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Abstract

We provide an empirical framework for assessing the distributional properties of daily specu-

lative returns within the context of the continuous-time modeling paradigm traditionally used

in asset pricing �nance. Our approach builds directly on recently developed realized variation

measures and non-parametric jump detection statistics constructed from high-frequency intra-

day data. A sequence of relatively simple-to-implement moment-based tests involving various

transforms of the daily returns speak directly to the import of di¤erent features of the under-

lying continuous-time processes that might have generated the data. As such, the tests may

serve as a useful diagnostic tool in the speci�cation of empirically more realistic asset pricing

models. Our results are also directly related to the popular mixture-of-distributions hypoth-

esis and the role of the corresponding latent information arrival process. On applying our

sequential test procedure to the thirty individual stocks in the Dow Jones Industrial Average

index, the data suggest that it is important to allow for both time-varying di¤usive volatility,

jumps, and leverage e¤ects in order to satisfactorily describe the daily stock price dynamics.

At a broader level, the empirical results also illustrate how the realized variation measures and

high-frequency sampling schemes may be used in eliciting important distributional features and

asset pricing implications more generally.

JEL Classi�cations: C1, G1.

Keywords: Return distributions, continuous-time models, mixture-of-distributions hypothesis,

�nancial-time sampling, high-frequency data, volatility signature plots, realized volatilities,

jumps, leverage and volatility feedback e¤ects.



1 Introduction

The distributional properties of speculative prices, and stock returns in particular, rank among

the most studied empirical phenomena in all of economics. We add to this literature by show-

ing how high-frequency intra-day data and new realized variation measures may be used to

e¤ectively gauge the characteristics of daily return distributions. Our approach consists of a

sequence of theoretically guided, yet readily implementable, return transformations and tests.

Each step of our procedure speaks directly to the importance and empirical relevance of speci�c

distributional features. From a theoretical perspective our approach may be seen as a test for

whether a time series of discretely observed prices is compatible with the notion of an arbitrage-

free continuous-time semi-martingale process. Empirically, our results for the individual stocks

in the Dow Jones Industrial Average (DJIA) index support the notion that daily stock prices

may be viewed as discretely sampled observations from an arbitrage-free jump-di¤usive process,

where time-varying volatility, jumps and so-called leverage e¤ects all are present and must be

accommodated for the semi-martingale characterization to be sustained.

A long line of studies, dating back to the seminal work of Mandelbrot (1963) and Fama

(1965), documents that the unconditional distributions of day-to-day and longer horizon stock

returns exhibit fatter tails than the normal distribution. Correspondingly, a large literature

seeks to describe and explain this empirical regularity through alternative non-normal distri-

butions, often inspired by the Mixture-of-Distributions Hypothesis (MDH) proposed by Clark

(1973). The basic MDH stipulates that prices only move in response to new information, or

�news.� Interpreting the total, say, daily price increments as resulting from a large number

of smaller intra-day price moves, each associated with their own source of news, a Central

Limit Theorem argument suggests that the daily returns follow a mixture-of-normals distri-

bution, with the properties of the mixing variable determining the extent of the deviations

from normality.1 Whereas this basic MDH treats the mixing variable as latent, early attempts

at directly associating the mixture with observable economic variables include Epps & Epps

(1976) and Tauchen & Pitts (1983), both of whom argue for an association with the market

activity as captured by the cumulative trading volume over daily or inter-daily horizons.

While these earlier studies mostly focused on the unconditional distributional implications

of the MDH, it is now well-established that key features of the conditional return distribution,

and the conditional variance in particular, are highly predictable; see, e.g., Engle (2004). The

pronounced predictability in volatility has, in turn, motivated more recent empirical studies

1This argument, of course, assumes that the variances of the many smaller price increments are �nite and

that a standard Central Limit Theorem applies. If not, the sum converges to a member of the Stable Paretian

class of distributions with in�nite variance.
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to explore the implied dynamic relationship between return variability and the fundamental

mixing variable(s) within the MDH context; see, e.g., Gallant, Rossi & Tauchen (1992), An-

dersen (1996), Liesenfeld (1998), Bollerslev & Jubinski (1999), and Ane & Geman (2000). The

latter work contains ideas related to those advanced in the current paper as they argue that

returns measured over time-intervals of varying length, but containing an identical number of

transactions, appear homoskedastic and approximately Gaussian, consistent with a version of

the MDH in which the number of transactions serves as the mixing variable.2

In spite of the presence of such structured MDH approaches, the more ad hoc (G)ARCH

class of models arguably ranks supreme for empirically characterizing conditional inter-daily

return distributions; see, e.g., Andersen, Bollerslev, Christo¤ersen & Diebold (2006). Beyond

providing a parsimonious and tractable approach to the time-varying return volatility, this

literature also has documented a striking empirical regularity, namely an apparent asymme-

try between equity returns and volatility, in the sense that large negative returns tend to be

associated with higher future volatility than positive returns of the same magnitude. This

asymmetry, systematically documented by Nelson (1991), is now generically referred to as a

leverage e¤ect although it is widely agreed that the e¤ect has little, if anything, to do with

�nancial leverage.3

In contrast to the discrete-time formulations employed in the empirical MDH and (G)ARCH

literatures critical developments in theoretical asset pricing, and derivatives pricing in par-

ticular, are based on continuous-time methods and models. For instance, the Black-Scholes

option pricing formula assumes prices evolve continuously according to a homogeneous, or

time-invariant, di¤usion process. This assumption is obviously at odds with the leptokurtic

unconditional daily return distributions, the pronounced volatility clustering, and the leverage

e¤ects discussed above, and much recent progress has been made in terms of the developing

empirically more realistic continuous-time formulations. In particular, while the early contri-

butions by Merton (1976) and Hull & White (1987) argued for the need to incorporate jumps

and time-varying di¤usive volatility in the pricing of options, respectively, a number of more

recent studies have forcefully demonstrated the need to simultaneously allow for both e¤ects

in order to satisfactorily represent actually observed daily and weekly price processes; see, e.g.,

Andersen, Benzoni & Lund (2002) and Chernov, Gallant, Ghysels & Tauchen (2003).

In this paper we combine insights from these separate strands of the literature by providing

a framework for analyzing the distributional properties of discrete-time daily returns implied

2Meanwhile, the robustness of the empirical �ndings in Ane & Geman (2000) have recently been called into

question by Gillemot, Farmer & Lillo (2005) and Murphy & Izzeldin (2006).
3 In fact, as discussed in more detail below, the asymmetry is generally much more pronounced for aggregate

equity index returns as opposed to individual stock returns, indirectly casting doubt on the �nancial leverage

explanation.
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by a broad class of jump-di¤usive models. Our approach is distinctly nonparametric and relies

crucially on the availability of high-frequency data for the construction of so-called realized

volatility measures. High-frequency, or tick-by-tick, prices have recently become available for

a host of di¤erent �nancial instruments and markets, and the analysis of the corresponding

realized volatility, or realized variation, measures have already provided new empirical in-

sights related to the distributional properties and dynamic dependencies in �nancial market

volatilities; see, e.g., Andersen & Bollerslev (1998a), Andersen, Bollerslev, Diebold & Labys

(2001, 2003), and Barndor¤-Nielsen & Shephard (2002a, 2002b). Pushing this analysis one

step further, we show how properly constructed realized volatility measures may be used in

the formulation of highly informative and directly testable distributional implications for the

discretely observed return series.

Our results provide a theoretical veri�cation and substantial extension of the earlier em-

pirical investigations reported in Andersen, Bollerslev, Diebold & Ebens (2001). As reported

therein, whereas the unconditional distributions of raw daily stock returns have fatter tails than

the normal distribution, when standardizing the daily returns by the corresponding realized

volatilities, constructed from the summation of high-frequency intra-day squared returns, the

distributions appear strikingly close to Gaussian although formal statistical tests easily reject

normality. To appreciate these �ndings, note that if the true price process is a continuous

sample path di¤usion and market microstructure frictions are absent, then the daily returns

standardized by realized volatilities constructed from in�nitely �nely sampled intra-day returns

should indeed be Gaussian. Hence, the prior empirical �ndings point indirectly to the potential

importance of allowing for more �exible continuous-time models, including jumps and leverage

e¤ects as well as better ways in which to assess and control the measurement error in the

realized volatilities. We explicitly explore all these issues here.

In particular, in addition to the now standard realized volatility measures constructed

from the high-frequency squared returns, we rely on the new bipower variation measures of

Barndor¤-Nielsen & Shephard (2004a, 2005), de�ned by the summation of properly scaled

adjacent absolute high-frequency returns, for separately measuring the continuous sample path

variability and the variation due to jumps. Importantly, we extend the test for the occurrence

of at least one jump per day in Barndor¤-Nielsen & Shephard (2006) and Huang & Tauchen

(2005) to a sequential jump detection scheme, directly identifying and estimating the exact

within-day times and sizes of price jumps.4 This in turn allows for the construction of jump-

adjusted daily return series for more directly gauging the overall impact and distributional

4Alternative non-parametric high-frequency data based tests for jumps have recently been developed by Jiang

& Oomen (2005), Mancini (2005), and Lee & Mykland (2006).

3



implications of jumps.5

To assess the importance of the leverage e¤ect we exploit a new �nancial-time sampling

scheme, in which we measure returns in event time, as de�ned by equidistant increments to

the realized volatility of the jump-adjusted returns. A similar idea was recently explored by

Peters & de Vilder (2006) and Andersen, Bollerslev & Dobrev (2006) for the raw and jump-

adjusted S&P500 aggregate equity index returns, respectively; see also Zhou (1998) for more

informal empirical evidence along these lines for the Deutschemark/Dollar exchange rate. The

underlying notion mirrors the tenet behind the MDH.6 However, in the MDH, the mixing

variable is related to the way in which information is assumed to be incorporated into prices

via the trading process. This is strictly model dependent and it requires adaption to the fact

that the trading process typically is nonstationary. Trading volume as well as the number of

transactions tend to grow over time while the return volatility arguably is stationary. There

is considerable leeway within the MDH in terms of specifying di¤erent functional relationships

and even di¤erent basic mixing variables, such as the nominal dollar trading volume, the real

trading volume, the number of shares, the number of transactions, the turn-over, the turn-over

relative to active �oat, the detrended version of any of these variables, etc. In contrast, the

realized volatility time-change employed here is derived from formal probabilistic arguments,

and, as discussed below, speci�cally serves to undo the impact of leverage e¤ects so that the

resulting �nancial-time return distributions generally should be Gaussian.

The contributions and interests of the paper are manifold. First, we contribute directly to

the �nancial econometrics and empirical �nance literatures by clearly delineating the relation-

ships between (G)ARCH type models, realized volatilities, conditional fat tails, leverage e¤ects,

and jumps. Second, we provide a framework for incorporating high-frequency data into reliable

and easy-to-implement realized variation and jump measures based on simple informal diag-

nostic tools and our new signature plots. Third, we suggest a new sequential jump-detection

method which is able to identify potentially multiple jumps over the same day as well as both

the magnitude and timing of each identi�ed jump. Fourth, the moment-based tests for (ap-

proximate) normality for the di¤erent realized variation based return transformations derived

in the paper directly highlight the relevance of di¤erent continuous-time modeling assump-

tions, and should help in the speci�cation of empirically more realistic theoretical asset pricing

models. Fifth, the actual empirical results related to the strength of the jump intensities and

sizes, and the signi�cance and magnitude of potential leverage e¤ects, for each of the thirty

5 In concurrent and independent work, Fleming & Paye (2006) have studied the properties of daily returns

scaled by realized bipower variation, but without any adjustments for leverage e¤ects.
6Luu & Martens (2003) have also recently investigated the validity of the MDH by testing whether trading

volume and realized volatility may be seen as subordinated to the same latent information arrival process.
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individual stocks in the DJIA index, are of direct interest in their own right for a broad range

of issues within �nancial economics. Sixth, the new �nancial-time scale dictated by the realized

variation measure may be used in further re�ning the popular MDH by providing a directly

observable candidate for the otherwise latent mixing variable.

The plan for the rest of the paper is as follows. The formal theoretical arguments underlying

the Gaussianity of the transformed return distributions are outlined in the next section. The

realized variation measures and jump detection tests used in the practical implementation

of the di¤erent distributional tests are presented in Section 3. In Section 4 we discuss the

data sources and issues related to the construction of the high-frequency returns and realized

volatility measures, including new generalized volatility signature plots designed to assess and

guard against the adverse e¤ects of market microstructure biases at the very highest sampling

frequencies. Section 5 discusses some preliminary summary statistics related to the importance

and timing of jumps and leverage e¤ects. The outcomes of the di¤erent distributional tests

are summarized in Section 6, along with various robustness checks and a general discussion

of the implications for continuous-time stock price modeling. Speci�c details for each of the

individual stocks are provided in tabular and graphical form in the supplementary appendix.

Section 7 concludes.

2 Theoretical Framework

Jump-di¤usion models represent the asset price as a sum of a continuous sample path process

and occasional discontinuous jumps. The class encompasses the leading parametric models in

the asset pricing and, especially, the derivatives pricing literature.7

In particular, let p (t) denote the continuous-time log-price process. The generic jump-

di¤usion model may then be expressed in stochastic di¤erential equation form as,

dp (t) = � (t) dt+ � (t) dw (t) + � (t) dq (t) ; t � 0; (1)

where the mean, or drift, process � (�) is continuous and locally bounded, the instantaneous, or
di¤usive, volatility process � (�) > 0 is càdlàg, and w (�) denotes a standard Brownian motion
assumed to be independent of the drift. For notational simplicity we assume �(t) = 0 in what

follows, but all theoretical results could readily be extended to allow for non-zero drift.8 The

7Although this formulation, as formally de�ned in equation (1), is quite general in allowing for both time-

varying jump sizes and jump intensities, it does rule out in�nite activity Lévy processes with in�nitely many

jumps over �nite time intervals; see, e.g., Cont & Tankov (2004) for a general discussion of such processes and

Todorov (2005) for an application involving jump-driven stochastic volatility models.
8 In the empirical analysis we explicitly look at both raw and mean-adjusted returns. The results, reported

below, are virtually identical.
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counting process q (t) is normalized such that dq (t) = 1 corresponds to a jump at time t, and

dq (t) = 0 otherwise, with the � (t) process describing the size of the jump if a jump actually

occurs at time t.

While theoretical pricing arguments often most conveniently are expressed within a continuous-

time framework, empirical investigations are invariably based on discretely sampled prices, or

returns. We denote the one-period continuously compounded discrete-time returns implied by

the jump-di¤usion in (1) as,

rt � p(t)� p(t� 1); t = 1; 2; :::; (2)

and we refer to the unit time interval as a �day.� The distributional characteristics of the

discrete-time returns obviously depend directly on the underlying continuous-time model. We

next consider three sets of increasingly general modeling assumptions, and discuss how appro-

priately standardized and adjusted returns should be i.i.d. standard normal under each, thus

providing theoretical guidance for empirical analysis into the importance of di¤erent model

features.

