagged return shocks.16 In fact, if

15Although mixtures of distributions can sometimes be difficult to estimate, we did not encounter any
convergence problems. Also, to ensure proper convergence we estimated each of the equations based upon
a range of different starting values.

16The findings of a negative leverage effect in the diffusion volatility component only, is directly in line
with most of the parametric jump diffusion models estimated in the recent literature, in which the leverage
effect is typically incorporated by allowing for a negative correlation between the two Brownian motions
driving the price and continuous volatility processes; see, e.g., the models in Bates (2000), Eraker et al.
(2003) and Pan (2002).
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anything the estimate for ψ1 points to a symmetric, but dampening impact of news on

future jumps.17 The QQ-Plot for the residuals from the Jt equation as well as the kernel

density plots in Figure 6 also show that the distribution of the jump innovations is well

described by the NIG-IG mixture.

The estimates for the return equation, reported in the last column, reveal statisti-

cally significant, but economically very small, second and third order autocorrelations. As

already noted, the standard normal distribution appears to fit the data well, and it is gener-

ally preferred over other specifications by the BIC criteria, including a normal distribution

with a freely estimated variance as well as a freely estimated zero-mean NIG distribution.

We also experimented with the inclusion of a risk premia, or GARCH-in-Mean type effect,

by allowing the conditional mean to depend on the realized variance. Consistent with

existing results in the literature suggesting that reliable estimates for this risk premium

parameter requires longer return horizons and time-spans of data (see e.g. Lundblad (2004)

and Ghysels et al. (2005)), we found the GARCH-in-Mean effect to be insignificant at the

daily level.

5.1 Residual Inter-Dependencies

The separate estimation of the three equations discussed above implicitly assumes that

the disturbances are independent. However, based upon existing results in the stochastic

volatility literature, we might naturally expect that the disturbances in the return and

volatility equations are correlated due to contemporaneous (at the daily level) leverage

and/or volatility feedback effects; see, e.g., the recent empirical analysis in Bollerslev et al.

(2006b). Moreover, the innovations to the two volatility equations might naturally be

expected to be correlated as well. Such inter-dependencies would obviously have to be

taken into account in a fully efficient estimation of the joint system, and could in principle

result in inconsistent equation-by-equation estimates.

To begin, consider the sample correlation matrix for the estimated residuals from the

Bipower variation, jump and return equations:

ρ̂ =






1 −0.1847 −0.2008

. 1 0.0283

. . 1




 .

Consistent with the discussion above, the continuous volatility innovations appear to be

17In the context of a representative agent general equilibrium model, Tauchen (2005) has recently shown
that a positive leverage effect can occur depending on the magnitude of the intertemporal marginal rate
of substitution and the degree of risk aversion. It is possible that by explicitly differentiating between the
two sources of risk, an extension of this model could help explain our empirical findings of a ”standard”
negative leverage effect in the diffusion component but a positive correlation between returns and jumps.
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negatively correlated with both the relative jump residuals and the return innovations.

Meanwhile, the correlation between the relative jumps and the return residuals appears

negligible.

In addition to the linear contemporaneous relationships suggested by the sample corre-

lations, there might also exist non-linear dependencies due to, e.g., asymmetric volatility

effects. Figures 8-10 present the pairwise scatter plots of the residual series along with a

fitted quadratic polynomial, as well as a Rosenblatt-Parzen Gaussian-based kernel estima-

tor. The conjecture of a nonlinear relationship between the residuals is seemingly evident

for at least two of the three combinations. Most obviously, there is an asymmetric negative

relation between the residuals of the Bipower equation and the return shocks in Figure 8.18

In fact, this relationship is very similar to the commonly assumed lagged leverage effect.

