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Dynamic Estimation of Volatility Risk

Premia and Investor Risk Aversion from

Option-Implied and Realized Volatilities

Abstract

This paper proposes a method for constructing a volatility risk premium, or investor risk

aversion, index. The method is intuitive and simple to implement, relying on the sample

moments of the recently popularized model-free realized and option-implied volatility mea-

sures. A small-scale Monte Carlo experiment confirms that the procedure works well in

practice. Implementing the procedure with actual S&P500 option-implied volatilities and

high-frequency five-minute-based realized volatilities indicates significant temporal depen-

dencies in the estimated stochastic volatility risk premium, which we in turn relate to a set

of macro-finance state variables. We also find that the extracted volatility risk premium

helps predict future stock market returns.

JEL Classification: G12, G13, C51, C52.

Keywords: Stochastic Volatility Risk Premium, Model-Free Implied Volatility, Model-Free

Realized Volatility, Black-Scholes, GMM Estimation, Return Predictability.



1 Introduction

Model-free volatility measures have figured prominently in the recent academic and finan-

cial market practitioner literatures. On one hand, several studies have argued for the use

of so-called “model-free realized volatilities” computed by summing squared returns from

high-frequency data over short time intervals during the trading day. As demonstrated in

the literature, these types of measures afford much more accurate ex-post observations of

the actual volatility than the more traditional sample variances based on daily or coarser fre-

quency data (Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002; Meddahi, 2002;

Andersen et al., 2003a,b; Barndorff-Nielsen and Shephard, 2004a; Andersen et al., 2004b).

On the other hand, the recently developed so-called “model-free implied volatilities” provide

ex-ante risk-neutral expectations of the future volatilities. Importantly, and in contrast to

more traditional option-implied volatilities based on the Black-Scholes pricing formula or

some variant thereof, the model-free implied volatilities are computed from option prices

without the use of any particular option-pricing model (Carr and Madan, 1998; Demeterfi

et al., 1999; Britten-Jones and Neuberger, 2000; Lynch and Panigirtzoglou, 2003; Jiang and

Tian, 2005b; Carr and Wu, 2005).1 In this paper, we combine these two new volatility

measures to improve on existing estimates of the risk premium associated with stochastic

volatility risk and investor risk aversion.

Because the method we present here directly uses the model-free realized and implied

volatilities to extract the stochastic volatility risk premium, it is much easier to implement

than other methods which rely on the joint estimation of both the underlying asset return

and the price(s) of one or more of its derivatives, leading to quite complicated modeling

and estimation procedures (see, e.g., Bates, 1996; Chernov and Ghysels, 2000; Jackwerth,

2000; Aı̈t-Sahalia and Lo, 2000; Benzoni, 2002; Pan, 2002; Jones, 2003; Eraker, 2004; Aı̈t-

Sahalia and Kimmel, 2005, among many others). In contrast, the method of this paper

relies on standard GMM estimation of the cross conditional moments between risk-neutral

and objective expectations of integrated volatility to identify the stochastic volatility risk

1Market participants have also recently developed several new products – realized variance futures, VIX
futures, and over-the-counter (OTC) variance swaps – that are based on these two model-free volatility
measures. Specifically, the Chicago Board Option Exchange (CBOE) recently changed its implied volatility
index (VIX) to use the model-free implied volatility approach and the more popular S&P500 index options
(CBOE Documentation, 2003), while the CBOE Futures Exchange began to trade futures on the VIX on
March 26, 2004 and realized variance futures on the S&P500 on May 18, 2004. Demeterfi et al. (1999) discuss
OTC variance swaps.
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premium. As such, the method is simple to implement and can easily be extended to allow

for a time-varying volatility risk premium. Indeed, one feature of our estimation strategy is

that it allows us to capture time-variation in the volatility risk premium, possibly driven by

a set of economic state variables.2

To validate the performance of the new estimation strategy, we perform a small scale

Monte Carlo experiment focusing directly on our ability to precisely estimate the risk pre-

mium parameter. While the estimation strategy applies generally, the Monte Carlo study

focuses on the popular Heston (1993) stochastic volatility model. The results confirm that

using model-free implied volatility from options with one month to maturity and realized

volatility from five-minute returns, we can estimate the volatility risk premium nearly as well

as if we were using the actual (unobserved and infeasible) risk-neutral implied volatility and

continuous time integrated volatility. However, using Black-Scholes implied volatility and/or

realized volatility from daily returns generally results in biased and inefficient estimates of

the risk premium parameter, leading to unreliable statistical inference.

To illustrate the procedure empirically, we apply the method to estimate the volatility

risk premium associated with the S&P500 market index. We extend the method to allow

for time variation in the stochastic volatility risk premium. We allow the premium to vary

over time and to depend on macro-finance state variables. We find statistically significant

effects on the volatility risk premium from several macro-finance variables, including the

market volatility itself, the price-earnings (P/E) ratio of the market, a measure of credit

spread, industrial production, housing start number, the producer price index, and nonfarm

employment.3

Our results give structure to the intuitive notion that the difference between implied

and realized volatilities reflects a volatility risk premium that responds to economic state

2The general strategy developed here is also related to the literature on market implied risk aversion (see,
e.g., Jackwerth, 2000; Aı̈t-Sahalia and Lo, 2000; Rosenberg and Engle, 2002; Brandt and Wang, 2003; Bliss
and Panigirtzoglou, 2004; Gordon and St-Amour, 2004). The closest paper to ours is arguably Garcia et al.
(2001), who estimate jointly the risk-neutral and objective dynamics, using a series expansion of option-
implied volatility around the Black-Scholes implied volatility rather than model-free implied volatility. A
recent paper by Wu (2005) also uses model-free realized and implied volatilities to estimate a flexible affine
jump-diffusion model for volatility under the risk-neutral and objective measures.

3For directly traded assets like equities or bonds, empirical links between the risk premium—expected
excess return—and macro-finance state variables are already well established. For example, the equity risk
premium is predicted by the dividend–price ratio and short-term interest rates (see, e.g., Campbell, 1987;
Fama and French, 1988; Campbell and Shiller, 1988a,b), while bond risk premia may be predicted by forward
rates (see, e.g., Fama and Bliss, 1987; Cochrane and Piazzesi, 2004). However, with the notable exception
of the recent study by Carr and Wu (2005), academic studies on the behavior of the volatility risk premium
are rare, let alone its linkage to the overall economy.
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variables. As such, our findings should be of direct interest to market participants and

monetary policymakers who are concerned with the links between financial markets and the

overall economy.4 Further strengthening our results, we also find that the estimated time-

varying volatility risk premium predicts future stock market returns better than several

established predictor variables.

The rest of the paper is organized as follows. Section 2 outlines the basic theory behind

our simple GMM estimation procedure, while Section 3 provides finite sample simulation

evidence on the performance of the estimator. Section 4 applies the estimator to the S&P500

market index, explicitly linking the temporal variation in the volatility risk premium to a

set of underlying macro-finance variables. This section also documents our findings related

to return predictability. Section 5 concludes.

2 Identification and Estimation of the Volatility Risk

Premium

Consider the general continuous-time stochastic volatility model for the logarithmic stock

price process (pt = log St),

dpt = µt(·)dt +
√

VtdB1t,
dVt = κ(θ − Vt)dt + σt(·)dB2t,

(1)

where the instantaneous corr(dB1t, dB2t) = ρ denotes the familiar leverage effect, and the

functions µt(·) and σt(·) must satisfy the usual regularity conditions. Assuming no arbitrage

and a linear volatility risk premium, the corresponding risk-neutral distribution then takes

the form
dpt = r∗t dt +

√
VtdB∗

1t,
dVt = κ∗(θ∗ − Vt)dt + σt(·)dB∗

2t,
(2)

where corr(dB∗
1t, dB∗

2t) = ρ, and r∗t denotes the risk-free interest rate. Importantly, the risk-

neutral parameters in (2) are directly related to the parameters of the actual price process

in equation (1) by the relationships, κ∗ = κ + λ and θ∗ = κθ/(κ + λ), where λ refers to the

volatility risk premium parameter of interest. Note that the functional forms of µt(·) and

σt(·) are completely flexible as long as they avoid arbitrage.

