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Abstract: Building on realized variance and bi-power variation measures constructed from
high-frequency financial prices, we propose a simple reduced form framework for effectively
incorporating intraday data into the modeling of daily return volatility. We decompose the
total daily return variability into the continuous sample path variance, the variation arising
from discontinuous jumps that occur during the trading day, as well as the overnight return
variance. Our empirical results, based on long samples of high-frequency equity and bond
futures returns, suggest that the dynamic dependencies in the daily continuous sample path
variability is well described by an approximate long-memory HAR-GARCH model, while the
overnight returns may be modelled by an augmented GARCH type structure. The dynamic
dependencies in the non-parametrically identified significant jumps appear to be well de-
scribed by the combination of an ACH model for the time-varying jump intensities coupled
with a relatively simple log-linear structure for the jump sizes. Lastly, we discuss how the
resulting reduced form model structure for each of the three components may be used in the
construction of out-of-sample forecasts for the total return volatility.
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1 Introduction

A burgeoning literature concerned with modeling and forecasting the dynamic dependencies
in financial market volatility has emerged over the past two decades. Up until fairly recently,
most of the empirical results in the literature were based on the use of daily, or coarser fre-
quency data, coupled with formulations within the GARCH or stochastic volatility class
of models; for a recent survey see Andersen, Bollerslev, Christoffersen and Diebold (2006).
Meanwhile, somewhat of a paradigm shift has started to occur in which high-frequency data is
now incorporated into longer-run volatility modeling and forecasting problems through the
use of simple reduced-form time series models for non-parametric daily realized volatility
measures based on the summation of intraday squared returns; see, e.g., Andersen, Boller-
slev, Diebold and Labys (2003) and the supportive theoretical results in Andersen, Bollerslev
and Meddahi (2004).1 Further, decomposing the total daily return variability into its contin-
uous and discontinuous components based on the bi-power variation measures developed by
Barndorff-Nielsen and Shephard (2004a, 2006), the empirical results in Andersen, Bollerslev
and Diebold (2007) suggest that most of the predictable variation in the volatility stems
from the strong own dynamic dependencies in the continuous price path variability, while
the predictability of the (squared) jumps is typically minor. The present paper takes this
analysis one step further by developing, estimating and implementing separate reduced-form
time series forecasting models for each of the different components that make up the total
daily price variation.

Following the analysis in Andersen, Bollerslev and Diebold (2007), we begin by decom-
posing the total return variability over the trading day into its continuous sample path
variation and the variation due to jumps based on the bi-power variation measure developed
by Barndorff-Nielsen and Shephard (2004a, 2006). Our empirical results with a fifteen year
sample of high-frequency intraday S&P 500 and T-Bond futures returns confirm earlier find-
ings that the dynamic dependencies in the daily continuous sample path variability is well
described by an approximate long-memory Heterogenous AR (HAR) model, as originally pro-
posed by Corsi (2004). Meanwhile, careful analysis of the non-parametrically identified jumps
reveals some new and interesting dynamic dependencies vis-a-vis the results reported in the
existing literature. In particular, while the time series of statistically significant squared
jumps appear to be approximately serially uncorrelated, the times between jumps and the
sizes of the jumps are both autocorrelated.2 We successfully model these dependencies by
the combination of an Autoregressive Conditional Hazard (ACH) model, as developed by
Hamilton and Jordà (2002), for the time-varying jump intensities, coupled with a log-linear
model with GARCH errors for the size of the jumps.3

1Closely related empirical findings have been reported in Anderson and Vahid (2007), Areal and Taylor
(2002), Corsi (2004), Deo, Hurvich and Lu (2006), Koopman, Jungbacker and Hol (2005), Martens, van
Dijk and Pooter (2004), Pong, Shackleton, Taylor and Xu (2004), and Thomakos and Wang (2003), among
others.

2The occurrences of jumps in the T-Bond market also appear to be related to the releases of macroe-
conomic news announcements, as documented in, e.g., Andersen, Bollerslev, Diebold and Vega (2007) and
Johannes (2004).

3The idea of modeling the jump process in terms of the occurrence and the size of the jumps has a natural
precedent in the bin model for tick-by-tick transaction prices proposed by Rydberg and Shephard (2003).
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The two separate model structures described above effectively account for the variability
over the active part of the trading day when the market is formally open. However, the open-
ing price typically differs from the closing price from the previous day, and the corresponding
overnight return often accounts for a non-trivial fraction of the total daily return. The most
common approach for dealing with this issue when modeling and forecasting realized volatil-
ities is to scale the intraday measures and/or model forecasts by a constant to make them
unconditionally unbiased for the total daily variation; see, e.g., Martens (2002), Fleming,
Kirby and Ostdiek (2003), Koopman, Jungbacker and Hol (2005). An alternative approach
based on minimizing the mean square error for the realized variance over the whole day has
also been advocated by Hansen and Lunde (2005). Instead, we treat the overnight returns
as a time series of regularly occurring jumps. We model these by a discrete-time GARCH
model in which the conditional variance explicitly depends on the continuous sample path
variation over the immediately preceding active part of the trading day.

We also show how the three separate models discussed above may be combined in the
construction of recursive forecasts for the total daily and longer horizon return volatility.4

Comparing both in- and out-of-sample daily, weekly and monthly forecasts to those from
other discrete-time volatility models, including a standard GARCH(1,1) model and the HAR-
RV model, our results suggest that the more detailed modeling approach developed here can
in fact result in important forecast improvements.

Our paper is most directly related to Bollerslev, Kretschmer, Pigorsch and Tauchen
(2005), who estimate a discrete-time model for the joint dynamics of daily S&P 500 returns,
realized variance and bi-power variation. However, in contrast to the present paper, the
former paper makes no attempt at separately identifying or modeling the dynamics of the
jump and the overnight return components. Closely related results have also been reported
in independent work by Lanne (2006). Our paper is also related to the concurrent work of
Tauchen and Zhou (2006), who document time-varying jump intensities based on the same
realized variation measures and test statistics used here. Discrete-time GARCH models
incorporating Poisson jump processes with time-varying jump intensities based solely on
daily data have also previously been estimated by Chan and Maheu (2002), and Maheu and
McCurdy (2004), while earlier work by Neely (1999) highlights the potential benefits from
removing jumps when forecasting volatility using GARCH type models.

At a somewhat broader level our results also speak to the vast finance literature based on
continuous-time methods and corresponding parametric models. In particular, the compound
Poisson model of Merton (1976) and the many subsequent studies that rely on time-invariant
jump-diffusions, are all at odds with the empirical findings reported here. On the other
hand, the more recent studies by Andersen, Benzoni and Lund (2002), Chernov, Gallant,
Ghysels and Tauchen (2003), Eraker, Johannes and Polson (2003) that explicitly allow for
time-varying jump intensities all report difficulties in precisely estimating the process from
daily data. Meanwhile, consistent with the empirical results for the high-frequency realized

4The separate model estimates and accompanying forecasts reported here ignore any contemporaneous
dependencies among the innovations to the continuous sample path variability and jump equations. Incor-
porating this into a fully efficient multivariate system estimation is severely complicated by the fact that
the time series of significant jumps are effectively censored and the corresponding equations only estimated
based on a subset of the sample.
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variation measures reported here, Bates (2000), Pan (2002), Carr and Wu (2003) and Eraker
(2004) all point to the existence of time-varying jump intensities when on incorporating
additional information from options data.