2.1 No Jumps, Leverage, or Volatility Feedback E¤ects

The simplest and most commonly used continuous-time models are based on the dual assump-

tions of no jumps, or q(t) � 0, along with no leverage and volatility feedback e¤ects, or �(t) and
w(�) independent for all t � 0 and � � 0. In this situation it follows by standard arguments
that,

rt

�Z t

t�1
�2(�)d�

��1=2
� N (0; 1) ; t = 1; 2; ::: : (3)

The integrated volatility normalizing the returns has the interpretation of the ex-post return

variability conditional on the sample path realization of the �(�) process over the corresponding

discrete-time return interval, (t � 1; t].9 Of course, the integrated volatility is not directly

observable. However, starting with the work of Andersen & Bollerslev (1998a), Andersen,

Bollerslev, Diebold & Labys (2001), and Barndor¤-Nielsen & Shephard (2002b), ways in which

to accurately measure the integrated volatility on the basis of high-frequency data have received

increasing attention in the literature. We provide a more in-depth discussion of these ideas in

the context of our empirical implementation of equation (3) in Section 3.

Meanwhile, the popular GARCH and discrete-time stochastic volatility models in essence

provide particular parametric approximations to the expectation of the integrated volatility

9The integrated volatility also plays a central role in option pricing models allowing for time-varying volatility;

see, e.g., the aforementioned paper by Hull & White (1987).
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conditional on the time t� 1 information set,

�2tjt�1 = Et�1

�Z t

t�1
�2(�)d�

�
:

Hence, from equation (3), only if the integrated volatility process is perfectly predictable, will

the GARCH standardized returns, rt��1tjt�1, be normally distributed. In general, of course, the

di¤usive volatility process varies non-trivially over the (t�1; t] interval, resulting in a mixture-
of-normals distribution for the corresponding GARCH standardized returns, with the mixture

dictated by the distribution of the integrated volatility forecast errors; see also the reasoning

behind the use of conditional fat-tailed GARCH error distributions in Bollerslev (1987).

2.2 Jumps

A number of recent studies have argued for the importance of explicitly allowing for jumps, or

q(t) 6= 0, when modeling speculative rates of return; see, e.g., Andersen et al. (2002), Bates

(1996, 2000), Chernov et al. (2003), Eraker, Johannes & Polson (2003), Eraker (2004), and

Johannes (2004). This adds an additional component to the ex-post price variation process,

and also invalidates the Gaussianity of the standardized returns in (3). However, suppose the

jumps were known, and let the corresponding jump-adjusted returns be denoted by,

~rt � p(t)� p(t� 1) �
q(t)X

s=q(t�1)
�(s) ; t = 1; 2; :::; (4)

where the sum is to be interpreted as consisting of the non-zero jumps that occurred over the

(t� 1; t] time-interval. Since all of the variation in the jump-adjusted returns comes from the

di¤usion component, standardizing by the integrated volatility should again result in a normal

distribution,

~rt

�Z t

t�1
�2(�)d�

��1=2
� N (0; 1) ; t = 1; 2; ::: : (5)

In practice, of course, the timing and magnitude of jumps are not known for sure, so that

the distribution in (5) is not directly testable. To circumvent this, we rely on two new and

easy-to-implement non-parametric jump-detection procedures for disentangling the continuous

and discontinuous sample path components, in turn providing an operational and empirically

useful approximation to (5).

2.3 Leverage and Volatility Feedback E¤ects

The distributional results in the preceding two sections rule out so-called leverage and volatility

feedback e¤ects by assuming that the Brownian motion driving the di¤usive price innovations,
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w(�), and the volatility process, �(t), are independent for all �; t � 0. A number of studies argue
this assumption is unrealistic as the return-volatility relation is conditionally asymmetric in the

sense that large negative returns are associated with larger volatilities than are positive returns

of the same magnitude; see, e.g., Black (1976), Christie (1982), and Bollerslev, Litvinova &

Tauchen (2006).10 This implies that the ex-post integrated volatility in the denominator on

the left-hand-side of (3) and (5) are informative about both the sign and magnitude of the

corresponding returns, so the standardized distributions are no longer Gaussian, let alone mean

zero. However, by measuring returns over equal increments of integrated volatility instead

of calendar-time, the resulting time-changed returns remain Gaussian, even in the presence

of leverage and volatility feedback e¤ects. Intuitively, a priori �xing the sampling interval

to encompass identical increments of realized return variation breaks the link between the

numerator and denominator in equations (3) and (5).

Formally, let the event-time, or �nancial-time, sampling scheme be de�ned by,

tk � inft>tk�1

 Z t

tk�1

�2(�)d� > ��

!
; k = 1; 2; ::: ; (6)

where t0 � 0, and �� denotes the �xed �nancial-time unit spanned by each of the returns.

For ease of comparison with the one-period, or daily, return distributions discussed above, we

focus our empirical investigations on the case in which �� equals the unconditionally expected

one-period, or daily, integrated variance,

�� � E

�Z t

t�1
�2(�)d�

�
: (7)

Denote the corresponding jump-adjusted �nancial-time sampled returns by,

~r�k � p(tk)� p(tk�1) �
q(tk)X

s=q(tk�1)

�(s) ; k = 1; 2; ::: : (8)

It follows then by the Time-Change for Martingales Theorem (Dambis (1965) and Dubins &

Schwartz (1965)), that
~r�k �

��1=2 � N (0; 1) ; k = 1; 2; ::: : (9)

Importantly, this last theoretical result establishes normality of the appropriately adjusted and

standardized returns for any jump-di¤usion model.

10A similar leverage or volatility feedback e¤ect could in principle work through the jump component. However,

the related empirical evidence in Bollerslev, Kretschmer, Pigorsch & Tauchen (2005) suggests that the asymmetry

works almost exclusively through the di¤usive component.
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We next discuss the nonparametric high-frequency data based procedures used in imple-

menting and testing each of the distributional results presented above. In contrast to traditional

procedures for analyzing continuous-time models, our approach does not depend upon the va-

lidity of any particular parametric model. Yet, at the same time, the approach provides direct

guidance for the speci�cation of more realistic parametric models within the general class of

jump-di¤usions de�ned by (1).

3 Empirical Return and Variation Measures

Our empirical analysis of various transformed daily return distributions relies importantly on

the availability of intra-day data. We let T denote the number of days for which intra-day

price observations are available. The daily return series is then given by the increment in the

observed log-prices over each trading day, i.e.,

Rt = pt;M � pt;0; t = 1; :::; T; (10)

where pt;0 denotes the opening, or �rst, log-price on day t, and pt;M refers to the closing, or last,

price on day t. This de�nition explicitly excludes the part of the daily variation associated with

the overnight return, as the closing price on day t�1, pt�1;M , typically di¤ers from the opening
price on the following day t, pt;0.11 However, the overnight returns are naturally thought of

as deterministically occurring jumps. We treat them accordingly, and our trading day returns

are then simply equal to the daily returns adjusted for the (observed) overnight jump. This

approach allows us to avoid dealing with market closures where reliable high-frequency data

generally are not available. At the same time, this feature implies that applications of the

current results for predicting the distribution of future daily or lower frequency returns must

incorporate explicit corrections, not only for jumps within the trading periods but also for the

price variability associated with market closures. These additional issues fall outside the scope

of this study, but the concurrent work by Andersen, Bollerslev & Huang (2006) exemplify how

this may be implemented in practice.

To avoid the problem of irregularly spaced high-frequency return observations, an imputa-

tion scheme (see, e.g. Dacorogna, Gencay, Müller, Pictet & Olsen (2001)) is usually used in

the construction of evenly spaced prices, say M +1 per day, where preferably many more price

observations are available each day. Denote the corresponding j�th intra-daily log-price for day

t by pt;j , where j = 0; 1; :::;M and t = 1; :::; T . The continuously compounded M intra-daily

11The estimates reported in Hansen & Lunde (2005) suggest that about twenty percent of the total daily

return variation is attributable to the overnight period.
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returns for day t are then similarly denoted by,

rt;j = pt;j � pt;j�1; j = 1; :::;M; t = 1; :::; T: (11)

The precision of the resulting nonparametric realized volatility and jump measures, as discussed

further below, depends directly upon the value ofM . In theory, the larger the number of intra-

day returns the higher the precision of the estimators. At the same time, from a practical

empirical perspective, the larger the value of M , the more sensitive the estimates are to the

in�uences of market microstructure �noise� not contemplated within the theoretical model

in equation (1), including price discreteness, bid-ask spreads, and non-synchronous trading

e¤ects. Ways in which to best account for these frictions and the practical choice of M in the

construction of realized volatility measures have recently been the subject of intensive research

e¤orts; see, e.g., Nielsen & Frederiksen (2004), Ait-Sahalia, Mykland & Zhang (2005), Bandi

& Russell (2005), Barndor¤-Nielsen, Hansen, Lunde & Shephard (2006), and Hansen & Lunde

(2006), among many others. One complicating feature is that none of these contributions allow

for the presence of jumps which is a major contributor to the price variability in the series we

explore. In the empirical results reported below, we follow much of the literature in the use of

a �xed 5-minute, or M = 78, sampling frequency. However, we explicitly justify this particular

choice of M for each of the stocks through the use of new volatility signature type plots, as

detailed in Section 4.

3.1 Realized Volatility and Jumps

Following Andersen & Bollerslev (1998a), Andersen, Bollerslev, Diebold & Labys (2001) and

Barndor¤-Nielsen & Shephard (2002a, 2002b), we de�ne the realized volatility for day t by, 12

RVt �
MX
j=1

r2t;j ; t = 1; :::; T: (12)

From the theory of quadratic variation, RVt generally provides a consistent (in probability and

uniformly in t) estimator of the daily increment to the quadratic variation for the underlying

log-price process p (�) de�ned in (1). Speci�cally, for M !1,

RVt !p

Z t

t�1
�2 (s) ds +

q(t)X
s=q(t�1)

�2 (s) ; t = 1; :::; T: (13)

Absent jumps, the second term vanishes and the realized volatility consistently estimates the

integrated volatility which provides the contemporaneous standardization factor for the daily
12We will refer interchangeably to this estimator as the realized volatility, the realized variation, or simply the

variance. However, the exact meaning will be clear from the context.
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returns in the previous section. In general, however, the realized volatility measure includes

the contribution to the total variation stemming from the squared jumps, and as such will not

a¤ord a consistent estimator of the requisite continuous sample path variation.

Meanwhile, in a series of recent papers Barndor¤-Nielsen & Shephard (2004b, 2006) show

that separate nonparametric identi�cation of the terms on the right-hand-side of equation (13)

is possible through the use of so-called bipower variation measures. Speci�cally, the lag-one

realized bipower variation is de�ned by,

BVt � ��21

MX
j=2

jrt;j j jrt;j�1j ; t = 1; :::; T; (14)

where �1 =
p
2=�. It can be shown that, even in the presence of jumps, for M !1,

BVt !p

Z t

t�1
�2 (s) ds ; t = 1; :::; T: (15)

Intuitively, for very large values of M , there will be at most one jump in any two adjacent

time interval of length 1=M . Since the contribution of each absolute return associated with the

di¤usion component in the limit (over an in�nitesimal interval) is negligible, the product of a

squared jump return with the adjacent absolute return is also vanishingly small asymptotically.

Meanwhile, the scaling of the bipower variation term ensures that the consistency for the di¤u-

sive return variation is maintained. Now, combining equations (13) and (15), it follows readily

that the contribution to the total variation coming from the jump component is consistently

estimated by the di¤erence between the two. That is, for M !1,

RVt �BVt !p

q(t)X
s=q(t�1)

�2 (s) ; t = 1; :::; T: (16)

Although formally consistent for the squared jumps, nothing prevents RVt�BVt from becoming
negative for �nite values of M , especially when no jumps occur on day t. Similarly, part of

the continuous price movements will invariably be attributed to the jump component due to

sampling variation, resulting in small positive values of RVt�BVt for �niteM , even if there are
no jumps, or q(t) = q(t� 1). Hence, following the empirical analysis in Andersen, Bollerslev &
Diebold (2005), we re�ne our empirical analysis by considering the notion of signi�cant jumps,

only associating the most extreme price moves with the discontinuous jump component.

In particular, based on the asymptotic distribution theory in Barndor¤-Nielsen & Shephard

(2004b, 2006), coupled with the extensive simulation evidence in Huang & Tauchen (2005), we

assess the signi�cance of the daily jump component according to the feasible logarithmic test

statistic,

Zt �
p
M

lnRVt � lnBVt��
��41 + 2��21 � 5

�
TQtBV

�2
t

�1=2 !d N (0; 1) ; (17)
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where the realized tripower quarticity measure in the denominator is de�ned by,

TQt �
1

M
��34=3

MX
j=3

jrt;j j4=3 jrt;j�1j4=3 jrt;j�2j4=3 ; t = 1; :::; T; (18)

and �4=3 = 22=3� (7=6) =� (1=2) with � (�) denoting the gamma function. Thus, only extreme
(in a formal statistical sense) positive values of RVt � BVt will be attributed to the squared
jump component, i.e.,

JVt � IfZt>�1��g (RVt �BVt) ; t = 1; :::; T; (19)

where If�g denotes the indicator function, �1�� refers to the (1 � �) fractile of the standard
normal distribution, and � denotes the chosen signi�cance level.

Given our estimator for the squared jumps, an estimator for the continuous sample path

variability, or integrated volatility, component is naturally obtained by the residual variation,

CVt � RVt � JVt = IfZt��1��gRVt + IfZt>�1��gBVt ; t = 1; :::; T: (20)

That is, we estimate the day t continuous volatility component by the realized volatility if there

are no signi�cant jumps on day t, and by the realized bipower variation on days with signi�cant

jump(s). In the empirical results reported below we rely on a signi�cance level of � = 1%, but

we also experimented with � = 5% and 0:1%, resulting in qualitatively very similar overall

conclusions.13

The high-frequency data based measures discussed above a¤ord a simple-to-implement ap-

proach for estimating the daily integrated volatility and the sum of squared jumps over a given

day. The approach does not, however, identify the individual jumps themselves. We next

discuss two di¤erent procedures for doing so.

3.2 Jump-Adjusted Returns

In the absence of jumps and leverage e¤ects, the daily returns should be approximately nor-

mally distributed when standardized by the corresponding integrated volatility, or an empirical

estimate thereof. In general, however, the daily returns de�ned by the model in (1) may be

comprised of both continuous price movements and discontinuous jumps. Building on the real-

ized volatility measures de�ned above, we consider two di¤erent nonparametric procedures for
13Note that the use of standard signi�cance levels automatically ensures that both JVt and CVt are non-

negative, as �1�� > 0 for � < 1=2. Implementing the jump tests with a low signi�cance level such as the chosen

� = 1%, or even � = 0:1%, alleviates concerns about pre-test biases in the sense of providing a low Bonferroni-

type bound. This may be especially relevant for the more advanced sequential jump detection procedure discussed

below.
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directly identifying, and estimating, the intra-day jumps and the corresponding jump-adjusted

returns.