4See e.g., Tarashev et al. (2003) and Liang and Zhou (2003) for a discussion from the perspective of
central bank policymakers.
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2.1 Model-Free Volatility Measures and Moment Restrictions

The point-in-time volatility Vt entering the stochastic volatility model above is latent and its

consistent estimation through filtering faces a host of market microstructure complications.

Alternatively, the model-free realized volatility measures afford a simple approach for quan-

tifying the integrated volatility over non-trivial time intervals. In our notation, let Vn
t,t+∆

denote the realized volatility computed by summing the squared high-frequency returns over

the [t, t + ∆] time-interval:

Vn
t,t+∆ ≡

n
∑

i=1

[

pt+ i

n
(∆) − pt+ i−1

n
(∆)

]2

(3)

It follows then by the theory of quadratic variation (see, e.g., Andersen et al. (2003a), for a

recent survey of the realized volatility literature),

lim
n→∞

Vn
t,t+∆

a.s.−→ Vt,t+∆ ≡
∫ t+∆

t

Vs ds (4)

In other words, when n is large relative to ∆, the realized volatility should be a good

approximation for the unobserved integrated volatility Vt,t+∆.5

Moments for the integrated volatility for the model in (1) have previously been derived

by Bollerslev and Zhou (2002) (see also Meddahi (2002) and Andersen et al. (2004b)). In

particular, the first conditional moment under the physical measure satisfies

E(Vt+∆,t+2∆|Ft) = α∆ E(Vt,t+∆|Ft) + β∆ (5)

where the coefficients α∆ = e−κ∆ and β∆ = θ
(

1 − e−κ∆
)

are functions of the underlying

parameters κ and θ of (1).

Using option prices, it is also possible to construct a model-free measure of the risk-

neutral expectation of the integrated volatility. In particular, let IV∗
t,t+∆ denote the time t

implied volatility measure computed as a weighted average, or integral, of a continuum of

∆-maturity options,

IV∗
t,t+∆ = 2

∫ ∞

0

C(t + ∆, K) − C(t,K)

K2
dK (6)

5The asymptotic distribution (for n → ∞ and ∆ fixed) of the realized volatility error has been formally
characterized by Barndorff-Nielsen and Shephard (2002) and Meddahi (2002). Also, Barndorff-Nielsen and
Shephard (2004c) have recently extended these asymptotic distributional results to allow for leverage effects.
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where C(t,K) denotes the price of a European call option maturing at time t with strike

price K. As formally shown by Britten-Jones and Neuberger (2000), this model-free implied

volatility then equals the true risk-neutral expectation of the integrated volatility,6

IV∗
t,t+∆ = E∗ (Vt,t+∆| Ft) , (7)

where E∗(·) refers to the expectation under the risk-neutral measure. Although the original

derivation of this important result in Britten-Jones and Neuberger (2000) assumes that the

underlying price path is continuous, this same result has recently been extended by Jiang

and Tian (2005b) to the case of jump diffusions. Moreover, Jiang and Tian (2005b) also

demonstrates that the integral in the formula for IV∗
t,t+∆ may be accurately approximated

from a finite number of options in empirically realistic situations.

Combining these results, it now becomes possible to directly and analytically link the

expectation of the integrated volatility under the risk-neutral dynamics in (2) with the

objective expectation of the integrated volatility under (1). As formally shown by Bollerslev

and Zhou (2006),

E (Vt,t+∆| Ft) = A∆IV∗
t,t+∆ + B∆, (8)

where A∆ = (1−e−κ∆)/κ

(1−e−κ∗∆)/κ∗
and B∆ = θ[∆ − (1 − e−κ∆)/κ] − A∆θ∗[∆ − (1 − e−κ∗∆)/κ∗] are

functions of the underlying parameters κ, θ, and λ. This equation, in conjunction with

the moment restriction in (5), provides the necessary identification of the risk premium

parameter, λ.7

2.2 GMM Estimation and Statistical Inference

Using the moment conditions (5) and (8), we can now construct a standard GMM type

estimator. To allow for overidentifying restrictions, we augment the moment conditions with

a lagged instrument of realized volatility, resulting in the following four dimensional system

6Carr and Madan (1998) and Demeterfi et al. (1999) have previously derived a closely related expression.
7When implementing the conditional moment restrictions (5) and (8), it is useful to distinguish between

two information sets—the continuous sigma-algebra Ft = σ{Vs; s ≤ t}, generated by the point-in-time
volatility process, and the discrete sigma-algebra Gt = σ{Vt−s−1,t−s; s = 0, 1, 2, · · · ,∞}, generated by the
integrated volatility series. Obviously, the coarser filtration is nested in the finer filtration (i.e., Gt ⊂ Ft), and
by the Law of Iterated Expectations, E[E(·|Ft)|Gt] = E(·|Gt). The GMM estimation method implemented
later is based on the coarser information set Gt.
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of equations:

ft(ξ) =









Vt+∆,t+2∆ − α∆Vt,t+∆ − β∆

(Vt+∆,t+2∆ − α∆Vt,t+∆ − β∆)Vt−∆,t

Vt,t+∆ −A∆IV∗
t,t+∆ − B∆

(Vt,t+∆ −A∆IV∗
t,t+∆ − B∆)Vt−∆,t









(9)

where ξ = (κ, θ, λ)′. By construction E[ft(ξ0)|Gt] = 0, and the corresponding GMM estimator

is defined by ξ̂T = arg min gT (ξ)′WgT (ξ), where gT (ξ) refers to the sample mean of the

moment conditions, gT (ξ) ≡ 1/T
∑T−2

t=2 ft(ξ), and W denotes the asymptotic covariance

matrix of gT (ξ0) (Hansen, 1982). Under standard regularity conditions, the minimized value

of the objective function J = minξ gT (ξ)′WgT (ξ) multiplied by the sample size should be

asymptotically chi-square distributed, allowing for an omnibus test of the overidentifying

restrictions. Moreover, inference concerning the individual parameters is readily available

from the standard formula for the asymptotic covariance matrix, (∂ft(ξ)/∂ξ′W∂ft(ξ)/∂ξ)/T .

Further, since the lag structure in the moment conditions in equations (5) and (8) entails

a complex dependence, we use a heteroscedasticity and autocorrelation consistent robust

covariance matrix estimator with a Bartlett-kernel and a lag length of five in implementing

the estimator (Newey and West, 1987).

3 Finite Sample Distributions

3.1 Monte Carlo Design

To determine the finite sample performance of the GMM estimator based on the moment

conditions described above, we conducted a small scale Monte Carlo study for the specialized

Heston (1993) version of the model in (1) and (2) with σt(·) = σ
√

Vt. To illustrate the

advantage of the new model-free volatility measures, we estimated the model using three

different implied volatilities:

1. RNIV: risk-neutral expectation of integrated volatility (this is, of course, not observ-

able in practice but can be calculated inside the simulations where we know both the

latent volatility state Vt and the risk neutral parameters κ∗ and θ∗);

2. MFIV: model-free implied volatility computed from one-month maturity option prices

using a truncated and discretized version of equation (6);

3. BSIV: Black-Scholes implied volatility from a one-month maturity, at-the-money op-

tion as a (misspecified) proxy for RNIV.
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We also use three different realized volatility measures to assess how the mis-measurement

of realized volatility affects the estimation:

1. Integrated Volatility: The monthly true integrated volatility
∫ t+∆

t
Vs ds (again, this

is not observable in practice but can be calculated inside the simulations);

2. Realized Volatility, 5-minute: monthly realized volatilities computed from five-

minute returns;

3. Realized Volatility, daily: monthly realized volatilities computed from daily returns.

The dynamics of (1) are simulated with the Euler method. We calculate model-free implied

volatility for a given level of Vt with the discrete version of (6) presented by Jiang and Tian

(2005b, p. 1313). We truncate the integration at lower and upper bounds of 70 and 143

percent of the current stock price St. We discretize the range of integration onto a grid

of 150 points.8 The call option prices needed to compute model-free implied volatility are

computed with the Heston (1993) formula. The Black-Scholes implied volatility is generated

by calculating the price of an at-the-money call and then inverting the Black-Scholes formula

to extract the implied volatility.

