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A class of local linear kernel density estimators based on weighted least squares kernel estimation is

considered within the framework of Aalen’s multiplicative intensity model. This model includes the

filtered data model that, in turn, allows for truncation and/or censoring in addition to accommodat-

ing unusual patterns of exposure as well as occurrence. It is shown that the local linear estimators

corresponding to all different weightings have the same pointwise asymptotic properties. However,

the weighting previously used in the literature in the i.i.d. case is seen to be far from optimal when

it comes to exposure robustness, and a simple alternative weighting is to be preferred. Indeed,

this weighting has, effectively, to be well chosen in a ‘pilot’ estimator of the survival function as

well as in the main estimator itself. We also investigate multiplicative and additive bias correction

methods within our framework. The multiplicative bias correction method proves to be best in a

simulation study comparing the performance of the considered estimators. An example concerning

old age mortality demonstrates the importance of the improvements provided.

Keywords: Aalen’s multiplicative model; additive bias correction; censoring; counting processes;

exposure robustness; kernel density estimation; multiplicative bias correction; old age mortality
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Running Head: Smoothing filtered survival data

1 INTRODUCTION

The topic of this paper is kernel-based nonparametric density estimation for filtered data.

The term ‘filtered data’ covers the important practical problems of censored and truncated

data, and combinations thereof. It also covers further, possibly complicated, patterns of

exposure as well as occurrence, this being of particular interest in this article. These forms

of ‘data contamination’ are very common in biostatistical and actuarial studies. We will find

it convenient to work in the context of Aalen’s (1978) multiplicative intensity model which

covers the filtered data model of Andersen, Borgan, Gill and Keiding (1988) as a special

case.

Local polynomial modelling and, in particular, its local linear special case are very popular

in nonparametric regression (e.g. Fan and Gijbels, 1996, Loader, 1999). Transfer of this

methodology to density estimation, even in the i.i.d. case, is not totally straightforward and

various versions exist (e.g. Lejeune and Sarda, 1992, Jones, 1993, Fan and Gijbels, 1996,

Hjort and Jones, 1996, Loader, 1996, Simonoff, 1996). In this paper, we propose a class of

local linear kernel density estimators for filtered data based on one of the two main, and

closely related, methods for i.i.d. data, namely that based on weighted least squares kernel

estimation.

A particular feature of our proposal is that it involves a weighting scheme over and above

the localisation weighting provided by the kernel. However, we end up recommending setting

this weighting to unity! If a particular alternative weighting is used, the method reduces in

the i.i.d. case to that in Jones (1993, Section 5). We observe that the pointwise asymptotic

properties of the methodology are independent of the particular weighting chosen. However,
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we come to the recommendation just mentioned because the alternative weighting proves to

be much less robust to volatile exposure patterns than the unit weighting.

We go on to consider two bias correction methods which we introduce in the same local

least squares framework. One is a multiplicative bias correction, the other an additive bias

correction. The first of these is related to the method introduced in nonparametric regression

by Linton and Nielsen (1994) and transferred to i.i.d. density estimation by Jones, Linton

and Nielsen (1995) and to kernel hazard estimation by Nielsen (1998). (The latter paper

was based on Aalen’s multiplicative model as is this paper.) We then introduce to density

estimation an additive bias reduction technique that was introduced in the hazard estimation

case by Nielsen and Tanggaard (2001). We conclude, using the results of our fairly extensive

simulation study, that the multiplicative bias correction is the best of our variations on local

linear estimation for density functions. This is in contradistinction to the hazard estimation

case where it was found that the use of an additive bias corrected estimator was to be

recommended.

The outline of the paper is as follows. In Section 2 we describe the theoretical background

in terms of the counting process formulation, including the important special case of filtered

data. Two forms of pilot survival function estimator are also described there. In Section

3, particularly Section 3.1, we consider the basic classes of local constant and local linear

estimators. All our estimators involve a weighting function W , the choice of which is initially

discussed in Section 3.2. We relate the estimators of this section to existing estimators in

Section 3.3. In Section 4, we introduce the multiplicative bias correction method which

is a general method that can be applied to any initial estimator, although we utilise the

local linear estimator as that initial estimator in practice. Like many bias improvement

methods (e.g. Jones and Signorini, 1997), those considered here are open to iteration; a

3



double multiplicative bias corrected estimator is, therefore, also defined in this section. Our

additive bias reducing principle is introduced in Section 5, where it is combined with a form

of multiplicative bias correction (see also Nielsen and Tanggaard, 2001).

In Section 6, we state the pointwise theoretical properties of our estimators. In Section 7,

we go through the results of our simulation study comparing estimators and weightings. After

setting up the simulations in Section 7.2, we give results for complete data in Section 7.3 and

allude to very similar results obtained for censored data. In these cases, choice of weighting

is unimportant. But in Section 7.4 we introduce a complex exposure/occurrence pattern and

in that case find the choice of weighting to be crucial. In particular, we demonstrate the

importance of what we call the exposure robustness of the unit weighting. Cross-validatory

bandwidth selection is briefly described in Section 8. In Section 9, an example taken from

the actuarial literature concerning old age mortality in humans demonstrates the importance

of the improvements provided. Our results and recommendations are brought together in

the closing Section 10. We consider only the univariate case throughout.

2 COUNTING PROCESS BACKGROUND

Consider first the case where X1, . . . , Xn are i.i.d. observations. Let N
(n)
i indicate the failure

process for Xi i.e. N
(n)
i (t) = I(Xi < t), with I(·) denoting the indicator function. N(n) =

(N
(n)
1 , ..., N (n)

n ) is an n-dimensional counting process with respect to an increasing, right

continuous, complete filtration F (n)
t , t ∈ [0, T ], given below, see Andersen, Borgan, Gill and

Keiding (1992, p.60). We model the random intensity process λ(n) = (λ
(n)
1 , ..., λ(n)

n ) of N(n)

as

λ
(n)
i (t) = α (t) Z

(n)
i (t)

without restricting the functional form of the hazard function α(·). Here, Z
(n)
i (t) = I(Xi ≥
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t) is a predictable process taking values in {0, 1}, indicating (by the value 1) when the

ith individual is at risk. We assume that F (n)
t = σ

(
N(n)(s),Z(n)(s); s ≤ t

)
where Z(n) =

(Z
(n)
1 , Z

(n)
2 , ..., Z(n)

n ).

We next follow Andersen et al. (1988, p.50) and introduce Ci(t), another predictable

process taking values in {0, 1}, indicating (by the value 1) when the ith individual is at risk;

this is the filtering (censoring, truncation) process. Let

N
(n)
i (t) =

∫ t

0
Ci(y)dN

(n)
i (y)

be the filtered counting process and introduce the filtered filtration

F (n)
t = σ

(
N

(n)
(s),X,CZ(n)(s); s ≤ t

)
. Then the random intensity process

λ
(n)

= (λ
(n)

1 , ..., λ
(n)

n ) of N
(n)

is

λ
(n)

i (t) = α (t) Ci(t)Z
(n)
i (t).

Of course, if Ci = 1, i = 1, ..., n, then we are back in the situation of i.i.d. observations.

