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A�
�����. This paper derives asymptotic power envelopes for tests of
the unit root hypothesis in a zero-mean AR(1) model. The power envelopes are
derived using the limits of experiments approach and are semiparametric in the
sense that the underlying error distribution is treated as an unknown infinite-
dimensional nuisance parameter. Adaptation is shown to be possible when the
error distribution is known to be symmetric and to be impossible when the
error distribution is unrestricted. In the latter case, two conceptually distinct
approaches to nuisance parameter elimination are employed in the derivation
of the semiparametric power bounds. One of these bounds, derived under an
invariance restriction, is shown by example to be sharp, while the other, de-
rived under a similarity restriction, is conjectured not to be globally attainable.
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1. I	���������	

The unit root testing problem is one of the most intensively studied testing problems
in econometrics.1 During the past decade or so, considerable effort has been devoted
to the construction of unit root tests enjoying good power properties.2 Asymptotic
power envelopes for unit root tests in the Gaussian AR(1) model were obtained by

∗e-mail: mjansson@econ.berkeley.edu.
The author thanks Marcelo Moreira, Whitney Newey, Jack Porter, Jim Powell, Jim Stock, two
anonymous referees, and seminar participants at Aarhus, Berkeley, Boston University, Brown, the
2005 CEME conference, Harvard/MIT, Michigan, Penn, UC Davis, UCLA, UCSD, Wisconsin, and
the 2005 World Congress of the Econometric Society for helpful comments. Financial support from
CREATES (funded by the Danish National Research Foundation) is gratefully acknowledged.

1Important early contributions include Dickey and Fuller (1979, 1981) and Phillips (1987), and
Phillips and Perron (1988). For reviews, see Stock (1994), Phillips and Xiao (1998), and Haldrup
and Jansson (2006).

2In parallel with the literature exploring power issues, a different branch of the unit root literature
has focused on improving the size properties of unit root tests. Noteworthy contributions in that
direction include Ng and Perron (1995, 2001), Perron and Ng (1996), Paparoditis and Politis (2003),
and Park (2003).
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Elliott, Rothenberg, and Stock (1996, henceforth ERS) and Rothenberg (2000), while
Rothenberg and Stock (1997) derived asymptotic power envelopes under rather gen-
eral distributional assumptions. Rothenberg and Stock (1997) found that significant
power gains (relative to the Gaussian case) are available in cases where the under-
lying distribution is non-Gaussian and known and pointed out that this finding is
in perfect analogy with well known properties of the location model and the stable
AR(1) model. The purpose of this paper is to investigate the extent to which depar-
tures from normality can be exploited for power purposes also in the (arguably) more
realistic case where the error distribution is unknown. To do so, the paper develops
asymptotic power envelopes that are semiparametric in the sense that they explicitly
account for the fact that the underlying error distribution is known only to belong to
some “big” set of error distributions.

An interesting methodological conclusion emerging from the existing literature
on optimality theory for unit root testing is that although there is a fundamental
sense in which the unit root testing problem is nonstandard, the problem is still
amenable to analysis using existing tools (such as those developed for exponential
families and elegantly summarized in Lehmann and Romano (2005)). An important
methodological motivation for the present work is the general question of whether
semiparametric power envelopes for nonstandard testing problems can be obtained
by a conceptually straightforward adaptation of semiparametric methods developed
for standard problems. For a variety of reasons, the unit root testing problem seems
like a natural starting point for such an investigation and although some of the results
obtained in this paper are likely to be somewhat specific to unit root testing, it is
hoped that interesting general methodological lessons can be learned from studying
that particular problem.

Semiparametric testing theory has been developed for models admitting locally
asymptotically normal (LAN) likelihood ratios (e.g., Choi, Hall, and Schick (1996)).
In those models, testing theory “has little more to offer than the comforting conclusion
that tests based on efficient estimators are efficient” (van der Vaart (1998)). On the
other hand, little (if any) work has been done for models outside the LAN class, such
as the AR(1) model with a root close to, and possibly equal to, unity. The latter
model, which is the model under study here, admits likelihood ratios which are locally
asymptotically quadratic (LAQ) in the sense of Jeganathan (1995). No universally
accepted definition of estimator efficiency exists for LAQ models.3 Moreover, the
duality between point estimation and hypothesis testing typically breaks down in
models whose likelihood ratios are LAQ but not LAN.4 For these reasons, it appears

3Gushchin (1995) establishes an optimality property of maximum likelihood estimators. See also
Jeganathan (1995) and Ling and McAleer (2003).

4An exception occurs in models where the limiting experiment becomes a member of a linear
exponential family upon conditioning on statistics with certain ancillarity properties. A well known
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necessary to develop semiparametric envelopes for the unit root testing problem from
first principles.

As is the approach to semiparametric efficiency in standard estimation problems
(e.g., Begun, Hall, Huang, and Wellner (1983), Bickel, Klaassen, Ritov, and Wellner
(1998), Newey (1990)), the approach to optimality theory taken in this paper is based
on Stein’s (1956) insight that a testing problem is no easier in a semiparametric model
than in any parametric submodel of the semiparametric model. Consequently, the
semiparametric power envelope will be defined as the infimum of the power envelopes
associated with smooth parametric submodels embedding the true error density. Al-
though the unit root testing problem differs from standard testing problems in im-
portant respects, it turns out that some of the qualitative findings obtained from the
least favorable submodel approach bear a noticeable resemblance to the well known
results for the location model, a possibly surprising result in light of the fact that
the semiparametric properties of the stable AR(1) model are substantially different
from those of the location model. Specifically, it is shown in this paper that although
the unit root testing problem admits adaptive procedures when the error distribution
is known to be symmetric, adaptation is impossible when the error distribution is
(essentially) unrestricted. Nevertheless, and in sharp contrast to the location model,
the unit root model with an unrestricted error distribution has the property that
although adaptation is impossible, departures from normality can be exploited for
efficiency purposes. (The magnitude of the available power gains depends on the
shape of the error distribution through its Fisher information for location and can be
quite substantial when the error distribution has fat tails.)