3.2.1 Simple Jump Adjustments

Our �rst estimation scheme is based on the premise that jumps are relatively rare events. In

particular, assume that there is at most one jump each day. It then follows from the arguments

above that JVt !p �
2
t . Of course, this still leaves the sign of the jump undetermined. Appealing

to the intuitive idea of signing the single day t jump on the basis of the largest (absolute) intra-

day return, this estimation scheme de�nes the daily time series of jumps by,14

~�t � sgn

��
rt;k : jrt;kj = max

j2f1;:::;Mg
jrt;j j

��p
JVt; t = 1; :::; T; (21)

where sgn (�) is equal to 1 or �1 depending upon the sign of the argument. Accordingly, we
denote the corresponding jump-adjusted daily returns by,

~Rt � pt;M � pt;0 � ~�t; t = 1; :::; T: (22)

Note that even though this scheme allows for the construction of sensible jump-adjusted re-

turns, it does not determine the timing of the jump within the day. However, as we move

from sampling returns in calendar time to �nancial time, as de�ned by equal increments of

quadratic variation, knowing the exact jump times is essential in de�ning the new time scale.

In addition, it is possible that multiple jumps may occur on certain days, violating the basic

assumption underlying the simple procedure in (21). Hence, we introduce a more advanced

jump identi�cation scheme designed to facilitate inference regarding all signi�cant jumps along

with their exact timing within the trading day.

3.2.2 Sequential Jump Adjustments

The Zt statistic de�ned in (17) only signi�es whether the di¤erence between the realized volatil-

ity and the bipower variation measures is large enough to indicate the presence of one or more

jumps on day t. Our more detailed jump detection scheme applies this same statistic sequen-

tially to identify potentially multiple signi�cant jumps over the same day.

Intuitively, in the absence of any jumps, so that RVt � BVt !p 0, the average contri-

bution of each squared intra-day return to the continuous sample path component is simply

14We also experimented with signing the jumps on the basis of the total daily returns, resulting in very similar

�ndings to the ones reported below.
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M�1PM
k=1 r

2
t;k. Now assuming only a single jump on day t, this suggests the following alter-

native estimator for the day t contribution to the volatility coming from that jump,

IfZt>�1��g

0@ max
j2f1;:::;Mg

r2t;j �
1

M � 1

MX
k 6=j

r2t;k

1A ; t = 1; :::; T:

This, of course, also directly identi�es the time of the jump by the value of j that achieves the

maximum. Now, eliminating this particular intra-day return in the calculation of a new jump-

corrected realized volatility measure allows for the construction of a modi�ed jump statistic to

test for the presence of additional (smaller) jumps.

More precisely, in identifying the �rst jump, RVt is based on the summation of all the

squared intra-day returns. If the corresponding test in (17) rejects, we conclude that there is

at least one jump during day t, and in turn identify its contribution to the total daily variation

as the di¤erence between the largest squared intra-day return and the average of the remaining

M�1 squared returns. Then, in identifying a possible second jump we de�ne the day t realized
volatility corrected for one jump as the summation of the squared returns, where the squared

return containing the �rst jump is replaced by the average of the remaining M � 1 squared
returns. If the new test statistic obtained by replacing RVt in (17) with this jump-corrected

realized volatility measure does not reject, we conclude that there is exactly one jump on day

t, and we stop the sequential procedure. If on the other hand, the test still rejects, we conclude

that there are at least two jumps, and associate the contribution to the total variation coming

from the second jump with the second largest squared intra-day return less the average of the

remaining squared returns. More generally, after having identi�ed i jumps, we calculate the

jump-corrected realized volatility using the remaining M � i returns scaled by M= (M � i),
continuing this sequential procedure until the corresponding test in (17) no longer rejects.

Thus, having identi�ed the total number of jumps, say J , during day t, as well as the

magnitude of each of the jumps by the corresponding high-frequency returns,

�̂t;i � rt;ji ; i = 1; :::; J; t = 1; :::; T; (23)

where ji denotes the exact time-interval of the intra-day return associated with the i�th jump,

we calculate the jump-adjusted daily return as,

R̂t � Rt �
JX
i=1

�̂t;i; t = 1; :::; T: (24)

Similarly, we de�ne the total variation on day t due to jumps as,

JV St �
JX
i=1

JV St;i; t = 1; :::; T; (25)
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where JV St;i gives the contribution from the i�th jump, de�ned as the di¤erence between the

i�th largest intra-day squared return and the average of the M � J squared returns that are
not associated with jump(s). That is,

JV St;i � IfZt;i>�1��g

0@ max
ji2f1;:::;Mgnfj1;:::;ji�1g

r2t;ji �
1

M � J
X

k2f1;:::;Mgnfj1;:::;jJg
r2t;k

1A ; (26)

where Zt;i denotes the i�th sequential jump statistic, as discussed above. Lastly, the corre-

sponding continuous volatility component is simply de�ned by,

CV St � RVt � JV St; t = 1; :::; T; (27)

which, in line with the earlier de�nition in (20), guarantees that each of the two daily time

series are non-negative, and add up to the total daily realized variation.

The de�nition of ~�t in (21) may in e¤ect be interpreted as an estimate of
PJ
i=1 �̂t;i. This

suggests that the two procedures should give rise to similar jump-adjustments for days in which

there is only one jump. However, the ability of the sequential procedure to identify multiple

jumps within a single day and the timing of jumps is crucial for the construction of jump-

adjusted intra-day return series and these series, in turn, serve as a critical input into the

empirical analysis below.

4 Data Description

4.1 Data Sources and Construction

Our data is extracted from the Trade And Quotation (TAQ) database, and consist of all

recorded trades and quotes for all the 30 Dow Jones Industrial Average (DJIA) stocks for the

�ve-year period spanning January 2, 1998 through December 31, 2002. The ticker symbols

and names for each of the stocks are listed in Table A1 of the supplementary appendix.15 We

only use the prices from the New York Stock Exchange (NYSE), with the exception of Intel

and Microsoft, both of which are most actively traded on the National Association of Security

Dealers Automated Quotation (NASDAQ) system. Mirroring the data cleaning procedures of

Hansen & Lunde (2006), we �lter the raw price series to remove price observations equal to

zero, prices occurring outside the 9:30 AM to 4:00 PM o¢ cial trading day, as well as extreme

outliers or mis-recorded price observations. This leaves us with somewhere between 2-4 million

prices for each of the stocks, with the exception of Intel and Microsoft, both of which have

15All of the tables in the supplementary appendix are available from the authors upon request (included in

this version for convenience).
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around 26 million prices over the �ve-year sample. Further, we also truncate days of early

closing or late opening of the exchange, as well as days in which trading in a particular stock

was suspended for an extended period of time, resulting in approximately 1; 255 �intact�days

for each stock.

To minimize the impact of market microstructure e¤ects, we rely exclusively on mid-quotes

and an imputation scheme involving the last quote preceding each 5-minute mark, in the

construction of equally spaced 5-minute returns; i.e., M = 78 observations per day.16 The

choice of a 5-minute return interval is in line with most of the existing empirical literature

and, as argued in Bandi & Russell (2005), this sampling frequency is also generally close

to (mean-squared-error) �optimal� for the standard realized variation measure and the TAQ

data analyzed here. Importantly, however, our use of a 5-minute sampling scheme in the

present context, explicitly allowing for jumps, is further supported by the generalized volatility

signature plots discussed next.

4.2 Generalized Volatility Signature Plots

The conventional realized volatility signature plot popularized by Andersen, Bollerslev, Diebold

& Labys (2000b) provides a simple and informal framework for gauging the impact of market

microstructure frictions by plotting the average sample mean of RVt over a long daily time-

span as a function of the sampling frequency of the underlying intra-day returns, or M . In

the absence of any frictions and dynamic dependencies in the returns, the realized volatilities

are all consistent for the same total variation and hence, in practice, the signature plot should

begin to �atten out at the frequencies for which the market microstructure frictions cease to

have a distorting in�uence.

The signature plots in Figure A1 in the supplementary appendix generalize this idea, by

plotting the average realized bipower variation measures (red dashed line) together with the

standard realized variation (blue solid line) for di¤erent sampling frequencies (measured in

seconds).17 For ease of cross-stock comparison, all of the graphs are displayed on the same

scale. Also, as a natural benchmark we include a horizontal line corresponding to the average

realized volatility based on a 30-minute sampling frequency in each of the graphs. A cursory

look at these graphs for each of the individual stocks immediately reveals a close similarity

in the general shape. There are, of course, exceptions but most of these seem attributable to

period-speci�c idiosyncratic e¤ects. In order to more e¤ectively summarize the results we plot

in Figure 1 the median values (over the 30 stocks) of the average realized variation measures

16As argued in Hansen & Lunde (2006), the use of mid-quotes tends to reduce spurious serial correlation in

the high-frequency returns due to bid-ask bounce and non-synchronous trading e¤ects.
17Both of the variation measures have been converted to percent by multiplication with 10,000.
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Figure 1: Median generalized volatility signature plots
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By reproducing the average (across days) RVt and BVt measures as a function of 1=M within

the same graph in Figure A1, the generalized volatility signature plots a¤ord an informal way to

gauge the importance of jumps. In particular, it follows from the equation (16) that, under ideal

conditions and for 1=M ! 0, the distance between the two lines provide a consistent estimate

of the total variation due to jumps.18 In practice, of course, this theoretical prediction will be

obscured by market microstructure �noise,�as directly evidenced by the systematic decline in

both lines in Figure 1 in the range of 2-5 minutes, or 120-300 seconds. At the same time, the

di¤erence between the two lines shows a tendency to stabilize at a sampling frequency of only

18Related generalized volatility signature plots, including plots for various integrated quarticity measures, have

recently been explored by Andersen, Bollerslev, Frederiksen & Nielsen (2006).
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two minutes, or 120 seconds. As such, this suggests that even though the individual realized

volatility and bipower variation measures can be adversely a¤ected by market microstructure

frictions at lower frequencies, the impact of the noise tends to cancel so that the di¤erence

between the two measures, and hence the estimate of the jump component, remains remarkably

stable for 1=M in excess of 120 seconds. Taken as whole, the individual signature plots in

Figure A1 and the summary plot in Figure 1 support our use of a 5-minute return interval as

a reasonable, albeit for some stocks also somewhat conservative, uniform sampling scheme.

This completes our discussion of the data and empirical measures used in testing the main

theoretical distributional implications. However, before presenting the outcome of our moment-

based tests for (approximate) normality, it is useful to �rst consider some preliminary summary

statistics.

5 Preliminary Data Analysis

As highlighted in the theoretical discussion, the presence of jumps and volatility feedback or

leverage e¤ects will cause the distribution of returns standardized by realized volatility to be

non-Gaussian. Thus, in order to place the evidence emerging from the subsequent distributional

tests within an appropriate context, we �rst present a set of summary statistics speaking to

the importance of each of these features.

5.1 Jumps

We begin by considering jumps. Following the discussion above, we �rst report results based on

the simple jump-detection procedure, followed by the more involved sequential jump-detection

scheme, explicitly identifying the time(s) of jump(s) within the day.

5.1.1 Simple Jump Detection

Relying on the simple jump-detection method and a signi�cance level of � = 1%, Table 1

displays the resulting mean duration between signi�cant jumps, the relative contribution of

jumps to the total realized variation, i.e., JVt=RVt, the mean size of the jump component

for signi�cant jump days (multiplied by 10,000), and lastly the corresponding mean (absolute)

jump size (measured in percent), i.e., j~�tj as de�ned in equation (21). For ease of interpretation,
we summarize the results in terms of the mean, standard deviation, minimum, and maximum

of the statistics over all thirty DJIA stocks, with detailed results for each individual stock

deferred to Table A2 of the supplementary appendix.
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Table 1: Jumps - Simple Method
Rel. jump contribution Mean size of jump Mean size of

Mean duration JVt=RVt component (x10,000) actual jumps (x100)

Mean across stocks 6.3201 0.0476 1.2119 0.9812

Std. dev. across stocks 1.6068 0.0133 0.3283 0.1233

Min. across stocks 4.1325 0.0256 0.6247 0.7352

Max. across stocks 10.0976 0.0746 2.0825 1.3121

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for

the mean duration between jumps, the relative jump contribution to the realized volatility, the mean size of the

jump component (x10,000), as well as the mean size (in percent) of the square-root jump component (i.e. the

absolute value of the actual jumps). For further details, see Table A2 in the supplementary appendix.

The mean duration between jumps ranges from a low of 4.1 days (HON) to a high of 10.1

days (GE), with an average across all stocks of 6.3 days. This intensity, of almost one jump

per week, is much higher than typically estimated from parametric models based on daily or

coarser frequency return observations.19 As such, these initial summary statistics suggest that

important additional insights may be obtained from the use of higher frequency data in terms

of disentangling the price process into continuous and jump components. This is also consistent

with the accumulating evidence that price jumps associated with the release of macroeconomic

announcements are much more readily analyzed on the basis of intra-day data rather than the

traditional daily return series, see, e.g., Andersen, Bollerslev, Diebold & Vega (2003).

The potential importance of jumps is also evident from the last three columns of the table.

In particular, estimates of the relative contribution of the jump component range from 2.6

percent (GE) to 7.5 percent (MO), with an average value of 4.7 percent. The more detailed

results in Table A2 of the supplementary appendix also point towards a negative association

between the jump durations and the relative jump contributions. Further, the mean size of the

jump component (multiplied by 10,000) on days with signi�cant jumps is estimated between

0.62 (JNJ) and 2.08 (HPQ), which compares to a typical daily realized variation (multiplied

by 10,000) of around 3-4. In other words, on days identi�ed to have a jump, about a third of

the return variation is attributed to jumps on average. Finally, the mean absolute size of the

�simple� jumps, i.e., j~�tj, ranges from 0.74 to 1.31 percent, with a mean across all stocks of

0.98 percent.

19See, e.g., the parametric daily GARCH-jump model estimates for individual stocks reported in Maheu &

McCurdy (2004).
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Figure 2: Median histogram for number of jumps per day
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5.1.2 Sequential Jump Detection

In contrast to the simple method, the sequential jump-detection procedure explicitly accommo-

dates the presence of multiple jumps on a given trading day. Figure A2 in the supplementary

appendix displays the distribution of jumps per day observed across the sample for each stock.

Figure 2 summarizes the information by plotting the median (across stocks) proportion of days

with a given number of jumps. As seen from Figure 2, the estimated (unconditional) probabil-

ity of a single jump for the �typical�stock is roughly 14 percent, while there is a two-percent

probability of two jumps in one day and the probability of three or more jumps in one day is

much lower, although not zero. From Figure A2 we �nd that the most frequently jumping stock

(HON) has more than 300 jump days among the 1,255 days in the sample, while the stock with

the lowest number of jump days (GE) still has at least one signi�cant jump on about 120 days.