Other important examples of the filtering process involve censoring and truncation. First,

let us say that the stochastic variables are right censored (at either a random or a fixed

censoring time) at the time points (R1, ..., Rn). This corresponds to the filtering processes

Ci = I(t < Ri). On the other hand, the filtering processes Ci = I(t ≥ Li) correspond

to the stochastic variables being left truncated at (L1, ..., Ln). What is more, the general

filtering principle clearly allows for repeated left truncation and right censoring for the same

individuals. The random intensity process λ
(n)

above then allows for possibly complicated,

but not necessarily well measured or appreciated, patterns of exposure in the population of

interest. Correspondingly, robustness to the existence of complex patterns of exposure, and

to the possibly ill-defined nature thereof, called exposure robustness, will be a feature of the

performance of proposed estimators that will be of central interest later in this article.
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In the rest of the article, we consider Aalen’s multiplicative model that is even more

general in scope and notationally simpler than the more intuitive filtered model considered

above. We observe n individuals i = 1, ..., n. Let Ni count observed failures for the ith

individual in the time interval [0, 1]. We assume that Ni is a one-dimensional counting

process with respect to an increasing, right continuous, complete filtration Ft, t ∈ [0, 1], i.e.

one that obeys les conditions habituelles, see Andersen et al. (1992, p.60). We model the

random intensity as

λi(t) = α(t)Yi(t)

with no restriction on the functional form of α(·). Again, Yi is a predictable process taking

values in {0, 1}, indicating (by the value 1) when the ith individual is at risk. We assume

that (N1,Y1), ..., (Nn,Yn) are i.i.d. for the n individuals.

Each of the density estimators described in the next three sections involves a pilot esti-

mator of the survival function which will generically be written as Ŝ(t). In our simulation

work (Section 7), two particular survival estimators will be considered. The first arises

from estimating the conditional integrated hazard function Λ(t) =
∫ t
0 α(s)ds by the Aalen

estimator

Λ̂(t) =
n∑

i=1

∫ t

0

{
Y (n)(s)

}−1
dNi(s)

where Y (n)(s) =
∑n

i=1 Yi(s). The corresponding estimator for the survival function,

ŜKM(t) =
∏

s≤t

{
1 − dΛ̂(s)

}
,

is the Kaplan-Meier product limit estimator. The second, which is more complicated but

turns out to have advantages with respect to robustness to complex filtering patterns, is

ŜLLH(t) = exp
{
−

∫ t

0
α̂b(s)ds

}
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where α̂b(s) is the local linear hazard function estimator using bandwidth b and the unit

weighting, as described in Section 5 of Nielsen and Tanggaard (2001). Note that we do

not believe it to be worthwhile to employ a more sophisticated bias-corrected hazard rate

estimator.

3 LOCAL CONSTANT AND LOCAL LINEAR ESTIMATORS

3.1 Main Ideas

Let K be a probability density function symmetric about zero and write Kb(·) ≡ b−1K(b−1·)

for any bandwidth b. Let W (s) be an arbitrary weight function and let qp(z) =
∑p

i=0 θiz
i

denote a polynomial of degree p. Then, we can define a local polynomial kernel density

estimator based on the local least squares approach of Nielsen (1998); see also Jones (1993).

It is given as f̂p,W (t) = θ̂0(t) = θ̂0 where θ̂ = (θ̂0, ..., θ̂p) and

θ̂ = arg minθ lim
w→0

n∑

i=1

∫ ∞

0

(
1

w

∫ s

s−w
Ŝ(u)dNi(u) − qp(t − s)

)2

× Kb(t − s)W (s)Yi(s)ds

= arg minθ

n∑

i=1

∫ ∞

0

(
Ŝ(s) △ Ni(s) − qp(t − s)

)2
Kb(t − s)W (s)Yi(s)ds. (1)

Minimisation of the criterion function (1) is well defined because the differentiated criterion

function is well defined via adoption of the notation
∫ △Ni(s)W (s)ds ≡ ∫

W (s)dNi(s).

(Implicit here is the fact that the first squared term in the expansion of the squared bracket

in (1) is irrelevant.)

This is entirely parallel to the usual methods of local polynomial regression estimation

as in e.g. Wand and Jones (1995), Fan and Gijbels (1996). We will not consider polynomials

of degree p ≥ 2 in this article, due to their close affinity with higher order kernel density
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estimation, one of the less successful methodologies for improving kernel density estimation

(e.g. Jones and Signorini, 1997). Instead, we concentrate on the local constant and local

linear cases, p = 0 and p = 1, respectively. These can be explicitly written down. First,

f̂0,W (t) =

∑n
i=1

∫ ∞
0 Kb(t − s)W (s)Yi(s)Ŝ(s)dNi(s)∫ ∞
0 Kb(t − s)W (s)Y (n)(s)ds

.

Second,

f̂1,W (t) =
n∑

i=1

∫
Kt,b(t − s)W (s)Yi(s)Ŝ(s)dNi(s),

where

Kt,b(t − s) =
a2(t) − a1(t)(t − s)

a0(t)a2(t) − {a1(t)}2 Kb(t − s)

and

aj(t) =
∫

Kb(t − s)(t − s)jW (s)Y (n)(s)ds.

Notice that

∫
Kt,b(t − s)W (s)Y (n)(s)ds = 1,

∫
Kt,b(t − s)(t − s)W (s)Y (n)(s)ds = 0,

∫
Kt,b(t − s)(t − s)2W (s)Y (n)(s)ds > 0,

so that Kt,b can be interpreted as a second order kernel with respect to the measure µ, where

dµ(s) = W (s)Y (n)(s)ds.

For any given W , we would expect the local linear estimator to be preferable to the local

constant estimator, and this is confirmed in both theory and simulations later in the paper.

The usual reasons apply (Wand and Jones, 1995, Fan and Gijbels, 1996): the asymptotic bias

of the local constant estimator is less appealing than that of the local linear estimator, and

more importantly, in the presence of known boundaries, the local linear estimator provides

good boundary correction relative to the local constant estimator. The pointwise asymptotic
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properties of these and the estimators to be introduced in Sections 4 and 5 will be collected

together in Section 6.

3.2 Choice of Weight Function

It will turn out that the pointwise asymptotic behaviour of the local linear estimator is

independent of the choice of weighting function W . This is not so for the local constant

estimator. (This behaviour mimics that of weighting functions in nonparametric regression.)

Two particular choices of weight function strike us as being particular candidates for

use as W . The first is simply a unit, or perhaps ‘natural’, weighting W (s) ≡ n. The

second is to take W (s) = {n/Y (n)(s)}I(Y (n)(s) > 0) = W0(s), say; following Nielsen and

Tanggaard (2001), we call this the Ramlau-Hansen weighting. This is motivated largely

by observing what the local polynomial estimators reduce to in the i.i.d. case for which

ŜKM(s) = Y (n)(s)/n. It is the weighting W0(s) which yields the least squares local polynomial

approach of Lejeune and Sarda (1992) and Jones (1993, Section 5), and this in turn yields the

ordinary kernel density estimate for both f̂0,W and f̂1,W , the latter with boundary correction.

To show this for f̂0,W , let X1, . . . , Xn be i.i.d. stochastic variables with density f and let

Ni(s) = I(Xi < s), Yi(s) = I(Xi ≥ s), nŜ(s) = Y (n)(s) =
n∑

i=1

Yi(s) = n {W0(s)}−1

be the quantities from the counting process formulation above. Then, for an internal point

t > 0,

f̂0,W (t) =

∑n
i=1

∫ ∞
0 Kb(t − s)W0(s)Yi(s)Ŝ(s)dNi(s)∫ ∞
0 Kb(t − s)W0(s)Y (n)(s)ds

=

∑n
i=1 Kb(t − Xi)W0(Xi)Ŝ(Xi)

n
∫ ∞
0 Kb(t − s)ds

= n−1
n∑

i=1

Kb(t − Xi).