The paper proceeds as follows. To set the stage, Section 2 introduces the model
and the testing problem under consideration, while Section 3 studies unit root testing
under the assumption that the error distribution is known. Section 4 extends the
results of Section 3 to parametric submodels. Employing those results, Sections 5 and
6 obtain semiparametric power envelopes for the cases of symmetric and (essentially)
unrestricted error distributions, respectively. The consequences of accommodating
deterministic components and/or serial correlation in the error are briefly explored in
Section 7, while Section 8 offers concluding remarks. Mathematical proofs have been
relegated to an Appendix.

2. P������	����


Suppose the observed data y1, . . . , yT is generated by the zero-mean AR(1) model

yt = ρyt−1 + εt, (1)

example are models with locally asymptotically mixed normal (LAMN) likelihood ratios, which arise
in cointegration analysis (e.g., Phillips (1991), Stock and Watson (1993)). For an example that does
not belong to the LAMN class, see Eliasz (2004) and Jansson and Moreira (2006).
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where y0 = 0 and the εt are unobserved i.i.d. errors from an unknown continuous
distribution with full support, zero mean, and finite variance. Let f denote the
unknown error density. Furthermore, and without loss of generality, let the (unknown)
error variance be normalized to one.

The objective of this paper is to develop asymptotic power envelopes for the
unit root testing problem in the zero-mean AR(1) model, treating f as an unknown
nuisance parameter. In other words, the testing problem under consideration is

H0 : ρ = 1 vs. H1 : ρ < 1,

and it is assumed to be known that f lies in some set F of densities. The main goal
of the paper is to develop sharp upper bounds on the asymptotic performance of unit
root testing procedures in models of this type, with special attention being devoted
to semiparametric cases in which F is infinite-dimensional.

By Donsker’s theorem (e.g., Billingsley (1999)), the assumptions y0 = 0 and
εt ∼ i.i.d. (0, 1) ensure that if ρ = 1, then yt is I(1) in the sense that the weak limit
of T−1/2y⌊T ·⌋ is a Brownian motion, where ⌊·⌋ denotes the integer part of the argu-
ment. While Donsker’s theorem is valid without the additional assumption that the
error distribution is continuous and has full support, most of the statistical analy-
sis conducted in this paper would be invalid without an assumption of this kind.5

Specifically, the additional assumption on the error distribution implies that the dis-
tributions of {y1, . . . , yT} induced by different values of ρ are mutually absolutely
continuous. Mutual absolute continuity is a finite sample counterpart of the property
of (mutual) contiguity, which plays a prominent role in Le Cam’s (1972) theory of
limits of experiments and will be utilized throughout this paper.6

Because the purpose of this paper is to elucidate the role of F in optimality theory
for unit root tests, Sections 3-6 study the zero-mean AR(1) model, which deliberately
assumes away deterministic components and serial correlation in the error.7 Section

5If the innovation distribution has bounded support, then the conditional distribution of yt given
yt−1 has parameter-dependent support, a property which introduces nontrivial complications even
in models with i.i.d. data (e.g., Hirano and Porter (2003), Chernozhukov and Hong (2004)).

6The property of mutual contiguity is useful in part because it makes it possible to derive con-
clusion about local asymptotic power functions from assumptions concerning the behavior of certain
statistics “under the null”, an attractive feature because assumptions of the latter kind tend to be
relatively easy to verify. Examples of readily verifiable assumptions required to hold “under the null”
are provided by Assumptions LAQ and LAQ∗ of Sections 3 and 4, respectively, and the condition
(26) underlying the definition of adaptation employed in Section 5.

7The model (1) furthermore sets the initial condition y0 equal to zero and assumes away con-
ditional heteroskedasticity. Proceeding along the lines of Müller and Elliott (2003) and Boswijk
(2005), respectively, it may be possible to relax these assumptions, but no attempts to do so will be
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7 explores the consequences of relaxing these (implausible) assumptions and finds, in
perfect analogy with ERS’s results for the Gaussian case, that the results obtained
for the zero-mean AR(1) model extend readily to a model with an unknown mean
and serial correlation in the error, whereas the presence of a time trend affects the
asymptotic power envelope(s).

3. K	�"	 E���� D�
��������	

In an attempt to further motivate the question addressed by this paper and facilitate
the interpretation of the main results, this section discusses asymptotic optimality
theory for the unit root testing problem under the counterfactual assumption that
the underlying error distribution is known (i.e., that F is a singleton). Even if f is
known, the unit root testing problem is nonstandard. A well known manifestation of
the nonstandard nature of the unit root testing problem is that contiguous alternatives
to the unit root null are of the form ρ = 1 + O (1/T ) . Accordingly, the parameter
of interest is henceforth taken to be c = T (ρ− 1) , the associated formulation of the
unit root testing problem being H0 : c = 0 vs. H1 : c < 0.

Any (possibly randomized) unit root test can be represented by means of a test
function φT : RT → [0, 1] such that H0 is rejected with probability φT (Y ) whenever
YT := (y1, . . . , yT )′ = Y. The power function (with argument c) associated with φT is
given by EρT (c)φT (YT ) , where ρT (c) := 1 + c/T and the subscript on “E” indicates
the distribution with respect to which the expectation is taken.

Define the log likelihood ratio function

Lf
T (c) :=

T∑

t=2

log f
(

∆yt −
c

T
yt−1

)
−

T∑

t=2

log f (∆yt) . (2)

For any α ∈ (0, 1) and any sample size T, it follows from the Neyman-Pearson lemma
that the optimal size α unit root test against the point alternative c = c̄ < 0 rejects
for large values of Lf

T (c̄) . The power (against the alternative c = c̄) of this point
optimal test gives the value of the size α power envelope at c = c̄.