The rest of the paper is organized as follows. Section 2 sets up the notation and reviews
the jump detection statistic used in revealing the latent jump processes. Section 3 reports the
initial empirical evidence for the distinct dynamic characteristics of the different components
that make up the total daily return variation. Section 4 models the continuous sample path
variance, while Section 5 and 6 develop our models for the discrete jump contribution and
the overnight return dynamics, respectively. Section 7 discusses the construction of forecasts
and compares the results to those from other procedures. Section 8 concludes.

2 Jump Detection Test Statistics

2.1 General Setup and Notation

We assume that the scalar logarithmic asset price within the active part of the trading day
follows a standard jump-diffusion process

dp(τ) = µ(τ)dτ + σ(τ−)dw(τ) + κ(τ)dq(τ), (1)

where τ ∈ R
+, and the time scale is normalized so that the unit interval corresponds to

a trading day; µ(τ) denotes the drift term with a continuous and locally finite variation
sample path; σ(τ) > 0 is the spot volatility process, assumed to be càdlàg; w(τ) is a
standard Brownian motion; κ(τ)dq(τ) refers to the pure jump part, where dq(τ) = 1 if there
is a jump at time τ and 0 otherwise, where the jumps occur with potentially time-varying
jump intensity λ(τ), and size κ(τ). We denote the corresponding discrete-time within-day
geometric returns by

rt,j = p(t− 1 + j/M) − p(t− 1 + (j − 1)/M), j = 1, 2, . . . ,M, (2)

where t ∈ N
+, and M refers the number of (equally spaced) return observations over the

trading day.
The continuous-time diffusion process above only applies for the active part of the trading

day. However, the opening price on one day typically differs from the closing price recorded
on the previous day. In fact, as discussed further below, it is natural to think of the overnight
returns as random jumps occurring at the deterministic times t = 1, 2, . . .. As such, the total
return for day t equals

rt = rt,n +
M

∑

j=1

rt,j = rt,n + rt,d, (3)

where rt,n denotes the overnight logarithmic price change from day t − 1 to day t, and we
follow the convention of measuring the daily returns as close-to-close.
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2.2 Realized Variation Measures

The volatility over the active part of the trading day t is measured by the quadratic variation

QVt =

∫ t

t−1

σ2(s)ds+
Nt
∑

j=1

κ2
t,j. (4)

The first integrated variance term represents the contribution from the continuous price path,
while Nt gives the number of jumps over day t, and

∑Nt

j=1 κ
2
t,j accounts for the corresponding

contribution to the variance from the within-day jumps.
The quadratic variation process and its separate components are, of course, not directly

observable. Instead, we resort to recently popularized model-free non-parametric consistent
measures, including the now familiar realized variance

RVt(M) =
M

∑

j=1

r2
t,j. (5)

As noted in Andersen and Bollerslev (1998), Comte and Renault (1998), Andersen, Boller-
slev, Diebold and Labys (2001, 2003), and Barndorff-Nielsen and Shephard (2002a,b), among
others, RVt(M) converges uniformly in probability to QVt as the sampling frequency goes to
infinity

RVt(M) P
-

M→∞

∫ t

t−1

σ2(s)ds+
Nt
∑

j=1

κ2
t,j, (6)

or equivalently, the length of the return interval goes to zero.
Meanwhile, a host of practical market microstructure complications prevents us from

sampling too frequently while maintaining the fundamental semimartingale assumption un-
derlying equation (1). Ways in which to best deal with these complications and the practical
choice of M have been the subject of intensive recent research efforts; see, e.g., Aı̈t-Sahalia,
Mykland and Zhang (2005), Bandi and Russell (2005), Barndorff-Nielsen, Hansen, Lunde
and Shephard (2006), and Hansen and Lunde (2006). In the analysis reported on below,
we simply follow most of the existing empirical literature in the use of a fixed five-minute
sampling frequency, corresponding to M equal to 80 and 79 for each of the two markets that
we study.

In order to separately measure the jump part, we rely on the realized bipower variation
measure developed by Barndorff-Nielsen and Shephard (2004a, 2006),

RBV1,t = µ−2
1

(

M

M − 2

) M
∑

j=3

|rt,j−2||rt,j|, (7)

where µa = E(|Z|a) for Z ∼ N(0, 1). The bipower variation measure defined above involves
an additional stagger relative to the measure originally considered in Barndorff-Nielsen and
Shephard (2004a), which helps render it robust to certain types of market microstructure
noise; see Huang and Tauchen (2005) for some initial analytical investigations and simulation-
based evidence along these lines. Under the assumption that the logarithmic price process
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is a continuous-time stochastic volatility semimartingale plus a finite-activity jump process,
RBV1,t(M) converges in probability to the integrated variance. Consequently, the difference
between the realized variance and the realized bipower variation consistently estimates the
part of the quadratic variation due to jumps

RVt(M) −RBV1,t(M) P
-

M→∞

Nt
∑

j=1

κ2
t,j. (8)

Moreover, under the same regularity conditions, the test statistic

Zt =

RVt−RBV1,t

RVt
√

((π
2
)2 + π − 5) 1

M
max(1, RTQt

RBV 2
1,t

)
. (9)

where

RTQ1,t = Mµ−3
4/3

(

M

M − 6

) M
∑

j=

|rt,j−4|
4/3|rt,j−2|

4/3|rt,j|
4/3, (10)

is asymptotically standard normally distributed under the null hypothesis of no within-day
jumps.5

Based on the above jump detection test statistic, the realized measure of the jump con-
tribution to the quadratic variation of the logarithmic price process is then measured by

Jt(M) = I(Zt > Φα) · (RVt(M) −RBVi,t(M)), (11)

where I(·) denotes the indicator function and Φα refers to the appropriate critical value
from the standard normal distribution. Accordingly, our realized measure for the integrated
variance is defined by

Ct(M) = I(Zt ≤ Φα) ·RVt(M) + I(Zt > Φα) ·RBVi,t(M). (12)

This definition automatically ensures that the non-parametric measures for the jump and
continuous components add up to RVt(M). This same decomposition of the within day
variance has also previously been explored by Andersen, Bollerslev and Diebold (2007),
among others. Of course, the actual implementation requires a choice of α. In the results
reported on below, we use a critical value of α = 0.99, but very similar results (available in the
unpublished supplementary appendix) were obtained for other values of α.6 For notational
simplicity, we will refer to these empirical measures as RVt, Ct and Jt in the sequel.

5Huang and Tauchen (2005) report extensive simulation evidence showing that this particular jump
detection test statistic exhibits excellent size and power properties for a one-factor logarithmic stochastic
volatility model augmented with compound Poisson jumps.

6In the actual implementation we also imposed a hard lower bound of 0.001 on the daily Ct(M).
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3 Data and Summary Statistics

3.1 Data

Our data consist of five-minute prices for the S&P 500 futures (SP) and 30-year U.S. treasury
bond futures (US) contracts. The raw transaction prices for both contracts were obtained
from Price-Data. The sample period for both assets begins on January 2, 1990, and ends on
February 4, 2005. The intraday five-minute prices for the SP contracts span the time interval
from 9:35 to 16:15 (EST), resulting in M = 80 non-overlapping return observations per day.
The five-minute prices for the US contracts cover the period from 8:25 to 15:00 (EST), for a
total ofM = 79 intraday returns. Our use of a five-minute sampling frequency parallels many
previous studies in the literature, and as discussed further in Andersen, Bollerslev, Diebold
and Vega (2007), for the two contracts analyzed here strikes a reasonable balance between
the desire for as finely sampled observations as possible on the one hand, and robustness to
contaminating market microstructure influences on the other.7

3.2 Summary Statistics

To get an idea about the properties of the different components that make up the total daily
return variance for each of the two markets, we plot in Figures 1 and 2 the daily return
rt, our measure for the continuous sample path variation Ct, the sum of the within day
squared jumps Jt, and the overnight squared returns r2

t,n. The figures clearly indicate rather
distinct dynamic dependencies in each of the different components, with the jump time series
appearing noticeably more erratic and less predictable than the other series.