These results illustrate the potential importance of the sequential jump detection procedure,

as most of the stocks have many days with multiple jumps.

Comparing the summary statistics in Table 2 for the sequential jump detection method
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Table 2: Jumps - Sequential Method
Rel. jump contribution Mean size of jump Mean size of

JV St=RVt component (x10,000) actual jumps (x100)

Mean across stocks 0.0373 1.0394 0.9282

Std. dev. across stocks 0.0101 0.3050 0.1177

Min. across stocks 0.0212 0.5065 0.6828

Max. across stocks 0.0575 1.8309 1.2464

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for

the mean duration between jumps, the relative jump contribution to the realized volatility, the mean size of the

jump component (x10,000), as well as the mean size (in percent) of the absolute value of the actual jumps. For

further details, see Table A3 in the supplementary appendix.

Table 3: Simple and Sequential Jump Correlations
Correlation RMSE Theil�s U

Mean across stocks 0.9450 0.0062 0.2999

Std. dev. across stocks 0.0332 0.0033 0.1036

Min. across stocks 0.8722 0.0030 0.1086

Max. across stocks 0.9945 0.0200 0.5508

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for

the correlation, root mean squared error (RMSE), and Theil�s U statistic for the two daily jump series based on

the simple and sequential methods, respectively. Observations where both series are zero have been removed.

For further details, see Table A4 in the supplementary appendix.

to the corresponding statistics for the simple method in the last three columns of Table 1,

the numbers are generally fairly close. In particular, the relative contribution of the jump

component for the sequential procedure ranges from 2.1 percent (GE) to 5.8 percent (MO),

just slightly lower than the numbers for the simple method. Similarly, the mean size of the

sequential jump component averaged across the stocks equals 1.83, compared to 2.08 in Table

1, and the mean absolute jump size ranges from a low of 0.68 percent (JNJ) to a high of 1.25

percent (HPQ), with the overall absolute mean jump size of 0.93 percent again being slightly

below that in Table 1.

The close coherence between the two daily jump component series, JVt and JV St in equa-

tions (19) and (25) is further underscored by Table 3 which presents a summary of various

correlation measures between the two. To directly focus on the relation between the jump

series, all the common no-jump zero observations were not included in the computations. The

�rst column reports the standard sample correlation coe¢ cient, the second column the root

mean squared error (RMSE) calculated as the square-root of the sum of the squared di¤erences
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between the two series, and the third Theil�s scale invariant U-statistic. As above, the results

are summarized in the form of the mean, standard deviation, minimum, and maximum across

the thirty stocks, with detailed results for each stock provided in Table A4 of the supplemen-

tary appendix. It is evident that the two di¤erently estimated jump components are close. For

instance, the lowest sample correlation equals 0.87 (WMT), with an average value of 0.95 across

the thirty stocks. Also, the RMSEs and Theil�s U-statistics are generally fairly low across the

stocks. Hence, the sequential procedure retains the information regarding jump occurrence

and relative importance on a day-to-day basis but, importantly, it also directly identi�es the

intra-day timing of all the jumps which is critical for the subsequent analysis.

5.2 Leverage and Volatility Feedback E¤ects

The second key assumption underlying the normality of the integrated volatility standardized

returns concerns the lack of correlation between the di¤usive volatility process and the Brownian

motion innovations to the price process.

In order to provide a preliminary assessment of the validity of this assumption, Figure A3

of the supplementary appendix graphs the 5-minute cross-correlations for each of the stocks,

i.e., corr(jrj j ; rj+i), where for notational simplicity rj for j = 1; : : : ; J refers to time series

of approximately J = 1; 255 � 78 = 97; 890 demeaned 5-minute returns available for each

stock. A cursory look at the graphs suggests a broadly similar shape across stocks although the

idiosyncratic noise inherent in the individual estimates makes it hard to draw sharp conclusions.

Hence, in an e¤ort to minimize the impact of the estimation error, we summarize the evidence

in Figure 3 by plotting the median value, across the stocks, of each of the high-frequency cross-

correlations. Figures 3 reveals a clear tendency for the correlations between jrj j and rj+i to
be negative for negative i, while the correlations typically are positive or near zero for positive

values of i. Of course, there is a striking spike around i = 0, which is also present for most

of the individual stocks. As such, this points to the existence of a potentially distorting high-

frequency leverage e¤ect for at least some of the stocks, but not much of a volatility feedback

e¤ect.20

In order to more formally test the statistical signi�cance of these features, Table 4 provides

summary statistics directly related to the leverage and volatility feedback type e¤ects depicted

in the �gure. This allows for more formal testing concerning the statistical signi�cance of

these features. Speci�cally, the table reports estimates of each individual e¤ect as well as

the di¤erence between the two; the more detailed �ndings for each individual stock are again

20This is also directly in line with the corresponding plots for the high-frequency S&P500 futures returns in

Bollerslev et al. (2006), which show even more pronounced negative cross-correlations for negative lags along

with cross-correlations close to zero for positive lags.
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Figure 3: Median high-frequency leverage and volatility feedback e¤ects

­0
.0

1
0.

00
0.

01
0.

02
0.

03

­50 0 50

Lag, i

Co
rre

la
tio

n:
 |r

(j)
|,r

(j+
i)

reported in the supplementary appendix, Table A5. The average leverage e¤ect for an individual

stock is estimated by,

1

K � 2

K�1X
i=2

1

J �K + 1

JX
j=K

jrj j rj�i;

while the volatility feedback e¤ect is calculated as,

1

K � 2

K�1X
i=2

1

J �K + 1

J�K+1X
j=1

jrj j rj+i:

That is, the leverage e¤ect is measured as the (un-weighted) mean of the sample cross-covariances

between the absolute returns and the lagged 2; : : : ; (K � 1) period returns, corresponding to
the K � 2 cross-correlations immediately to the left of negative one in the �gures. Similarly,
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Table 4: Leverage and Volatility Feedback E¤ect Estimates
Leverage Feedback Di¤erence

Mean across stocks -0.0166 0.0076 -0.0243

Std. dev. across stocks 0.0151 0.0087 0.0145

Min. across stocks -0.0560 -0.0155 -0.0658

Max. across stocks 0.0053 0.0226 -0.0035

Signi�cance at 5% level 9 10 20

Signi�cance at 1% level 6 5 14

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for

the leverage and volatility feedback e¤ect estimates along with their numerical di¤erence, as described in the

main text. The last two rows report the number of stocks (out of 30) for which the corresponding t-statistics,

based on a heteroskedasticity and autocorrelation consistent Newey-West type covariance matrix estimator, are

signi�cantly di¤erent from zero at the 5% and 1% levels, respectively. For further details, see Table A5 in the

supplementary appendix.

the volatility feedback e¤ect is measured as the mean of the sample cross-covariances between

the absolute returns and the returns 2; : : : ; (K � 1) periods into the future, corresponding to
the sum of the �rst K � 2 cross-correlations immediately to the right of one in the �gures. For
conciseness, we focus on K = 30, but identical qualitative �ndings are obtained for other values

of K. Also, to guard against spurious non-synchronous trading e¤ects, we explicitly exclude

the �rst (positive and negative) cross-covariance but including these does not materially a¤ect

the results.21

The more formal tests generally con�rm the visual impression. The auto-covariances cor-

responding to the leverage e¤ect are negative while the volatility feedback auto-covariances

are close to zero, and if anything positive, on average. Interestingly, although the e¤ects are

statistically insigni�cant for most stocks, there is a considerable cross-sectional variation in the

magnitude of the leverage e¤ect, in particular, and for some stocks the cross-covariances appear

quite signi�cant.22 We also note that the di¤erence between the two e¤ects is negative for all

stocks, and signi�cantly so at the 5% level for twenty out of the thirty.

These results suggest that for some stocks the use of �nancial-time sampling may be nec-

essary to restore normality of the standardized return distributions. Of course, whether the

high-frequency leverage and volatility feedback e¤ects are large enough to cause any noticeable

21We also calculated the same statistics for the jump-adjusted returns, resulting in very similar numbers to

the ones reported in the tables. These results are available upon request.
22These high-frequency based �ndings are further corroborated by our estimation of conventional EGARCH

models for the daily returns, which tend to result in the most signi�cant volatility asymmetries for the stocks

for which the leverage e¤ects in Table A5 are also the largest. These additional estimation results are available

upon request.
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distortions in the standardized return distributions remains an empirical question to which we

now turn.

6 Daily Return Distributions

6.1 Unconditional Return Distributions

It is well established that the unconditional distributions of daily asset returns, and stock

returns in particular, are fat-tailed. At the same time, our theory predicts that suitably

jump-adjusted and standardized stock returns should be i.i.d. Gaussian. Hence, as a nat-

ural benchmark, we �rst provide a summary of the raw unconditional return distributions for

the thirty DJIA stocks. The �rst row of Table 5 con�rms the stylized facts regarding daily

stock returns. Using the normality tests of Andersen, Bollerslev & Dobrev (2006) involving the

joint distribution of the �rst four sample moments, the null hypothesis that the unconditional

return distribution, or Rt=
p
V ar(Rt), is standard normal is rejected at the 1% level for all

of the stocks.23 In fact, from Table A6 in the supplementary appendix, we see that the joint

test is signi�cant at the 0:01% level or lower for each individual stock. Table A6 also indicates

that the overwhelming rejections are due primarily to the sample kurtosis being signi�cantly

in excess of three.

These �ndings are corroborated by the kernel-based density plots for each stock in Figure

A4 in the supplementary appendix, all of which are more peaked at the center and have fatter

tails than the reference normal densities. Similarly, the corresponding QQ-plots in Figure A5

(also in the supplementary appendix) all indicate that the normal distribution does not have

enough mass in the tails to match the unconditional daily return distributions.

As discussed at length above, these results are exactly what we should expect to �nd

if the underlying return volatility is time-varying, as this naturally induces a mixture type

distribution. Motivated by this line of reasoning, we next look at the unconditional return

distributions obtained by standardizing the daily returns with the one-day-ahead conditional

volatility forecasts from a conventional discrete-time GARCH(1,1) model.

6.2 GARCH Standardized Returns

The results for the GARCH standardized returns, Rt=
p
GARCH(1; 1), reported in the second

row of Table 5, are again fully consistent with the existing literature. The tables and �gures in

23This test is formally equivalent to testing that the �rst four orthogonal Hermite polynomials are equal to

zero, and may be seen as a special case of the more general class of normality tests developed by Bontemps &

Meddahi (2005a, 2005b) for testing the so-called Stein equation.
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Table 5: Daily Return Distributions
Raw Returns Demeaned Returns

Signi�cance Signi�cance

Series 5 % level 1 % level 5 % level 1 % level

Rt=
p
V ar(Rt) 30 30 30 30

Rt=
p
GARCH(1; 1) 30 30 30 30

Rt=
p
RVt 21 12 18 9

~Rt=
p
CVt 18 10 15 9

R̂t=
p
CV St 20 12 18 11

R̂�k=
p
E(CV St) 13 6 11 5

R̂�5k;5=
p
5E(CV St) 6 3 2 2

Note: The table reports the number of stocks (out of 30) for which the hypothesis of normality is rejected based

on the joint test for the �rst four moments. The results in the last two columns are based on subtracting the

sample mean from the return series in the numerator. Rt refers to the daily return, while ~Rt and R̂t denote

the daily jump-adjusted returns calculated according to the simple and sequential procedures, respectively.

RVt gives the total realized variation. The continuous variation based on the simple and sequential jump-

adjustment procedures are denoted by CVt and CV St, respectively. R̂�k refers to the �nancial-time return

series constructing from the sequential jump-adjusted intra-day returns spanning E(CV St) time-units. Lastly,

R̂�5k;5 � R̂�5k + R̂
�
5k�1 + R̂

�
5k�2 + R̂

�
5k�3 + R̂

�
5k�4 de�nes the �nancial-time return series spanning 5E(CV St)

time-units. For further details regarding each of the individual stocks, see Table A6 in the supplementary

appendix.

the supplementary appendix provide additional evidence. In particular, even though the more

detailed statistics for the individual stocks in Table A6 and the corresponding density and

QQ-plots in Figures A6 and A7 indicate that the mass in the tails of the GARCH standardized

return distributions is reduced relative to that of the unconditional return distributions, the

distributions remain signi�cantly leptokurtic for all stocks; see Bollerslev (1987), Baillie &

Bollerslev (1989), and Hsieh (1989) for early empirical evidence along these lines.24

Of course, if the underlying price and volatility processes evolve stochastically within the

trading day according to a continuous-time di¤usion model, the GARCH volatilities will at best

represent the one-day-ahead conditional expectations of the corresponding (latent) integrated

volatilities. Thus, as argued in Section 2, the GARCH standardized returns should follow a fat-

tailed mixture-of-normals distribution, with the mixture determined by the distribution of the

GARCH volatility forecast errors vis-a-vis the true integrated volatility realizations. In order to

explore this conjecture, we next turn to the distributions obtained by standardizing the daily

returns with the corresponding realized volatilities. Intuitively, since the measured realized

24We also experimented with the estimation of alternative EGARCH-M formulations, explicitly allowing for

volatility asymmetry, or leverage and/or volatility feedback e¤ects, resulting in very similar �ndings to the ones

reported here; see also Kim & Kon (1994) for earlier related empirical evidence.
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volatilities provide more accurate ex-post estimates of the integrated volatility realizations

than the ex-ante GARCH forecasts, we would expect these distributions to be closer to normal.

6.3 Realized Volatility Standardized Returns

We now focus on the distribution of realized volatility standardized returns, Rt=
p
RVt. From

the density and QQ-plots for the individual stocks in Figures A8 and A9 of the supplementary

appendix, respectively, it is evident that the return distributions now are much closer to the

reference Gaussian distributions than was the case for the raw and GARCH standardized

returns. Most obvious, the tails in the QQ-plots have improved considerably and, with a

few exceptions, show only slight deviations from the straight 45-degree line. As previously

mentioned, these �ndings are in line with the earlier studies by Andersen, Bollerslev, Diebold

& Labys (2000a) and Andersen, Bollerslev, Diebold & Ebens (2001), arguing through similar

informal graphical tools and simple summary statistics that the sample distributions of the

RVt standardized returns tend to be well approximated by a normal distribution.

Complementing this informal evidence, the third row in Table 5 reports the results from

applying our formal moment-based test to the realized volatility standardized return distrib-

utions. Importantly, however, as shown in Andersen, Bollerslev & Dobrev (2006), under the

null hypothesis of a time-invariant, or homogeneous, di¤usion, the fourth population moment

of the RVt standardized returns equals m4 = 3
M
M+2 , rather than the standard normal value of

three, and we use this value in implementing the test. In the present context with M = 78

5-minute returns per day, this translates into a value of 2:925. The results con�rm that the

�rst four sample moments of Rt=
p
RVt generally adhere fairly closely to those of the slightly

modi�ed Gaussian distribution. Speci�cally, the implicit null of an underlying continuous-time

di¤usion is not rejected for nine out of the thirty stocks at the 5% signi�cance level, while the

tests turn out to be insigni�cant for eighteen of the thirty stocks at the 1% level.