Under mild assumptions on f, the finite sample power envelope has an asymptotic
counterpart which depends on f only through a scalar functional. A sequence of unit
root tests φT is said to have asymptotic size α if

limT→∞EρT (0)φT (YT ) = α. (3)

The asymptotic power envelope for unit root tests of asymptotic size α will be derived
under the following high-level assumption on f, in which “op0,f (1)” is shorthand for

made in this paper.
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“op (1) when H0 holds and ε has density f” and Lf denotes the set of functions ℓf
for which E [ℓf (ε)] = 0, E [εℓf (ε)] = 1, and 1 ≤ E

[
ℓf (ε)2

]
<∞.

Assumption LAQ. If cT is a bounded sequence, then

Lf
T (cT ) = cTS

f
T −

1

2
c2TH

ff
T + op0,f (1) ,

where, for some ℓf ∈ Lf ,

Sf
T :=

1

T

T∑

t=2

yt−1ℓf (∆yt) , Hff
T :=

Iff
T 2

T∑

t=2

y2t−1, Iff := E
[
ℓf (ε)2

]
.

Assumption LAQ is in the spirit of Jeganathan (1995) and implies that the like-
lihood ratios are LAQ at ρ = 1 in the sense of that paper. In particular, it follows
from Donsker’s theorem and Chan and Wei (1988, Theorem 2.4) that

Lf
T (c) →d0,f Λf (c) := cSf −

1

2
c2Hff ∀c, (4)

where

Sf :=

∫ 1

0

W (r) dBf (r) , Hff := Iff
∫ 1

0

W (r)2 dr,

(W,Bf) is a bivariate Brownian motion with

V ar

(
W (1)
Bf (1)

)
=

(
1 1
1 Iff

)
,

and “→d0,f” is shorthand for “→d when H0 holds and ε has density f”. Additional
discussion of Assumption LAQ, including sufficient conditions for its validity, will be
given at the end of this section.

Prohorov’s theorem (e.g., Billingsley (1999)) and Le Cam’s third lemma (e.g., van
der Vaart (2002b)) can be used to show that if (4) holds, then every subsequence φT ′
admits a further subsequence φT ′′ and a [0, 1]-valued function ψ for which

limT ′′→∞EρT ′′ (c)
φT ′′ (YT ′′) = E [ψ (Sf ,Hff ) exp (Λf (c))] ∀c. (5)

If φT has asymptotic size α, then ψ in (5) satisfies E [ψ (Sf ,Hff )] = α and it follows
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from the Neyman-Pearson lemma that E [ψ (Sf ,Hff) exp (Λf (c))] is bounded from
above by

Ψf (c, α) := E
[
ψf (Sf ,Hff |c, α) exp (Λf (c))

]
, (6)

where

ψf (Sf ,Hff |c, α) := 1 [Λf (c) > Kα (c; Iff )] ,

1 [·] is the indicator function, and Kα (c; Iff ) is the 1 − α quantile of Λf (c) . These
facts yield the following theorem, which generalizes a result of ERS to non-Gaussian
error distributions.8

Theorem 1. If Assumption LAQ holds and φT has asymptotic size α, then

limT→∞EρT (c)φT (YT ) ≤ Ψf (c, α) ∀c < 0. (7)

The proof of Theorem 1 given above is based on Le Cam’s (1972) theory of limits
of experiments. Because f is assumed to be known, a Neyman-Pearson test exists
for every T and the use of the theory of limits of experiments can be avoided (e.g.,
Rothenberg and Stock (1997)). On the other hand, the use of the limits of experi-
ments approach seems unavoidable when studying the models under consideration in
the following sections. Specifically, the presence of a nuisance parameter governing
distributional shape makes it very difficult (if not impossible) to derive a Neyman-
Pearson-type test for any given T. In contrast, the limits of experiments approach is
applicable also when f depends on a nuisance parameter because the limiting exper-
iments associated with such models do admit Neyman-Pearson-type tests.

The asymptotic power bound Ψf (c, α) is attainable pointwise (in c) when f is
known, limT→∞ on the left-hand side of (7) equaling limT→∞ and the inequality
being sharp when φT (YT ) equals

φf,T (YT |c, α) := 1

[
cSf

T −
1

2
c2Hff

T > Kα (c;Iff)
]
, (8)

the natural finite sample counterpart of ψf (Sf ,Hff |c, α) . Moreover, it was found by

8Theorem 1 is essentially due to Rothenberg and Stock (1997), who obtained a result equivalent

to (7) under the (somewhat stronger) assumptions that (i) E
[
|ε|k + |ℓf (ε)|k

]
<∞ for some k > 2,

where ℓf (ε) := ∂ log f (ε− θ) /∂θ|θ=0 , and (ii) ℓff satisfies a linear Lipschitz condition, where
ℓff (ε) := ∂2 log f (ε− θ) /∂θ2

∣∣
θ=0

.
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Rothenberg and Stock (1997) that the local asymptotic power function associated
with φf,T (·|c̄, α) is uniformly (in c) “close” to Ψf (c, α) if c̄ is chosen appropriately.
By implication, Ψf is a relevant benchmark.

The envelope Ψf depends on f only through Iff . It can be shown that Ψf is strictly
increasing in Iff and that Iff ≥ 1 with equality if and only if f is the standard normal
density. Moreover, ERS’s unit root tests, based on the Gaussian (quasi-)likelihood,
have local asymptotic power functions that are invariant with respect to f. As a
consequence, the Gaussian power envelopes derived by ERS provide a lower bound
on maximal attainable local asymptotic power in models with non-Gaussian errors.

FIGURE 1 ABOUT HERE

Figure 1 plots Ψf (·, 0.05) for various values of Iff , hereby quantifying the magni-
tude of the potential power gains, relative to procedures based on a Gaussian quasi-
likelihood, available in applications with non-normal errors.9 Evidently, substantial
power gains will be available (for models with Iff well above unity) if it is possible
to construct a unit root test which is computable without knowledge of f and at-
tains Ψf for every f ∈ F . Section 5 shows that this situation occurs when F consists
only of symmetric error densities. More generally, Figure 1 suggests that non-trivial
power gains will be available in situations where (attainable) semiparametric power
envelopes are qualitatively similar to Ψf in the sense that they lie well above the en-
velope corresponding to the Gaussian distribution. Section 6 shows that this occurs
even when F is unrestricted.