In contrast, there is no apparent non-linear relation between the residuals from the jump

and return equations. Interestingly, Figure 10 reveals a smirk-like relation between the

innovations to the continuous volatility and jump components.19

To further visualize the inter-dependencies between the estimated residuals, Figure 11

shows the scatter plot of the respective pairwise probability integral transform, or PIT,

series defined as the cumulative distribution function (cdf) evaluated at the realized in-

novations.20 In the absence of any inter-dependencies and for correctly specified marginal

innovation densities, the points should be uniformly distributed over the whole scatter

surface. Consistent with the aforementioned smile-like pattern in the residual scatter plot

for the Bipower variation and return equations, the first panel shows that low (high) cdf

values of the return innovations tend to be associated with higher cdf values of the diffusion

volatility innovations. A similar pattern emerge in the cdf scatter for the jump and contin-

uous volatility innovations in the bottom panel, but with high cdf values of the continuous

volatility innovations being associated with smaller values of the jump innovation cdf due

to the dampening (smirk-like) behavior. Meanwhile, the cdf scatter between the jump and

return innovations in the middle panel exhibits nearly uniformly distributed scatter points.

In summary, our analysis points to the existence of important asymmetric dependen-

cies among the three innovation series. These effects should be incorporated into a joint

modeling framework in order to, firstly, more systematically quantify and test for their sig-

nificance, secondly, guard against any biases in the single equation estimates, and thirdly,

18The estimated parameters of the fitted quadratic polynomials, with corresponding HAC robust stan-
dard errors in parenthesis, equal -0.0199 (0.0210), -0.2430 (0.0179) and 0.1288 (0.0143), respectively, indi-
cating highly statistically significant asymmetric relationships.

19This effect should, of course, be carefully interpreted in light of the definitions of the underlying
variation measures. In particular, a negative shock to the (logarithmic) Bipower variation corresponds to
an overestimation of the continuous volatility component, which in turn is associated with a larger jump
component. In contrast, a positive shock to the Bipower variation equation, and a larger than expected
continuous volatility component, does not directly affect the relative jump measure.

20In the forecasting literature, the probability integral transforms are often used to assess the accuracy
of density forecasts, see e.g., Diebold et al. (1998).
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enhance the efficiency of the individual model parameter estimates. The unified system

approach explicitly allowing for non-linear functional forms of residual dependencies pre-

sented in the next section accomplishes these goals.

6 System Estimation

The results of the equation–by–equation estimations suggest that the proposed model spec-

ifications provide an adequate description of the dynamic dependencies in the two volatility

and return processes, but that it does not fully account for the nonlinear contemporaneous

dependencies among the innovations. We therefore retain our basic three equation set up,

but additionally model the nonlinear inter-dependencies based on the following system of

equations:

rt = γ0 +
d∑

j=1

γjrt−j +
√

RVtǫt

logBVt = α0 + αd logBVt−1 + αw(logBV )t−5:t−1 + αm(logBV )t−22:t−1

+ θ1
|rt−1|√
RVt−1

+ θ2I[rt−1 < 0] + θ3
|rt−1|√
RVt−1

I[rt−1 < 0] +
√

ht (ut + g(ǫt))

ht = ω +

q
∑

j=1

αj (logBVt−j − x′BV βBV )
2
+

p
∑

j=1

βjht−j +
s∑

j=1

λjBVt−j

log

(
RVt

BVt

)

= δ0 +
n∑

j=1

δj log

(
RVt−j

BVt−j

)

+ ψ1
|rt−1|√
RVt−1

+ ψ2I[rt−1 < 0] + ψ3
|rt−1|√
RVt−1

I[rt−1 < 0]

+ (νt +m(ut) + k(ǫt)) .

(19)

In comparison to the individual equations, the system explicitly allows the innovations

in the continuous volatility and relative jump equations to depend nonlinearly on the

return innovations via the general functions g(ǫt) and k(ǫt), respectively. Similarly, the

jump innovations are allowed to depend on the continuous volatility shocks via the m(ut)

function. Thus, by choosing an adequate functional form for each of these functions, we

seek to render the underlying three innovation series to be pairwise independent.