The accuracy of the asymptotic approximations are illustrated by contrasting the results

for sample sizes of 150 and 600. The total number of Monte Carlo replications is 500. To

focus on the volatility risk premium, the drift of the stock return in (1) and the risk-free rate

in (2) are both set equal to zero. The benchmark scenario is labeled (a) and sets κ = 0.10,

θ = 0.25, σ = 0.10, λ = −0.20, ρ = −0.50. Three additional variations we consider are (b)

high volatility persistence, or κ = 0.03; (c) high volatility-of-volatility, or σ = 0.20; and (d)

pronounced leverage, or ρ = −0.80.9

3.2 Simulation Results

Tables 1-3 summarize the parameter estimation for the volatility risk premium. The use

of model-free implied volatility (MFIV) achieves a similar root-mean-squared error (RMSE)

and convergence rate as the true infeasible risk-neutral implied volatility (RNIV). On the

other hand, the misspecified Black-Scholes implied volatility (BSIV) shows slow convergence

8Jiang and Tian (2005b) show that the discretization error is negligible for 20 or more grid points.
9The first three designs are the same as in Bollerslev and Zhou (2002), and the estimation results for

the κ and θ parameters (available upon request) mirror the results reported therein based on the moment
conditions for the model in (1) only.
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in estimating the volatility risk premium. Also, using realized volatility from five-minute

returns (over a monthly horizon) has virtually the same small bias and high efficiency as

the estimates based on the (infeasible) integrated volatility. In contrast, using the realized

volatility from daily returns generally results in a larger bias and significantly lower efficiency.

Figures 1-3 report the Wald test for the risk premium parameter, which should be asymp-

totically X 2(1) distributed. In the cases of (infeasible) integrated volatility and five-minute

realized volatility, the test statistics for the MFIV and RNIV measures are generally indis-

tinguishable and closely approximated by the asymptotic distribution, the only exception

being the high volatility persistence scenario (b) for which the MFIV measure results in slight

over-rejection. In contrast, the (misspecified) BSIV measure is clearly biased for all of the

different scenarios. When the realized volatility is constructed from daily squared returns,

the Wald test systematically loses power to detect any misspecification, and the RNIV and

MFIV measures now both show some under-rejection bias.10

In a sum, the Monte Carlo results clearly demonstrate that it is possible to accurately

estimate the volatility risk premium from the model-free implied volatilities and the five-

minute based realized volatilities. On the other hand, the use of Black-Scholes implied

volatilities and/or realized volatilities from daily squared returns both produce biased and

inefficient estimates, and generally do not allow for reliable inference concerning the true

value of the risk premium parameter.

4 Estimates for the Market Volatility Risk Premium

4.1 Volatility Risk Premium and Relative Risk Aversion

There is an intimate link between the stochastic volatility risk premium and the coefficient of

risk aversion for the representative investor within the standard intertemporal asset pricing

framework. In particular, assuming a linear volatility risk premium along with an affine

version of the stochastic volatility model corresponding to σt(·) = σ
√

Vt in (1), as in Heston

(1993), it follows that

−λVt = covt

(

dmt

mt

, dVt

)

(10)

10The GMM omnibus test also has the correct size for the RNIV and MFIV measures, but often cannot
reject for the misspecified BSIV. This is because even for BSIV the objective moment (5) is still correctly
specified, only the cross moment (8) is misspecified. These additional graphs are omitted to conserve space
but available upon request.
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where mt denotes the pricing kernel, or marginal utility of wealth for the representative

investor. Moreover, if we assume that the representative agent has a power utility function

Ut = e−δt W
1−γ
t

1 − γ
, (11)

where δ denotes a constant subjective time discount rate, and in equilibrium the agent holds

the market portfolio, marginal utility equals mt = e−δtW−γ
t . It follows from Itô’s formula

that11

covt

(

dmt

mt

, dVt

)

= −γρσVt. (12)

Combining (10) and (12), the constant relative risk aversion coefficient γ is directly propor-

tional to the volatility risk premium: γ = λ/(ρσ). Moreover, given the estimated values of

ρ = −0.8 and σ = 1.2 for the S&P500 data analyzed below, −λ is approximately equal to

the representative investor’s risk aversion, γ.

A number of studies have argued that the assumption of constant risk aversion, or by the

equivalence discussed above a constant volatility risk premium parameter, is too restrictive

for describing asset return dynamics.12 The development of a formal preference-based model

for explaining temporal variation in the risk aversion coefficient is beyond the scope of

the present paper. Instead, suppose simply that the utility function for the representative

investor may be expressed as

Ut = e−δt W
1−γt

t

1 − γt

, (13)

where γt now represents a possibly time-varying relative risk aversion coefficient. Moreover,

assume that the evolution in γt may be described by the separate diffusion process,

dγt = µ(γt)dt + σ(γt)dB3t, (14)

where importantly the preference shocks are exogenous, in the sense that the dB3t innovation

process is uncorrelated with the two Brownian motions driving the log-price and volatility

processes, dB1t and dB2t, respectively. On applying Itô’s formula, it follows then by similar

arguments to the ones in Gordon and St-Amour (2004) that in equilibrium

−λtVt = covt

(

dmt

mt

, dVt

)

= −γtρσVt. (15)

11A similar reduced-form argument is made by Bakshi and Kapadia (2003). For a much earlier formal
general equlibrium treatment, see also Bates (1988) who allows for both stochastic volatility and jumps.

12Constant relative risk aversion is also not consistent with more general utility functions, like the habit
persistence model of Campbell and Cochrane (1999) or the relative social status model of Bakshi and Chen
(1996).
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In particular, the no-arbitrage requirement implies the following modification to the risk-

neutral distribution for the volatility in equation (2),

dVt = κ∗
t (θ

∗
t − Vt)dt + σt(·)dB∗

2t, (16)

where now κ∗
t = κ + λt and θ∗t = κθ/(κ + λt).

13 This expression directly motivates our

estimation of a time-varying volatility risk premium λt, or equivalently a time-varying risk

aversion coefficient, γt = λt/(ρσ). With the caveat that more generally this equivalence is

at best an approximation, we will continue to use the phrases volatility risk premium and

investor risk aversion interchangeably in the following discussion.

4.2 Empirical Approximation for the Volatility Risk Premium

The discussion in the previous section shows how our approach can accommodate a time-

varying volatility risk premium. Previous efforts to explain time-varying volatility risk premia

with economic variables have been rare and challenging at best. In contrast, the model and

GMM estimation procedure that we use here are quite simple to implement.

We will explore a simple dynamic model for the risk premium parameter, λt. We approx-

imate the volatility risk premium parameter as following an augmented AR(1) process,

λt+1 = a + bλt +
K

∑

k=1

ck × statet,k (17)

where “statet,k” are macro-finance state variables. To be consistent with an absence of

arbitrage, the macro-finance shocks “statet,k” must be interpreted either as fixed covariates

or predetermined functions of the time-t state variables, St and Vt.