Our local constant filtered density estimator therefore reduces to the standard kernel density

estimator when filtering is not present and the Ramlau-Hansen weighting is used. Under
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unit weighting, and for i.i.d. data, f̂0,W essentially estimates f × S, where S is the survivor

function, and then divides by an estimate of S.

It will also turn out that the asymptotic indifference to the choice of weighting function

W of the local linear estimator — and indeed that of more sophisticated estimators to follow

— translates to practical indifference also in the cases of i.i.d. and censored data; see Section

7.3. This will prove to be far from the case with regard to (complex) exposure robustness,

however; see Section 7.4.

3.3 Related Estimators

We indicated in the introduction to this paper that kernel weighted least squares is “one of the

two main, and closely related, methods for i.i.d. data”; the other methodology we had in mind

is the kernel weighted local likelihood approach of Copas (1995), Hjort and Jones (1996),

Loader (1996) and Eguchi and Copas (1998). If we think of density estimation as the limiting

case of regression of histogram bin heights against histogram bin centres as the histogram

binwidth tends to zero, the former method arises from normal-based local regression in that

context, the latter from Poisson regression (Simonoff, 1996). Our main reason for following

the least squares path is explicitness of estimators and hence computational simplicity; we

also suspect the answers obtained will not be very different, and indeed the asymptotic

theory for the two will be the same. (One could also, at least in principle, mimic the local

likelihood case by introducing a factor of 1/f or, in practice, an estimate thereof, into W .)

Nonnegativity is assured for the local constant estimator but not for the local linear. An

attractive way of ensuring nonnegativity is to fit a log-linear form (by kernel weighted least

squares or otherwise) rather than a linear one (Loader, 1996). We have much sympathy with

this approach, but again computational expediency has currently won us over.
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There already exist other kernel approaches to density estimation for censored data (e.g.

Marron and Padgett, 1987). They are local constant-type estimators. One obvious estimator

is a kernel smoothing of the Kaplan-Meier estimator; W (s) = Wi(s) = {n/Yi(s)}I(Yi(s) > 0)

is taken there (Mielniczuk, 1986). A competing estimator smooths only uncensored data and

divides by a Kaplan-Meier estimate of the censoring distribution.

As alluded to at the end of Section 2, the Aalen hazard estimator and Kaplan-Meier

survival estimator correspond to one another. However, the survival estimator arising from

a smoothed Aalen estimator differs from that of smoothing the Kaplan-Meier estimator, and

this will prove to be important for exposure robustness later. Mathematically, thinking of

things via the Aalen estimator is more natural and allows asymptotic properties for density

estimation to be inherited directly from the hazard estimation case. This is because the

Aalen estimator gives a martingale while subtracting the compensator, but the Kaplan-

Meier estimator does not. In fact, one can get to the martingale from the Kaplan-Meier

estimators by integration by parts, resulting in one term involving the Aalen estimator (and

hence the martingale) and another of lower order, O(1/
√

n).

4 MULTIPLICATIVE BIAS CORRECTION

A multiplicative bias correction was introduced for kernel density estimation in Jones, Linton

and Nielsen (1995). In this section we take essentially the same approach within our local

least squares framework. First, introduce an estimator f̃(t) which in practice we will take to

be f̃(t) = f̂1,W (t). Then, do a second local linear minimisation which is aimed at estimating

the multiplicative error gM(t) ≡ f(t)/f̃(t) of the estimator f̃(t) by ĝ(t), say. Thus the

multiplicative bias correction density estimator will be

f̂M (t) = f̃(t)ĝM(t).
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So, take ĝM(t) = θ̂0 where θ̂ = (θ̂0, θ̂1) and

θ̂ = arg minθ

n∑

i=1

∫ ∞

0

(
Ŝ(s) △ Ni(s) − {θ0 − θ1(t − s)}f̃(s)

)2

× Kb(t − s)W (s)Yi(s)ds

= arg minθ

n∑

i=1

∫ ∞

0

(
f̃−1(s)Ŝ(s) △ Ni(s) − {θ0 − θ1(t − s)}

)2

× Kb(t − s)f̃ 2(s)W (s)Yi(s)ds (2)

Explicitly, we have that

ĝM(t) =
n∑

i=1

∫
K

M
t,b(t − s)f̃(s)W (s)Yi(s)Ŝ(s)dNi(s)

where K
M
t,b is constructed as Kt,b in Section 3 but with the weighting function in the aj(t)’s

multiplied by the factor f̃ 2(s).

Note that, in the i.i.d. case, if we obtained our preliminary estimator with the W0(s)

weighting defined in Section 3.2 and our second step estimator using W (s) = W0(s) in the

formulation above, then we would arrive essentially at the estimator considered in Jones,

Linton and Nielsen (1995). Estimator f̂M amounts essentially to running the local linear

estimation process twice and could be iterated further (using, initially, f̂M as f̃). This double

multiplicative bias corrected estimator, which we shall refer to as f̂M2 is also considered in

Sections 6 and 7.

5 ADDITIVE BIAS CORRECTION

In this section we adapt to density estimation the additive bias reducing technique of Nielsen

and Tanggaard (2001). In contradistinction to Section 4, consider the additive error gA(t) ≡

f(t) − f̃(t) in using f̃(t) to estimate f(t). Again, seek to estimate the error term in local
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linear fashion. That is, ĝA(t) = θ̂0 where θ̂ = (θ̂0, θ̂1) and

θ̂ = arg minθ

n∑

i=1

∫ ∞

0

(
Ŝ(s) △ Ni(s) − f̃(s) − {θ0 − θ1(t − s)}

)2

× Kb(t − s)W (s)Yi(s)ds (3)

and

f̂A(t) = f̃(t) + ĝA(t).

We present this, however, not to pursue it in the form just given, but rather as a precursor

to the development of this idea proposed in the remainder of this section, after this paragraph.

The reason that we do not advocate this simple additive bias correction is that it is essentially

equivalent to earlier attempts at additive bias correction which effectively result in higher

order kernel estimation (Jones, 1995). In particular, (3) results in a fully local linear version

of the twicing notion of Stuetzle and Mittal (1979) which has equivalent fourth order kernel

2K − K ∗ K where ∗ denotes convolution. In our view, fourth order kernels are not a very

successful way to try to improved kernel density estimators (Marron and Wand, 1992, Jones

and Signorini, 1997).

Now let g̃A(t) be a preliminary estimate of gA(t) to which we shall return below. We

seek to improve the additive bias correction available via f̃(t) + g̃A(t) by introducing a local

linear term multiplicatively into the additive bias correction term. Specifically, m̂(t) = θ̂0

where θ̂ = (θ̂0, θ̂1) and

θ̂ = arg minθ

n∑

i=1

∫ ∞

0

[
Ŝ(s) △ Ni(s) − f̃(s) − {θ0 − θ1(t − s)} g̃A(s)

]2

× Kb(t − s)W (s)Yi(s)ds

= arg minθ

n∑

i=1

∫ ∞

0

[
g̃−1

A (s)
{
Ŝ(s) △ Ni(s) − f̃(s)

}
− {θ0 − θ1(t − s)}

]2

× Kb(t − s)g̃2
A(s)W (s)Yi(s)ds (4)
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and

f̂A|M(t) = f̃(t) + m̂(t)g̃A(t).