Now, utilizing the recursive structure of the basic model equations along with the

contemporaneous independence of the transformed innovations, the transition density for
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the joint system, yt = (logBVt, log
(

RVt

BVt

)

, rt)
′, may be readily expressed as:

fy(yt|zt−1; θ) =
1√

ht

√
RVt

× fǫ







rt − x′rβr√
RVt

︸ ︷︷ ︸

ǫt

; θǫ






fu








logBVt − x′BV βBV√
ht

− g

(

rt − x′rβr

exp
{

1
2
logRVt

}

)

︸ ︷︷ ︸

ut

; θu








× fν







log

(
RVt

BVt

)

− x′RV βRV −m(ut) − k(ǫt)

︸ ︷︷ ︸

νt

; θν






,

where zt−1 subsumes past observations of yt, while xBV , xr and xRV denote the regressors

of the logarithmic Bipower variation equation, the return and the jump equations, respec-

tively. Moreover, fǫ, fu and fν are the densities of the innovations of these equations and

θǫ, θu and θν denote the parameters of these densities.

Here, we assume as before:

ǫt
iid∼ N(0, 1)

ut
iid∼

{

N1(0, 1) with probability (1 − pu,2)

N2(µu,2, σ
2
u,2) with probability pu,2

νt
iid∼

{

NIG0(αNIG, βNIG, δNIG) with probability (1 − pν,2)

IG(λIG, µIG) with probability pν,2.

To complete the specification, we assume that the nonlinear contemporaneous dependencies

among the individual equation innovations may be adequately captured by a set of second

order degree polynomials:21

g(ǫt) = g1ǫt + g2ǫ
2
t (20)

k(ǫt) = k1ǫt + k2ǫ
2
t (21)

m(ut) = m1ut +m2u
2
t , (22)

where for identification purposes we have restricted the three constants to be zero. Fully

21We also experimented with higher order polynomials, but found the simple quadratic representations
to be sufficient in capturing the smirk-like dependencies over the required range.
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efficient maximum likelihood estimation of the complete system may now proceed in a

standard manner by maximizing the log likelihood function defined by the summation of

the logarithmic transition densities over the sample observations.22

Comparing the system estimation results reported in Table 3 to the equation-by-

equation results in Table 2, the estimates for most of the individual parameters obviously

do not change by much.23 In particular, our previous conclusions regarding the lagged

leverage effect in the continuous volatility component and the positive correlation between

jump and return innovations all remain intact.24 Moreover, as expected the asymptotic

standard errors for the estimated parameters are generally smaller for the system estimates

in Table 3, highlighting the gain in (asymptotic) efficiency obtained by jointly estimating

the three equations.

Along these lines, the highly significant quadratic term in the g(ǫt) dependency func-

tion clearly indicates that the innovations to the continuous volatility component are non-

linearly related to the innovations to the return equation. In contrast, for the return

and jump innovations only k1 is significant and both of the parameters are numerically

small. The aforementioned non-linear relationship between the continuous volatility com-

ponent and the relative jump innovations allowed for by the m(ut) dependency function

is also strongly supported by the joint estimation. The importance of allowing for con-

temporaneous nonlinear dependencies among the innovations is further underscored by

the Likelihood-Ratio test comparing the fully specified simultaneous equation model to

the system equation estimates without the quadratic polynomials, which equals an over-

whelmingly significant 597.67.

The model presented in Table 3 still includes some individually insignificant parameters.

In particular, restricting θ2 = ψ2 = ψ3 = k2 = 0, and re-estimating the model results in a

LR test statistic of only 6.619 versus the fully general model. Also, the remaining parameter

estimates are hardly affected by restricting these four parameters to equal zero. Our final

preferred model specification is therefore given by this restricted model in Table 4.

As an additional diagnostic check for this final specification, consider the sample cor-

22The model was initially estimated using the estimates from the last section as starting values, but to
ensure proper convergence we also estimated the model with a series of different starting values, resulting
in identical numerical values.

23Further analysis related to the dynamic dependencies and unconditional distributional properties of
the system residuals also yield almost identical results to the ones for the single-equation residuals in
Figures 5 to 7. These results are available upon request.

24Importantly, the system GARCH parameter estimates for the BVt equations also satisfy the corre-
sponding second-order stationarity condition: α

(
σ2

u + g2

1
+ 2g2

2

)
+ β < 1, where σ2

u = 1 + pu,2

(
σ2

u,2 − 1
)

and α ≥ 0, β ≥ 0.
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relation between the three residual series:

ρ̂ =






1 −0.0221 −0.0096

. 1 −0.0046

. . 1




 .