When we estimate the time-varying risk premium specification, we add lagged squared

realized volatility, lagged implied volatility, and six out of the seven macro-finance covariates

(without the redundant lagged realized volatility, see Section 4.5 for details) as additional

instruments for the cross moment in (8), while leaving the moment for the realized volatility

in (5) the same as in the constant risk premium case. The number of additional moment

conditions is equal to the number of additional parameters in (17), resulting in the same

X 2(1) asymptotic distribution for the GMM omnibus test as in the estimation with a constant

λ.

13The option pricing model in Heston (1993) allows for time-dependent coefficients, but the closed-form
solutions may be complicated by any dynamic dependencies in λt.
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4.3 Data Sources and Summary Statistics

Our empirical analysis is based on monthly implied and realized volatilities for the S&P500

index from January 1990 through May 2004. For the risk-neutral implied volatility measure,

we rely on the VIX index provided by the Chicago Board of Options Exchange (CBOE).

The VIX index, available back to January 1990, is based on the liquid S&P500 index op-

tions, and more importantly, it is calculated based on the model-free approach discussed

earlier.14 Under appropriate assumptions, the concept of CBOE’s “fair value of future vari-

ance” developed by Demeterfi et al. (1999) is identical to the “model-free implied variance”

by Britten-Jones and Neuberger (2000), as well as the “risk-neutral expected value of the

return variance” by Carr and Wu (2005) (see Jiang and Tian, 2005a, for detailed justifica-

tion). As shown in the Monte Carlo study, the model-free implied volatility should be a good

approximation to the true (unobserved) risk-neutral expectation of the integrated volatility,

and, in particular, a much better approximation than the one afforded by the Black-Scholes

implied volatility. Moreover, since the new VIX index is constructed for replicating the risk-

neutral variance of a fixed 30 days maturity, with monthly data there are in principle no

issues with telescoping option maturities.

Our realized volatilities are based on the summation of the five-minute squared returns

on the S&P500 index within the month.15 Thus, for a typical month with 22 trading days,

we have 22 × 78 = 1, 716 five-minute returns, where the 78 five-minute subintervals cover

the normal trading hours from 9:30am to 4:00pm, including the close-to-open five-minute

interval. Again, as indicated by the Monte Carlo simulations in the previous section, the

monthly realized volatilities based on these five-minute returns should provide a very good

approximation to the true (unobserved) continuous-time integrated volatility, and, in par-

ticular, a much better approximation than the one based on the sum of the daily squared

returns.

Figure 4 plots realized volatility, implied volatility, and their difference.16 Both of the

volatility measures were generally higher during the latter half of the sample, although they

have also both decreased more recently. Summary statistics are reported in Table 4. Realized

14In September 2003, CBOE replaced the old VIX index, based on S&P100 options and Black-Scholes
implied volatility, with the new VIX index based on S&P500 options and model-free implied volatilities
involving a discrete approximation to the theoretical result in Carr and Madan (1998). Historical data on
both the old and new VIX are directly available from the CBOE.

15The high-frequency data for the S&P500 index is provided by the Institute of Financial Markets.
16Here and throughout the paper, monthly standard deviations are “annualized” by multiplying by

√
12.
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volatility is systematically lower than implied volatility, and its unconditional distribution

deviates more from the normal. Both measures exhibit pronounced serial correlation with

extremely slow decay in their autocorrelations.

There is a long history of market participants (and some academic researchers) using

the level of the VIX implied volatility as a gauge of market fear or, in the economists’

jargon, investor risk aversion. Along similar lines, the difference between the implied and

realized volatilities are also sometimes associated with the market-implied risk aversion.17

Unfortunately, the raw difference, as depicted in the bottom panel in Figure 4, is typically

very noisy and uninformative, and essentially just follows the level of the volatility. A more

structured approach for extracting the volatility risk premium (or implied risk aversion), as

discussed in the previous sections, thus holds the promise of revealing a deeper understanding

of the way in which the volatility risk premium evolves over time, and its relationship to the

macroeconomy. We next turn to a discussion of our pertinent estimation results.

4.4 Preliminary Factor Analysis on Modeling Assumptions

Our analysis relies on the stochastic volatility model (1) and its corresponding risk-neutral

counterpart (2). While our approach is quite general in that the functions µt(·) and σt(·)
can be left unspecified, there are some assumptions embedded in equations (1)-(2) that can

be tested before going further:

• Realized volatility should follow an ARMA(1,1) process.

• Model-free implied volatility should follow an AR(1) process.

• One common factor drives both integrated volatility and implied volatility.

To test whether realized volatility and model-free implied volatility follow ARMA(1,1) and

AR(1) processes, respectively, we compare the ARMA(1,1) with an ARMA(2,2) model and

the AR(1) with an AR(2) model.18 We note that previous studies have typically focused on

daily stock return volatility, while we work with monthly volatilities. This suggests caution

in extrapolating stylized facts from other studies to our data.19

17In support of this, Rosenberg and Engle (2002) also find that their empirical risk aversion measure is
positively related to the difference between implied and objective volatility.

18Bollerslev and Zhou (2002, Appendix B) show that a two-factor stochastic volatility model implies that
the corresponding realized volatility follows an ARMA(2,2) process.

19In particular, we also tested for long-memory type dependencies in each of the series using the modified
rescaled range statistic of Lo (1991) along with log-periodogram regressions. None of these results (available

12



Table 5 shows the results from estimating ARMA(1,1) and ARMA(2,2) models for real-

ized volatility and AR(1) and AR(2) models for model-free implied volatility. A traditional

time-series approach to model selection looks for the most parsimonious model that ade-

quately captures the time-series variation in the data by producing residuals that are roughly

white-noise. By this standard, the ARMA(1,1) is preferred to the ARMA(2,2) for realized

volatility and the AR(1) is preferred to the AR(2) for model-free implied volatility: all four

models produce white-noise residuals (the portmanteau test does not reject the hypothesis of

white-noise residuals) and the ARMA(1,1) and AR(1) models minimize Schwartz’s Bayesian

information criterion. 20

The third model implication listed above holds that realized and model-free implied

volatility are driven by a single common factor. To informally investigate this, we performed

a standard (unconditional) principal components analysis (PCA) on the two volatility series.

The PCA indicates that the first principal component explains 79 percent of the variance of

the two series. This is high enough to assure us that our (implicit) assumption of a single

common factor is not obviously violated by the data. Of course, the remaining 21 percent of

the variability could be explained, at least in part, by a time-varying volatility risk premium.

Motivated by these encouraging preliminary findings, we next turn our attention to the

results from the more formal GMM-based estimation strategy.

4.5 GMM Estimation Results

Table 6 reports the GMM estimation results for two volatility risk premium specifications:

(i) a constant λ; (ii) a time-varying λt driven by shocks to macro-finance variables as in

equation (17).21

As seen in the first column of the table, when we restrict the risk premium to be constant,

the estimated λ is negative and statistically significant. This finding is consistent with other

papers that have found a negative risk premium on stochastic volatility. However, the chi-

upon request) produced any strong evidence for long memory.
20While a standard likelihood ratio (LR) test based on the reported maximized values for the Gaussian

log likelihoods results in the ARMA(1,1) for the realized volatility being rejected in favor of the ARMA(2,2)
model, the errors from both models (the volatility-of-volatility) are heteroskedastic, so the standard critical
values overstates the difference in fit between the two models.

21In order to conserve space, we only report the results pertaining to the parameters for the volatility
risk premium. The results for the other parameters in the model are directly in line with previous results
reported in the literature, and consistent with the summary statistics in Table 4, point toward a high degree
of volatility persistence in the (latent) Vt process.
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square omnibus test of overidentifying restrictions rejects the overall specification at the 10%

(although not at the 5%) level.