Explicitly,

m̂(t) =
n∑

i=1

∫
K

A|M
t,b (t − s)g̃A(s)W (s)Yi(s)Ŝ(s)dÑ

A|M
i (s)

where

dÑ
A|M
i (s) = dNi(s) − Ŝ(s)−1f̃(s)ds

and K
A|M
t,b is constructed as Kt,b in Section 3 but with the weighting function in the aj(t)’s

multiplied by the factor g̃2
A(s).

It remains to specify g̃A(t). We use a simple smoothed bootstrapping procedure (Efron

and Tibshirani, 1993). Let Ψt be the functional of the underlying data that results in the

estimator f̃(t) = f̂1,W (t), that is

f̃(t) = Ψt {(N1,Y1), .., (Nn,Yn)} .

Then let f(t) be the bootstrapped estimator of f̃(t) :

f(t) = Ψt

{
(Λ̂1,Y1), .., (Λ̂n,Yn)

}

where the Λ̂i’s are the integrated local linear estimators of the observed counting processes:

Λ̂i(t) =
∫ t
0 Yi(s)f̃(s)ds. Then

g̃A(t) = f(t) − f̃(t).

The key to using what is really a rather naive estimate of gA(t) is that we allow our local linear

device to introduce improvement; in this way, we are able to use just a single bandwidth

throughout and avoid difficult ‘pilot’ estimation questions such as, perhaps, choice of a second

bandwidth.
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By the way, an approach in which the roles of multiplicative and additive bias corrections

are reversed turns out not to work and so will not be considered here.

6 POINTWISE ASYMPTOTIC THEORY

In this section, we assume that the following general assumptions hold: The functions γ, w

∈ C1 ([0, 1]) are positive in t. ∆t,b is defined as the local neighbourhood ∆t,b = [t−B0b, t+B0b]

where b is the bandwidth, b → 0 and nb → ∞ as n → ∞, and B0 is a fairly large constant.

The functions γ, w are the local limits of, respectively, the exposure and the weighting

function, that is

sups∈∆t,b

∣∣∣Y (n)(s)/n − γ(s)
∣∣∣→P 0

and

sups∈∆t,b
|W (s)/n − w(s)|→P 0.

Also, f∈ C6 ([0, T ]).

The
√

n−consistency of Ŝ implies that Ŝ can be substituted by S in all the theoretical

considerations. The derivation of theoretical properties of the five estimators considered in

this section therefore parallels the derivation of the theoretical properties given in Nielsen and

Tanggaard (2001). For all the estimators the strategy is to write the error term f̂(t)−f(t) as

a variable part Vt converging in distribution plus a stable part Bt converging in probability.

Vt is not exactly the variance and Bt is not exactly the bias, but Vt and Bt are analytically

tractable quantities that are asymptotically equivalent to, respectively, the variance and the

bias.

In Table I below we give the asymptotic properties of these two terms for each of the five

estimators on which we concentrate from here on. These are:
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f̂0, the local constant estimator (Section 3);

f̂1, the local linear estimator (Section 3);

f̂M , the multiplicatively bias corrected local linear estimator (Section 4);

f̂M2, the iterated multiplicatively bias corrected local linear estimator (Section

4);

f̂A|M , the enhanced additively bias corrected local linear estimator (Section 5).

Results do not depend on the particular choice of W and, in particular, cover W (s) = W0(s)

and W (s) = 1. (The W subscript has therefore been removed from the notation for the first

two estimators above.)

Write κ2 =
∫ 1
−1 v2K(v)dv. The asymptotic biases in Table I reflect the facts that f̂0

and f̂1 are standard, second order bias, estimators, f̂M is a fourth order bias estimator and

f̂M2 and f̂A|M are sixth order bias estimators. Given that the normalising factor for the

variance is (nb)1/2 in all cases, the resulting optimal bandwidth and optimal mean squared

error magnitudes given in Table I follow readily. While estimators with fourth order bias are

popular and quite promising (Jones and Signorini, 1997), those with sixth order bias have

not often been promoted. A concern is that any further (asymptotic) improvements in bias

may be small and compensated for in practice by increases in variance.

* * * Table I about here * * *

Also given in Table I is a ‘variance factor’. The asymptotic expression for each variance

term is of the form Vt = gℓUt where Ut = {nby(t)}−1f(t)S(t). In each case, gℓ is a simple

function of K: g1 =
∫

K2(u)du, g2 =
∫

Γ2
K(u)du where ΓK(u) = 2K − K ∗ K(u) and

g3 =
∫

∆2
K(u)du where ∆K(u) = K + ΓK − K ∗ ΓK . Here, ∗ denotes convolution.
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7 A SIMULATION STUDY

7.1 Preamble

In this section, we conduct a simulation experiment on the performance of the five estimators,

f̂0, f̂1, f̂M , f̂M2, f̂A|M . The simulation study has much in common with that of Nielsen and

Tanggaard (2001) which was for the case of hazard rate estimation, but some of it, especially

aspects of the extension to exposure robustness in Section 7.4, necessarily goes some way

beyond what was previously done for the hazard case.

7.2 Experimental Design and Numerical Issues

Our experiments utilised each of seven different examples of true densities, labelled fk, k =

1, . . . , 7. These densities are gamma distributions and mixtures of gamma distributions. The

density f 1 is the gamma with parameters λ = 1, r = 1, where r/λ = 1 is the mean and

r/λ2 = 1 is the variance. Thus, f 1 is an exponential distribution, the density f 2 has mean

1.5 and variance 1, while the density f 3 has mean 3 and variance 1. Introduce also the gamma

density g with mean 6 and variance 1. Then, the mixtures f 4, . . . , f 7 are constructed from

f 2, f 3 and g by using weight vectors, w, given by:

f 4 : w = (1/2, 1/2, 0), f 5 : w = (1/2, 0, 1/2),

f 6 : w = (0, 1/2, 1/2), f 7 : w = (1/3, 1/3, 1/3).

This set of densities is portrayed in Figure 1.

* * * Figure 1 about here * * *

Simulated complete data sets were constructed as follows; consideration of the simulation

of contaminated datasets will be delayed until Section 7.4. First, we defined a grid on
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the interval [0, T ] with gridlength δM = T/M0; this grid is {tj : tj = (j − 1)δM0
, j =

1, . . . , M0}. Next, for a sample of n individuals, the number of failures at time ti, N(ti),

were generated from the binomial distribution Bin
(
Y (n)(ti), f

k(ti)S
k(ti)δM0

)
where Sk is

the survivor function associated with fk and Y (n)(ti) is the number at risk at time ti as

before. Computation time was highly dependent on M0. In general, M0 = 100 was as low as

we felt comfortable to go while still giving nice results in the sense that any changes in results

for larger M0 can be explained by simulation noise. Note that we envisage discretization to

a grid as a computational device for general use in the implementation of our estimators and

not just for the purposes of this simulation study.

The simulations were repeated for n = 100, n = 1000 and n = 10000 individuals. As

kernel we used

K(x) =
3003

2048
(1 − x2)6I(−1 < x < 1).