To better understand these dependencies, we further decompose the Jt series into two
separate processes: one describing the occurrence of jumps, and the other the size of the
squared jump(s) within the day when at least one jump occurs. We denote these two pro-
cesses by It and St, respectively. More precisely, Pr(Jt = 0|Ft−1) = Pr(It = 0|Ft−1), while
Pr(0 < Jt ≤ j|Ft−1) = Pr(It = 1|Ft−1) · Pr(St ≤ j|Ft−1, It = 1). The resulting summary
statistics reported in Tables 1 and 2 do indeed reveal some significant dynamic dependencies
in the It and St series that are largely masked in the corresponding Jt series. Of course,
the Ljung-Box Q-statistics reported in the tables only capture own linear dependencies. As
discussed further in Section 5, there are also strong non-linear dynamic dependencies em-
bedded in the series for both markets. The reduced form models for each of the different
components discussed next are explicitly designed to account for these features.

7For further details concerning the previous-tick method used in the construction of the five-minute
returns and the specific contract rollover scheme, see Wasserfallen and Zimmermann (1985) and Dacorogna,
Gencay, Müller, Olsen and Pictet (2001), and Andersen, Bollerslev, Diebold and Vega (2007) and Fleming,
Kirby and Ostdiek (2003), respectively. For SP around 98% of the prices occur within one minute of each
five-minute mark, while for US the proportion is around 86%.
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4 Continuous Sample Path Variation

We start by detailing our model for the strongly serially correlated continuous sample path
variation process, Ct. The HAR-RV model first proposed by Corsi (2004), and further
developed by Andersen, Bollerslev and Diebold (2007), provides a particular convenient
framework for modeling these dependencies.8 The specific HAR-C model adopted here takes
the form,

log(Ct+1) = β0 + βCDlog(Ct) + βCW log(Ct−5,t) + βCM log(Ct−22,t)

+βJDlog(Jt + 1) + βJW log(Jt−5,t + 1) + βJM log(Jt−22,t + 1) + ǫt+1,C ,
(13)

where Ct−h,t ≡ h−1[Ct−h+1 + Ct−h+2 + ... + Ct] and Jt−h,t ≡ h−1[Jt−h+1 + Jt−h+2 + ... + Jt].
The logarithmic transform obviously prevents the implied continuous variation defined by
exponentiating Ct+1 from becoming negative.9

The left columns in Table 3 report the resulting OLS parameter estimates, together with
robust standard errors in parentheses and p-values in square brackets. The estimation results
confirm the strong own dynamic dependencies in Ct. Consistent with the results reported in
Andersen, Bollerslev and Diebold (2007) the coefficient estimates associated with the lagged
squared jumps for SP are generally insignificant, albeit all negative, while there is some
evidence of significant anti-persistent effects of the squared jumps for US. Meanwhile, the
Ljung-Box Q-statistics for the squared and absolute residuals (available in the supplementary
appendix) reveal clear evidence for significant conditional heteroskedasticity.

Hence, we augment the basic HAR-C model above with a GARCH error structure for
the time-varying volatility-of-volatility.10 Further, to allow for the possibility of fat-tails, we
estimate the model under the assumption of conditionally t-distribution errors as in Bollerslev
(1987). After some experimentation, we found that a GARCH(2,1) model provided a good
fit for both markets,

ǫt+1,C = σt+1,C ·
√

v−2
v

· zt+1,C , zt+1,C ∼ t(ν)

σ2
t+1,C = ωC + α1,Cǫ

2
t,C + α2,Cǫ

2
t−1,C + β1,Cσ

2
t,C .

(14)

The estimates from this augmented model are reported in the right columns of Table 3. The
conditional mean parameters are generally close to the previously reported OLS estimates.11

8Following Müller et al. (1997), the HAR type specification is sometimes given a structural interpretation
as arising from the interaction of agents with different investment horizons. We merely view the HAR-C
model as providing a convenient, or ”poor-man’s”, approximation to long-memory.

9Moreover, the unconditional distributions of realized logarithmic volatilities often appear approximately
normal; see, e.g., Andersen, Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev, Diebold and Ebens
(2001), and Barndorff-Nielsen and Shephard (2004b), among others.

10The presence of time-varying volatility-of-volatility is consistent with most of the continuous-time
stochastic volatility models used in the asset pricing finance literature. For instance, in the square-root
affine, or Heston, diffusion model, the conditional variance of the future instantaneous variance is an affine
function of the current instantaneous variance and the current instantaneous variance squared; see, e.g.,
Bollerslev and Zhou (2002).

11Since the model is formulated in terms of log(Ct+1), the form of the conditional heteroskedasticity plays
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The coefficient estimates associated with the past squared jumps again suggest that, every-
thing else equal, large jumps tend to lower the future continuous sample path volatility, and
particularly so for US.12 The residual diagnostics (reported in the supplementary appendix)
also confirm that the estimated GARCH(2,1) models adequately account for the conditional
heteroskedasticity.

5 Jump Variation

Our model for the trading-time jump variation consists of two parts: a model for the occur-
rence of jumps coupled with a model for the squared jump sizes.13 We begin by a discussion
of our model for jump occurrences.

5.1 The ACH Model

Let {t0, t1, ..., tn, ...} denote the random arrival times, or days, associated with significant
jumps. The Autoregressive Conditional Duration (ACD) model proposed by Engle and
Russell (1998), is ideally suited for modeling dynamic dependencies in the jump-durations
di = ti − ti−1, or the number of days between two adjacent significant jumps. However, the
ACD model only updates the conditional expected durations on event, or jump, days. From
a forecasting perspective, it is desirable to continuously incorporate new information as it
becomes available. The autoregressive conditional hazard (ACH) model of Hamilton and
Jordà (2002) was explicitly designed with this objective in mind.

In order to more formally define the ACH model, let N(t) denote the counting process
representing the number of jump days that have occurred up until time t. Also, define the
hazard rate

ht = Pr[N(t) 6= N(t− 1)|Ft−1]. (15)

The relationship between the hazard rate and the expected duration, say ψN(t − 1), if no
new information occurs between jump days, is then given by,

ψN(t−1) =
∞

∑

j=1

j(1 − ht)
j−1ht =

1

ht
. (16)

a direct role in determining the expected value of Ct+1. Specifically, under the simplifying assumption of
conditional normality, or ν = ∞, E[Ct+1|Ft] = exp{E[log(Ct+1)|Ft]+1/2V ar[log(Ct+1)|Ft]}. We will return
to a discussion of the numerical procedure that we actually use in the calculation of the expectations from
the more general model in the forecasting section below.

12Although some of the estimated coefficients are not significantly different from zero at the usual five
percent level, we purposely maintain the same HAR-C GARCH(2,1) specification for both markets. Also
note, that even though the ARCH(2) coefficients are estimated to be negative for both markets, the implied
coefficients in the infinite ARCH representations are all positive, so that the models are indeed well-defined.