The second column presents the results obtained by explicitly including macro-finance

covariates. To select the macro-finance variables in the time-varying risk premium specifica-

tion, we did an extensive search over 29 monthly data series. The series we used are listed in

Table 10. If part of the temporal variation in investor risk aversion reflects investors focusing

on different aspects of the economy at different points in time, as seems likely, some flexi-

bility in specifying the set of covariates seems both appropriate and unavoidable. Hence, we

select the group of variables that jointly achieves the highest p-value of the GMM omnibus

specification test and that are significant (at the 5% level) based on their individual t-test

statistics.22 To facilitate the subsequent discussion, the resulting seven variables have all

been standardized to have mean zero and variance one so that their marginal contribution

to the time-varying risk premium are directly comparable.23

The results for the autoregressive part of the specification implies an average risk pre-

mium of a/(1 − b) = −1.82, and, without figuring in the dynamic impact of the macro

state variables, an even higher degree of own persistence, b = 0.93. As necessitated by the

specification search, all of the individual parameters for the macro-finance covariates are

statistically significant at the 5% level, and the overall GMM specification test is greatly

improved, with a p-value of 0.68. The resulting estimate for the volatility risk premium,

along with the seven macro-finance input variables, are plotted in Figure 5.

Both the signs and magnitudes of the macro-finance shock coefficients are important in

understanding the time-variation of the volatility risk premium. Sticking to the convention

that (−λ) represents the risk premium, or risk aversion, the realized volatility has the biggest

contribution (-0.32) and a positive impact (i.e., when volatility is high so is risk aversion).24

The impact of AAA bond spread over Treasuries (0.19) likely reflects a business cycle effect

22We are, of course, aware of the danger of data mining that such a specification search presents. However,
we have attempted to limit the degree of data mining by choosing a limited set of candidate macro-finance
covariates, as listed in Table 10. Also, it is not the case that adding more covariates in the GMM estimation
automatically improves the fit of the model, as judged by the p-value for the over-identifying restrictions.

23For stationary variables the unit is the level, while for non-stationary variables the unit is the logarithmic
change for the past twelve months.

24This result contradicts the finding in Bliss and Panigirtzoglou (2004) that risk aversion appears to be
lower when volatility is higher. However, this finding may possibly be explained by their omission of other
important macro-finance variables for jointly describing the time-variation in the estimated risk aversion
coefficient; or caused by their particular methodology of assuming a constant risk aversion coefficient, but
splitting the sample into periods of high and low volatilities.
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(i.e., credit spreads tend to be high before a downturn which usually coincides with low risk

aversion). Conversely, housing starts have a positive impact on the risk premium (-0.19) (i.e.,

a real estate boom usually precedes higher risk aversion). The S&P 500 P/E ratio is the

fourth most important factor (0.14), and impacts the premium negatively (i.e., everything

else equal, higher P/E ratios lowers the degree of risk aversion). The fifth variable in the

table is industrial production growth (0.10), which also has a negative impact (i.e., higher

growth leads to a lower volatility risk premium). On the contrary, the sixth PPI inflation

variable leads to higher risk aversion (-0.05). Finally, the last significant macro state variable,

payroll employment, marginally raises the volatility risk premium (-0.04), possibly as a result

of wage pressure.

4.6 Robustness Checks

The consistency of the realize volatility hinges on the idea of ever finer sampled observations

over a fixed-length time interval. Yet, it is well-known that a host of market microstructure

frictions, including price discreteness and staleness (see, e.g., Stoll and Whaley, 1990), invali-

dates the basic underlying martingale assumption at the ultra high frequencies.25 In order to

investigate the robustness of our findings based on the 5-minute returns with respect to this

issue, we re-estimate our model with realized volatilities constructed from coarser sampled

30-minute returns. As seen from the first column in Table 7, the sign and significance of the

parameter estimates are qualitatively and quantitatively very similar to the previous find-

ings, and the p-values for the overall goodness-of-fit tests for the model are also remarkably

close (0.697 versus 0.681).

The Monte Carlo experiment in Section 3 indicates that the use of Black-Scholes as

opposed to model-free implied volatilities do not result in materially different estimates for

the (constant) volatility risk premium, when the sample size is relatively small (150 months).

Of course, in large samples (600 months), the BSIV based estimate is ultimately rejected. To

investigate the sensitivity of our results to the specific volatility measure, the second column

in Table 7 reports the GMM estimation results obtained by using BSIV in place of the MFIV

measure. Compared to the original results in the last column in Table 6, the parameter

estimates are generally close, as are their standard errors. Again, this is completely in line

25A large, and rapidly growing, literature have sought different ways in which to best deal with these
complications in the construction of improved realized volatility measures; see, e.g., Aı̈t-Sahalia et al. (2005);
Bandi and Russell (2005); Hansen and Lunde (2005).
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with the Monte Carlo evidence presented earlier, which suggest that a much larger sample

size is needed to effectively distinguish between the two volatility measures. Of course, only

the approach using the model-free implied volatilities is formally justified.

It is been widely argued in the literature that most major market indices contain jumps,

or price discontinuities (see, e.g., Bates, 1996; Bakshi et al., 1997; Pan, 2002; Chernov et al.,

2003). This suggests that it may be important to separately consider jump risk when esti-

mating the stochastic volatility risk premium. However, the moment condition in equation

(8) only identifies a single risk premium parameter. Thus, to check the robustness of our

estimates with respect to jumps, we simply fix the jump risk premium and re-estimate the

resulting volatility risk premium. To identify the jumps, we follow Barndorff-Nielsen and

Shephard (2004b,d) in using the difference between the realized volatility,

Vn
t,t+∆ ≡

n
∑
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[

pt+ i

n
(∆) − pt+ i−1

n
(∆)
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and the so-called bi-power variation,

BVn
t,t+∆ ≡

n
∑

i=2

[

pt+ i

n
(∆) − pt+ i−1

n
(∆)

] [

pt+ i−1

n
(∆) − pt+ i−2

n
(∆)

]

→
∫ t+∆

t

Vsds, (19)

for separating the monthly diffusive and jump volatility,
∫ t+∆

t
Vsds and

∫ t+∆

t
J2

s ds, respec-

tively, under the objective measure (see also Andersen et al., 2004a; Huang and Tauchen,

2005). Following Jiang and Tian (2005b) and Carr and Wu (2005) the model-free implied

volatility may be similarly decomposed under the risk-neutral expectation,
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Since it isn’t possible to separately identify a volatility risk premium and a jump risk pre-

mium, we instead perform a counter-factual experiment and assume that the risk-neutral and

objective expectations of the jump contribution differ by a constant multiple. In particular,

under Jump Scenario (h),

E∗

(
∫ t+∆

t

J2
s ds|Ft

)

= h · E
(

∫ t+∆

t

J2
s ds|Ft

)

(21)

The corresponding estimation results, reported in the last three columns in Table 7, show

that the level, persistence, and macro-finance sensitivities of the volatility risk premium are

all largely unaffected. Interestingly, on comparing the three jumps scenarios, the overall
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goodness-fit appears to improve as the price of jump risk increases. Nonetheless, overall the

results clearly confirm the robustness of our previous findings with respect to the specific

jump dynamics and risk prices entertained here.

4.7 Comparing Alternative Estimates of Time-Varying Risk Pre-

mia

Several alternative procedures for estimating the time-varying volatility risk premium have

previously been implemented in the literature. One approach is to vary the risk premium

parameter each time period to best match that period’s market data. In the context of

volatility modeling, that approach would vary the risk premium parameter to match each

month’s difference between realized and implied volatility. In the context of our modeling

framework, such an approach would produce the time-varying risk premium shown in the

middle panel of Figure 6. The general shape of Figure 6 matches the simple difference

between implied and realized volatilities shown in the bottom panel of Figure 4. Papers that

have taken this approach include Rosenberg and Engle (2002, p. 363) and Tarashev et al.

(2003, p. 62). Their risk premium estimates are shown in Figure 7.

As previously noted, because this approach attributes every wiggle in the data to changes

in the risk premium, it produces a very volatile time series of monthly risk premia. Economic

theory argues that an asset’s risk premium should depend on deep structural parameters.