Assumption LAQ holds for a wide range of error distributions. For instance,
Jeganathan (1995) shows that Assumption LAQ is satisfied (with ℓf = −ḟ/f) under
the following absolute continuity condition on f.

9Consider the density given by fλ (ε) := C0
λ exp

(
−C1

λ |ε|λ
)
, where λ > 1/2 and the pair of

constants
(
C0
λ, C

1
λ

)
is determined by the requirement

∫ ∞

−∞

fλ (ε) dε =

∫ ∞

−∞

ε2fλ (ε) dε = 1.

The values λ = 2 and λ = 1 correspond to the standard normal and rescaled double exponential
distributions, respectively, and the associated values of Iff are 1 and 2, respectively. More generally,
it can be shown that the value of Iff associated with fλ is given by

Iff (λ) := λ2
[∫∞
0 r2 exp

(
−rλ

)
dr
] [∫∞

0 r2(λ−1) exp
(
−rλ

)
dr
]

[∫∞
0 exp (−rλ) dr

]2 .

Because limλ↓1/2 Iff (λ) = ∞ and Iff (·) is continuous, the range of Iff (·) is [1,∞) . Numerical
evaluation shows that Iff (0.7709) ≈ 5 and Iff (0.6818) ≈ 10, respectively.
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Assumption AC. The density f admits a function ḟ such that f (ε) =
∫ ε

−∞ ḟ (r) dr

for every ε ∈ R and
∫∞
−∞

[
ḟ (ε)2 /f (ε)

]
dε <∞.

Under Assumption AC, ℓf is the score function, evaluated at θ = 0, for θ in the
location model

Xi = θ + εi, (9)

where the εi are i.i.d. with density f. Similarly, Iff is the Fisher information for loca-
tion associated with f. As a consequence, both ℓf and Iff are readily interpretable.
In the location model (9) , Assumption AC serves dual purposes: it delivers the LAN
property (i.e., a quadratic expansion of the log likelihood ratio function) and en-
ables nonparametric estimation of ℓf . Assumption AC will serve similar purposes in
Theorems 4 and 6 of this paper.

The following Le Cam (1970)-type of assumption is implied by Assumption AC.10

Assumption DQM. The density f admits a function ℓf such that, as |θ| → 0,

∫ ∞

−∞

(√
f (ε− θ)
f (ε)

− 1− 1

2
θℓf (ε)

)2

f (ε) dε = o
(
θ2
)
.

For the purposes of establishing just the LAN property (in the location model), it
is well known that differentiability in quadratic mean (Assumption DQM) suffices.11

It seems natural to ask if the model studied in this paper exhibits a similar feature.
An affirmative answer to that question is provided by the following lemma, which
therefore shows that the usefulness of Assumption DQM extends beyond the class of
models whose likelihood ratios enjoy the LAN property.

Lemma 2. Assumption LAQ is implied by Assumption DQM.

4. P��������� S�������


Relaxing the assumption that the error density is known, this section studies unit root
testing in parametric submodels. In the present context, a parametric submodel is a
model of the form (1) with f embedded in a parametric family F := {f (·|η) : η ∈ R}
of density functions satisfying

10Additional discussion of the relation between assumptions of the AC and DQM variety can be
found in Le Cam (1986, Section 17.3) and Le Cam and Yang (2000, Section 7.3).

11Indeed, van der Vaart (2002b, p. 676) argues that Assumption DQM is “exactly right for getting
the LAN expansion (in the location model)”. For an appreciation of differentiability in quadratic
mean, see Pollard (1997).
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∫ ∞

−∞
εf (ε|η) dε = 0 and

∫ ∞

−∞
ε2f (ε|η) dε <∞

for each value of the (nuisance) parameter η.
It is assumed that f (·) = f (·|0) ; that is, it is assumed that the true (but unknown)

value of η is zero. Moreover, the family F is assumed to be “smooth” at η = 0. Among
other things, “smoothness” will imply that the contiguous alternatives to η = 0 are

of the form η = O
(

1/
√
T
)
. In recognition of this fact, all subsequent formulations

will employ a local reparameterization of the form η = ηT (h) := h/
√
T , where the

true (but unknown) value of the local parameter h is zero.
Let the log likelihood ratio function associated with F be denoted by

LF
T (c, h) :=

T∑

t=2

log f
[
∆yt −

c

T
yt−1|ηT (h)

]
−

T∑

t=2

log f [∆yt|ηT (0)] , (10)

and let Lη denote the class of functions ℓη for which E [ℓη (ε)] = 0, E [εℓη (ε)] = 0,
and E

[
ℓη (ε)2

]
< ∞. The degree of smoothness assumed on the part of F is made

precise by the following high-level assumption, which generalizes Assumption LAQ
to parametric submodels.

Assumption LAQ*. If (cT , hT ) is a bounded sequence, then

LF
T (cT , hT ) = (cT , hT )SF

T −
1

2
(cT , hT )HF

T (cT , hT )′ + op0,f (1) ,

where, for some ℓF := (ℓf , ℓη)
′ ∈ Lf × Lη,

SF
T :=

(
Sf
T

Sη
T

)
:=

(
1
T

∑T
t=2 yt−1ℓf (∆yt)

1√
T

∑T
t=2 ℓη (∆yt)

)

,

HF
T :=

(
Hff

T Hfη
T

Hfη
T Hηη

T

)
:=

(
Iff
T 2

∑T
t=2 y

2
t−1

Ifη
T 3/2

∑T
t=2 yt−1

Ifη
T 3/2

∑T
t=2 yt−1 Iηη

)

,

IF :=

(
Iff Ifη
Ifη Iηη

)
:= E

[
ℓF (ε) ℓF (ε)′

]
.