13The model-free approach used here only identifies days with at least one significant jump and in turn
the sum of the within day squared jump(s). Further refinements along the lines of Andersen, Bollerslev,
Frederiksen and Nielsen (2006) for actually estimating each of the individual significant jumps could be used
in the formulation of even richer reduced form models.
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The ACH model directly parameterizes the hazard rate, ht, allowing it to depend on any
relevant time t− 1 information.

To illustrate, consider the simple ACH(1,1) model without any information updating
between jump days,

ht = 1
ψN(t)−1

,

ψN(t) = ω + α1dN(t)−1 + β1ψN(t)−1.
(17)

Under appropriate distributional assumptions this ACH(1,1) model is asymptotically equiv-
alent to the ACD(1,1) model, which parameterizes the conditional durations as ψi = ω +
α1di−1 +β1ψi−1; see Hamilton and Jordà (2002) for further details. The parameter estimates
from this ACH(1,1) model are reported in the first part of Table 4. The estimates confirm
the existence of strong persistence in the hazard rates, or equivalently the durations, in
both markets. The Ljung-Box Q-statistics for any remaining own dynamic dependencies in
the standardized durations implied by the model (reported in the supplementary appendix),
di/ψ̂i, are generally also insignificant.

The second set of estimates reported in Table 4 augments the basic ACH(1,1) model
by four weekday dummies for Monday, Tuesday, Wednesday and Thursday. We explicitly
exclude the Friday dummy to avoid singularity, so that the estimated coefficients represent
the effects relative to Friday. In addition, we include the logarithm of the number of days
to the next nearest news announcements of the Employment Report (representing the real
side of the economy) and the Consumer Price Index (representing the nominal side of the
economy).14 Specifically,

ht = 1
α1dN(t)−1+β1ψN(t)−1+δ

′zt−1
,

δ′zt−1 = δ0 + δMDM + δTDT + δWDW + δThDTh

+δESlog(nES + 1) + δCPI log(nCPI + 1).

(18)

Consistent with the extant news announcement literature, the results suggest a statistically
significant decreasing hazard for the occurrence of jumps in the US market as a function of the
number of days until the release of one of the two announcements. Also, the corresponding
coefficients for SP are both positive, albeit insignificant. The Monday through Thursday
weekday dummies are all positive, but they do not indicate any statistically significant
day-of-the-week effects in the jump occurrences. Nonetheless, in order to highlight the
added flexibility afforded by the augmented ACH model, we maintain this as our preferred
specification for both markets.15

To better illustrate the workings of the two different ACH specifications, Figures 3 and
4 plot the resulting implied conditional hazard rates, ĥt. Comparing the two figures, the
impact of the day-to-day updating for the latter set of plots is immediately evident. Still,
the two sets of figures reveal the same general patterns in the estimated hazard rates, with

14The results in Andersen, Bollerslev, Diebold and Vega (2007) suggest that these are the two most
important macroeconomic news announcements.

15We also experimented with augmenting the ACH model by Ct and Jt, but the estimated hazard rates
did not appear plausible, so we decided not to include any of these variables in our final model specification.
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jumps appearing more than twice as likely for US compared to SP over most of the sample.
Again, we believe that this is partly due to the much bigger impact of macroeconomic news
announcements for the fixed-income market. There is also a pronounced tendency for even
fewer jumps in the equity market during the middle part of the sample, almost akin to a
level shift in the estimated hazard rates. It is not clear what drives this change.

5.2 The HAR-J Model

Most continuous-time parametric jump diffusion models assume that the size of the jumps are
i.i.d. distributed through time. By directly observing the squared jumps, or more precisely
the realized measure of the sum of within-the-day squared jumps, the present framework
affords us much greater flexibility in terms of modeling the jump sizes.

Following the same basic idea underlying the HAR-C model, we parameterize the condi-
tional jump sizes as a function of the past continuous sample path variations.16 In particular,

log(St(i)) = β0 + βCDlog(Ct(i)−1) + βCW log(Ct(i)−5,t(i)) + βCM log(Ct(i)−22,t(i)) + ǫt(i), (19)

where t(i) maps the jump counter i into the corresponding trading day t, so that the lagged
variation measures on the right-hand-side are always measured in calendar time relative to
the time of the jump. The estimation results from this model are reported in the left columns
in Table 5. As seen from the table, the one month lagged continuous volatility generally have
the most explanatory power. Also, the size of the jumps for US are much more persistent
than for SP. Meanwhile, the Ljung-Box Q-statistics for the squared and absolute residuals
(reported in the supplementary appendix) again clearly indicate the existence of conditional
heteroskedasticity in the residuals from the model for both markets.

We therefore augment the basic HAR-J model above with a GARCH(1,1)-t error struc-
ture,

ǫt(i) = σt(i) ·
√

v−2
v

· zt(i), zt(i) ∼ t(ν),

σ2
t(i) = ω + α1ǫ

2
t(i−1) + β1σ

2
t(i−1).

(20)

The estimates from this preferred model are reported in the right columns in Table 5. The
results confirm the existence of significant GARCH effects. Otherwise, the estimated de-
pendencies in the conditional mean are directly in line with those for the homoskedastic
model.

6 Overnight Return Variance

The realized variation measures and corresponding reduced form models developed above
pertains to the return variation observed during the regular trading hours when the exchanges
are open. However, as previously noted, the opening price on one day typically differs from
the closing price on the previous day. Since most investors hold their portfolios over longer

16We also tried including various lags of log(St), as well as the raw and expected durations. All of these
other variables turned out to be insignificant.
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inter-daily horizons, the corresponding overnight return variability will directly affect the
risks of their positions. In particular, the proportion of the total daily variation due to the
over-night returns, as measured by the sample means of r2

t,n/(RVt + r2
t,n), equals 0.160 and

0.165 for the SP and US markets, respectively.
Two common ways of dealing with this non-trivial overnight variation have emerged in

the realized volatility literature. The first approach simply scales up the daytime realized
variation measures to provide an unbiased estimate for the variation over the whole-day. This
is the method used in, e.g., Martens (2002), Fleming, Kirby and Ostdiek (2003), Koopman,
Jungbacker and Hol (2005). Alternatively, the overnight squared returns may be added
to the within-day realized variation so that it covers the whole day. This approach, along
with its pros and cons, is discussed further in Hansen and Lunde (2005), who also propose
an improved estimator by optimally weighting, in a minimum mean-square-error sense, the
daytime realized volatility and the squared overnight return. Both of these approaches
implicitly assumes that the overnight squared returns may somehow be viewed as part of
the same process that generates the within day realized volatility. Here we take a different
approach and directly model the overnight returns, or jumps, by a separate discrete time
model.17

6.1 The GARCH-t Model

The summary statistics previously reported and discussed in Section 3.2, not surprisingly,
indicate the presence of serial correlation in the squared overnight returns. This naturally
suggests a GARCH type approach for capturing these dependencies. Since the overnight
returns are separated by the returns during the regular trading hours, we include the im-
mediately preceding daytime realized volatility as an additional explanatory variable in the
conditional variance equation. Moreover, since the continuous and discrete sample-path vari-
ation over the day may affect the subsequent overnight return differently, we split up the
realized volatility into Ct and Jt. Furthermore, to allow for the possibility that positive and
negative daytime shocks may have different effects, we condition the estimated coefficients
for Ct and Jt on the sign of the daytime return, rt,d. The resulting specification for the
overnight returns takes the form,

rt+1,n = µ+ ǫt+1,n

ǫt+1,n = σt+1,n ·
√

v−2
v

· zt+1,n, zt+1,n ∼ t(v)