For example, in the consumption CAPM (C-CAPM), an asset’s risk premium varies with

investors’ risk aversion and the asset’s covariance with investors’ consumption. By definition,

deep structural parameters should be relatively stable over time. Yet the approach of period-

by-period estimation of a time-varying risk premia forces the parameters to vary (almost

independently) from one period to the next. As such, we find that monthly volatility risk

premiums estimated in this way are implausibly volatile.

A second approach for estimating investors’ “risk appetite,” popular among market par-

ticipants, is to construct a simple average of macro-finance variables.26 The bottom panel of

Figure 6 shows such a average index constructed from the 29 (standardized) macro-finance

variables listed in Table 10, all standardized to have mean zero and variance one. In addition

to concerns that such indexes are too ad hoc to be reliable, indexes constructed in this way

also tend to be excessively and implausibly volatile.

26Chaboud (2003) discusses several such indexes constructed by J.P. Morgan, State Street/IMF, and Credit
Suisse First Boston.
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A third approach to estimating risk premium parameters comes from the consumption-

based asset pricing literature. This approach typically assumes that risk premia are constant,

or if risk preferences are allowed to vary over time, they end up being implausibly smooth

and possibly nonstationary. For example, Campbell and Cochrane (1999) generate time

variation in risk aversion through habit formation in which the level of habit reacts only

gradually to changes in consumption.27 Such a modeling strategy explicitly prevents the risk

premia from being excessively variable in the short-run.28

In contrast, consider the top panel of Figure 6, which plots our estimated volatility risk

premium parameter based on the model involving the seven macro-finance covariates. Peaks

and troughs in the series are generally multiple years apart, and reassuringly the series is

void of the excessive month-by-month fluctuations that plague both of the other series in

that same figure. The estimated risk premium rises sharply during the two NBER-dated

macroeconomic recessions (the shaded areas in the plots), as well as the periods of slow

recovery and job growth after the 1991 and 2001 recessions. Nearly all of the peaks in the

series are readily identifiable with major macroeconomic or financial market developments,

including the 1994 monetary policy tightening and soft landing, the 1998 Russian debt

crisis, and the bursting of the stock market “bubble” in 2000. There is also a peak in the

risk premium in 1996 that does not appear to directly line up with any major economic

event, except perhaps the worry about over-valuation in the stock market sometimes labeled

as the period of “Irrational Exuberance”. The chart suggests that the risk premium often

rises sharply but declines only gradually.

4.8 Stock Return Predictability

Because the volatility risk premium can be related to investor risk aversion, it may be

informative about other risk premia in the economy. To illustrate, we compare its predictive

power for aggregate stock market returns with that of other traditionally-used macro-finance

variables. The top panel of Table 8 reports the results of simple univariate regressions of

monthly S&P500 excess returns on the volatility risk premium and on the most significant

individual variables from the pool of covariates listed in Table 10. The extracted volatility

27In a similar vein, Cochrane and Piazzesi (2004) model a slowly-varying risk premium on Treasury bonds
as a function of current forward rates.

28Along these lines, the estimated risk aversions of Brandt and Wang (2003, p. 1481) and Gordon and
St-Amour (2004, p. 249) do not pick out most recessions (as reproduced in Figure 8).
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risk premium has the highest predictive power with an adjusted R2 of 4.4%.29 The second

best predictor is the S&P500 P/E ratio with an adjusted R2 of 2.2%. Next in order are

industrial production and nonfarm payrolls with adjusted R2’s of 1.0% and 0.5%, respectively.

Dividend yield — a significant predictor according to many other studies — only explains

0.3% of the monthly return variation. These results are consistent with previous findings

that macroeconomic state variables do predict returns, though the predictability measured

by adjusted R2 is usually in the low single digits. Nonetheless, it is noteworthy that of all

the predictor variables, the volatility risk premium results in the highest adjusted R2.

Combining all of the marginally significant variables into a single multiple regression

results in the estimates shown in the bottom panel of Table 8. Interestingly, none of the

macro-finance variables remains significant when the volatility risk premium is included,

while only the P/E ratio is significant in the regression excluding the premium. Of course,

the estimate for the volatility risk premium already incorporates some of the same macroe-

conomic variables (see Table 6), so the finding that these variables are “driven out” when

included together with the premium is not necessarily surprising. However, the macro vari-

ables entering the model for λt only impact the returns indirectly through the temporal

variation in the premium, and the volatility risk premium itself is also estimated from a dif-

ferent set of moment conditions involving only the model-free realized and options implied

volatilities.

Table 9 examines stock return predictability over a quarterly horizon. In addition to

the volatility risk premium and the P/E ratio from the last month of the previous quarter,

which were the two most important predictor variables in the monthly regressions shown in

table 8, we now add the quarterly consumption-wealth ratio. The consumption-wealth ratio,

termed CAY, has previously been found by Lettau and Ludvigson (2001) to be significant

in explaining longer-horizon returns.

The first three regressions in Table 9 show that each of the three predictor variables are

statistically significant in univariate regressions. The volatility risk premium results in the

highest individual adjusted R2 of 15.6%, higher than its monthly R2 of 4.4%. The next

three lines of the table show results for two right-hand side predictor variables. Adding the

P/E ratio or CAY to the volatility risk premium does not help predict excess returns: the

29The use of the volatility risk premium as a second-stage regressor suffers from a standard errors-in-
variables type problem, resulting in too large a standard error for the estimated slope coefficient. Also, the
persistence of the right-hand-side variables in predictive regressions can cause biased coefficient estimates
and inferences (Stambaugh, 1999; Amihud and Hurvich, 2004).
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adjusted R2 actually falls and only the risk premium is statistically significant. Combining

the P/E ratio and CAY in the same regression renders both insignificant.

These results for quarterly excess returns reinforce the earlier findings for the monthly

returns in Table 8. The estimated volatility risk premium appears to be a new and powerful

stock market predictor over longer quarterly horizons. The fact that the volatility risk

premium and CAY or the P/E ratio partially crowd each other out suggests that these three

variables capture some common time-variation of risk premia in the economy.

5 Conclusion

This paper develops a simple consistent approach for estimating the volatility risk premium.

The approach exploits the linkage between the objective and risk-neutral expectations of the

integrated volatility. The estimation is facilitated by the use of newly available model-free

realized volatilities based on high-frequency intraday data along with model-free option-

implied volatilities. The approach allows us to explicitly link any temporal variation in the

risk premium to underlying state variables within an internally consistent and simple-to-

implement GMM estimation framework. A small scale Monte Carlo experiment indicates

that the procedure performs well in estimating the volatility risk premium in empirically

realistic situations. In contrast, the estimates based on the Black-Scholes implied volatilities

and/or monthly sample variances based on daily squared returns result in highly inefficient

and statistically unreliable estimates of the risk premium. Applying the methodology to the

S&P500 market index, we find significant evidence for temporal variation in the volatility

risk premium, which we directly link to a set of underlying macro-finance state variables.

Interestingly, the extracted volatility risk premium also appears to be helpful in predicting

the return on the market itself.

The volatility risk premium (or risk aversion index) extracted in our paper differs sharply

from other approaches in the literature. In particular, earlier estimates relying directly on

period-by-period differences in the estimated risk-neutral and objective distributions tend

to produce implausibly volatile estimates. On the other hand, earlier procedures based on

structural macroeconomic/consumption-type pricing models typically result in implausibly

smooth estimates. In contrast, the model-free realized and implied volatility-based procedure

developed here results in an estimated premium that avoids the excessive period-by-period

random fluctuations, yet responds to recessions, financial crises, and other economic events
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in an empirically realistic fashion.