Nonetheless, looking at the more detailed statistics in Table A6 in the supplementary ap-

pendix, we �nd that the sample kurtosis for Rt=
p
RVt remains signi�cantly di¤erent from the

theoretical value of m4 = 2:925 that should obtain for a homogeneous di¤usion in many cases.

Of course, as noted above, several studies argue for the importance of allowing for jumps in

the modeling of aggregate equity index returns, in particular, and the empirical results for the

individual stocks reported in Section 5.1 support this notion. The presence of a few large jumps

tends to imply that the RVt standardized return distribution has thinner tails than the (mod-

i�ed) normal because the jumps in�ate the denominator realized volatility disproportionately.

However, more generally the presence of jumps simply serves to obfuscate the asymptotic, for

increasing sampling frequency, normality of the Rt=
p
RVt distribution. Indeed, even though the

majority of the rejections reported in Table 5 arise from exceedingly low sample values of m4,
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for a few of the stocks the empirical values are signi�cantly larger than 2:925. In an attempt

to clarify these issues, we next consider the distribution of jump-adjusted returns standardized

by an estimate of the corresponding continuous sample path variation.

6.4 Jump-Adjusted Realized Volatility Standardized Returns

Following Sections 2.2 and 3.2, we consider jump-adjusted return distributions using both

the simple and sequential jump-detection schemes. The summary results of the normality

tests for the corresponding distributions labelled ~Rt=
p
CVt and R̂t=

p
CV St, respectively, are

given in the fourth and �fth rows of Table 5. Perhaps somewhat surprisingly, the results

indicate that neither of the jump-adjusted standardized return series are systematically closer to

being normally distributed than are the Rt=
p
RVt non-adjusted realized volatility standardized

returns. The hypothesis of normality is rejected for eighteen of the stocks at the 5% level using

the simple method and twenty of the stocks using the more advanced sequential procedure,

compared to twenty-one stocks for the non-adjusted returns. Similarly, at the 1% level, ten

and twelve stocks reject for the jump-adjusted return distributions, while twelve stocks reject

for the unadjusted returns.

Again, detailed density and QQ-plots are available in the supplementary appendix. The

density plots in Figures A10 and A12 look remarkably similar to the earlier plots for the

unadjusted standardized returns in Figure A8. Also, from looking at the QQ-plots in Figures

A11 and A13, it is not clear that the jump-adjustments have improved much on the slight

deviations in the tails that are visible for some of the stocks. Comparing the more detailed

results for the ~Rt=
p
CVt and R̂t=

p
CV St return series for each of the individuals stocks in Table

A6 to those for Rt=
p
RVt, no apparent pattern emerges in the values of the di¤erent statistics

either.

Thus, even though jumps appear empirically important and, according to the estimates in

Section 5.1, account for approximately a third of the total daily price variation on jump days,

adjusting for jumps fails in terms of restoring normality of the standardized return distributions.

One reason is that jumps are largely self-standardizing in the sense that a large jump tends to

in�ate the (absolute) value of both the daily return and the daily realized volatility, i.e., both

the numerator and denominator of the standardized returns, so that they e¤ectively cancel

each other and the overall e¤ect is muted. As a result, even if the jumps impact the raw return

distribution signi�cantly they exert much less in�uence on the realized volatility standardized

return distribution. In sum, the remaining, still appreciable, deviations from normality likely

stem from a di¤erent source. According to our theoretical framework, the only other candidate

is systematic dependencies between the numerator and denominator of the daily standardized

returns. Of course, the simple empirical correlation-based measures discussed in Section 5.2
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indeed suggest that a leverage type e¤ect may be at work. To investigate this conjecture,

our �nal set of results study the properties of jump-adjusted standardized returns sampled in

�nancial-time, i.e., equal increments of integrated volatility.

6.5 Jump-Adjusted Event-Time Standardized Returns

If the realized value of daily integrated volatility is informative about the corresponding daily

returns, or vice versa, as implied by the leverage and volatility feedback e¤ects, the discretely

sampled integrated volatility standardized returns from a continuous sample path di¤usion are

generally not normally distributed. Meanwhile, as discussed in Section 2.3, this dependence

between the numerator and the denominator of the standardized return distribution may be

broken by sampling the returns in so-called event time. The new sequential jump-adjustment

procedure, which explicitly identi�es the timing of the jumps within the day, permits the

construction of such �nancial-time returns by accumulating the jump-adjusted intra-day returns

so that they span identical increments in the corresponding CV St process, but time-varying

calendar-time intervals.25

The second to last row in Table 5, labelled R̂�k=
p
E(CV St), reports the results from ap-

plying the moment-based tests to the jump-adjusted returns spanning an identical amount

of continuous sample path volatility where, for ease of comparison with the other entries in

the table, we calibrate the unit of the �nancial time scale to one average trading day; i.e.,

�� = E(CV St). Interestingly, the move to �nancial-time sampling results in a marked reduc-

tion in the number of stocks for which the assumption of normality is rejected, with only six

(�ve for the demeaned returns) stocks now rejecting at the 1% level. The close approximation

a¤orded by the normal distribution is also evident from the detailed density and QQ-plots in

Figures A14 and A15 in the supplementary appendix which, except for a few stocks, show a

remarkably close coherence between the empirical and theoretical distributions.

Comparing the results of the tests for leverage and volatility feedback e¤ects for each stock

in Table A5, with the more detailed results of the normality tests in Table A6, there is generally

also a close relation between the signi�cance of the former tests and the �normality gains�ob-

tained by moving to �nancial-time sampling. For instance, for IBM, the leverage and volatility

feedback e¤ects are both signi�cant, and consequently the normality of the standardized return

series in calendar time is rejected at the 5% level. Meanwhile, the p-value for the joint normality

test for the one-day �nancial-time returns equals 0.316. Conversely, for JPM, one of the two

stocks for which normality of the one-day returns is rejected at the 5% level in �nancial-time

25Note that the simple jump-adjustment procedure only identi�es the days with at least one jump, and not

the actual within day time of the jump(s). Hence, on jump-days the approximation to equal units of CVt time

could be very poor.
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Figure 4: p-values for the 30 DJIA stocks, Jan. 1998 - Dec. 2002, 5-minute sampling
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but not in calendar-time, the leverage e¤ect appears insigni�cant and the volatility feedback

e¤ect is only marginally signi�cant at the 10% level.

The CV St time series used in constructing the new �nancial-time scale varies considerably

over the sample for many of the stocks. Consequently, some of the corresponding �one-day�

return observations are based on the summation of only a few 5-minute returns. As such, the

underlying asymptotic theory, for the number of high-frequency return observations going to

in�nity, may provide a poor approximation in these situations. Hence, the last row in Table

5, labelled R̂�5k;5=
p
5E(CV St), reports the results of the normality test applied to returns

spanning one �nancial �week,� or �ve average �days;� or �� = 5E(CV St). Remarkably, the

normality assumption for this longer return horizon, but shorter time series, is now only rejected

at the 1% level for three (two for the demeaned returns) of the thirty stocks.26

To more directly highlight the improvements in the accuracy of the normal approximation

a¤orded by the sequential distributional adjustments discussed above, and in turn the impor-

tance of the corresponding qualitative features of the underlying continuous-time model, Figure

4 plots the p-values for the di¤erent tests for each of the thirty individual stocks and return

26We also looked at the distribution of the standardized returns over longer calendar time periods, but we did

not observe a similar dramatic reduction in the number of rejections for those series. These results are available

upon request.
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transformations in Table 5. If the respective distributions are indeed (approximately) Gaussian,

and the individual tests are independent, these p-values should be distributed uniformly on the

unit interval. The raw and GARCH standardized daily return series invariably have p-values

of zero, as indicated by the single point on the plot. Standardizing the returns by the realized

volatilities clearly improves the situation, but all the p-values remain below 0.25, and the results

for the standardized jump-adjusted returns do not fare any better. In contrast, the p-values

for the �daily�and �weekly��nancial-time returns appear very close to uniformly distributed

between zero and one. Thus, the p-value plots further support the hypothesis that by mov-

ing to �nancial time, as measured through the jump-adjusted realized return variation, the

normality of the (jump-adjusted) returns is restored. In essence this con�rms that inter-daily

stock prices may usefully be thought of as discretely sampled observations from an underlying

continuous-time jump-di¤usion model, but for many stocks it is essential to also accommodate

leverage and/or volatility feedback e¤ects.

6.6 Alternative Sampling Frequencies

Our empirical results hinge on the use of high-frequency data for the construction of reliable re-

alized variation measures and associated jump detection and �nancial-time sampling schemes.

In particular, the new generalized volatility signature plots discussed in Section 4.2 led us to-

wards a uniform 5-minute sampling frequency for each of the DJIA stocks. In order to con�rm

that a sampling frequency around this range provides a reasonable trade-o¤ between the pref-

erence for very �nely sampled returns and the potential contaminating market microstructure

in�uences, we report here the results obtained from the identical distributional tests but based

on both more and less frequently sampled intra-day returns.

Figure 5 reports the p-values for the di¤erent return transformations based on a coarser

30-minute, or half-hour, sampling frequency, corresponding to the right-most points in the

median volatility signature plot in Figure 1. Under ideal conditions, the daily realized volatility

measures and jump detection tests based on �only�M = 13 half-hourly intra-day observations

are, of course, subject to much larger measurement errors than the 5-minute based measures

and tests with M = 78. This e¤ect directly manifests itself in the form of the noticeable

deterioration in the dispersion of the p-values for the realized volatility standardized return

distributions, which are now visible less consistent with a uniform distribution. Meanwhile, the

distribution of the p-values for the �nancial-time returns, and the �5-day�returns in particular,

still appear fairly close to uniform.

At the other end of the spectrum, Figure 6 reports the p-values obtained by using more �nely

sampled 30-second, or half-a-minute, returns; i.e., M = 780. This choice of M corresponds to

the point in Figure 1 where the slope of the signature lines and the di¤erence between the
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Figure 5: p-values for the 30 DJIA stocks, Jan. 1998 - Dec. 2002, 30-minute sampling
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Figure 6: p-values for the 30 DJIA stocks, Jan. 1998 - Dec. 2002, 30-second sampling
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average realized variation and bipower variation measures start to diverge. Now a marked

deterioration in the dispersion of the p-values for the �nancial-time returns becomes apparent.

The contaminating in�uences from the market microstructure �noise�at this higher sampling

frequency overwhelm the signal in the realized variation measures. Not surprisingly, a direct

investigation of this very high-frequency series (not reported here) also revealed some quite

dramatic violations of the basic arbitrage-free semi-martingale assumption for the price process.

In sum, the 5-minute sampling frequency used in the construction of the realized variation

measures in the preceding sections appears to provide a reasonable choice for eliciting important

distributional information from the high-frequency price data in the present context.

6.7 More Recent Data

The minimum tick size for trades and quotes on the NYSE was reduced from a sixteenth of a

dollar to one cent on January 29, 2001. The recent results in Hansen & Lunde (2006) suggest

that this �ner tick size has been accompanied by a substantial reduction in the magnitude

and impact of the market microstructure noise for a variety of realized volatility measures. To

investigate the robustness of our �ndings with respect to this change in market structure, we

replicated the analysis with data spanning the more recent, but slightly shorter, time period

from February 2001 through December 2004.

Without delving into details, a preliminary data analysis along the lines of Section 5 indi-

cates that the jump intensities and the relative importance of jumps have decreased somewhat

over the more recent period, but that jumps remain an important part of the price process for

all stocks.27 For instance, the average duration between jumps has increased by about �fty

percent relative to the earlier period, and the relative jump contribution and the number of

days with more than one jump have fallen by roughly half.

This diminished importance of jumps, coupled with the decreased magnitude of the market

microstructure noise, suggest that the calendar-time standardized returns may be more closely

approximated by a normal distribution. This is indeed the case. Comparing the p-value plots

in Figures 7 and 4, the numbers for the Rt=
p
RVt, ~Rt=

p
CVt, and R̂t=

p
CV St standardized

distributions over the more recent time period in Figure 7 are clearly better dispersed than

the values for the earlier period in Figure 4. The closer coherence between the p-values for the

RVt, CVt, and CV St standardizations and the p-values for the �daily��nancial-time returns

also indirectly suggests a diminished impact of the volatility asymmetry, or leverage e¤ect, over

the more recent time period. Still, with the exception of one or two stocks, all of the p-values

for the former standardizations are less than one-half. On the other hand, the p-values for the

27Complete results are available upon request.
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Figure 7: p-values for the 30 DJIA stocks, Feb. 2001 - Dec. 2004, 5-minute sampling
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�nancial-time returns, and the �weekly� returns in particular, are again fairly close to being

uniformly distributed over the entire unit interval.

As such, the broad conclusions for the more recent time period mirror our more detailed

empirical �ndings for the longer earlier time period. Importantly, however, the new smaller

tick sizes and apparent reduction in confounding market microstructure in�uences combine to

present a less challenging environment for the realized volatility measures used in the analysis.

Looking ahead, this suggests that the basic methodology and testing procedures developed here

should provide even better guidance in future applications.

7 Concluding Remarks

We show how high-frequency intra-day data can be used in the construction of relatively simple-

to-implement non-parametric realized variation measures and test statistics for better under-

standing the nature of the return distribution. Each step in the sequential test procedure speaks

directly to important qualitative features of the underlying return generating process. As such,

the tests may serve as a useful set of diagnostic tools in the speci�cation of more accurate and

empirically realistic continuous-time models. In this regard, our empirical results related to

the individual DJIA stocks suggest that their price series may be satisfactorily described as
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discretely sampled observations from an underlying jump-di¤usion model only after allowing

for leverage and/or volatility feedback e¤ects.

Each step in the sequential procedure could be further extended and improved in a number

of important directions. As discussed above, several recent studies argue for the use of new

multi-scale or kernel-based realized volatility measures for more accurately measuring the true

latent variation, e.g., Bandi & Russell (2005), Hansen & Lunde (2006), Barndor¤-Nielsen et al.

(2006), and Ait-Sahalia et al. (2005). Also, while the use of daily realized volatility measures

conveniently circumvents complications associated with the strong intra-day patterns in volatil-

ity, e.g., Andersen & Bollerslev (1998b), the �nancial-time scale will invariably span di¤erent

periods of the day, and it may prove bene�cial to explicitly adjust and control for this feature.

A number of alternative nonparametric jump detection procedures have recently been proposed

in the literature, e.g., Jiang & Oomen (2005) and Mancini (2005), and it would be interesting

to compare and contrast the results obtained here to some of these alternative schemes.