Compared to the sample correlations for the equation-by-equation residuals reported ear-

lier, these are obviously much closer to zero and generally insignificant. The three scatter

plots for the pairwise realized cdf’s for the system residuals in Figure 12 now also appear

uniformly distributed over the entire range, indicating that the quadratic polynomials

have successfully accounted for the nonlinear contemporaneous dependencies observed in

the equation-by-equation residuals and that our assumptions about the innovation distri-

butions are empirically accurate.25

7 Model Simulations

The discussion in the previous section suggests that the model performs an exemplary job

in terms of describing the one-day-ahead conditional transition densities when judged by

the standard maximum likelihood criteria and different model diagnostics. Meanwhile, in

order to better understand the workings and possible limitations of a given model, it is

often instructive to consider its ability to account for other aspects of the data through

the use of simulations. To this end, we generate 105,040 observations from the estimated

system, keeping only the last 5,040 observations corresponding to the sample size of our

data; i.e., the first 100,000 simulated observations serve as a large burn-in period. We then

repeat this 25,000 times, leaving us with 25,000 simulated ”daily” sample paths for the

returns, logarithmic Bipower variation, and relative jump series. To illustrate, Figure 13

shows one such representative set of simulated data. The basic similarities for each of the

series with those of the original data in Figure 1 are striking, and indeed shows the model

to be broadly consistent with the data.

More formally, consider the summary statistics in Table 1. By calculating the same

set of summary statistics for each of the 25,000 simulated sample paths, we obtain a

model-implied sample distribution for the respective statistics. If the model provides an

adequate description of the observed data, the realized values of the corresponding sample

statistics should lie within reasonable confidence intervals, say 95%, of these model-implied

25Also, the system counterparts to Figures 8-10, i.e., the scatter plots of the pairwise residuals and the
corresponding estimated quadratic polynomials and kernel based estimators, do not reveal any neglected
non-linear dependencies. For example, the parameter estimates for the quadratic polynomial involving
the Bipower variation residuals as a function of the shocks to the return equation equal 0.1060 (0.0218),
-0.0269 (0.0190) and -0.0035 (0.0150), respectively, none of which are significant at conventional levels.
Further details concerning these additional diagnostic checks are available upon request.
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distributions. Table 5 provides these 95% simulated confidence intervals for the standard

set of summary statistics, as well as the actual sample values from Table 1. We also report

actual and simulated quantiles for each of the series, and illustrate these in Figure 14.

Nearly all of the sample statistics, including all of the reported 0.01 to 0.99 quantiles, lie

within the simulated confidence bands. Only the realized skewness and kurtosis for the

returns and the realized kurtosis for the logarithmic Bipower variation fall outside the 95%

bands.26

Exploring the dynamic implications of the model, Figure 15 shows the sample auto-

correlations and partial autocorrelations with the corresponding simulated 95% confidence

bands. As can be seen from the figure, the short-run dynamics of both the returns and the

relative jump series are generally consistent with those of the model. Meanwhile, the HAR

model for logBVt, as well as the model’s implications for logRVt, both fall somewhat short

in terms of reproducing the highly significant and very slowly decaying sample autocorre-

lations over longer multi-month lags.27 At the same time, however, Figure 16 shows that

the autocorrelations for the Bipower and realized variation expressed in standard deviation

form, as would be of interest in many practical applications, both are well accounted for

by our relatively simple and easy-to-implement final preferred model.