All true densities in the study have support [0,∞); however, we restrict ourselves to estima-

tion on the interval [0, 10], so that T = 10. Note that
∫ 10
0 fk(s)ds > 0.999, k = 1, . . . , 7.

We report the results of two strategies for bandwidth selection. The first method is

based on the best possible bandwidth. This amounts to finding for each simulated set of

data, r = 1, ..., R, the best possible bandwidth br, in the sense of having smallest error in

estimating the true density. The following is our measure of estimation error:

errr(f̂
k
ℓ,r, f

k) = n−1
∫ T

0

[
f̂k

ℓ,r(s) − fk(s)
]2

Y (n)(s)ds (5)

for ℓ ∈ {0, 1, M, M2, A|M} , k = 1, . . . , 7. We also tried an average best bandwidth strategy,

which amounts to finding the bandwidth, b0, which minimises

avgerr(f̂k
ℓ , fk) =

1

R

R∑

r=1

errr(f̂
k
ℓ,r, f

k).
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The error-minimising bandwidths are found by a one-dimensional search routine (the

golden algorithm plus the mnbrak algorithm for initially bracketing the minimum. Both al-

gorithms are from the Numerical Recipes library (http://nr.com). The search was confined

to an appropriate interval [α, β] e.g. [α, β] = [1/M0, 10] for n = 100. Our experiments showed

that there were problems with multiple local extrema. In order to improve the search and

make sure that a global minimum was reached we started the search at up to 10 different,

equidistant, locations in the interval [α, β].

Both of these approaches to bandwidth selection utilise the known density fk, and are

thus unavailable in practice. The first remains valuable, however, as a guide to relative

performance of the underlying methods separated from bandwidth selection methodology

and as a benchmark for data-driven estimators of bandwidth. The second, the average best

bandwidth, can be construed as a reasonable approximation to the performance of a good

automatic bandwidth selector.

7.3 Results for Complete and Censored Data

The results for best possible bandwidth and average best bandwidth are given in Tables II

and III, respectively. Let us concentrate initially on Table II. The local constant estimator

f̂0 is inferior to all the other estimators in all cases, except for improving slightly on the local

linear estimator f̂1 for f 3 and f 6 for n = 1000 and n = 10000. For n = 100, the multiplicative

density estimator f̂M is generally an improvement on f̂1, but in all but one case f̂M2 fails

to improve on f̂M . The performance of f̂A|M is best of all for two of the three monotone or

unimodal densities f 1 and f 3, but is worst (except for f̂0) for the bimodal densities f 4, ..., f 7.

Similar effects are observed for n = 1000 and n = 10000: f̂M generally beats f̂1, f̂M2 only

occasionally improves on f̂M (even for n = 10000) and f̂A|M remains poor for the bimodal
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densities while its performance on the simplest densities gets a little worse. For the average

best bandwidth, which is arguably closer to something achievable in practice, much the same

lessons are learned.

* * * Tables II and III about here * * *

In both Tables II and III, the average performance column shows reasonable closeness

between f̂1, f̂M , f̂M2 and f̂A|M , but there is a consistent winner in f̂M (and consistent losers

in f̂1, at least for n > 100, and, a long way behind, f̂0). f̂M2 improves its standing a little as

n increases, but has not in general outperformed f̂M even when n is as large as 10000.

The qualitative results are largely similar to those found in Nielsen and Tanggaard (2001)

for similar estimators in the hazard rate case, but with two important exceptions. The first

is that for hazards the local constant estimator performed best for the more complicated

hazards and for n = 100; we no longer observe any such saving grace with f̂0. The second

difference between hazard and density estimation cases is that while the additive bias cor-

rected hazard estimator was much more competitive with the multiplicative bias corrected

hazard estimator, the pendulum has swung back towards the multiplicative bias corrected

estimator in the density case.

The simulation results given above are all for the use of the unit weighting W (s) ≡ 1

in the main stage of definition of the estimators (together with ŜKM as the initial survival

function estimator). It turns out that results for estimators employing the Ramlau-Hansen

weighting W (s) = {1/Y (n)(s)}I(Y (n)(s) > 0) = W0(s) (together with ŜKM) are very similar

too. This observation extends to a simulation study (not shown) of a situation in which

data were censored, the censoring distribution being the same as the distribution generating

the data and the average proportion of censored values being 50%. The situation is quite

different, however, for complex exposure patterns, as shown in the next subsection.
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7.4 Results for Exposure Robustness

As well as complete, truncated and censored data, the notion of filtered data extends to

situations involving (possibly complex) patterns of exposure as well as occurrences. An

area in which both exposures and occurrences are often carefully monitored is in actuarial

studies. However, it is also very often the case that data gatherers, whilst very carefully

tracking occurrences, are rather less alert to the exposure pattern of the individuals under

study. For an example in the biostatistical context of Aids, see Fusaro, Nielsen and Scheike

(1993). Given the existence of situations in which exposure patterns may be complex but

not entirely well recorded, we are interested in the robustness of the performance of versions

of the estimators discussed in this paper to such situations.

To investigate this, we consider a very volatile exposure pattern in which exposures/

occurrences are as for the complete data case of Section 7.1 except for the (almost complete)

suppression of both exposures and occurrences in the intervals [0.8, 1.0], [1.8, 2.0], ..., [9.8, 10.0].

However, to mimic less accurate recording of exposures, we actually set the exposure to 1 in

these intervals, meaning that a single observation — rather than no observation — continues

to be recorded as an exposure across these intervals. Other aspects of our simulations are

as in Section 7.2, except that we present results only for the average best bandwidth.

Interest now particularly centres on two choices that can be made for each of the same five

estimators f̂0, f̂1, f̂M , f̂M2 and f̂A|M . These are the form of weighting used in the ‘main’ stage

of definition of the smooth estimators, either unit or Ramlau-Hansen, and the pilot estimator

of the survival function used, either Kaplan-Meier (which implicitly uses the Ramlau-Hansen

weighting) or ŜLLH (using the unit weighting). Note that, from here on, when we refer simply

to the weighting used we mean the ‘main stage weighting’ while the choice between ŜKM

and ŜLLH will be referred to as the choice of survival function estimator. We also take the
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bandwidth employed within ŜLLH to be b, the same bandwidth that is employed elsewhere

in each of the density estimators. This is suboptimal — a bandwidth smaller than b should

be employed in ŜLLH — but not crucial, showing the estimators involving ŜLLH in a little

less good light than they might be.

Results are given in Tables IV to VII. Table IV corresponds to ŜKM and Ramlau-Hansen

weighting and Table V to ŜKM and unit weighting; these are the two versions of the es-

timators considered for complete and censored data in Section 7.3. In addition, Table VI

corresponds to ŜLLH and Ramlau-Hansen weighting and Table VII to ŜLLH and unit weight-

ing.

* * * Tables IV to VII about here * * *

Let us make comparisons between tables. First, for n = 100, the two estimators using

Ramlau-Hansen weighting (Tables IV and VI) yield broadly comparable results except that

f̂A|M performs rather worse when ŜLLH estimates survival than when ŜKM does. (It is also

noteworthy that f̂A|M is generally the best of the five estimators for the Ramlau-Hansen

weighting when n = 1000 but is worst when n = 10000). Unit weighting (Tables V and

VII), however, improves on Ramlau-Hansen weighting in almost all cases when n = 100, and

often by quite considerable amounts. The combination of unit weighting and ŜLLH (Table

VII) gives generally better performance than the combination of unit weighting and ŜKM

(Table V). It is interesting to note that improvement is relatively uniform across estimators

and true densities except for the application of the more complex estimators (f̂M , f̂M2 and

f̂A|M) to the unimodal densities. This results, for the combination of seven densities in our

tables, in a slight preference for f̂1 (and unit weighting and ŜLLH) when n = 100.