The requirement E [ℓF (ε)] = (0, 0)′ of Assumption LAQ* is the familiar zero
mean property of scores, while E [εℓF (ε)] = e1 := (1, 0)′ will be a consequence of
the requirement

∫∞
−∞ εf (ε|η) dε = 0 under mild smoothness conditions. As is true of
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Assumption LAQ, Assumption LAQ* is in the spirit of Jeganathan (1995) and implies
that the likelihood ratios are LAQ in the sense of that paper. Moreover, proceeding
as in the proof of Lemma 2 it can be shown that Assumption LAQ* is implied by the
following generalization of Assumption DQM.

Assumption DQM*. The family F admits functions ℓf and ℓη such that, as |θ|+
|η| → 0,

∫ ∞

−∞

(√
f (ε− θ|η)
f (ε)

− 1− 1

2
[θℓf (ε) + ηℓη (ε)]

)2

f (ε) dε = o
(
θ2 + η2

)
.

The LAQ property delivered by Assumption LAQ* makes it possible to use the
limits of experiments approach to derive asymptotic power envelopes for the unit root
testing problem in a model where it is assumed to be known only that f ∈ F. To
describe the salient properties of the limiting experiment, let (W,B′F ) := (W,Bf , Bη)
be a trivariate Brownian motion with

V ar

(
W (1)
BF (1)

)
=

(
1 e′1
e1 IF

)
. (11)

It follows from standard weak convergence results that

(
SF
T , H

F
T

)
→d0,f (SF ,HF ) ,

where

SF :=

(
Sf

Sη

)
:=

( ∫ 1
0
W (r) dBf (r)
Bη (1)

)
,

HF :=

(
Hff Hfη

Hfη Hηη

)
:=

(
Iff

∫ 1
0
W (r)2 dr Ifη

∫ 1
0
W (r) dr

Ifη
∫ 1
0
W (r) dr Iηη

)

.

Using Prohorov’s theorem, Le Cam’s third lemma, and the result

LF
T (c, h) →d0,f ΛF (c, h) := (c, h)SF −

1

2
(c, h)HF (c, h)′ ∀ (c, h) , (12)

it can be shown that every subsequence φT ′ admits a further subsequence φT ′′ and a
[0, 1]-valued function ψ for which

limT ′′→∞EρT ′′(c),ηT ′′(h)
φT ′′ (YT ′′) = E [ψ (SF ,HF ) exp (ΛF (c, h))] ∀ (c, h) . (13)
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Because the true, but unknown, value of h has been normalized to zero, asymptotic
power envelopes provide sharp upper bounds on limT→∞EρT (c),ηT (0)φT (YT ) . In view
of (13) , these bounds can be obtained by maximizing

E [ψ (SF ,HF ) exp (ΛF (c, 0))] = E [ψ (SF ,HF ) exp (Λf (c))]

with respect to ψ. As in Section 3, the tests under consideration will be assumed to
be such that the limiting test functions ψ satisfy

E [ψ (SF ,HF )] = α. (14)

In an attempt to furthermore ensure that the power envelopes account for the presence
of the unknown nuisance parameter h, some additional restrictions will be placed on
ψ.

Two classes of test functions, motivated by two conceptually distinct approaches
to nuisance parameter elimination in the limiting experiment, will be considered. The
first class is motivated by the fact that ψ is α-similar in the limiting experiment if
and only if

E [ψ (SF ,HF ) exp (ΛF (0, h))] = α ∀h. (15)

Accordingly, a sequence φT is said to be locally asymptotically α-similar (in F ) if any
ψ satisfying (13) also satisfies (15) . The second class is motivated by a location in-
variance property enjoyed by testing problems involving c in the limiting experiment.
As explained in a remark following the proof of Theorem 3, any (location) invariant
test in the limiting experiment admits a representation in which ψ (SF ,HF ) depends
on (SF ,HF ) only through (Sf.η,HF ) , where

Sf.η := Sf −
Hfη

Hηη
Sη.

Accordingly, a sequence φT is said to be locally asymptotically α-invariant (in F ) if
any ψ satisfying (13) also satisfies (14) and can be chosen such that

ψ (SF ,HF ) = E [ψ (SF ,HF ) |Sf.η,HF ] . (16)

It is shown in the proof of Theorem 3 that if (16) holds, then

E [ψ (SF ,HF ) exp (ΛF (c, h))] = E [ψ (SF ,HF ) exp (Λf.η (c))] , (17)
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where

Λf.η (c) := cSf.η −
1

2
c2Hff.η, Hff.η := Hff −

H2
fη

Hηη
.

Because the right-hand side of (17) does not depend on h, the class of locally asymp-
totically α-invariant tests is contained in the class of locally asymptotically α-similar
tests. Both classes of tests contain most (if not all) existing unit root tests. In partic-
ular, it can be shown that both classes of tests contain the point optimal tests of ERS
as well as the “robust” unit root tests based on M-estimators and/or ranks proposed
by Herce (1996), Hasan and Koenker (1997), Thompson (2004), and Koenker and
Xiao (2004). On the other hand, the restrictions imposed are not entirely vacuous, as
it follows from Theorem 3 that they are violated by the “oracle” test based on φf,T
unless the submodel satisfies Ifη �= 0.

The next result generalizes Theorem 1 to parametric submodels. It is shown in
part (a) that

ΨS
F (c, α) := E

[
ψS

F (SF ,HF |c, α) exp (Λf (c))
]

(18)

provides an upper bound on local asymptotic power for locally asymptotically α-
similar tests, where

ψS
F (SF ,HF |c, α) := 1

[
Λf (c) > KS

α (Sη, c; IF )
]

and KS
α is the continuous function satisfying E

[
ψS

F (SF ,HF |c, α) |Sη
]

= α.12 The
envelope for locally asymptotically α-invariant tests is shown in part (b) to be given
by

ΨI
F (c, α) := E

[
ψI

F (SF ,HF |c, α) exp (Λf (c))
]
, (19)

where

ψI
F (SF ,HF |c, α) := 1

[
Λf.η (c) > KI

α (c; IF )
]

and KI
α (c; IF ) is the 1− α quantile of Λf.η (c) .

12A more explicit characterization of KS
α is given in the proof of Lemma 7 in the Appendix.