It would also be informative to directly relate the price jumps to di¤erent news arrivals,

either in the form of company speci�c news, e.g., Johannes (2004) or more systematic macro-

economic news announcements, e.g., Andersen, Bollerslev, Diebold & Vega (2003). Similarly,

it might prove instructive to associate the �nancial-time scale de�ned by the realized volatility

to directly observable economic activity variables within the context of the MDH, e.g., Ane &

Geman (2000) and Luu & Martens (2003). From the reverse perspective, given that our realized

volatility and jump transformations have a sound theoretical basis and appear to signi�cantly

outperform any of the prior MDH style models for the return distribution on the empirical

dimension, it is potentially very informative for future models within the MDH area to map

their candidate economic mixing variables into the corresponding estimated di¤usive and jump

component series of return variation provided here.

Another very interesting question relates to the possible extension of the univariate distri-

butional results and test statistics derived here to a multivariate setting. Although the notion

of realized covariation may be de�ned in a straightforward manner, practical implementation

issues related to the non-synchronicity of multiple high-frequency price series looms large, e.g.,

de Pooter, Martens & van Dijk (2006). The multivariate extension also presents formidable

challenges from a theoretical perspective in terms of the time deformation required to simul-

taneously guard against leverage and/or volatility feedback e¤ects across multiple assets, e.g.,

Ploberger (2005).

Last but not least, it would be interesting to more directly explore the return transfor-

mations and decompositions developed here in terms of their usefulness for value-at-risk type

calculations, volatility timing, and other related �nancial decisions, e.g., Fleming, Kirby &

Ostdiek (2003). We leave all of these issues for future research.
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Supplementary Appendix: Detailed Tables and Figures

Table A1: DJIA Stocks
Ticker symbol Company

AA Alcoa Inc.
AXP American Express Co.
BA Boeing Co.
C Citigroup Inc.
CAT Caterpillar Inc.
DD E.I. DuPont de nemours & Co.
DIS Walt Disney Co.
EK Eastman Kodak Co.
GE General Electric Co.
GM General Motors Corp.
HD Home Depot Inc.
HON Honeywell International Inc.
HPQ Hewlett-Packard Co.
IBM International Business Machines Corp.
INTC Intel Corp.
IP International Paper Co.
JNJ Johnson & Johnson
JPM JPMorgan Chase & Co.
KO Coca-Cola Co.
MCD McDonalds Corp.
MMM 3M Co.
MO Philip Morris Cos.
MRK Merck & Co. Inc.
MSFT Microsoft Corp.
PG Procter & Gamble Co.
SBC SBC Communications Inc.
T AT&T Corp.

UTX United Technologies Corp.
WMT Wal-mart Stores Inc.
XOM Exxon Mobil Corp.
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Table A2: Jump Statistics - Simple Method
Rel. jump contribution Mean size of jump Mean size of

Ticker Mean duration JVt=RVt component (x10,000) actual jumps (%)
AA 4.6270 0.0640 1.1124 0.9585
AXP 7.6503 0.0354 1.5130 1.0419
BA 4.7786 0.0609 1.1738 1.0030
C 6.8022 0.0421 1.7782 1.1129
CAT 4.9524 0.0577 1.2022 1.0292
DD 7.1782 0.0373 1.1006 0.9871
DIS 4.9133 0.0615 1.5087 1.0842
EK 4.2990 0.0679 1.0711 0.9446
GE 10.0976 0.0256 1.0117 0.9172
GM 5.2661 0.0553 0.8704 0.8398
HD 6.3503 0.0449 1.3689 1.0559
HON 4.1325 0.0716 1.2323 0.9825
HPQ 6.2923 0.0434 2.0825 1.3121
IBM 8.9429 0.0296 1.2891 0.9332
INTC 8.3557 0.0323 1.8501 1.2570
IP 5.1975 0.0553 1.2874 1.0673
JNJ 6.0680 0.0458 0.6247 0.7352
JPM 7.2069 0.0371 1.2865 1.0315
KO 5.8762 0.0469 0.7670 0.8189
MCD 4.9176 0.0594 0.9186 0.8942
MMM 5.4304 0.0503 0.8019 0.8301
MO 4.1940 0.0746 1.2886 0.9435
MRK 8.3758 0.0330 1.4525 0.9711
MSFT 6.6543 0.0411 1.2839 1.0321
PG 7.4083 0.0371 0.9408 0.8694
SBC 4.7778 0.0584 0.9903 0.9257
T 6.0197 0.0448 1.2514 1.0244

UTX 5.7569 0.0488 1.1999 0.9565
WMT 8.6276 0.0330 1.3469 1.0684
XOM 8.4527 0.0316 0.7529 0.8088

Note: The table reports the mean durations between jumps, the relative jump contributions to the total realized
variation, the mean size of the jump component (x10,000) on days of non-zero jumps, and the mean size in
percent of the square-root of the jump component (i.e. the absolute value of the actual jumps) on days of
non-zero jumps.
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Table A3: Jump Statistics - Sequential Method
Rel. jump contribution Mean size of jump Mean size of

Ticker JV St=RVt component (x10,000) actual jumps (%)
AA 0.0498 0.9110 0.8965
AXP 0.0288 1.3529 1.0064
BA 0.0477 0.9933 0.9488
C 0.0349 1.6895 1.0507
CAT 0.0455 0.9816 1.0005
DD 0.0297 0.8888 0.9216
DIS 0.0461 1.2555 1.0201
EK 0.0532 0.9216 0.8844
GE 0.0212 0.8845 0.8616
GM 0.0464 0.7901 0.8007
HD 0.0350 1.1157 0.9818
HON 0.0566 1.0739 0.9494
HPQ 0.0354 1.8309 1.2464
IBM 0.0256 1.2385 0.9036
INTC 0.0240 1.3542 1.1379
IP 0.0432 1.0255 1.0082
JNJ 0.0359 0.5065 0.6828
JPM 0.0303 1.0900 0.9689
KO 0.0327 0.5474 0.7318
MCD 0.0438 0.7365 0.8536
MMM 0.0397 0.6832 0.7814
MO 0.0575 1.3316 0.9646
MRK 0.0277 1.3683 0.9507
MSFT 0.0317 1.1158 0.9763
PG 0.0302 0.8741 0.8306
SBC 0.0448 0.8432 0.8908
T 0.0357 1.0333 0.9563

UTX 0.0375 1.0344 0.8970
WMT 0.0255 1.1120 1.0057
XOM 0.0233 0.5973 0.7362

Note: The table reports the relative jump contributions to the total realized variation, the mean size of the
jump component (x10,000) on days of non-zero jumps, and the mean size in percent of the absolute value of the
actual jumps.
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Table A4: Simple and Sequential Jumps Correlations
Ticker Correlation RMSE Theil�s U
AA 0.9592 0.0048 0.2566
AXP 0.9940 0.0051 0.1086
BA 0.9171 0.0049 0.3014
C 0.9764 0.0105 0.2409
CAT 0.9421 0.0042 0.2621
DD 0.9118 0.0043 0.3012
DIS 0.9833 0.0062 0.1823
EK 0.9450 0.0046 0.2856
GE 0.9213 0.0048 0.3180
GM 0.9486 0.0049 0.3417
HD 0.9595 0.0058 0.2524
HON 0.9643 0.0063 0.2669
HPQ 0.9636 0.0069 0.2212
IBM 0.9941 0.0062 0.1381
INTC 0.9112 0.0084 0.3404
IP 0.9219 0.0051 0.2975
JNJ 0.9146 0.0030 0.3302
JPM 0.9399 0.0050 0.2697
KO 0.9389 0.0032 0.3142
MCD 0.9532 0.0034 0.2759
MMM 0.9075 0.0042 0.3857
MO 0.9927 0.0200 0.4912
MRK 0.9928 0.0055 0.1264
MSFT 0.9597 0.0124 0.5508
PG 0.9439 0.0079 0.4760
SBC 0.9285 0.0044 0.3344
T 0.8987 0.0064 0.3512

UTX 0.9945 0.0056 0.1670
WMT 0.8722 0.0078 0.4176
XOM 0.9005 0.0039 0.3905

Note: The table reports the correlation, the root mean squared error (RMSE), and Theil�s U statistic for the two
jump component series based on the simple and sequential jumps identi�cation schemes. Observations where
both series are zero have been removed.
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Table A5: Leverage and Volatility Feedback E¤ect Estimates
Ticker Leverage Feedback p-value
AA 0.0053 (0.0013) 0.0100 (0.0025) 0.600
AXP -0.0306c (-0.0059) 0.0068 (0.0017) 0.001
BA -0.0104 (-0.0026) -0.0069 (-0.0011) 0.716
C -0.0025a (-0.0049) 0.0109 (0.0024) 0.020
CAT 0.0029 (0.0009) 0.0088 (0.0023) 0.481
DD -0.0119b (-0.0032) 0.0140b (0.0038) 0.001
DIS 0.0050 (0.0007) 0.0217c (0.0046) 0.154
EK -0.0121 (-0.0031) -0.0006 (-0.0001) 0.316
GE -0.0222c (-0.0058) 0.0045 (0.0015) 0.004
GM -0.0192c (-0.0060) -0.0010 (0.0003) 0.038
HD -0.0357c (-0.0069) 0.0016 (0.0006) 0.005
HON -0.0461c (-0.0092) -0.0098 (-0.0016) 0.019
HPQ -0.0192a (-0.0026) 0.0163a (0.0029) 0.034
IBM -0.0253c (-0.0068) 0.0102b (0.0025) 0.000
INTC -0.0560c (-0.0075) 0.0098 (0.0058) 0.000
IP -0.0097a (-0.0019) 0.0095a (0.0020) 0.047
JNJ -0.0021 (-0.0011) 0.0139c (0.0058) 0.010
JPM -0.0046 (-0.0008) 0.0226a (0.0045) 0.145
KO -0.0064a (-0.0022) 0.0051 (0.0023) 0.041
MCD -0.0184b (-0.0051) 0.0065 (0.0019) 0.009
MMM -0.0051 (-0.0015) 0.0041 (0.0016) 0.162
MO -0.0294c (-0.0082) -0.0155 (-0.0041) 0.214
MRK -0.0083a (-0.0029) 0.0162c (0.0047) 0.001
MSFT -0.0294c (-0.0064) 0.0103 (0.0026) 0.000
PG -0.0145c (-0.0046) -0.0044 (-0.0012) 0.227
SBC -0.0199b (-0.0045) 0.0139b (0.0030) 0.001
T 0.0039 (0.0007) 0.0163b (0.0039) 0.279

UTX -0.0309c (-0.0075) 0.0078 (0.0022) 0.000
WMT -0.0364c (-0.0083) 0.0165b (0.0039) 0.000
XOM -0.0121a (-0.0046) 0.0092a (0.0037) 0.000
SP500 -0.0126c (-0.0081) 0.0063a (0.0042) 0.000

Note: The two main columns report the leverage and volatility feedback e¤ect estimates based on the (average)
cross-covariances (multiplied by 105), as described in the main text of the paper. The superscripts a, b, and c refer
to signi�cance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses give the corresponding
(average) cross-covariances. The last column reports the p-values for the test for signi�cant di¤erences in the
mean leverage and volatility feedback e¤ects for each of the stocks calculated on the basis of an autocorrelation
heteroskedasticity consistent robust covariance matrix estimator.
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Table A6: Normality Tests for Stocks AA, AXP, BA, C and CAT
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjo int pjo int-dm

AA
Rt=

p
V ar(Rt) -0.0013 0.9622 0.9992 0.9841 0.5293 0.0000 5.0647 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0057 0.8397 0.9850 0.7069 0.4797 0.0000 4.8573 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0341 0.2266 1.1737 0.0000 0.1284 0.2403 3.6360 0.0101 0.0000 0.0000

~Rt=
p
CVt -0.0443 0.1164 1.2119 0.0000 0.0079 0.9425 3.9528 0.0002 0.0000 0.0000

R̂t=
p
CV St -0.0437 0.1220 1.1792 0.0000 0.0265 0.8083 3.7326 0.0035 0.0000 0.0000

R̂�k=
p
E(CV St) -0.0027 0.9267 1.2058 0.0000 -0.0180 0.8718 3.9207 0.0002 0.0000 0.0000

R̂�5k;5=
p
5E(CV St) -0.0130 0.8382 1.1577 0.0791 0.2327 0.3441 4.0151 0.0951 0.1689 0.1601

AXP
Rt=

p
V ar(Rt) -0.0066 0.8146 0.9992 0.9850 -0.0503 0.6452 4.5829 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0046 0.8702 0.9786 0.5923 -0.0199 0.8556 3.7047 0.0048 0.0000 0.0000

Rt=
p
RVt 0.0044 0.8754 1.0505 0.2059 0.1571 0.1508 2.9843 0.8302 0.0407 0.0381

~Rt=
p
CVt -0.0065 0.8167 1.0770 0.0537 0.1512 0.1667 3.2073 0.3073 0.0150 0.0090

R̂t=
p
CV St -0.0034 0.9035 1.0523 0.1901 0.1580 0.1483 3.0090 0.7613 0.0221 0.0169

R̂�k=
p
E(CV St) -0.0200 0.4913 1.0319 0.4369 -0.0428 0.7040 2.6373 0.4606 0.0224 0.0279

R̂�5k;5=
p
5E(CV St) -0.0443 0.4867 0.9613 0.6674 -0.1169 0.6353 2.4566 0.4075 0.8081 0.8913

BA
Rt=

p
V ar(Rt) 0.0371 0.1891 1.0006 0.9885 0.1010 0.3557 4.6790 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0425 0.1326 0.9963 0.9256 0.1154 0.2912 4.5216 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0525 0.0628 0.9298 0.0785 0.1592 0.1453 2.3603 0.0412 0.0766 0.2485

~Rt=
p
CVt 0.0275 0.3293 0.9560 0.2703 0.1140 0.2971 2.4674 0.0980 0.2610 0.3446

R̂t=
p
CV St 0.0257 0.3622 0.9314 0.0858 0.0923 0.3987 2.3550 0.0393 0.1953 0.2531

R̂�k=
p
E(CV St) 0.0204 0.4804 0.9978 0.9579 0.0235 0.8341 2.5910 0.3267 0.2308 0.2818

R̂�5k;5=
p
5E(CV St) 0.0462 0.4672 1.0880 0.3273 0.3087 0.2094 4.0264 0.0914 0.2088 0.3119

C
Rt=

p
V ar(Rt) -0.0428 0.1312 1.0010 0.9795 0.1364 0.2148 7.6305 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0143 0.6144 1.0000 0.9991 -0.1776 0.1062 4.3208 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0356 0.2099 0.8387 0.0001 -0.0044 0.9683 1.8834 0.0002 0.0002 0.0008

~Rt=
p
CVt -0.0372 0.1902 0.8452 0.0001 -0.0427 0.6978 1.9754 0.0006 0.0010 0.0026

R̂t=
p
CV St -0.0360 0.2053 0.8352 0.0000 -0.0258 0.8148 1.9262 0.0003 0.0003 0.0009

R̂�k=
p
E(CV St) -0.0388 0.1837 0.9479 0.2073 -0.1099 0.3318 2.5854 0.3694 0.4688 0.7554

R̂�5k;5=
p
5E(CV St) -0.0894 0.1619 0.8692 0.1478 -0.2372 0.3378 1.7745 0.0569 0.1917 0.3617