It would be interesting to more closely compare and contrast the risk aversion index

estimated here to other popular gauges of investor fear or market sentiment. Also, how does

the estimated volatility risk premium for the S&P500 compare to that of other markets? The

results in the paper show that the extracted volatility risk premium for the current month

is useful in predicting next month’s aggregate S&P500 return. It would be interesting to

further explore the cross sectional pricing implications of this finding. Does the volatility

risk premium represent a systematic priced risk factor?30 Also, what is the link between

stock and bond market volatility risk premia? Lastly, better estimates for the volatility risk

premium are, of course, of direct importance for derivatives pricing. We leave further work

along these lines for future research.

30The recent results in Ang et al. (2005) and Adrian and Rosenberg (2005) suggest that volatility risk may
indeed be a priced factor.
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Table 1: Monte Carlo Result for λ with Risk-Neutral Implied Volatility

Mean Bias Median Bias Root-MSE

T = 150 T = 600 T = 150 T = 600 T = 150 T = 600

Scenario (a), Benchmark Case

κ = 0.10, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0046 -0.0015 -0.0041 -0.0013 0.0202 0.0091

Realized, 5-min. -0.0043 -0.0014 -0.0027 -0.0014 0.0201 0.0090

Realized, 1-day -0.0129 -0.0036 -0.0169 -0.0040 0.0576 0.0260

Scenario (b), High Volatility Persistence

κ = 0.03, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0097 -0.0029 -0.0079 -0.0017 0.0244 0.0099

Realized, 5-min. -0.0088 -0.0026 -0.0059 -0.0014 0.0237 0.0098

Realized, 1-day -0.0172 -0.0051 -0.0187 -0.0039 0.0615 0.0275

Scenario (c), High Volatility-of-Volatility

κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0166 -0.0054 -0.0127 -0.0049 0.0463 0.0193

Realized, 5-min. -0.0162 -0.0054 -0.0119 -0.0048 0.0457 0.0190

Realized, 1-day -0.0278 -0.0089 -0.0288 -0.0085 0.0804 0.0342

Scenario (d), High Leverage

κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.80

Integrated Vol. -0.0046 -0.0016 -0.0040 -0.0015 0.0200 0.0093

Realized, 5-min. -0.0042 -0.0014 -0.0043 -0.0012 0.0200 0.0092

Realized, 1-day -0.0130 -0.0032 -0.0165 -0.0025 0.0569 0.0253
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Table 2: Monte Carlo Result for λ with Model-Free Implied Volatility

Mean Bias Median Bias Root-MSE

T = 150 T = 600 T = 150 T = 600 T = 150 T = 600

Scenario (a), Benchmark Case

κ = 0.10, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0013 0.0044 0.0015 0.0048 0.0199 0.0101

Realized, 5-min. 0.0017 0.0045 0.0030 0.0045 0.0199 0.0101

Realized, 1-day -0.0068 0.0021 -0.0103 0.0017 0.0569 0.0258

Scenario (b), High Volatility Persistence

κ = 0.03, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0005 0.0064 0.0000 0.0071 0.0248 0.0130

Realized, 5-min. 0.0003 0.0066 0.0020 0.0068 0.0244 0.0130

Realized, 1-day -0.0081 0.0036 -0.0093 0.0053 0.0598 0.0276

Scenario (c), High Volatility-of-Volatility

κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.50

Integrated Vol. -0.0034 0.0075 -0.0008 0.0078 0.0475 0.0221

Realized, 5-min. -0.0030 0.0077 -0.0018 0.0086 0.0471 0.0219

Realized, 1-day -0.0166 0.0029 -0.0170 0.0041 0.0796 0.0341

Scenario (d), High Leverage

κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.80

Integrated Vol. 0.0016 0.0045 0.0021 0.0046 0.0198 0.0103

Realized, 5-min. 0.0020 0.0047 0.0016 0.0048 0.0198 0.0104

Realized, 1-day -0.0068 0.0029 -0.0101 0.0035 0.0561 0.0253
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Table 3: Monte Carlo Result for λ with Black-Scholes Implied Volatility

Mean Bias Median Bias Root-MSE

T = 150 T = 600 T = 150 T = 600 T = 150 T = 600

Scenario (a), Benchmark Case

κ = 0.10, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0089 0.0119 0.0094 0.0122 0.0209 0.0147

Realized, 5-min. 0.0092 0.0120 0.0106 0.0121 0.0211 0.0148

Realized, 1-day 0.0010 0.0100 -0.0019 0.0094 0.0562 0.0276

Scenario (b), High Volatility Persistence

κ = 0.03, θ = 0.20, σ = 0.10, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0045 0.0107 0.0065 0.0120 0.0214 0.0139

Realized, 5-min. 0.0055 0.0111 0.0079 0.0118 0.0214 0.0142

Realized, 1-day -0.0015 0.0094 -0.0007 0.0105 0.0601 0.0285

Scenario (c), High Volatility-of-Volatility

κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.50

Integrated Vol. 0.0215 0.0321 0.0247 0.0324 0.0444 0.0361

Realized, 5-min. 0.0220 0.0321 0.0258 0.0322 0.0443 0.0361

Realized, 1-day 0.0136 0.0312 0.0144 0.0311 0.0742 0.0450

Scenario (d), High Leverage

κ = 0.10, θ = 0.20, σ = 0.20, λ = −0.20, ρ = −0.80

Integrated Vol. 0.0127 0.0156 0.0134 0.0156 0.0227 0.0179

Realized, 5-min. 0.0131 0.0158 0.0128 0.0160 0.0230 0.0181

Realized, 1-day 0.0041 0.0141 0.0002 0.0153 0.0555 0.0288
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Table 4: Summary Statistics for Monthly Implied and Realized Volatilities

Statistics Realized Volatility Implied Volatility

Mean 12.68 20.08

Std. Dev. 5.84 6.39

Skewness 1.21 0.84

Kurtosis 4.63 3.87

Minimum 4.73 10.63

5% Qntl. 5.92 11.73

25% Qntl. 7.93 14.79

50% Qntl. 11.56 19.52

75% Qntl. 15.42 24.19

95% Qntl. 24.62 31.17

Maximum 36.61 44.28

ρ1 0.81 0.83

ρ2 0.68 0.69

ρ3 0.61 0.60

ρ4 0.54 0.56

ρ5 0.55 0.55

ρ6 0.55 0.53

ρ7 0.52 0.50

ρ8 0.53 0.49

ρ9 0.53 0.52

ρ10 0.53 0.54
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Table 5: Diagnosing Alternatives for Realized and Implied Volatilities
For realized volatility, we estimate the ARMA(2,2) model

Vt+∆,t+2∆ = β + α1Vt,t+∆ + α2Vt−∆,t + et+∆,t+2∆ + θ1et,t+∆ + θ2et−∆,t

where the ARMA(1,1) model restricts α2 = θ2 = 0. For implied volatility, we estimate the
AR(2) model

IV∗
t+∆,t+2∆ = β + α1IV

∗
t,t+∆ + α2IV

∗
t−∆,t + et+∆,t+2∆

where the AR(1) model restricts α2 = 0. The columns “Q(10)”, “BIC” and “log L” show
the Ljung-Box portmanteau test statistic for white-noise residuals using 10 lags, Schwartz’s
Bayesian information criterion, and the maximized value of the Gaussian log-likelihood,
respectively. Q(10) is asymptotically distributed as χ2(10) under the null hypothesis of
white-noise residuals; the 95 percent critical value of a χ2(10) random variable is 18.3.
Standard errors are shown in parentheses. All regressions are estimated over January 1990
to May 2004.