σ2
t+1,n = ωn + α1,nǫ

2
t,n + β1,nσ

2
t,n + βCPC

P
t + βCNC

N
t + βJPJ

P
t + βJNJ

N
t ,

(21)

where CP
t = Ct · (rt,d ≥ 0), CN

t = Ct · (rt,d < 0), and similarly for JPt and JNt .
The left columns in Table 6 report the estimation results. As expected, the estimates for

α1 and β1 are both highly statistically significant and broadly in line with the typical daily
GARCH(1,1) model estimates, although their sums are slightly less than what is generally
found with daily returns. Of course, some of this ”lack” in persistence is made up by

17The studies by Chan, Chan and Karolyi (1991) and Martens (2002), which estimate individual discrete-
time models for the trading-time and overnight returns, provide an earlier precedent.
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significant positive dependence on the within day realized continuous sample path variation,
CP
t and CN

t . Interestingly, the jump components, JPt and JNt , are generally not significant.
Furthermore, the Wald test for the hypothesis of no volatility asymmetry, or βCP = βCN ,
equal 0.267 and 1.647 for each of the two markets respectively, with corresponding asymptotic
p-values of 0.606 and 0.199.18

The right columns in Table 6 report the estimation results from the more parsimonious
GARCH(1,1)-t model obtained by eliminating the jump components and combining the
positive and negative continuous variation components,

σ2
t+1,n = ωn + α1,nǫ

2
t,n + β1,nσ

2
t,n + βCCt. (22)

The estimated parameters are directly in line with those from the earlier more general spec-
ification, and the corresponding values for the maximized log likelihood functions are also
close to those for the unrestricted models. We consequently maintain this simpler model as
our preferred specification for the overnight return variation.

7 Forecasting

One of the many potential useful applications of the reduced form modeling framework
developed above relates to volatility forecasting. In particular, consider the question of
calculating one-day-ahead return volatility forecasts, or V ar(rt+1|Ft). The standard GARCH
based approach directly parameterizes this conditional expectation as a function of its own
past value(s) and the lagged squared return(s). This, of course, does not include any high-
frequency information. On the other hand, the now popular HAR-RV model parameterizes
the conditional variance as a distributed lag of the past realized variation measures. While
this does incorporate high-frequency information into the resulting forecasts, the traditional
HAR-RV model does not distinguish between the continuous sample path variation and the
discontinuous jump part. However, as discussed at length above, the dynamic dependencies
in these two components are very different. Moreover, the standard approaches of scaling the
realized volatilities or treating the overnight return as another intraday return in order to get
an unbiased measure for the full day variance both ignore the distinct dynamic dependencies
in the overnight returns.

In contrast, the framework proposed here explicitly decomposes the conditional variance
into three separate components,19

V ar(rt+1|Ft) = E(Ct+1|Ft) + E(Jt+1|Ft) + V ar(rt+1,n|Ft). (23)

18On estimating the same GARCH models under the assumption of conditionally normal errors, the
asymmetry appears significant for SP, indirectly suggesting that the effect is associated with the tails of the
distribution.

19The validity of this decomposition for the conditional expectations implicitly assumes that the afore-
mentioned convergence in probability of the realized variation measures implies convergence in mean. The
assumption of a bounded return process, or a weaker uniform integrability condition, is sufficient to ensure
that this holds; see, e.g., the discussion in Andersen, Bollerslev, Diebold and Labys (2003).
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The last term on the right-hand-side comes directly from the GARCH-t model discussed in
the previous section. As for the second term, our results suggest that the occurrences of
jumps and the sizes of the jumps are independent. Thus,

E[Jt+1|Ft] =

∫

∞

0

jdP (0 < Jt+1 ≤ j|Ft)

=

∫

∞

0

jdP (St+1 ≤ j|Ft, It+1 = 1) · P (It+1 = 1|Ft)

= [

∫

∞

0

jf(St+1 ≤ j|Ft, It+1 = 1)dj] · P (It+1 = 1|Ft)

= E(St+1|Ft, It+1 = 1) · ht+1.

Forecast for the hazard rate, ht, follows directly from the estimated ACH models. Since
the models for St+1 and Ct+1 are formulated in logarithmic terms, the two conditional ex-
pectations E(St+1|Ft, It+1 = 1) and E(Ct+1|Ft) will both involve a Jensen’s inequality type
correction. However, numerical evaluations of these expectations are easily accomplished by
means of simulations. Similarly, even though the highly non-linear dynamic dependencies
among the different model components render closed-form expressions for the multi-step
ahead conditional expectations, V ar(rt+h|Ft) for h > 1, infeasible, these are relatively easy
to compute by means of recursive simulations.20

To assess the accuracy of the HAR-CJN model forecasts, we compare the predictions to
the actual realized variation measures; i.e., for the one-day horizon forecasts RVt+1 + r2

t+1,n.
In addition to the one-day forecasts, we also calculate one-week and one-month forecasts
defined by the average of the forecasts from 1 to 5, and 1 to 22 days ahead, respectively.
As a benchmark comparison, we consider the forecasts from a simple GARCH(1,1) model
estimated on the daily returns, and an HAR-RV model properly scaled by the contribution
from the overnight return so that the forecasts are unconditionally unbiased.21 The first
subsection below discuss the results for the full sample period, labeled in-sample, while the
subsequent section reports on the results from a true out-of-sample forecast comparison.

7.1 In-Sample Forecasts

To begin, Table 7 reports the standard Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) for the forecasts from each of the three different models based on the data over
the full sample period.22 As is clear from the table, these in-sample summary statistics clearly

20In the results reported on below we rely on a total of 10,000 replications in calculating the expectations.
To minimize the impact of large influential outliers and stabilize the algorithm, we also trim any simulated
values more than twice the largest in-sample observation. Further details are available upon request.

21An alternative to these popular forecasting models and the HAR-CJN model developed here suggested
by one of the referees would be to project RVt+1 + r2

t+1,n on all of the variables in the time t information
set, including information about the jumps and the overnight returns. While this procedure might perform
well in a pure forecasting sense, it would obviously be completely void of any detailed information about the
individual components that make up the total daily variation.

22Patton (2006) has recently cautioned against the use of the MAE criteria with a noisy volatility proxy.
The realized volatility measures that we use here effectively mitigate these concerns.
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favor the more complicated HAR-CJN model for SP. Meanwhile, the in-sample RMSE and
MAE for US are not as clear-cut.

In order to further analyze relative performance of the HAR-CJN model, we also estimate
a series of Mincer-Zarnowitz style regressions. In particular, for the one-day-ahead forecasts,

(RVt+1 + r2
t+1,n) = b0 + b1Vt,GARCH + b2Vt,HAR−RV + b3Vt,HAR−CJN + ǫt+1 (24)

where Vt,M refers to the time t one-day-ahead forecast from model M. In addition to
the one-day-ahead forecasts, we run the same regressions for the 5- and 22-steps ahead
forecasts, appropriately correcting the standard errors of the parameter estimates for the
serial correlation in the residuals induced by the overlap in the data. Following the discussion
in, e.g., Anderson and Vahid (2007), these regressions are naturally interpreted as volatility
forecast encompassing regressions, in the sense that a coefficient significantly different from
zero implies that the information in that particular model forecast is not encompassed in the
forecasts by the two other models. As a further robustness check, we also report the results
from the simple Mincer-Zarnowitz regressions, in which the ex-post variation measures are
regressed on a constant and one of the three individual model forecasts in isolation.