8 Conclusion

Motivated by the recent empirical results on the relevance of jumps to total price variation

derived from high-frequency based realized volatility and Bipower variation measures, we

develop a joint discrete-time model for returns and volatility, explicitly disentangling the

dynamics of the continuous volatility and jump components. We show that the often ob-

served leverage effect, or asymmetry in the lagged return volatility relationship, primarily

acts through the continuous volatility component. Our joint modeling approach also facil-

itates a closer examination of the inter-dependencies among the different shocks, in turn

revealing a similar contemporaneous asymmetry among the innovations. Our findings are

thus in line with most of the parametric continuous time jump diffusion models employed

in the literature, which typically introduce the leverage effect by correlating the Brownian

motions driving the return and continuous volatility processes. The discrete-time modeling

strategy followed here has several advantages over some of the other reduced-form realized

26Although our maximum likelihood based inference doesn’t seem to favor this, this could presumable be
”fixed” by allowing for a leptokurtic skewed error distribution in the return equation, either parametrically
or through the uses of more flexible semi-nonparametric density estimation as in, e.g., Gallant and Nychka
(1987) and Gallant and Tauchen (1989).

27As previously noted, the inclusion of quarterly or longer-run realized variation measures on the right-
hand-side of the HAR model for log BVt would presumable remedy this deficiency; see also the simulations
reported in Corsi (2004), which shows that HAR models with longer lags can get remarkably close to
reproducing the autocorrelations of true long-memory volatility processes.
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volatility and GARCH modeling procedures recently considered in the literature.

First, by explicitly disentangling the dynamics of the two volatility components, our re-

sults clearly show that the jumps are much less persistent, and hence less predictable, than

the continuous sample path variation. This in turn should result in improved volatility

forecasts, with direct and important implications for interval forecasts and corresponding

risk management decisions. Indeed, it would be interesting to further explore this con-

jecture by directly comparing the model forecasts and risk measurements from the model

developed here with those obtained from other popular volatility forecasting procedures,

including GARCH type models and simpler reduced form realized volatility models that

do not explicitly differentiate between the continuous and jump components. Along these

lines, if the two volatility components carry different risk premia, separately modeling and

forecasting each of the components, should also result in more accurate prices for options

and other derivative instruments. Again, we leave further empirical work involving the

pricing of options and issues related to the information in options implied volatilities for

future research.

Second, by providing a highly accurate description of the discrete-time joint dynamics

of the returns and the two volatility components, our model can be used in the indirect

estimation of other parametric volatility models, effectively incorporating the information

contained in the high-frequency data.28 More specifically, the flexibility and recursive struc-

ture of the model coupled with the ready availability of its analytic derivatives, combine

to make it an ideal candidate for the role of auxiliary model, or score generator, within the

Efficient Method of Moment (EMM) estimation framework of Gallant and Tauchen (1996),

or the General Scientifc Modeling (GSM) approach developed by Gallant and McCulloch

(2005). In particular, even though the discrete-time model has no direct continuous-time

analog, and may in fact be consistent with many different continuous time formulations,

it is nonetheless highly informative about the general features that need to be accounted

for in the data. Relying on the likelihood function from the discrete-time model as a sum-

mary of the data, thus facilitates the estimation and empirical assessment of much richer

Poisson jump diffusion or more general Lévy-driven continuous-time stochastic volatility

models than hitherto considered in the literature by affording a numerical evaluation of

the model likelihoods through the use of long artificial simulations. Some preliminary en-

couraging results along these lines based on the discrete-time model developed here and

the GSM approach are reported in Bollerslev et al. (2006a).

28High-frequency data based nonparametric realized volatility measures have previously been used in the
estimation of parametric continuous time stochastic volatility models by Barndorff-Nielsen and Shephard
(2002a) and Bollerslev and Zhou (2002).
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Table 1: Descriptive Statistics

Series Mean Std.Dev. Median Skewness Exc.Kurt. Ljung-Box(10)1

√
RVt 0.8627 0.5935 0.7586 15.3509 496.7651 10155.72

logRVt -0.5139 0.8775 -0.5527 0.5950 1.7981 22023.20√
BVt 0.8340 0.5359 0.7348 11.1561 288.4633 12223.28

logBVt -0.5817 0.8845 -0.6163 0.5418 1.4807 21715.55

log
(

RVt

BVt

)

0.0678 0.1263 0.0538 1.7766 12.2675 51.44

rt 0.0254 1.0946 0.0511 -2.1655 96.2483 117.29
rt/

√
RVt 0.0866 1.0027 0.0739 0.0503 -0.1497 14.86
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Table 2: Single Equation Estimation Results