Larger sample sizes make for some differences in relative performance, however. First, it

is intriguing to see (Tables IV and VI) that for n = 1000 and n = 10000 and Ramlau-Hansen
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weighting, use of ŜKM asserts itself in preference to ŜLLH . (f̂M is by no means the method of

choice for Ramlau-Hansen weighting, by the way.) Again, however, unit weighting (Tables V

and VII) outperforms Ramlau-Hansen weighting (Tables IV and VI) in almost all cases, with

for this weighting and larger sample sizes, ŜLLH (Table VII) providing clear and unequivocal

improvement over ŜKM (Table V).

It might now be said that, with unit weighting, LLH survival estimation and medium

to large sample sizes, the relative performances of the five types of estimator revert essen-

tially to how they were for medium and large datasets with no censoring or contamination.

Compare Tables VII and III, remembering not to be dismayed by apparently better levels of

performance when data is contaminated: we continued with estimation error defined by (5),

and this includes an exposure weighting, so the absolute values of errors in the tables are not

comparable. As for simpler datasets, f̂M appears to have an edge over the other estimators.

8 BANDWIDTH SELECTION BY CROSS-VALIDATION

In this section we describe a general cross-validation procedure to select the smoothing

parameter for any nonparametric smoother, f̃θ, depending on the smoothing parameter θ ∈

Θ ∈ Rk in the current context. The procedure is the analogue of least-squares cross-validation

or the leave-one-out principle in i.i.d. regression and density estimation applied to survival

data based on Aalens multiplicative model. See, for example, Simonoff (1996) and Loader

(1999) and for the related kernel hazard estimation case, Ramlau-Hansen (1983), Nielsen

(1990) and Andersen et al. (1992). Ideally, one would like to choose the smoothing parameter

as the minimiser of

Q0(θ) = n−1
n∑

i=1

∫ T

0

{
f̃θ(s) − f(s)

}2
Yi(s)ds
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which is equivalent to minimising

n−1

{
n∑

i=1

∫ T

0

[
f̃θ(s)

]2
Yi(s)ds − 2

n∑

i=1

∫ T

0
f̃θ(s)f(s)Yi(s)ds

}
.

Only the second of these two terms depends on the unknown density and therefore must be

estimated from data. We suggest as estimator of Q0(θ)

Q̂0(θ) = n−1

{
n∑

i=1

∫ T

0

[
f̃θ(s)

]2
Yi(s)ds − 2

n∑

i=1

∫ T

0
f̃ i

θ(s)Ŝ(s)dNi(s)

}

where f̃ i
θ(s) is the estimator arising when the data set is changed by setting the stochastic

process Ni equal to 0 for all s ∈ [0, T ] and Ŝ(s) is the Kaplan-Meier estimator of the survival

function. The cross-validation choice of θ is arg minθ Q̂0(θ).

This least squares cross-validation bandwidth selection method is presented here for use

in the example to follow. We developed the approach quite fully, finding that, in simulations,

it worked most of the time without yielding really impressive performance. However, we did

encounter difficulties in a sizeable minority of cases caused by the well known effect on least

squares cross-validation of data discretisation (e.g. Silverman, 1986, Section 3.4.3). For these

reasons, we did not include the method in the presentation of our simulation study. Moreover,

in the example, but not in the simulations where we used a single bandwidth b throughout,

we found it better to utilise bandwidths θ = (b, b/2), b in the main density smoothing and

b/2 when smoothly pilot-estimating the survival function. For general practice, something

better than least squares cross-validation will be required.

9 EXAMPLE: OLD AGE MORTALITY

Traditionally, actuaries estimate a hazard function and then calculate the corresponding

density function while evaluating annuities. We suggest an approach directly estimating
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the density function using the methodology detailed in this paper. Below we will estimate

the densities of lifetimes for men and women of 90 years of age and above. The data are

Swedish and are taken from Lindbergson (2001). They were analysed in Lindbergson (2001)

and Fledelius, Guillen, Nielsen and Petersen (2004). While these two studies considered the

development of mortality over time, we have accumulated all the data from the considered

period, 1988-1997, and we estimate the old age mortality distribution corresponding to this

period of time. Data are represented as exposure and occurrence grouped at yearly intervals;

the exact grouping methodology is described in Lindbergson (2001). The exposure process

is consequently extremely volatile. The data are given in Table VIII.

* * * Table VIII about here * * *

We use these data to illustrate the considerable differences, which we believe are improve-

ments, between results from using our preferred estimator, which we will now call f̂M ;U ;LLH,

and a basic kernel estimator using Ramlau-Hansen weighting and Kaplan-Meier survival es-

timator, f̂0;RH;KM , which corresponds to the usual kernel density estimator when the data

are independent and identically distributed. We treated data for women and men separately.

We successfully used the cross-validatory bandwidth choice described in Section 8. It gave

bandwidths of 2.00 for f̂0;RH;KM and 3.46 for f̂M ;U ;LLH for the data on women, and 2.78 for

f̂0;RH;KM and 3.44 for f̂M ;U ;LLH for the data on men. Notice that significantly more women

than men get above 90 years old. Therefore, for the basic estimator at least, we expect

a bigger smoothing bandwidth to be appropriate while estimating the mortality distribu-

tion of men than while estimating the female distribution. Bandwidths are also larger, as

expected, for the smoother estimator using multiplicative bias correction and a smoothed

survival function.

Estimated densities using the two estimators on the two sets of data are shown in Figure
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2. There, we actually estimated the densities at the values 90, 91, ..., 111 and then linearly

interpolated the answers as well as cutting the estimates off at 106, above which densities

are very small. Notice a similar pattern in comparison in each case: densities appear to be

erroneously low for f̂0;RH;KM relative to f̂M ;U ;LLH. Correspondingly, notice that the tails are

much thinner for the more naive estimator than for our preferred estimator.

* * * Figure 2 about here * * *

Some aggregated probabilities emphasise the differences between f̂0;RH;KM and f̂M ;U ;LLH.

For women, the estimated probabilities of dying above 90 years of age are 0.903 and 0.997 for

f̂0;RH;KM and f̂M ;U ;LLH, respectively; the corresponding values for men are 0.924 and 1.028.

Notice that these probabilities should be close to one and that our preferred estimator does

a better job in this regard. Likewise, the estimated probabilities of dying above 100 years

of age for women are 0.023 and 0.044 for f̂0;RH;KM and f̂M ;U ;LLH, respectively; the corre-

sponding values for men are 0.009 and 0.022. Our assumption is that f̂0;RH;KM significantly

underestimates the probability of very old age.