The results from these joint and individual Mincer-Zarnowitz regressions are all reported
in Table 8. In the joint regressions for SP the forecasts from the HAR-CJN model invari-
ably receives a weight indistinguishably different from unity in a statistical sense, while the
estimated coefficients for the other two model forecasts are close to zero and insignificant, in-
dicating that the HAR-CJN forecasts encompasses the forecasts from other two models. The
individual SP regressions reported in the bottom part of the table further corroborate these
findings. In particular, the R2’s from the HAR-CJN models are always the highest,23 with
the estimated intercept and slope coefficients very close to zero and unity, respectively. The
corresponding in-sample results for US generally also favor the HAR-CJN model, although
the differences among the three model forecasts are not as large.

7.2 Out-of-Sample Forecasts

Even though the loss functions used in evaluating the forecasts discussed in the previous
section formally differ from the likelihood functions used in estimating the models, the in-
sample comparisons may seem to tilted toward making the more complicated HAR-CJN
model perform well. Hence, in order to more closely mimic a real-world forecast situation,
we also report on the results obtained by re-estimating all of the models with data up until
the end of 1999, retaining the last five years of the sample from January 2, 2000 to February
4, 2005 for out-of-sample forecast comparisons.24 Due to the relatively time consuming
calculations involved in the estimation of the non-linear models, we did not re-estimate the
models on a rolling basis over the out-of-sample period, instead simply freezing all of the
parameters at their estimates based on the full 1990-1999 in-sample period.

23As discussed in Andersen, Bollerslev and Meddahi (2004, 2005), the reported R2’s understate the true
degree of predictability due to the measurement errors in the realized volatility proxies. This does not,
however, impede any cross model comparisons.

24We also experimented with other out-of-sample periods, resulting in the same basic conclusions. Further
details concerning these additional robustness checks are reported in the supplementary appendix.
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The out-of-sample results essentially affirm the earlier in-sample findings. The RMSE’s
and MAE’s for SP reported in Table 9 again achieve their lowest values across all horizons for
the HAR-CJN models. The out-of-sample values for US are also the lowest for the HAR-CJN
model, although the numerical differences are not particularly large. Interestingly, however,
limiting the out-of-sample forecast comparisons for US to the last two years of the sample,
which tend to exhibit both larger and more frequent jumps, results in sharper differences
among the RMSE and MAE criteria. As such, this indirectly suggests that the benefits from
a forecasting perspective from separately modeling the two volatility components is to some
extend period specific.

Several procedures to formally test for the statistical significance of the observed differ-
ences in the RMSE and MAE criteria and the superior predictive ability of the underlying
forecasting models have recently been proposed in the literature. As a simple guide we here
rely on the easy-to-calculate Diebold and Mariano (1995) test involving a pairwise com-
parison of the forecasts from each of the two traditional models to the forecasts from the
HAR-CJN model.25 The test is based on the heteroskedasticity and autocorrelation con-
sistent t-statistic for the sample mean of Lt,HAR−CJN − Lt,M, where Lt,M denotes the time
t squared or absolute loss from the particular model M. Many of the corresponding p-
values reported in parentheses in Table 9 do indeed indicate statistically significant superior
out-of-sample performance of the HAR-CJN model.

The out-of-sample Mincer-Zarnowitz regressions adjusted for the in-sample parameter
estimation error uncertainty following West and McCracken (1998) reported in Table 10
generally also favor the HAR-CJN model. Although the high degree of co-linearity among the
three forecasts render most of the estimated coefficients for the joint encompassing regressions
rather imprecise, the individual regressions all achieve their highest R2’s for the HAR-CJN
model. Moreover, the estimated intercept and slope coefficients for the individual HAR-CJN
regressions are all close to zero and unity, respectively.

To further appreciate these results and the basic features of the different models, Figures
5 and 6 plot the one-day ahead out-of-sample forecasts. The overall level of the forecasts
obviously matches fairly closely across the three models for both of the markets. Consistent
with the results from the Mincer-Zarnowitz regressions, it also appears more difficult to
discern any sharp differences in the three US forecasts. Nonetheless, the HAR-CJN based
forecasts do seem to adapt more quickly to changes in the volatility than do the GARCH
and, to a lesser degree, the HAR-RV, based forecasts. Not surprisingly, on comparing the
forecasts to the actual realization in Figures 1 and 2, all of the models miss the very largest
observations which inherently must represent genuine large volatility innovations.

8 Conclusion

We use two fifteen-year samples of high-frequency intraday data for the S&P 500 and T- Bond
futures markets along with the model-free bi-power variation measures and corresponding

25Although the Diebold and Mariano (1995) test does not explicitly account for the effect of estimation un-
certainty, the out-of-sample version of the test coincides with the generally valid test for equal unconditional
predictive ability recently developed by Giacomini and White (2006).
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jump statistics of Barndorff-Nielsen and Shephard (2004a, 2006) to non-parametrically iden-
tify and measure the daily continuous sample path variation and squared jumps. Directly in
line with earlier studies we find that the volatility associated with the continuous price move-
ments within the day is a highly persistent process for both markets. Counter to a number
of previous studies, however, we detect important dynamic dependencies in both the times
between significant jumps and the sizes of the jumps. Further, the time series of overnight
returns, or price jumps, associated with the change in the closing price from one day to
the opening price of the next exhibits strong volatility clustering. To satisfactorily account
for these dependencies, we formulate and estimate a combination of several reduced form
time series models. In addition, we compare and contrast the forecasting performance of the
estimated models for each of the three non-parametrically identified volatility components
to other commonly used volatility forecasting models.

Looking ahead, our estimation results for the ACH model indicate that the occurrence
of jumps in the T-Bond market is directly related to certain macroeconomic news releases.
In this regard, it would be interesting to more systematically investigate the economic de-
terminants behind the apparent discontinuities. What is it that causes financial markets to
jump? The reduced form modeling setup developed here provides a particular convenient
framework for further exploring this important question.

In the model diagnostics and forecast comparisons presented in the paper, we have pri-
marily focused on mean square error type criteria. However, separately modeling the in-
traday jumps and the overnight returns are likely to prove especially beneficial for better
understanding the tails of the return distributions. It would be interesting to more directly
analyze this issue, and the model’s ability to capture the more extreme tail behavior and
corresponding expected shortfalls, as would be of interest in many practical risk management
situations.

As previously noted, the specification and estimation of empirically realistic continuous-
time jump diffusion models have been the subject of extensive recent research efforts. In
this regard, the relatively simple reduced form model structures for each of the different
variation measures developed here could also be used as auxiliary models in an indirect
inference setting to more effectively estimate and discriminate among some of these compet-
ing continuous-time specifications, naturally extending the earlier realized variation based
inferential procedures of Barndorff-Nielsen and Shephard (2002a) and Bollerslev and Zhou
(2002).

In a related context, the recent studies by Santa-Clara and Yan (2004) and Todorov (2006)
suggest that the premia required by investors in options markets to compensate for jump
and continuous volatility risks differ. By easily allowing for different risk premia associated
with the future risks originating from the continuous sample path price process and the
harder-to-hedge intraday jump and overnight components, it is possible that our relatively
simple-to-implement reduced form forecasting model may be used in the calculation of more
accurate derivatives prices.