Realized Volatility β α1 α2 θ1 θ2 Q(10) BIC log L

ARMA(1,1) .052 .70 — -.32 — 14.5 2951.7 -1465.5

(.050) (.07) (.10)

ARMA(2,2) .052 .21 .45 .27 -.42 7.9 2952.4 -1460.7

(.053) (.26) (.12) (.26) (.11)

Implied Volatility β α1 α2 θ1 θ2 Q(10) BIC log L

AR(1) .044 .76 — — — 13.4 2323.0 -1153.8

(.01) (.04)

AR(2) .044 .80 -.05 — — 12.5 2327.8 -1153.6

(.01) (.09) (.08)
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Table 6: Estimation of Volatility Risk Premium
All of the macro-finance variables are standardized to have mean zero and variance one. The
growth variables (Industrial Production, Producer Price Index, and Payroll Employment)
are expressed in terms of the logarithmic difference over the past twelve months. The lag
length in the Newey-West weighting matrix employed in the estimation is set at 25.

Constant Macro-Finance

λ -1.793 (0.216)

a -0.122 (0.051)

b 0.933 (0.030)

c1 Realized Volatility -0.319 (0.042)

c2 Moody AAA Bond Spread 0.194 (0.034)

c3 Housing Start -0.191 (0.055)

c4 S&P500 P/E Ratio 0.140 (0.015)

c5 Industrial Production 0.097 (0.026)

c6 Producer Price Index -0.047 (0.023)

c7 Payroll Employment -0.040 (0.019)

X 2(d.o.f. = 1) (p-Value) 2.889 (0.089) 0.169 (0.681)
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Table 7: Robustness Checks
All of the macro-finance variables are the same as in the previous table. 30-Minute stands for sampling the returns
every 30-minute instead of every 5-minute. BSIV is the Black-Scholes implied volatility, replacing the model-free implied
volatility. Jump (1), (2), and (3) represent the cases where the risk-neutral expectation of jump-squared is assumed to
be the same as, double, and tipple the objective expectation.

Macro-Finance Specification 30-Minute BSIV Jump (1) Jump (2) Jump (3)

a -0.156 (0.040) -0.129 (0.065) -0.158 (0.055) -0.145 (0.048) -0.129 (0.050)

b 0.891 (0.028) 0.933 (0.033) 0.916 (0.032) 0.919 (0.029) 0.925 (0.030)

c1 Realized Volatility -0.262 (0.102) -0.281 (0.033) -0.352 (0.049) -0.365 (0.063) -0.386 (0.070)

c2 Moody AAA Bond Spread 0.107 (0.065) 0.151 (0.029) 0.225 (0.039) 0.229 (0.054) 0.236 (0.056)

c3 Housing Start -0.175 (0.054) -0.142 (0.056) -0.199 (0.056) -0.203 (0.056) -0.209 (0.057)

c4 S&P500 P/E Ratio 0.136 (0.021) 0.129 (0.014) 0.144 (0.013) 0.147 (0.012) 0.152 (0.011)

c5 Industrial Production 0.064 (0.054) 0.056 (0.026) 0.110 (0.028) 0.117 (0.032) 0.124 (0.033)

c6 Producer Price Index -0.037 (0.019) -0.032 (0.021) -0.048 (0.024) -0.046 (0.022) -0.043 (0.021)

c7 Payroll Employment -0.019 (0.043) -0.013 (0.020) -0.045 (0.020) -0.051 (0.023) -0.059 (0.024)

X 2(d.o.f. = 1) (p-Value) 0.151 (0.697) 0.373 (0.541) 0.150 (0.698) 0.059 (0.807) 0.004 (0.951)
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Table 8: Monthly Stock Market Return Predictability
The table reports predictive regressions for the monthly excess return on S&P500 index
measured in annualized percentage term. Industrial Production and Payroll Employment
numbers represent the past year logarithmic changes in annualized percentages.

Variables Intercept (s.e.) Slope (s.e.) Adj. R-Square

Volatility Risk Premium -22.283 (10.120) 14.567 (5.045) 0.044

S&P500 PE Ratio 35.939 (13.750) -1.272 (0.566) 0.022

Industrial Production -0.926 ( 5.495) 1.992 (1.226) 0.010

Nonfarm Payroll Employment -0.311 ( 5.478) 3.643 (2.624) 0.005

26 Other Macro-Finance Variables <0.005

Joint Estimation Including λt Excluding λt

Variables Parameter (s.e.) Parameter (s.e.)

Intercept -9.279 (21.245) 32.619 (15.306)

Volatility Risk Premium 11.575 ( 5.438)

S&P500 PE Ratio -0.430 ( 0.594) -1.259 ( 0.585)

Industrial Production 1.841 ( 2.245) 2.719 ( 2.204)

Nonfarm Payroll Employment -1.388 ( 4.721) -3.306 ( 4.657)

Adj. R-Square 0.037 0.022
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Table 9: Quarterly Stock Market Return Predictability
The quarterly data range from 1990Q1 to 2003Q2. The consumption-wealth-ratio, or CAY,
variable is defined in Lettau and Ludvigson (2001), and the data is downloaded from their
website.

Intercept (s.e.) Risk Premium (s.e.) PE Ratio (s.e.) CAY (s.e.) Adj. R-Square

-27.087 (12.215) 16.477 (6.145) 0.156

41.044 (16.289) -1.543 (0.692) 0.086

2.413 ( 4.308) 5.378 (2.031) 0.068

-6.927 (21.494) 13.619 (5.966) -0.609 (0.649) 0.151

-23.338 (13.413) 14.253 (6.970) 2.042 (1.946) 0.149

29.737 (27.888) -1.098 (1.139) 2.476 (3.352) 0.078

-10.698 (25.008) 13.204 (6.180) -0.432 (0.926) 1.146 (2.860) 0.136
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Table 10: List of Macro-Finance Variables

Macro-Finance Variables Data Source

S&P500 Realized Volatility Constructed from IFM (CME)

S&P500 Implied Volatility CBOE

S&P500 Market Return Standard & Poors

S&P500 PE Ratio Standard & Poors

S&P500 Dividend Yield Standard & Poors

NYSE Trading Volume NYSE

Unemployment Rate Bureau of Labor Statistics

Nonfarm Payroll Employment Bureau of Labor Statistics

Industrial Capacity Utilization Federal Reserve

Industrial Production Federal Reserve

CPI Inflation Bureau of Labor Statistics

Producer Price Index Bureau of Labor Statistics

Expected CPI Inflation Michigan Survey

Treasury Spread 5yr-6mn Federal Reserve

Treasury Spread 10yr-6mn Federal Reserve

Mortgage Spread (over 10yr Treasury) Federal Reserve

Swap Spread (over 10yr Treasury) Bloomberg

AAA Corporate Spread (over 10yr Treasury) Moody

BAA Corporate Spread (over 10yr Treasury) Moody

AA Corporate Spread (over 10yr Treasury) Merrill Lynch

BBB Corporate Spread (over 10yr Treasury) Merrill Lynch

Consumer Sentiment Michigan Survey

Consumer Sentiment (Expected) Michigan Survey

Consumer Confidence Conference Board

Consumer Confidence (Expected) Conference Board

Housing Permit Number HUD

Housing Start Number HUD

Money Supply (M2) Federal Reserve

Business Cycle Indicator NBER
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Figure 1: Wald Test for Risk Premium with True Integrated Volatility.
The X-axis gives the nominal level of the test and Y-axis the probability of rejection. The
dotted line represents the uniform reference distribution, the dash line is T = 150, and the
solid line is T = 600.
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Figure 2: Wald Test for Risk Premium with Five-Minute Return Realized Volatility.
The X-axis gives the nominal level of test and the Y-axis the probability of rejection. The
dotted line represents the uniform reference distribution, the dash line is T = 150, and the
solid line is T = 600.
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Figure 3: Wald Test for Risk Premium with Daily Return Realized Volatilities.
The X-axis gives the nominal level of the test and the Y-axis the probability of rejection.
The dotted line represents the uniform reference distribution, the dash line is T = 150, and
the solid line is T = 600.
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Figure 4: Model-Free Realized and Implied Volatilities
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Figure 7: Comparison with Estimates Using Risk-Neutral and Objective Distributions
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Figure 8: Comparison with Estimates from Consumption-Based Asset Pricing Models
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