CAT
Rt=

p
V ar(Rt) -0.0446 0.1142 1.0012 0.9762 0.0645 0.5549 4.0521 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0497 0.0780 0.9981 0.9615 -0.0485 0.6574 3.6947 0.0054 0.0000 0.0000

Rt=
p
RVt -0.0577 0.0410 1.0267 0.5042 -0.0518 0.6355 3.0050 0.7724 0.0851 0.3906

~Rt=
p
CVt -0.0600 0.0335 1.0584 0.1436 -0.1223 0.2633 3.2897 0.1873 0.1130 0.5326

R̂t=
p
CV St -0.0569 0.0437 1.0189 0.6361 -0.0663 0.5444 2.9537 0.9173 0.1323 0.5491

R̂�k=
p
E(CV St) -0.0448 0.1202 1.0800 0.0497 -0.1163 0.2973 3.1881 0.2627 0.1028 0.2704

R̂�5k;5=
p
5E(CV St) -0.0953 0.1334 1.1518 0.0909 -0.0119 0.9615 3.9204 0.1301 0.0805 0.1328
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Table A6 cont.: Normality Tests for Stocks DD, DIS, EK, GE and GM
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjo int pjo int-dm

DD
Rt=

p
V ar(Rt) 0.0128 0.6494 0.9994 0.9874 0.3109 0.0045 4.7612 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0121 0.6689 0.9857 0.7196 0.3195 0.0035 4.4075 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0027 0.9240 0.9331 0.0939 0.2061 0.0594 2.5258 0.1489 0.0162 0.0142

~Rt=
p
CVt -0.0084 0.7664 0.9427 0.1510 0.1648 0.1317 2.5471 0.1718 0.0289 0.0276

R̂t=
p
CV St -0.0033 0.9063 0.9268 0.0666 0.1851 0.0904 2.4567 0.0904 0.0136 0.0123

R̂�k=
p
E(CV St) 0.0033 0.9082 1.0575 0.1592 0.2148 0.0546 3.2094 0.2415 0.0167 0.0178

R̂�5k;5=
p
5E(CV St) 0.0162 0.7988 0.9712 0.7476 0.0138 0.9552 2.4606 0.4049 0.8179 0.8327

DIS
Rt=

p
V ar(Rt) -0.0134 0.6343 0.9994 0.9877 0.0768 0.4822 4.3863 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0187 0.5069 0.9867 0.7398 -0.0446 0.6832 4.3731 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0327 0.2467 0.9044 0.0166 -0.0233 0.8311 2.1274 0.0039 0.0129 0.0204

~Rt=
p
CVt -0.0403 0.1531 0.9302 0.0802 -0.1135 0.2993 2.4743 0.1032 0.2484 0.3698

R̂t=
p
CV St -0.0345 0.2222 0.8799 0.0026 -0.0664 0.5434 2.0933 0.0026 0.0136 0.0196

R̂�k=
p
E(CV St) -0.0148 0.6091 0.9725 0.5010 -0.0378 0.7360 2.5674 0.3036 0.7230 0.7694

R̂�5k;5=
p
5E(CV St) -0.0282 0.6580 0.9663 0.7083 0.0606 0.8057 2.6918 0.6500 0.8602 0.9000

EK
Rt=

p
V ar(Rt) -0.0581 0.0396 1.0026 0.9485 -0.5582 0.0000 8.1642 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0681 0.0159 1.0004 0.9914 -0.6332 0.0000 8.5247 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0810 0.0041 0.8478 0.0001 -0.0769 0.4820 2.0331 0.0013 0.0000 0.0003

~Rt=
p
CVt -0.0699 0.0132 0.8939 0.0078 -0.0800 0.4642 2.3318 0.0320 0.0018 0.0207

R̂t=
p
CV St -0.0716 0.0112 0.8622 0.0006 -0.0662 0.5446 2.1187 0.0036 0.0001 0.0016

R̂�k=
p
E(CV St) -0.0400 0.1695 1.0713 0.0831 -0.0301 0.7894 3.0523 0.4566 0.0593 0.1205

R̂�5k;5=
p
5E(CV St) -0.1043 0.1012 1.0342 0.7042 -0.2700 0.2732 2.6607 0.6184 0.2132 0.5777

GE
Rt=

p
V ar(Rt) -0.0099 0.7260 0.9993 0.9860 0.1136 0.2987 4.6779 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0212 0.4528 0.9906 0.8132 -0.1219 0.2650 4.0252 0.0001 0.0000 0.0000

Rt=
p
RVt 0.0048 0.8660 1.0031 0.9372 0.1630 0.1361 2.7449 0.5150 0.0989 0.0890

~Rt=
p
CVt -0.0044 0.8761 0.9965 0.9304 0.1303 0.2333 2.7468 0.5195 0.1664 0.1403

R̂t=
p
CV St -0.0025 0.9294 0.9894 0.7909 0.1370 0.2100 2.7114 0.4400 0.1648 0.1407

R̂�k=
p
E(CV St) -0.0209 0.4689 0.9391 0.1362 -0.0616 0.5824 2.3854 0.0979 0.3916 0.4587

R̂�5k;5=
p
5E(CV St) -0.0381 0.5482 1.0155 0.8628 -0.1877 0.4454 3.3306 0.5657 0.8414 0.9147

GM
Rt=

p
V ar(Rt) -0.0614 0.0297 1.0030 0.9407 -0.1011 0.3552 3.9479 0.0002 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0581 0.0397 0.9767 0.5590 -0.0417 0.7030 3.5313 0.0284 0.0000 0.0000

Rt=
p
RVt -0.0791 0.0051 1.2509 0.0000 -0.1396 0.2016 4.1136 0.0000 0.0000 0.0000

~Rt=
p
CVt -0.0833 0.0032 1.2700 0.0000 -0.1875 0.0864 4.2958 0.0000 0.0000 0.0000

R̂t=
p
CV St -0.0840 0.0029 1.2457 0.0000 -0.1688 0.1227 4.1078 0.0000 0.0000 0.0000

R̂�k=
p
E(CV St) -0.0719 0.0134 1.3383 0.0000 -0.3245 0.0040 4.8491 0.0000 0.0000 0.0000

R̂�5k;5=
p
5E(CV St) -0.1591 0.0124 1.2387 0.0080 -0.5198 0.0349 4.3316 0.0296 0.0091 0.2074
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Table A6 cont.: Normality Tests for Stocks HD, HON, HPQ, IBM and INTC
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjo int pjo int-dm

HD
Rt=

p
V ar(Rt) -0.0406 0.1507 1.0008 0.9830 0.1111 0.3095 4.7731 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0412 0.1447 0.9741 0.5164 0.0604 0.5809 4.0722 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0316 0.2636 1.0089 0.8226 0.0387 0.7235 2.6000 0.2400 0.0057 0.0114

~Rt=
p
CVt -0.0309 0.2742 1.0308 0.4408 0.0216 0.8432 2.6636 0.3446 0.0017 0.0030

R̂t=
p
CV St -0.0299 0.2891 1.0060 0.8800 0.0283 0.7960 2.5488 0.1738 0.0041 0.0078

R̂�k=
p
E(CV St) -0.0427 0.1401 1.0682 0.0959 -0.1459 0.1935 2.9087 0.8334 0.0155 0.0417

R̂�5k;5=
p
5E(CV St) -0.0874 0.1695 0.9910 0.9206 -0.1653 0.5025 2.6876 0.6504 0.5803 0.9337

HON
Rt=

p
V ar(Rt) -0.0322 0.2538 1.0002 0.9952 -0.6711 0.0000 8.4935 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0283 0.3159 0.9976 0.9528 -0.5925 0.0000 7.9188 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0103 0.7150 1.0808 0.0429 0.0248 0.8203 3.3133 0.1604 0.2441 0.1195

~Rt=
p
CVt -0.0264 0.3492 1.1132 0.0046 0.0079 0.9421 3.5644 0.0208 0.0272 0.0124

R̂t=
p
CV St -0.0281 0.3197 1.0672 0.0921 0.0261 0.8110 3.2504 0.2393 0.1409 0.0986

R̂�k=
p
E(CV St) -0.0463 0.1139 1.1051 0.0112 -0.2398 0.0346 3.3114 0.0997 0.0111 0.0487

R̂�5k;5=
p
5E(CV St) -0.1045 0.1013 1.1420 0.1153 -0.2887 0.2423 4.5269 0.0128 0.0272 0.0785

HPQ
Rt=

p
V ar(Rt) 0.0074 0.7925 0.9993 0.9852 0.2672 0.0147 4.6537 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0075 0.7894 0.9824 0.6603 0.2907 0.0079 4.7255 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0095 0.7366 1.0486 0.2242 0.1043 0.3406 2.8920 0.9052 0.0539 0.0550

~Rt=
p
CVt 0.0063 0.8229 1.0356 0.3737 0.0939 0.3907 2.8250 0.7181 0.0847 0.0841

R̂t=
p
CV St 0.0063 0.8226 1.0288 0.4712 0.1018 0.3523 2.7767 0.5922 0.0720 0.0710

R̂�k=
p
E(CV St) 0.0020 0.9451 1.0117 0.7764 -0.0787 0.4863 2.8148 0.9066 0.6575 0.6568

R̂�5k;5=
p
5E(CV St) 0.0179 0.7788 1.0161 0.8586 0.0313 0.8993 3.1704 0.7510 0.9928 0.9963

IBM
Rt=

p
V ar(Rt) -0.0114 0.6869 0.9993 0.9867 0.0767 0.4829 4.8981 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0179 0.5262 0.9728 0.4953 -0.0010 0.9924 4.3591 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0130 0.6439 1.0219 0.5839 0.0935 0.3924 2.7572 0.5441 0.0373 0.0442

~Rt=
p
CVt -0.0213 0.4511 1.0293 0.4635 0.0880 0.4207 2.8093 0.6758 0.0202 0.0289

R̂t=
p
CV St -0.0246 0.3841 1.0203 0.6114 0.0751 0.4922 2.7644 0.5615 0.0256 0.0413

R̂�k=
p
E(CV St) -0.0290 0.3157 1.0398 0.3305 -0.0279 0.8033 2.9176 0.8583 0.3157 0.4444

R̂�5k;5=
p
5E(CV St) -0.0598 0.3465 1.0529 0.5557 -0.1811 0.4615 2.6768 0.6298 0.2499 0.3487

INTC
Rt=

p
V ar(Rt) -0.0202 0.4739 0.9996 0.9922 -0.0093 0.9323 4.0023 0.0001 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0231 0.4130 0.9845 0.6982 -0.0886 0.4180 3.7339 0.0035 0.0000 0.0000

Rt=
p
RVt 0.0053 0.8513 1.1430 0.0003 0.1922 0.0789 3.5605 0.0216 0.0001 0.0000

~Rt=
p
CVt 0.0026 0.9271 1.1446 0.0003 0.1675 0.1256 3.6386 0.0099 0.0004 0.0001

R̂t=
p
CV St 0.0020 0.9441 1.1278 0.0014 0.1687 0.1230 3.5182 0.0320 0.0012 0.0003

R̂�k=
p
E(CV St) -0.0268 0.3517 0.9848 0.7090 -0.0299 0.7885 2.8718 0.9843 0.7160 0.8494

R̂�5k;5=
p
5E(CV St) -0.0560 0.3778 0.9747 0.7778 -0.1426 0.5619 2.9095 0.9156 0.9157 0.9950
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Table A6 cont.: Normality Tests for Stocks IP, JNJ, JPM, KO and MCD
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjo int pjo int-dm

IP
Rt=

p
V ar(Rt) -0.0640 0.0234 1.0033 0.9342 0.1503 0.1692 4.0798 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0712 0.0116 0.9805 0.6258 -0.0312 0.7753 3.4195 0.0738 0.0000 0.0000

Rt=
p
RVt -0.0681 0.0159 0.9353 0.1048 -0.0299 0.7842 2.3500 0.0376 0.0012 0.0289

~Rt=
p
CVt -0.0618 0.0285 0.9507 0.2170 -0.0537 0.6235 2.5235 0.1466 0.0253 0.2135

R̂t=
p
CV St -0.0614 0.0296 0.9326 0.0915 -0.0249 0.8196 2.4044 0.0598 0.0058 0.0630

R̂�k=
p
E(CV St) -0.0582 0.0432 1.0930 0.0224 -0.1657 0.1375 3.1792 0.2819 0.0124 0.0784

R̂�5k;5=
p
5E(CV St) -0.1275 0.0451 0.9547 0.6146 -0.0964 0.6956 2.6639 0.6133 0.1028 0.4712

JNJ
Rt=

p
V ar(Rt) 0.0474 0.0935 1.0014 0.9711 0.2218 0.0425 4.9252 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0437 0.1212 0.9700 0.4521 0.1934 0.0769 3.9416 0.0002 0.0000 0.0000

Rt=
p
RVt 0.0377 0.1822 0.8962 0.0093 0.1591 0.1457 2.2501 0.0147 0.0438 0.0585

~Rt=
p
CVt 0.0408 0.1483 0.9067 0.0195 0.1336 0.2218 2.2819 0.0201 0.0716 0.1152

R̂t=
p
CV St 0.0428 0.1299 0.8873 0.0048 0.1471 0.1786 2.1953 0.0083 0.0246 0.0422

R̂�k=
p
E(CV St) 0.0491 0.0899 0.9623 0.3574 0.1610 0.1511 2.6513 0.4793 0.4196 0.8894

R̂�5k;5=
p
5E(CV St) 0.1142 0.0720 0.8504 0.0956 -0.1225 0.6183 2.4421 0.3931 0.0023 0.0074

JPM
Rt=

p
V ar(Rt) -0.0056 0.8432 0.9992 0.9847 0.7355 0.0000 11.2179 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0199 0.6124 1.0000 0.9995 0.1088 0.3196 5.3609 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0325 0.2496 1.0485 0.2245 0.0194 0.8595 2.9310 0.9826 0.0298 0.0387

~Rt=
p
CVt -0.0405 0.1512 1.0464 0.2451 -0.0314 0.7743 2.9548 0.9142 0.0647 0.1138

R̂t=
p
CV St -0.0428 0.1297 1.0365 0.3610 -0.0294 0.7877 2.8893 0.8973 0.0563 0.1161

R̂�k=
p
E(CV St) -0.0169 0.5647 1.0779 0.0600 0.0076 0.9468 2.9587 0.6735 0.0227 0.0262

R̂�5k;5=
p
5E(CV St) -0.0340 0.5927 0.9949 0.9544 -0.2541 0.3025 2.5178 0.4813 0.5261 0.5426

KO
Rt=

p
V ar(Rt) 0.0663 0.0187 1.0036 0.9280 0.1896 0.0828 5.4486 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0751 0.0078 0.9858 0.7227 0.3347 0.0022 4.3434 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0728 0.0099 0.9523 0.2321 0.3366 0.0021 2.6987 0.4133 0.0185 0.2096