S������������ P�"�� E	#����
 14

Theorem 3. (a) If Assumption LAQ* holds and φT is locally asymptotically α-
similar, then

limT→∞EρT (c),ηT (0)φT (YT ) ≤ ΨS
F (c, α) ∀c < 0. (20)

(b) If, moreover, φT is locally asymptotically α-invariant, then

limT→∞EρT (c),ηT (0)φT (YT ) ≤ ΨI
F (c, α) ∀c < 0. (21)

The bounds derived in Theorem 3 are attainable pointwise if F is known, limT→∞
on the left-hand sides of (20) and (21) equaling limT→∞ and the inequalities becoming
equalities when φT (YT ) is given by13

φSF,T (YT |c, α) := 1

[
cSf

T −
1

2
c2Hff

T > KS
α (Sη

T , c;IF )

]
(22)

and

φIF,T (YT |c, α) := 1

[
cSf.η

T − 1

2
c2Hff.η

T > KI
α (c; IF )

]
, (23)

respectively, where

Sf.η
T := Sf

T −
Hfη

T

Iηη
Sη
T , Hff.η

T := Hff
T − H

fη2
T

Iηη
.

Because the class of locally asymptotically α-invariant tests is contained in the
class of locally asymptotically α-similar tests, the power envelopes satisfy ΨI

F ≤ ΨS
F

by construction. Moreover, the inequality is strict whenever Ifη �= 0, implying that
the present model differs in an interesting way from models with LAN likelihood
ratios. In a Gaussian shift experiment (the limiting experiment in a model with
LAN likelihood ratios) with one element of the mean vector being the parameter of
interest and the others being unknown nuisance parameters, the class of α-similar
tests contains the class of size α location invariant tests. In other words, the natural
counterparts of the restrictions (15) and (16) are nested in the same way as they
are here. Unlike the limiting experiment of the model studied here, however, the
two classes of restrictions give rise to identical power envelopes in a Gaussian shift
experiment (because the best α-similar test is location invariant) and there is no

13The functions φSF,T and φIF,T are the natural finite sample counterparts of ψSF and ψIF , respec-
tively.
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ambiguity about what the “correct” power envelope is.14 In contrast, because ΨI
F

and ΨS
F differ whenever Ifη �= 0 it is unclear which (if any) of these envelopes is the

“correct” envelope in the present context.
A potential problem with the power envelope ΨS

F is that it is perhaps “too local” in
the sense that it fails to adequately reflect the fact that the nuisance parameter h is un-
known in the limiting experiment. Specifically, whereas E [ψ (SF ,HF ) exp (ΛF (c, h))]
will depend on h in general even if ψ satisfies (15) , the object being maximized,
E [ψ (SF ,HF ) exp (Λf (c))] , does not depend on h. One way to avoid this potential
problem, which furthermore helps clarify the relation between (15) and (16) , is to
consider a minimax criterion. Using the Hunt-Stein theorem (e.g., Lehmann and
Romano (2005, Theorem 8.5.1)), it can be shown that if ψ satisfies (15) , then

infh∈RE [ψ (SF ,HF ) exp (ΛF (c, h))] ≤ ΨI
F (c, α) , (24)

where the inequality becomes an equality when ψ = ψI
F (·|c, α) . By implication, ΨI

F

can be interpreted as a minimax power envelope for locally asymptotically α-similar
tests. Indeed, if φT is locally asymptotically α-similar, then

infH limT→∞minh∈H EρT (c),ηT (h)φT (YT ) ≤ ΨI
F (c, α) ∀c < 0, (25)

where the inf is taken over all finite subsetsH of R. (Moreover, the inequality becomes
an equality and limT→∞ can be replaced by limT→∞ when φT (·) = φIF,T (·|c, α) .) This
fact, a proof of which can be based on (24) and the methods of van der Vaart (1991),
would appear to support the conjecture that ΨI

F is the “correct” power envelope.
Additional substantiation of that conjecture is provided by a remark at the end of
this section.

Because profile likelihood procedures “work” in conventional (parametric or even
semiparametric) problems (e.g., Murphy and van der Vaart (1997, 2000)), it may be
worth noting that ΨI

F has a profile likelihood interpretation. Specifically, the function
Λf.η appearing in the definition of ΨI

F satisfies

Λf.η (c) = maxh ΛF (c, h)−maxh ΛF (0, h) .

This is not merely a coincidence, as it follows from Lehmann and Romano (2005,

14This observation combined with the fact that (the counterpart of) local asymptotic α-similarity
is a weaker restriction than (the counterpart of) local asymptotic α-invariance in models with LAN
likelihood ratios would appear to explain why the latter restriction has received little (if any) atten-
tion in the existing literature on semiparametric testing theory.
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Problem 6.9) that best location invariant tests are of the profile likelihood variety
whenever the log likelihood is quadratic in the location parameter.

Comparing the power envelopes of Theorems 1 and 3, it is seen that ΨS
F ≤ Ψf , the

inequality being strict unless Ifη = 0. Therefore, the asymptotic power bound(s) for
unit root tests in a parametric submodel will be strictly lower than the power bound in
the model with a known error density unless the submodel satisfies Ifη = 0. Because
the assumption ℓη ∈ Lη implies E [ℓf (ε) ℓη (ε)] = 0 only when ℓf (ε) = ε, the only
distribution (with full support and unit variance) for which the condition Ifη = 0 is
satisfied for every smooth submodel is the Gaussian distribution. Therefore, the point
optimal tests of ERS are locally asymptotically α-similar/α-invariant in any smooth
parametric submodel for which f (·|0) is the Gaussian distribution. Conversely, if f
is not Gaussian, then the test φf,T (·|c, α) of the previous section violates (15) for
some smooth parametric submodel F with f (·|0) equal to the (true) density f. By
implication, the concept of point optimality, which has proven successful when dealing
with the curvature in the unit root model with a known density, cannot be used to
handle the nuisance parameter f. Specifically, a test of the form φf̄ ,T (·|c, α) will not
be “nearly efficient” even if f̄ is chosen “carefully”.