We leave further work along these lines for future research.
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Table 1: Descriptive Statistics for SP

Ct Jt It St r2
t,n

Mean 0.856 0.042 0.086 0.491 0.261
Std. Dev. 1.098 0.610 0.281 2.025 0.865
Skewness 5.274 34.77 2.947 10.37 16.44
Kurtosis 47.20 1390 9.683 123.8 483.3

Min 0.004 0.000 0.000 0.006 0.000
Max 14.33 27.59 1.000 27.59 31.38
Obs. 3801 3801 3801 328 3800

Ljung-Box Q-statistics

Lags Ct Jt It St r2
t,n

5 6109 (0.000) 2.773 (0.735) 7.361 (0.195) 3.606 (0.607) 577.3 (0.000)
10 10039 (0.000) 24.69 (0.006) 15.50 (0.115) 6.190 (0.799) 727.3 (0.000)
15 12629 (0.000) 24.79 (0.053) 32.95 (0.005) 6.884 (0.961) 861.2 (0.000)
20 15050 (0.000) 26.75 (0.143) 37.47 (0.010) 7.077 (0.996) 962.9 (0.000)

Table 2: Descriptive Statistics for US

Ct Jt It St r2
t,n

Mean 0.253 0.037 0.255 0.143 0.066
Std. Dev. 0.205 0.158 0.436 0.286 0.160
Skewness 3.312 13.72 1.123 7.798 13.46
Kurtosis 23.99 281.5 2.261 88.71 340.9

Min 0.001 0.000 0.000 0.009 0.000
Max 2.742 4.519 1.000 4.519 5.271
Obs. 3781 3781 3781 965 3780

Ljung-Box Q-statistics

Lags Ct Jt It St r2
t,n

5 1492 (0.000) 5.511 (0.357) 38.11 (0.000) 4.648 (0.460) 72.6 (0.000)
10 2444 (0.000) 7.946 (0.634) 58.27 (0.000) 38.15 (0.000) 128.8 (0.000)
15 3192 (0.000) 10.42 (0.793) 93.10 (0.000) 44.12 (0.000) 152.2 (0.000)
20 3939 (0.000) 158.2 (0.000) 142.5 (0.000) 63.82 (0.000) 182.8 (0.000)
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Table 3: HAR-C Model Estimates

Homoscedastic GARCH(2,1)

SP US SP US
β0 -0.085 ( 0.011 )[ 0.000 ] -0.166 ( 0.052 )[ 0.001 ] -0.097 ( 0.010 )[ 0.000 ] -0.249 ( 0.038 )[ 0.000 ]

βCD 0.349 ( 0.024 )[ 0.000 ] 0.144 ( 0.043 )[ 0.001 ] 0.331 ( 0.020 )[ 0.000 ] 0.109 ( 0.020 )[ 0.000 ]
βCW 0.338 ( 0.034 )[ 0.000 ] 0.315 ( 0.062 )[ 0.000 ] 0.369 ( 0.030 )[ 0.000 ] 0.327 ( 0.036 )[ 0.000 ]
βCM 0.262 ( 0.029 )[ 0.000 ] 0.501 ( 0.061 )[ 0.000 ] 0.252 ( 0.025 )[ 0.000 ] 0.444 ( 0.039 )[ 0.000 ]
βJD -0.109 ( 0.071 )[ 0.126 ] -0.342 ( 0.135 )[ 0.012 ] -0.087 ( 0.078 )[ 0.267 ] -0.278 ( 0.116 )[ 0.017 ]
βJW -0.118 ( 0.077 )[ 0.124 ] 0.099 ( 0.224 )[ 0.657 ] -0.081 ( 0.100 )[ 0.418 ] 0.281 ( 0.221 )[ 0.205 ]
βJM -0.122 ( 0.088 )[ 0.165 ] -0.820 ( 0.402 )[ 0.041 ] -0.175 ( 0.099 )[ 0.079 ] -1.460 ( 0.329 )[ 0.000 ]
ω – – 0.049 ( 0.015 )[ 0.001 ] 0.015 ( 0.003 )[ 0.000 ]
α1 – – 0.111 ( 0.027 )[ 0.000 ] 0.129 ( 0.026 )[ 0.000 ]
α2 – – -0.024 ( 0.032 )[ 0.457 ] -0.090 ( 0.026 )[ 0.000 ]
β1 – – 0.720 ( 0.076 )[ 0.000 ] 0.921 ( 0.015 )[ 0.000 ]
ν – – 7.696 ( 0.740 )[ 0.000 ] 7.370 ( 0.822 )[ 0.000 ]

LogL -2805.434 -3890.313 -2671.580 -3341.914
Obs. 3779 3759 3779 3759

Table 4: ACH Model Estimates
ACH(1,1) Augmented ACH

SP US SP US
ω 0.227(0.241)[0.346] 0.212(0.084)[0.012] – –
α1 0.038(0.021)[0.061] 0.088(0.020)[0.000] 0.056(0.029)[0.053] 0.088(0.019)[0.000]
β1 0.942(0.036)[0.000] 0.858(0.035)[0.000] 0.900(0.059)[0.000] 0.859(0.033)[0.000]
δ0 – – 0.654(2.771)[0.813] -0.282(0.423)[0.505]
δM – – 0.320(1.695)[0.850] 0.412(0.298)[0.166]
δT – – 1.117(1.731)[0.519] 0.387(0.271)[0.154]
δW – – 2.979(1.962)[0.129] 0.681(0.299)[0.023]
δTh – – 1.144(1.666)[0.492] 0.325(0.266)[0.222]
δES – – 0.629(0.575)[0.274] 0.199(0.094)[0.034]
δCPI – – 0.757(0.629)[0.229] 0.396(0.089)[0.000]
LogL -1107.797 -2111.457 -1106.136 -2098.906
Obs. 3792 3778 3792 3778
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Table 5: HAR-J Model Estimates

Homoscedastic GARCH(1,1)

SP US SP US
β0 -1.093 ( 0.072 )[ 0.000 ] -1.479 ( 0.113 )[ 0.000 ] -1.299 ( 0.122 )[ 0.000 ] -1.535 ( 0.114 )[ 0.000 ]

βCD 0.281 ( 0.114 )[ 0.014 ] -0.057 ( 0.053 )[ 0.280 ] 0.172 ( 0.122 )[ 0.158 ] -0.085 ( 0.051 )[ 0.095 ]
βCW 0.460 ( 0.185 )[ 0.013 ] 0.269 ( 0.112 )[ 0.017 ] 0.440 ( 0.172 )[ 0.011 ] 0.338 ( 0.099 )[ 0.001 ]
βCM 0.345 ( 0.150 )[ 0.022 ] 0.489 ( 0.111 )[ 0.000 ] 0.343 ( 0.147 )[ 0.020 ] 0.474 ( 0.103 )[ 0.000 ]

ω – – 0.068 ( 0.110 )[ 0.540 ] 0.013 ( 0.007 )[ 0.046 ]
α1 – – 0.039 ( 0.042 )[ 0.355 ] 0.035 ( 0.010 )[ 0.000 ]
β1 – – 0.866 ( 0.009 )[ 0.000 ] 0.950 ( 0.010 )[ 0.000 ]
ν – – 3.265 ( 0.659 )[ 0.000 ] 6.430 ( 1.608 )[ 0.000 ]