~Rt=
p
CVt 0.0680 0.0161 1.0171 0.6677 0.3294 0.0026 3.1288 0.4611 0.0299 0.4278

R̂t=
p
CV St 0.0699 0.0132 0.9797 0.6112 0.3332 0.0023 2.9020 0.9337 0.0283 0.3411

R̂�k=
p
E(CV St) 0.0639 0.0269 1.0097 0.8121 0.1062 0.3419 2.9687 0.7280 0.1642 0.7194

R̂�5k;5=
p
5E(CV St) 0.1351 0.0334 1.0268 0.7656 0.3613 0.1418 3.0198 0.9451 0.3049 0.9950

MCD
Rt=

p
V ar(Rt) 0.0407 0.1491 1.0009 0.9828 -0.1446 0.1860 6.7429 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0375 0.1839 1.0004 0.9926 -0.3083 0.0048 6.8464 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0404 0.1523 0.8683 0.0010 0.1263 0.2479 2.1399 0.0045 0.0093 0.0194

~Rt=
p
CVt 0.0402 0.1544 0.9257 0.0626 0.1251 0.2524 2.4848 0.1115 0.2260 0.4304

R̂t=
p
CV St 0.0416 0.1403 0.8724 0.0014 0.1206 0.2701 2.1587 0.0056 0.0119 0.0268

R̂�k=
p
E(CV St) 0.0544 0.1784 0.9981 0.9734 0.0958 0.5404 2.9946 0.8758 0.6577 0.9480

R̂�5k;5=
p
5E(CV St) 0.0984 0.1214 0.9611 0.6649 0.3320 0.1770 2.5952 0.5409 0.5736 0.9487
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Table A6 cont.: Normality Tests for Stocks MM, MO, MRK, MSFT and PG
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjo int pjo int-dm

MMM
Rt=

p
V ar(Rt) 0.0077 0.7839 0.9993 0.9853 0.2053 0.0604 4.4250 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0067 0.8124 0.9887 0.7762 0.1971 0.0714 4.3277 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0149 0.5971 0.8875 0.0048 -0.0340 0.7557 2.2041 0.0092 0.0621 0.0544

~Rt=
p
CVt -0.0114 0.6869 0.9085 0.0219 -0.0346 0.7515 2.3932 0.0545 0.2287 0.1896

R̂t=
p
CV St -0.0122 0.6644 0.8827 0.0033 -0.0574 0.5995 2.2169 0.0105 0.0527 0.0435

R̂�k=
p
E(CV St) 0.0123 0.6722 0.9797 0.6204 0.0361 0.7480 2.6082 0.3659 0.7641 0.7950

R̂�5k;5=
p
5E(CV St) 0.0299 0.6380 0.9974 0.9773 0.0111 0.9642 3.1362 0.7991 0.9366 0.9606

MO
Rt=

p
V ar(Rt) -0.0177 0.5318 0.9995 0.9903 -0.6655 0.0000 8.1469 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0105 0.7106 0.9678 0.4194 -0.5370 0.0000 7.6965 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0029 0.9194 1.1071 0.0073 0.0692 0.5270 3.2627 0.2221 0.0101 0.0063

~Rt=
p
CVt -0.0008 0.9770 1.1499 0.0002 0.0615 0.5737 3.5559 0.0225 0.0008 0.0003

R̂t=
p
CV St -0.0019 0.9455 1.1076 0.0070 0.0638 0.5596 3.2265 0.2757 0.0045 0.0020

R̂�k=
p
E(CV St) -0.0300 0.3075 1.1743 0.0000 -0.0593 0.6024 3.3800 0.0616 0.0000 0.0000

R̂�5k;5=
p
5E(CV St) -0.0608 0.3412 1.3292 0.0003 -0.3859 0.1189 4.9408 0.0016 0.0028 0.0071

MRK
Rt=

p
V ar(Rt) 0.0512 0.0696 1.0018 0.9635 0.1398 0.2010 5.4439 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0478 0.0902 0.9885 0.7725 -0.0053 0.9613 5.3820 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0536 0.0574 1.0176 0.6594 0.2851 0.0091 2.8277 0.7249 0.0368 0.1143

~Rt=
p
CVt 0.0568 0.0442 1.0077 0.8480 0.2912 0.0077 2.7697 0.5745 0.0350 0.1249

R̂t=
p
CV St 0.0528 0.0613 1.0042 0.9159 0.2870 0.0087 2.7653 0.5636 0.0432 0.1211

R̂�k=
p
E(CV St) 0.0510 0.0786 1.0194 0.6358 0.2046 0.0685 2.9420 0.7825 0.3787 0.9281

R̂�5k;5=
p
5E(CV St) 0.1167 0.0666 1.1426 0.1131 0.3620 0.1418 3.5580 0.3494 0.1555 0.5856

MSFT
Rt=

p
V ar(Rt) 0.0094 0.7383 0.9993 0.9858 0.2211 0.0432 3.8981 0.0004 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0066 0.8149 0.9916 0.8334 0.1651 0.1311 3.5600 0.0217 0.0000 0.0000

Rt=
p
RVt 0.0174 0.5389 1.1276 0.0014 0.1926 0.0782 3.2160 0.2930 0.0000 0.0000

~Rt=
p
CVt 0.0164 0.5619 1.1645 0.0000 0.1926 0.0783 3.5206 0.0313 0.0000 0.0000

R̂t=
p
CV St 0.0172 0.5418 1.1331 0.0009 0.1742 0.1112 3.3082 0.1660 0.0001 0.0001

R̂�k=
p
E(CV St) -0.0004 0.9878 1.0406 0.3204 0.1940 0.0826 3.1411 0.3434 0.0362 0.0366

R̂�5k;5=
p
5E(CV St) 0.0057 0.9282 1.0663 0.4602 0.1756 0.4751 3.3179 0.5828 0.7971 0.8004

PG
Rt=

p
V ar(Rt) 0.0809 0.0042 1.0057 0.8857 -0.0287 0.7927 6.4023 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0845 0.0028 0.9820 0.6521 -0.0651 0.5513 5.6220 0.0000 0.0000 0.0000

Rt=
p
RVt 0.1135 0.0001 0.8651 0.0007 0.3066 0.0050 2.1305 0.0041 0.0000 0.0044

~Rt=
p
CVt 0.1042 0.0002 0.8795 0.0025 0.2890 0.0082 2.1833 0.0073 0.0001 0.0162

R̂t=
p
CV St 0.1050 0.0002 0.8663 0.0008 0.2893 0.0081 2.1164 0.0035 0.0000 0.0056

R̂�k=
p
E(CV St) 0.0719 0.0133 0.8918 0.0085 0.2108 0.0610 2.2512 0.0339 0.0086 0.0815

R̂�5k;5=
p
5E(CV St) 0.1600 0.0119 0.8375 0.0709 0.3665 0.1370 1.9701 0.1076 0.0377 0.3456
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Table A6 cont.: Normality Tests for Stocks SBC, T, UTX, WMT and XOM

Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjo int pjo int-dm

SBC
Rt=

p
V ar(Rt) 0.0090 0.7498 0.9993 0.9857 0.2213 0.0429 4.0972 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0090 0.7504 0.9742 0.5178 0.1828 0.0946 3.6803 0.0063 0.0000 0.0000

Rt=
p
RVt 0.0188 0.5050 1.0207 0.6048 0.1531 0.1613 2.8130 0.6855 0.1687 0.1890

~Rt=
p
CVt 0.0230 0.4148 1.0561 0.1601 0.1582 0.1480 3.0478 0.6570 0.1259 0.1626

R̂t=
p
CV St 0.0242 0.3912 1.0288 0.4710 0.1585 0.1472 2.9077 0.9500 0.2639 0.3319

R̂�k=
p
E(CV St) 0.0151 0.6020 1.0403 0.3254 0.0728 0.5168 3.1209 0.3454 0.7967 0.8584

R̂�5k;5=
p
5E(CV St) 0.0310 0.6254 1.0186 0.8355 0.4636 0.0594 3.0607 0.8886 0.1834 0.2035

T
Rt=

p
V ar(Rt) -0.0349 0.2169 1.0004 0.9916 0.0983 0.3685 4.3611 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0465 0.0995 0.9947 0.8940 0.0529 0.6286 4.3034 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0733 0.0095 1.0984 0.0137 -0.1751 0.1091 3.2388 0.2565 0.0016 0.0273

~Rt=
p
CVt -0.0946 0.0008 1.1377 0.0006 -0.2550 0.0197 3.4481 0.0586 0.0000 0.0025

R̂t=
p
CV St -0.0887 0.0017 1.1071 0.0073 -0.2064 0.0591 3.2393 0.2558 0.0001 0.0087

R̂�k=
p
E(CV St) -0.0525 0.0698 1.1208 0.0032 -0.1208 0.2811 3.2834 0.1306 0.0021 0.0095

R̂�5k;5=
p
5E(CV St) -0.1137 0.0739 1.1715 0.0567 -0.5444 0.0272 3.6133 0.3064 0.0367 0.1737

UTX
Rt=

p
V ar(Rt) -0.0246 0.3833 0.9998 0.9962 -0.5102 0.0000 6.7359 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0264 0.3488 0.9790 0.5984 -0.5060 0.0000 7.1273 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0172 0.5428 0.9313 0.0854 -0.0375 0.7316 2.2774 0.0192 0.1006 0.1141

~Rt=
p
CVt -0.0101 0.7216 0.9458 0.1747 0.0184 0.8662 2.4234 0.0697 0.2871 0.2783

R̂t=
p
CV St -0.0144 0.6091 0.9163 0.0361 -0.0093 0.9321 2.2263 0.0115 0.0817 0.0880

R̂�k=
p
E(CV St) -0.0232 0.4228 1.0298 0.4667 -0.0532 0.6351 2.9987 0.6383 0.8574 0.9516

R̂�5k;5=
p
5E(CV St) -0.0575 0.3662 0.9638 0.6878 -0.1354 0.5826 2.4982 0.4465 0.7752 0.9187

WMT
Rt=

p
V ar(Rt) -0.0185 0.5123 0.9995 0.9909 -0.0301 0.7833 4.5764 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0161 0.5689 0.9677 0.4178 0.0287 0.7930 3.9897 0.0001 0.0000 0.0000

Rt=
p
RVt -0.0132 0.6397 0.9488 0.1993 0.1050 0.3370 2.6264 0.2804 0.1488 0.1681

~Rt=
p
CVt -0.0089 0.7524 0.9744 0.5215 0.1134 0.2995 2.7954 0.6393 0.2769 0.2734

R̂t=
p
CV St -0.0116 0.6799 0.9543 0.2525 0.0950 0.3848 2.6521 0.3237 0.2446 0.2653

R̂�k=
p
E(CV St) -0.0193 0.5035 1.0215 0.5978 -0.0240 0.8303 3.0130 0.6057 0.9052 0.9568

R̂�5k;5=
p
5E(CV St) -0.0442 0.4861 0.7781 0.0135 -0.3031 0.2179 1.9784 0.1085 0.0612 0.0646

XOM
Rt=

p
V ar(Rt) 0.0105 0.7099 0.9993 0.9863 0.5357 0.0000 6.6417 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0084 0.7665 0.9674 0.4141 0.4019 0.0002 5.0410 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0131 0.6418 0.8689 0.0010 0.1136 0.2988 2.0265 0.0012 0.0066 0.0066

~Rt=
p
CVt 0.0165 0.5600 0.8676 0.0009 0.1111 0.3096 2.0995 0.0028 0.0112 0.0117

R̂t=
p
CV St 0.0165 0.5583 0.8561 0.0003 0.1011 0.3549 1.9995 0.0008 0.0043 0.0045

R̂�k=
p
E(CV St) 0.0124 0.6671 0.8342 0.0000 -0.0070 0.9504 2.0316 0.0031 0.0009 0.0010

R̂�5k;5=
p
5E(CV St) 0.0285 0.6540 0.8065 0.0312 0.1186 0.6295 2.2390 0.2374 0.1473 0.1560

Note: The table reports the �rst four moments (m1 �m4) for the di¤erent return series, along with the cor-
responding p-values for testing m1 = 0, m2 = 1, m3 = 0, and m4 = 3, respectively, except for the realized
volatility standardized return series, for which the test for the fourth moment is based on the �nite sample cor-
rection, m4 = 3

78
80
= 2:925. The column labelled pjo int gives the p-value for testing the four moment conditions

jointly, while pjo int-dm refers to the same test involving the (unconditionally) demeaned return series. The raw
daily returns are denoted by Rt, while ~Rt and R̂t refer to the daily jump-adjusted returns based on the simple
and sequential procedures, respectively. The daily realized volatility and the corresponding continuous com-
ponent based on the simple and sequential jump-adjustment procedures are denoted by RVt, CVt, and CV St,
respectively. Lastly, R̂�k refers to the �nancial-time return series constructing from the sequential jump-adjusted
intra-day returns spanning E(CV St) time-units. Lastly, R̂�5k;5 � R̂�5k + R̂�5k�1 + R̂�5k�2 + R̂�5k�3 + R̂�5k�4 de�nes
the �nancial-time return series spanning 5E(CV St) time-units.
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Figure A1: Generalized volatility signature plots for AA-INTC stocks
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Figure A1 cont.: Generalized volatility signature plots for IP-XOM stocks
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Figure A2: Histograms for number of jumps per day for AA-INTC stocks
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Figure A2 cont.: Histograms for number of jumps per day for IP-XOM stocks
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Figure A3: High-frequency leverage and volatility feedback e¤ects, stocks AA-INTC
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Figure A3 cont.: High-frequency leverage and volatility feedback e¤ects, stocks IP-XOM
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Figure A4: Density plots of daily returns for 30 DJIA stocks standardized by sample standard
deviation
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Figure A5: QQ plots of daily returns for 30 DJIA stocks standardized by sample standard
deviation
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Figure A6: Density plots of daily returns for 30 DJIA stocks standardized by GARCH(1,1)
standard errors
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Figure A7: QQ plots of daily returns for 30 DJIA stocks standardized by GARCH(1,1) standard
errors
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Figure A8: Density plots of daily returns for 30 DJIA stocks standardized by realized volatility
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Figure A9: QQ plots of daily returns for 30 DJIA stocks standardized by realized volatility
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Figure A10: Density plots of jump-adjusted (simple method) daily returns for 30 DJIA stocks
standardized by continuous component of realized volatility
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Figure A11: QQ plots of jump-adjusted (simple method) daily returns for 30 DJIA stocks
standardized by continuous component of realized volatility
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Figure A12: Density plots of jump-adjusted (sequential method) daily returns for 30 DJIA
stocks standardized by continuous component of realized volatility
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Figure A13: QQ plots of jump-adjusted (sequential method) daily returns for 30 DJIA stocks
standardized by continuous component of realized volatility
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Figure A14: Density plots of �nancial-time daily returns for 30 DJIA stocks standardized by
��
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Figure A15: QQ plots of �nancial-time daily returns for 30 DJIA stocks standardized by ��
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