The results mentioned in the preceding paragraph bear a noticeable resemblance
to the point estimation results for the location model, but differ in one important
respect from the results for the stable AR(1) model. In the location model, the

Cramér-Rao bound is given by I−1ff when f is known and by
(
Iff − I2fη/Iηη

)−1
in

parametric submodels, implying that the bounds coincide if and only if Ifη = 0.
Moreover, the sample mean, the quasi-maximum likelihood estimator of θ based on
the Gaussian distribution, is regular in any submodel, whereas the quasi-maximum
likelihood estimator θ̂f := arg maxθ

∑
i log f (Xi − θ) based on the true density f is

regular in a submodel F with f (·|0) = f if and only if the submodel has Ifη = 0, a
condition which is violated by some smooth submodels unless the true distribution
happens to be Gaussian.

In the location model, the condition that Ifη = 0 in all smooth submodels per-
mitted by the set F of densities to which f is assumed to belong is simply Stein’s
(1956) necessary condition for adaptation. As is well known, this condition is sat-
isfied when f is assumed to be symmetric, but is violated when f is unrestricted.
In fact, adaptive estimation is possible in the symmetric location model under As-
sumption AC (e.g., Beran (1974, 1978), Stone (1975)), whereas the sample average
attains the semiparametric efficiency bound in the location model with an (essen-
tially) unrestricted f (e.g., Levit (1975), Newey (1990)), implying in particular that
departures from normality cannot be exploited for efficiency purposes in that model.
The latter property is not shared by the stable AR(1) model, which admits adap-
tive estimators even when f is required only to satisfy Assumption AC (e.g., Kreiss
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(1987a, 1987b), Drost, Klaassen, and Werker (1997)). Therefore, although the stable
AR(1) model and the location model exhibit qualitatively identical behavior when
the density is known and/or symmetric, they exhibit drastically different behavior in
the semiparametric case where f is treated as an unrestricted nuisance parameter.

Utilizing the results of this section, the following two sections develop power en-
velopes in the semiparametric cases where f is either assumed to be symmetric or
is left unrestricted. It will be shown in Section 5 that the unit root model admits
adaptive testing procedures when the errors are assumed to be symmetric and satisfy
Assumption AC. Consequently, the analogies pointed out by Rothenberg and Stock
(1997, p. 278) extend in a predictable way to the semiparametric model in which
only symmetry is assumed on the part of the error distributions. In contrast, it is
obvious from the results cited in the previous paragraph that these analogies will
not extend to the model in which the error distribution is unrestricted. Studying
the unit root model with an (essentially) unrestricted f, Section 6 finds that the
semiparametric properties of the unit root model are related to the semiparametric
properties of both the location model and the stable AR(1) model. On the one hand,
a numerical evaluation of the semiparametric power envelopes will show that these
can be well above the power envelope corresponding to the Gaussian distribution.
By implication, the unit root model shares some of the semiparametric properties of
the stable AR(1) model. On the other hand, the analytical characterization of the
semiparametric power envelope for the unit root model turns out to be intimately
related to the corresponding characterization of the semiparametric power envelope
for the location model (and seemingly unrelated to the characterization of the semi-
parametric power envelope for the stable AR(1) model).

Remark. A simple heuristic argument (which can easily be made rigorous) shows
that “plug-in” versions of φSF,T (YT |c, α) will typically fail to attain ΨS

F . Indeed, con-
sider

φ̃
S

F,T (YT |c, α) := 1

[
cS̃T −

1

2
c2Hff

T > KS
α

(
S̃η
T , c; IF

)]
,

where, for some estimator η̃T of η (and assuming the derivatives exist),

S̃T :=
1

T

T∑

t=2

yt−1ℓf (∆yt|η̃T ) , ℓf (∆yt|η) :=
∂

∂θ
log f (∆yt − θ|η)

∣∣∣∣
θ=0

,

S̃η
T :=

1√
T

T∑

t=2

ℓη (∆yt|η̃T ) , ℓη (∆yt|η) :=
∂

∂η
log f (∆yt|η) .
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If η̃T is asymptotically efficient (i.e., best regular), then T 1/2η̃T = I−1ηη S
η
T + op0,f (1) ,

and ℓf (·|η̃T ) should be asymptotically equivalent to

ℓf (·) + ℓfη (·) η̃T , ℓfη (·) :=
∂

∂η
ℓf (·|η)

∣∣∣∣
η=0

,

in the sense that

S̃T =
1

T

T∑

t=2

yt−1 [ℓf (∆yt) + ℓfη (∆yt) η̃T ] + op0,f (1) = Sf.η
T + op0,f (1) .

Moreover, S̃η
T should be op0,f (1) , so it should be the case that

φ̃
S

F,T (YT |c, α) = 1

[
cSf.η

T − 1

2
c2Hff

T > KS
α (0, c; IF )

]
+ op0,f (1) .

Replacing η = 0 by an asymptotically efficient estimator is seen to have a non-

negligible impact on the properties of the test. Indeed, the statistics φ̃
S

F,T (YT |c, α)

and φSF,T (YT |c, α) are asymptotically equivalent if and only if Ifη = 0. By implication,

“plug-in” versions of φSF,T (YT |c, α) generally fail to attain ΨS
F . In fact, it follows from

the preceding display that φ̃
S

F,T (·|c, α) is locally asymptotically α-invariant in F and
therefore satisfies

limT→∞EρT (c),ηT (0)φ̃
S

T (YT |c, α;F ) ≤ ΨI
F (c, α) .

The failure of the “plug-in” approach in this example casts serious doubt on the
relevance of the power envelope ΨS

F . In contrast, ΨI
F is easily shown to be attained by

“plug-in” versions of φIF,T (YT |c, α) . It will be shown in Section 6 that this property
extends to semiparametric models.