LogL -387.854 -1281.353 -353.162 -1250.054
Obs. 327 960 327 960

Table 6: Overnight GARCH Model Estimates

Unrestricted Restricted
SP US SP US

µ 0.015(0.005)[0.004] 0.006(0.004)[0.121] 0.015(0.005)[0.003] 0.006(0.004)[0.105]
ωn -0.001(0.001)[0.233] 0.002(0.001)[0.014] -0.001(0.001)[0.199] 0.002(0.001)[0.020]
α1,n 0.041(0.012)[0.001] 0.045(0.011)[0.000] 0.044(0.012)[0.000] 0.046(0.010)[0.000]
β1,n 0.817(0.024)[0.000] 0.852(0.027)[0.000] 0.806(0.025)[0.000] 0.854(0.027)[0.000]
βCP 0.040(0.009)[0.000] 0.014(0.006)[0.013] – –
βCN 0.045(0.007)[0.000] 0.023(0.006)[0.000] – –
βJP -0.031(0.012)[0.010] -0.000(0.011)[0.964] – –
βJN 0.023(0.022)[0.305] 0.005(0.009)[0.574] – –
βC – – 0.045(0.007)[0.000] 0.019(0.005)[0.000]
ν 5.004(0.434)[0.000] 7.906(0.747)[0.000] 4.944(0.422)[0.000] 7.847(0.730)[0.000]

LogL -1863.415 -8.696 -1865.451 -10.300
Obs. 3799 3779 3799 3779
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Table 7: In-Sample Forecast Statistics

RMSE MAE
Horizon 1 5 22 1 5 22

GARCH 1.519 0.995 0.869 0.626 0.506 0.504
SP HAR-RV 1.477 0.943 0.827 0.556 0.453 0.466

HAR-CJN 1.412 0.855 0.748 0.542 0.417 0.420

GARCH 0.325 0.170 0.119 0.176 0.112 0.087
US HAR-RV 0.325 0.169 0.118 0.175 0.112 0.086

HAR-CJN 0.322 0.167 0.120 0.176 0.114 0.086

Table 8: In-Sample Mincer-Zarnowitz Regressions

Joint Regressions

SP US
Horizon 1 5 22 1 5 22

Const. -0.030(0.045) 0.025(0.055) 0.140(0.083) -0.004(0.020) -0.015(0.024) -0.012(0.033)
GARCH -0.096(0.106) -0.136(0.106) -0.022(0.150) 0.524(0.110) 0.459(0.109) 0.358(0.128)
HAR-RV -0.103(0.071) -0.189(0.123) -0.410(0.226) -0.302(0.148) 0.003(0.187) 0.097(0.156)
HAR-CJN 1.264(0.142) 1.353(0.161) 1.363(0.216) 0.774(0.097) 0.565(0.120) 0.539(0.132)

R2 0.399 0.601 0.564 0.123 0.310 0.408

Individual Regressions

SP US
Horizon 1 5 22 1 5 22

Const. 0.044(0.046) 0.127(0.061) 0.257(0.073) -0.023(0.019) -0.009(0.025) 0.022(0.036)
GARCH 0.939(0.050) 0.868(0.068) 0.750(0.062) 1.093(0.059) 1.053(0.077) 0.963(0.109)

R2 0.301 0.460 0.450 0.098 0.259 0.324

Intercept -0.066(0.081) -0.098(0.083) -0.083(0.104) -0.007(0.021) -0.018(0.027) -0.031(0.037)
HAR-RV 1.150(0.089) 1.180(0.095) 1.169(0.111) 1.043(0.062) 1.076(0.080) 1.113(0.111)

R2 0.346 0.523 0.473 0.095 0.265 0.345

Const. -0.061(0.050) -0.022(0.056) 0.046(0.066) 0.038(0.016) 0.044(0.019) 0.042(0.030)
HAR-CJN 1.091(0.058) 1.068(0.065) 1.024(0.072) 0.870(0.045) 0.838(0.052) 0.805(0.080)

R2 0.397 0.579 0.558 0.117 0.291 0.385
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Table 9: Out-of-Sample Forecast Statistics

RMSE MAE
Horizon 1 5 22 1 5 22

GARCH 1.929 (0.001) 1.269 (0.004) 1.130 (0.069) 0.836 (0.000) 0.669 (0.000) 0.694 (0.019)
SP HAR-RV 1.868 (0.002) 1.234 (0.004) 1.147 (0.009) 0.717 (0.224) 0.600 (0.002) 0.642 (0.005)

HAR-CJN 1.793 1.127 1.055 0.705 0.557 0.586

GARCH 0.375 (0.044) 0.199 (0.107) 0.150 (0.133) 0.193 (0.305) 0.130 (0.191) 0.105 (0.436)
US HAR-RV 0.375 (0.000) 0.198 (0.010) 0.151 (0.041) 0.192 (0.251) 0.130 (0.041) 0.108 (0.135)

HAR-CJN 0.368 0.188 0.132 0.190 0.124 0.098

Table 10: Out-of-Sample Mincer-Zarnowitz Regressions

Joint Regressions

SP US
Horizon 1 5 22 1 5 22

Const. 0.008(0.117) 0.114(0.170) 0.394(0.250) -0.029(0.062) -0.039(0.072) -0.050(0.100)
GARCH -0.194(0.270) -0.187(0.262) -0.097(0.294) 0.852(0.301) 0.762(0.279) 0.516(0.329)
HAR-RV -0.238(0.594) -0.813(0.779) -2.428(1.545) -0.709(0.379) -0.361(0.404) -0.061(0.446)
HAR-CJN 1.515(0.542) 2.019(0.716) 3.333(1.321) 1.018(0.247) 0.797(0.265) 0.795(0.402)

R2 0.375 0.568 0.518 0.124 0.321 0.413

Individual Regressions

SP US
Horizon 1 5 22 1 5 22

Const. 0.077(0.124) 0.201(0.187) 0.487(0.259) -0.049(0.060) -0.034(0.079) 0.016(0.102)
GARCH 0.989(0.099) 0.915(0.154) 0.746(0.119) 1.282(0.166) 1.250(0.224) 1.137(0.288)

R2 0.260 0.404 0.348 0.094 0.262 0.310

Const. -0.128(0.150) -0.043(0.202) 0.182(0.296) 0.025(0.070) 0.002(0.085) -0.033(0.107)
HAR-RV 1.325(0.144) 1.300(0.200) 1.217(0.194) 1.062(0.183) 1.139(0.234) 1.286(0.304)

R2 0.346 0.506 0.402 0.084 0.250 0.333

Const. -0.078(0.144) -0.008(0.168) 0.170(0.232) 0.048(0.084) 0.048(0.064) 0.012(0.098)
HAR-CJN 1.154(0.124) 1.157(0.156) 1.137(0.150) 0.944(0.138) 0.948(0.162) 1.058(0.257)

R2 0.371 0.554 0.466 0.109 0.287 0.383
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Figure 1: Daily Returns and Variation Components for SP
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Figure 2: Daily Returns and Variation Components for US
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Figure 3: Conditional Hazard Rates from ACH(1,1) Model
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Figure 4: Conditional Hazard Rates from Augmented ACH Model
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Figure 5: One-Day-Ahead Out-of-Sample Forecasts for SP
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Figure 6: One-Day-Ahead Out-of-Sample Forecasts for US
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