BV equation Jump equation Return equation
Estimate Std. Error Estimate Std. Error Estimate Std. Error

α0 -0.1978 (0.0170) δ0 0.0704 (0.0067) γ0 0.0858 (0.0098)
αd 0.2548 (0.0169) δ1 0.0347 (0.0089) γ2 -0.0254 (0.0139)
αw 0.4370 (0.0265) δ5 0.0516 (0.0116) γ3 -0.0351 (0.0133)
αm 0.2416 (0.0215) ψ1 -0.0143 (0.0032)
θ1 0.0571 (0.0144) ψ2 -0.0026 (0.0050)
θ2 0.0384 (0.0217) ψ3 0.0014 (0.0049)
θ3 0.1247 (0.0218) pν,2 0.0072 (0.0329)
ω 0.0228 (0.0053) αNIG 71.5659 (52.7253)
α1 0.0419 (0.0077) βNIG 54.0383 (47.7732)
β1 0.8048 (0.0378) δNIG 0.2637 (0.0367)
pu,2 0.1451 (0.0304) λIG 0.5247 (0.3198)
µu,2 0.7688 (0.1306) µIG 1.1804 (5.2968)
σu,2 1.9278 (0.0688)
logL: -3464.75 logL: 3775.22 logL: -5839.63

Reported are the parameter estimates and corresponding standard errors of our joint model for logarithmic
Bipower variation, jumps and returns. The estimates are obtained by estimating the model equation by equation.
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Table 3: System Estimation Results (logL=-5230.37)

BV equation Jump equation Return equation
Estimate Std. Error Estimate Std. Error Estimate Std. Error

α0 -0.2526 (0.0172) δ0 0.0665 (0.0051) γ0 0.0570 (0.0095)
αd 0.2499 (0.0160) δ1 0.0422 (0.0095) γ2 -0.0321 (0.0125)
αw 0.4494 (0.0249) δ5 0.0500 (0.0110) γ3 -0.0431 (0.0116)
αm 0.2291 (0.0205) ψ1 -0.0145 (0.0033)
θ1 0.0636 (0.0139) ψ2 -0.0034 (0.0050)
θ2 0.0424 (0.0215) ψ3 0.0028 (0.0051)
θ3 0.1246 (0.0211) m1 -0.0200 (0.0012)
g1 -0.2493 (0.0186) m2 0.0013 (0.0004)
g2 0.1363 (0.0129) k1 0.0042 (0.0015)
ω 0.0250 (0.0055) k2 0.0018 (0.0011)
α1 0.0425 (0.0077) pν,2 0.0174 (0.0263)
β1 0.7707 (0.0417) αNIG 41.8149 (13.6452)
pu,2 0.1617 (0.0035) βNIG 26.1884 (11.2286)
µu,2 0.6183 (0.1204) δNIG 0.2417 (0.0330)
σu,2 1.9391 (0.0731) λIG 0.3183 (0.0933)

µIG 0.3722 (0.7001)
Reported are the parameter estimates and corresponding standard errors of our joint model for logarith-
mic Bipower variation, jumps and returns. Allowing for contemporaneous inter-dependencies among the
innovations the model equations are jointly estimated using maximum likelihood estimation.
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Table 4: Restricted System Estimation Results (logL=-5233.67)

BV equation Jump equation Return equation
Estimate Std. Error Estimate Std. Error Estimate Std. Error

α0 -0.2351 (0.0140) δ0 0.0668 (0.0042) γ0 0.0572 (0.0095)
αd 0.2510 (0.0160) δ1 0.0426 (0.0094) γ2 -0.0323 (0.0125)
αw 0.4476 (0.0249) δ5 0.0497 (0.0110) γ3 -0.0430 (0.0116)
αm 0.2298 (0.0205) ψ1 -0.0136 (0.0025)
θ1 0.0489 (0.0115) ψ2 - -
θ2 - - ψ3 - -
θ3 0.1596 (0.0126) m1 -0.0200 (0.0012)
g1 -0.2493 (0.0186) m2 0.0013 (0.0004)
g2 0.1406 (0.0127) k1 0.0045 (0.0015)
ω 0.0247 (0.0055) k2 - -
α1 0.0419 (0.0077) pν,2 0.0198 (0.0236)
β1 0.7728 (0.0416) αNIG 41.0467 (12.6795)
pu,2 0.1628 (0.0355) βNIG 25.6054 (10.3213)
µu,2 0.6149 (0.1194) δNIG 0.2390 (0.0322)
σu,2 1.9374 (0.0730) λIG 0.3007 (0.0830)