10 CONCLUSIONS

As a result of our simulation study, we strongly recommend the use of unit weighting and the

survival function estimator ŜLLH because of the exposure robustness of the corresponding

estimators. Note that one aspect of this recommendation is to use unit weighting in both the

places it appears in the overall definition of estimators. In exposure robustness terms, proper

choice of weighting is a first order effect compared with choice between the five versions of

kernel density estimator, which is, relatively, a second order effect. Nonetheless, we are also

able to recommend use of the multiplicative bias corrected estimator f̂M on the grounds that
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it seems to perform best – if not always by a great deal – in all cases except perhaps small

(n = 100) sample sizes and contaminated data, and it still has second best performance in

that case. Note again that this recommendation differs from the hazard case, where f̂A|M

was preferred (Nielsen and Tanggaard, 2001). Finally, there remains a need to develop better

practical bandwidth selectors for the best estimators described in this paper.
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TABLE I Asymptotic bias, variance factor Vt/Ut, order of magnitude of optimal bandwidth
and of optimal MSE for the five estimators.

Variance Optimal Optimal
Estimator Bias factor b MSE

f̂0(t)
1
2
κ2b

2f ′′(t) g1 n−1/5 n−4/5

f̂1(t)
1
2
κ2b

2f ′′(t) g1 n−1/5 n−4/5

f̂M(t) 1
4
b4κ2

2f(t) (f ′′/f)′′ (t) g2 n−1/9 n−8/9

f̂M2(t)
1
8
b6κ3

2f(t)
{
(f ′′/f)′′

}′′
(t) g3 n−1/13 n−12/13

f̂A|M(t) 1
8
b6κ3

2

[
2f (vi)(t) g2 n−1/13 n−12/13

+κ2

{
f (iv)(t)

}2
/f ′′(t)

]
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TABLE II Averages over r = 1, ..., R = 1000 simulation runs of the values of 1000 ×
errr(f̂

k
ℓ,r, f

k). These are given for n = 100, 1000, 10000, true densities f 1, ..., f 7 and the five
estimators ℓ ∈ {0, 1, M, M2, A|M} , in the case of the unit-weighting, survival estimator
ŜKM and bandwidth selected as best possible. The column headed ‘Average’ contains the
averages of the values in the f 1, ..., f 7 columns.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 Average

n = 100

f̂0 6.60 7.56 3.80 4.76 5.52 2.99 3.65 4.99

f̂1 4.83 5.56 3.93 3.43 4.23 2.92 2.70 3.94

f̂M 5.30 5.05 3.38 3.28 3.87 2.71 2.72 3.76

f̂M2 6.39 5.42 3.20 3.51 4.02 2.74 2.88 4.02

f̂A|M 4.09 5.22 3.05 3.61 4.71 2.99 2.92 3.80

n = 1000

f̂0 1.31 1.98 1.09 1.24 1.18 0.65 0.93 1.20

f̂1 0.73 1.59 1.19 0.90 0.83 0.67 0.63 0.94

f̂M 0.90 1.23 0.95 0.78 0.68 0.53 0.57 0.81

f̂M2 0.98 1.32 0.87 0.82 0.73 0.50 0.60 0.83

f̂A|M 0.82 1.31 0.78 0.99 0.92 0.55 0.72 0.87

n = 10000

f̂0 0.35 0.88 0.61 0.41 0.29 0.19 0.22 0.42

f̂1 0.13 0.84 0.65 0.36 0.24 0.21 0.16 0.37

f̂M 0.25 0.70 0.57 0.30 0.18 0.17 0.13 0.33

f̂M2 0.28 0.73 0.54 0.31 0.19 0.15 0.13 0.33

f̂A|M 0.31 0.72 0.49 0.35 0.23 0.16 0.17 0.35
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TABLE III Averages over r = 1, ..., R = 1000 simulation runs of the values of 1000 ×
errr(f̂

k
ℓ,r, f

k). These are given for n = 100, 1000, 10000, true densities f 1, ..., f 7 and the five

estimators ℓ ∈ {0, 1, M, M2, A|M} , in the case of unit-weighting, survival estimator ŜKM

and bandwidth selected as average best. The column headed ‘Average’ contains the averages
of the values in the f 1, ..., f 7 columns.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 Average

n = 100

f̂0 7.61 8.10 4.07 5.26 5.81 3.15 4.03 5.43

f̂1 5.72 5.98 4.16 3.79 4.47 3.09 2.98 4.31

f̂M 5.91 5.66 3.68 3.94 4.25 2.90 3.20 4.22

f̂M2 6.92 6.05 3.59 4.25 4.44 2.92 3.40 4.51

f̂A|M 5.17 6.27 3.35 4.64 5.29 3.29 3.55 4.51

n = 1000

f̂0 1.48 2.03 1.13 1.28 1.21 0.68 0.96 1.25

f̂1 0.82 1.65 1.23 0.94 0.87 0.70 0.66 0.98

f̂M 0.95 1.29 0.99 0.82 0.72 0.56 0.60 0.85

f̂M2 1.00 1.39 0.91 0.87 0.77 0.53 0.64 0.87

f̂A|M 1.00 1.41 0.81 1.09 1.01 0.57 0.79 0.96

n = 10000

f̂0 0.38 0.89 0.61 0.41 0.30 0.20 0.22 0.43

f̂1 0.13 0.85 0.65 0.36 0.24 0.21 0.16 0.37

f̂M 0.26 0.71 0.58 0.30 0.18 0.17 0.13 0.33

f̂M2 0.28 0.73 0.55 0.31 0.19 0.16 0.14 0.34

f̂A|M 0.34 0.73 0.50 0.36 0.24 0.16 0.17 0.36
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TABLE IV Averages over r = 1, ..., R = 1000 simulation runs of the values of 1000 ×
errr(f̂

k
ℓ,r, f

k). These are given for n = 100, 1000, 10000, true densities f 1, ..., f 7, volatile
exposure pattern as described in the text and the five estimators ℓ ∈ {0, 1, M, M2, A|M} , in
the case of the Ramlau-Hansen weighting, survival estimator ŜKM and bandwidth selected
as average best. The column headed ‘Average’ contains the averages of the values in the
f 1, ..., f 7 columns.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 Average

n = 100

f̂0 9.30 13.10 6.76 7.63 7.73 4.43 5.15 7.73

f̂1 4.95 11.67 6.76 6.47 6.60 4.43 4.82 6.53

f̂M 5.72 10.43 6.70 6.29 6.53 4.06 4.56 6.33

f̂M2 6.15 11.48 5.96 6.52 6.45 3.82 4.72 6.44

f̂A|M 5.41 8.62 4.18 6.20 7.14 4.81 4.59 5.85

n = 1000

f̂0 2.81 3.39 3.08 3.05 2.90 2.02 2.74 2.85

f̂1 3.07 3.36 3.08 3.03 2.87 2.02 2.71 2.88

f̂M 3.23 3.56 3.55 3.54 3.43 3.48 3.38 3.45

f̂M2 1.69 3.75 3.81 3.82 3.77 3.83 3.74 3.49

f̂A|M 0.96 2.88 1.74 2.69 2.77 1.72 2.07 2.12

n = 10000

f̂0 0.88 1.27 1.17 1.14 1.08 1.09 0.99 1.09

f̂1 0.88 1.27 1.17 1.14 1.07 1.09 0.99 1.09

f̂M 0.85 1.40 1.44 1.36 1.24 1.32 1.17 1.25

f̂M2 0.94 1.40 1.43 1.38 1.26 1.35 1.19 1.28

f̂A|M 0.99 1.41 1.44 1.40 1.30 1.39 1.23 1.31
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TABLE V Averages over r = 1, ..., R = 1000 simulation runs of the values of 1000 ×
errr(f̂

k
ℓ,r, f

k). These are given for n = 100, 1000, 10000, true densities, f 1, ..., f 7, volatile
exposure pattern as described in the text and the five estimators ℓ ∈ {0, 1, M, M2, A|M} ,
in the case of the unit weighting, survival estimator ŜKM and bandwidth selected as average
best. The column headed ‘Average’ contains the averages of the values in the f 1, ..., f 7

columns.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 Average

n = 100

f̂0 8.66 9.16 4.02 6.20 6.94 3.75 4.57 6.19

f̂1 6.99 5.42 3.15 3.76 4.98 3.56 3.44 4.47

f̂M 6.00 5.80 3.30 4.69 5.12 3.84 3.94 4.67

f̂M2 6.17 6.22 3.40 4.92 5.34 3.94 4.05 4.86

f̂A|M 5.62 6.93 3.77 5.26 5.78 4.05 4.01 5.06

n = 1000

f̂0 1.97 2.53 1.70 2.16 2.13 1.50 1.83 1.97

f̂1 1.43 1.75 1.09 1.44 1.50 1.36 1.32 1.41

f̂M 0.96 1.60 1.17 1.56 1.47 1.38 1.37 1.36

f̂M2 0.92 1.69 1.25 1.59 1.57 1.39 1.42 1.40

f̂A|M 1.22 1.91 1.41 1.80 1.80 1.41 1.46 1.57

n = 10000

f̂0 0.79 1.32 1.23 1.20 1.09 1.07 0.99 1.10

f̂1 0.61 1.26 0.79 1.02 0.95 0.94 0.87 0.92

f̂M 0.36 1.03 0.89 1.03 0.94 0.97 0.87 0.87

f̂M2 0.28 1.07 0.96 1.04 0.96 0.98 0.88 0.88

f̂A|M 0.54 1.17 1.03 1.14 1.04 1.00 0.91 0.98
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TABLE VI Averages over r = 1, ..., R = 1000 simulation runs of the values of 1000 ×
errr(f̂

k
ℓ,r, f

k). These are given for n = 100, 1000, 10000, true densities f 1, ..., f 7, volatile
exposure pattern as described in the text and the five estimators ℓ ∈ {0, 1, M, M2, A|M} , in
the case of the Ramlau-Hansen weighting, survival estimator ŜLLH and bandwidth selected
as average best. The column headed ‘Average’ contains the averages of the values in the
f 1, ..., f 7 columns.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 Average

n = 100

f̂0 8.45 13.00 6.56 7.29 7.61 4.36 4.88 7.45

f̂1 4.81 10.74 6.56 6.02 6.34 4.35 4.55 6.20

f̂M 5.09 9.83 7.11 5.98 6.19 4.05 4.27 6.08

f̂M2 6.03 11.07 7.22 6.27 6.19 3.84 4.43 6.43

f̂A|M 6.52 11.00 4.59 6.98 7.62 4.81 4.73 6.61

n = 1000

f̂0 2.96 3.89 3.56 3.40 3.12 2.03 2.88 3.12

f̂1 0.62 3.85 3.56 3.38 3.07 2.03 2.12 2.66

f̂M 2.39 4.31 4.24 4.06 3.76 3.81 3.64 3.74

f̂M2 0.76 4.58 4.56 4.40 4.15 4.21 4.04 3.81

f̂A|M 1.30 4.00 2.21 3.37 3.23 1.80 2.38 2.61

n = 10000

f̂0 1.15 1.79 1.68 1.50 1.30 1.33 1.15 1.41

f̂1 1.15 1.78 1.68 1.50 1.29 1.33 1.15 1.41

f̂M 0.18 2.01 2.06 1.82 1.56 1.68 1.42 1.53

f̂M2 0.52 2.01 2.06 1.82 1.56 1.68 1.42 1.58

f̂A|M 1.43 2.01 2.06 1.82 1.56 1.68 1.42 1.71
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TABLE VII Averages over r = 1, ..., R = 1000 simulation runs of the values of 1000 ×
errr(f̂

k
ℓ,r, f

k). These are given for n = 100, 1000, 10000, true densities f 1, ..., f 7, volatile
exposure pattern as described in the text and the five estimators ℓ ∈ {0, 1, M, M2, A|M} , in
the case of the unit weighting, survival estimator ŜLLH and bandwidth selected as average
best. The column headed ‘Average’ contains the averages of the values in the f 1, ..., f 7

columns.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 Average

n = 100

f̂0 8.37 7.97 3.90 5.28 6.04 2.90 3.84 5.48

f̂1 6.37 4.91 3.78 3.32 4.24 2.89 2.77 4.04

f̂M 5.97 5.04 3.95 3.83 4.44 2.85 3.14 4.17

f̂M2 6.71 5.51 4.26 4.16 4.76 2.96 3.42 4.54

f̂A|M 5.51 5.81 3.72 4.27 4.94 3.31 3.30 4.42

n = 1000

f̂0 1.57 1.59 1.02 1.13 1.19 0.66 0.95 1.16

f̂1 1.00 1.07 0.92 0.68 0.75 0.62 0.57 0.80

f̂M 0.84 0.74 0.90 0.61 0.66 0.57 0.55 0.69

f̂M2 0.89 0.79 0.98 0.64 0.71 0.59 0.58 0.74

f̂A|M 0.87 0.90 0.88 0.86 0.92 0.58 0.68 0.81

n = 10000

f̂0 0.27 0.36 0.24 0.21 0.22 0.17 0.18 0.23

f̂1 0.15 0.31 0.26 0.19 0.16 0.14 0.12 0.19

f̂M 0.10 0.20 0.32 0.13 0.12 0.13 0.09 0.15

f̂M2 0.10 0.20 0.32 0.14 0.13 0.13 0.09 0.16

f̂A|M 0.13 0.25 0.32 0.19 0.17 0.12 0.12 0.19
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TABLE VIII Data on old age mortality in Sweden, 1988-1997.

Year Exposures Occurrences Exposures Occurrences
(Men) (Men) (Women) (Women)

90 40191.0 9034 98281.0 16566
91 30370.0 7564 78605.5 15032
92 22477.5 6220 61252.5 13307
93 16155.0 4817 46634.5 10897
94 11389.5 3625 34537.0 9020
95 7847.0 2737 24897.0 7233
96 5202.5 2033 17393.0 5533
97 3366.5 1375 11805.0 4189
98 2095.5 995 7789.5 2841
99 1262.5 573 5070.0 2037
100 753.5 380 3151.0 1433
101 433.5 230 1855.5 896
102 246.0 137 1078.0 534
103 143.0 74 607.0 321
104 76.5 50 334.5 191
105 39.0 21 182.5 90
106 16.5 13 102.5 49
107 8.0 3 49.0 31
108 4.0 4 26.0 16
109 1.5 0 13.0 8
110 0.5 1 3.0 5
111 0.0 0 1.0 0
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FIGURE 1 The seven test densities f 1, ..., f 7 described at the start of Section 7.1.
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FIGURE 2 ‘Naive’ and preferred estimators for old age mortality data on women and men,
using cross-validatory bandwidth selection. For women: f̂M ;U ;LLH is solid line, f̂0;RH;KM is

dashed line. For men: f̂M ;U ;LLH is dot-dashed line, f̂0;RH;KM is dotted line.
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