µIG 0.3264 (0.5295)
Reported are the parameter estimates and corresponding standard errors of the restricted model for loga-
rithmic Bipower variation, jumps and returns. The estimates are obtained by the joint estimation of the
three equations.
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Table 5: Simulation

rt logRVt logBVt log
(

RVt

BVt

)

stat. realized 95% intervals realized 95% intervals realized 95% intervals realized 95% intervals
Mean 0.0254 (-0.0125,0.0416) -0.5139 (-0.7501,-0.3148) -0.5817 (-0.8159,-0.3788) 0.0678 (0.0611,0.0687)

Std.Dev. 1.0946 (0.8539,1.1504) 0.8775 (0.7382,0.9312) 0.8845 (0.7447,0.9377) 0.1263 (0.1200,0.1354)
Skew. -2.1648 (-1.8996,0.0906) 0.5948 (-0.0211,0.5765) 0.5416 (-0.0252,0.5711) 1.7761 (0.9838,3.8142)

Exc.Kurt. 96.2483 (3.2207,37.8147) 1.7981 (-0.0476,1.2418) 1.4807 (-0.0354,1.2464) 12.2675 (3.1382,60.7865)
Q0.01 -2.6479 (-3.4341,-2.3966) -2.3275 (-2.7117,-2.0456) -2.3868 (-2.7956,-2.1305) -0.1517 (-0.1720,-0.1548)
Q0.025 -2.0527 (-2.4330,-1.7798) -2.0632 (-2.3743,-1.7998) -2.1377 (-2.4537,-1.8780) -0.1303 (-0.1394,-0.1268)
Q0.05 -1.5535 (-1.7945,-1.3384) -1.8321 (-2.0994,-1.5834) -1.9172 (-2.1746,-1.6577) -0.1027 (-0.1116,-0.1013)
Q0.10 -1.0895 (-1.2252,-0.9229) -1.5848 (-1.7958,-1.3244) -1.6667 (-1.8696,-1.3969) -0.0737 (-0.0792,-0.0703)
Q0.25 -0.4626 (-0.5275,-0.3872) -1.1147 (-1.3135,-0.8754) -1.1859 (-1.3812,-0.9436) -0.0143 (-0.0225,-0.0147)
Q0.50 0.0511 (0.0308,0.0767) -0.5527 (-0.7797,-0.3452) -0.6163 (-0.8443,-0.4098) 0.0538 (0.0470,0.0551)
Q0.75 0.5446 (0.4790,0.5901) 0.0173 (-0.2421,0.2279) -0.0533 (-0.3044,0.1683) 0.1339 (0.1264,0.1366)
Q0.90 1.0964 (0.9484,1.1850) 0.6022 (0.2553,0.8023) 0.5372 (0.1968,0.7448) 0.2218 (0.2091,0.2242)
Q0.95 1.5001 (1.2961,1.6478) 0.9853 (0.5634,1.1937) 0.9352 (0.5084,1.1375) 0.2799 (0.2656,0.2870)
Q0.975 1.9627 (1.6544,2.1554) 1.3462 (0.8420,1.5616) 1.2815 (0.7860,1.5113) 0.3371 (0.3211,0.3524)
Q0.99 2.5991 (2.1481,2.9251) 1.8250 (1.1784,2.0496) 1.8240 (1.1285,2.0040) 0.4322 (0.3964,0.4557)

Reported are the descriptive statistics and quantiles of the distributions of the returns, logarithmic realized variance, logarithmic Bipower variation
and of the jumps. Presented are the realized values as well as the 95% confidence intervals obtained by simulating 25,000 times from the estimated
restricted model.
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Figure 1: Time Series of returns, logarithmic realized variance, logarithmic Bipower vari-
ation and jumps.
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Figure 2: Unconditional distributions of standardized returns, logarithmic realized vari-
ance, logarithmic Bipower variation and jumps. The left panel of the figure shows the
kernel density estimates of the series (dashed line) and the normal density (solid line) for
reference purposes. The right panel shows the same in log scale.

33



-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 5  10  15  20

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 5  10  15  20

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20  40  60  80  100  120

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20  40  60  80  100  120

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20  40  60  80  100  120

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20  40  60  80  100  120

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 5  10  15  20

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 5  10  15  20

ac
f
of

lo
g
B

V
t

p
ac

f
of

lo
g
B

V
t

ac
f
of

lo
g
R

V
t

p
ac

f
of

lo
g
R

V
t

ac
f
of

lo
g

R
V

t/
B

V
t

p
ac

f
of

lo
g

R
V

t/
B

V
t

ac
f
of

r t

p
ac

f
of

r t

t

Figure 3: Sample autocorrelations and partial autocorrelations of returns, logarithmic
realized variance, logarithmic Bipower variation and jumps. The dashed lines give the
upper and lower ranges of the conventional Bartlett 95% confidence band.
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Figure 4: News impact curves for logarithmic realized variance, logarithmic Bipower vari-
ation and jumps. The figure shows the scatter points between the respective variable and
lagged standardized returns. The solid lines refer to the news impact curves, i.e. the linear
regression lines for negative and positive values of standardized returns.
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Figure 5: Residual analysis of the (log.) Bipower variation equation. The upper graph
of the figure represents the time evolvement of the innovations of the Bipower variation
equation. The second line of graphs shows their sample autocorrelations and partial auto-
correlations. The third is the corresponding Quantile-Quantile plot. The lower left panel of
the figure shows the kernel density estimates of the residuals (dashed line) and the density
of the estimated normal mixture (solid line). The right panel shows the same in log scale.
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Figure 6: Residual analysis of the jump equation. The upper graph of the figure repre-
sents the time evolvement of the innovations of the jump equation. The second line of
graphs shows their sample autocorrelations and partial autocorrelations. The third is the
corresponding Quantile-Quantile plot. The lower left panel of the figure shows the kernel
density estimates of the residuals (dashed line) and the density of the estimated NIG-IG
mixture (solid line). The right panel shows the same in log scale.
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Figure 7: Residual analysis of the return equation. The upper graph of the figure repre-
sents the time evolvement of the innovations of the return equation. The second line of
graphs shows their sample autocorrelations and partial autocorrelations. The third is the
corresponding Quantile-Quantile plot. The lower left panel of the figure shows the kernel
density estimates of the residuals (dashed line) and the density of a standard normal (solid
line). The right panel shows the same in log scale.
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Figure 8: Dependency analysis of the residuals between the return equation and Bipower
variation equation. The lower left and right panels include additional different polynomial
and nonparametric specifications, respectively.
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Figure 9: Dependency analysis of the residuals between the return equation and jump
equation. The lower left and right panels include additional different polynomial and
nonparametric specifications, respectively.
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Figure 10: Dependency analysis of the residuals between the Bipower variation equation
and the jump equation. The lower left and right panels include additional different poly-
nomial and nonparametric specifications, respectively.
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Figure 11: Realized CDF scatter plot of the single equation innovations.
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Figure 12: Realized CDF scatter plot of the system innovations.
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Figure 13: Simulated paths of returns, logarithmic realized variance, logarithmic Bipower
variation and jumps.
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Figure 14: Sample quantiles of returns, logarithmic realized variance, logarithmic Bipower
variation and jumps with 95% simulated confidence intervals.
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Figure 15: Sample autocorrelations and partial autocorrelations of returns, logarithmic
realized variance, logarithmic Bipower variation and jumps. The dashed lines give the
upper and lower ranges of the simulated 95% confidence intervals.
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Figure 16: Sample autocorrelations and partial autocorrelations of realized volatility and
Bipower variation in standard deviation form. The dashed lines give the upper and lower
ranges of the simulated 95% confidence intervals.
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