5. S�������� E���� D�
��������	


This section studies unit root testing in the case where f is assumed to belong to
FS

AC , the set of symmetric densities satisfying Assumption AC. As discussed in the
previous section, Stein’s (1956) necessary condition for adaptation in the location
model is also necessary and sufficient for the power envelopes Ψf ,Ψ

S
F , and ΨI

F to
coincide for every smooth submodel F permitted by the set F of densities to which
f is assumed to belong. This necessary condition is satisfied when f is assumed to
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belong to FSAC . Theorem 4, the main result of this section, shows that the assumption
f ∈ FSAC is also sufficient for adaptive unit root testing to be possible.

In models with LAN likelihood ratios, the duality between point estimation and
hypothesis testing in Gaussian shift experiments (e.g., Choi et al. (1996)) implies that
associated with any “reasonable” definition of adaptation for point estimators (e.g.,
Bickel (1982), Begun et al. (1983)) there is a “reasonable” definition of adaptation for
hypothesis tests. On the other hand, because the duality between point estimation
and hypothesis testing breaks down in models with LAQ (but not LAN/LAMN)
likelihood ratios, some care must be exercised when defining adaptation in the context
of the model studied in this paper. In particular, although Ling and McAleer’s (2003)
definition of adaptation for point estimators generalizes Bickel’s (1982) definition to
models of the form considered in this paper, it is unclear whether that definition can
be translated into a “reasonable” definition of adaptation for hypothesis tests.

It is by no means difficult to give a “reasonable” definition of adaptation for tests
of the unit root hypothesis. Nevertheless, it seems more attractive to work with a
notion of adaptation that depends only on the model under consideration and makes
no reference to any particular type of inference (e.g., point estimation or hypothesis
testing). Accordingly, the collection FSAC is said to permit adaptive inference if there

exists a pair
(
ŜT , ĤT

)
of statistics such that

(
ŜT , ĤT

)
=
(
Sf
T , H

f
T

)
+ op0,f (1) ∀f ∈ FS

AC . (26)

Because
(
Sf
T , H

f
T

)
is asymptotically sufficient when f is known and satisfies Assump-

tion LAQ, the present definition is a natural formalization of the requirement that
no information is lost (asymptotically) when the density is treated as an unknown
nuisance parameter belonging to the set FSAC .

15

Theorem 4 shows that FSAC permits adaptive inference and uses that result to
derive an adaptation result for unit root tests. To describe the latter result, suppose(
ŜT , ĤT

)
satisfies (26) and let

φ̂T (YT |c, α) := 1

[
cŜT −

1

2
c2ĤT > Kα

(
c; ÎT

)]
, ÎT :=

ĤT

1
T 2

∑T
t=2 y

2
t−1
. (27)

If (26) holds, then a test based on φ̂T (·|c, α) will be asymptotically equivalent to
the “oracle” test based on φf,T (·|c, α) , an adaptation property in view of the fact

15Moreover, the definition generalizes in an obvious way to (other classes of densities and to)
other models with a finite-dimensional asymptotically sufficient statistic and the resulting definition
agrees with standard definitions in models where the likelihood ratios happen to be LAN.



S������������ P�"�� E	#����
 20

that φf,T (·|c, α) attains Ψf (·) and is locally asymptotically α-invariant in F ⊆ FSAC

whenever F satisfies Assumption DQM*.
As candidate “estimators” of Sf

T and Hf
T , consider

ŜT :=
1

T

T∑

t=2

yt−1ℓ̂
S

Tt (∆yt) (28)

and

ĤT :=
ÎT
T 2

T∑

t=2

y2t−1, ÎT :=
1

T

T∑

t=1

ℓ̂STt (∆yt)
2 , (29)

where
{
ℓ̂STt : 2 ≤ t ≤ T

}
are estimators of ℓf . Evidently,

(
ŜT , ĤT

)
satisfies (26) pro-

vided the ℓ̂STt are such that
(
ŜT , ÎT

)
=
(
Sf
T ,Iff

)
+ op0,f (1) for every f ∈ FS

AC .

This requirement is met by sample splitting estimators of the form

ℓ̂STt (∆yt) :=






ℓ̃ST−τT
(∆yt|∆yτT+1, . . . ,∆yT ) , t = 1, . . . , τT ,

ℓ̃SτT (∆yt|∆y1, . . . ,∆yτT ) , t = τT + 1, . . . , T,

(30)

where τT are integers with

0 < limT→∞τT/T ≤ limT→∞τT/T < 1 (31)

and ℓ̃ST is a sequence of estimators such that, as T →∞,
∫ ∞

−∞

[
ℓ̃ST (ε|ε1, . . . , εT )− ℓf (ε)

]2
f (ε) dε = op (1) (32)

and

√
T

∫ ∞

−∞
ℓ̃ST (ε|ε1, . . . , εT ) f (ε) dε = op (1) , (33)

whenever ε1, . . . , εT are i.i.d. with density f ∈ FSAC .
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Theorem 4. (a) If
(
ŜT , ĤT

)
is defined as in (28)− (33) , then (26) holds.

(b) In particular, if f ∈ FSAC and φ̂T is defined as in (27)− (33) , then

limT→∞EρT (c)φ̂T (YT |c̄, α) = limT→∞EρT (c)φf,T (YT |c̄, α) ∀c ≤ 0, c̄ < 0.

Remarks. (i) The main purpose of Theorem 4 is to demonstrate by example that
the bound Ψf is sharp when the errors are known to be symmetric. Sample split-
ting estimators of ℓf (with the null hypothesis imposed) are employed because such
estimators make it possible to give a relatively elementary proof of adaptation under
fairly minimal conditions on f. In practice, it may be desirable to use the full sam-
ple (along with some estimator of ρ) when estimating ℓf . It seems plausible that the
methods of Koul and Schick (1997) can be used to justify the use of such an estimator,
but an investigation along these lines will not be pursued in this paper. Also left for
future work is a numerical investigation of the extent to which the asymptotic power
gains documented here are available in small samples when ℓf needs to be estimated.
A similar remark applies to Theorem 6 of the next section.

(ii) Estimators ℓ̃ST satisfying (32)− (33) can be found in Bickel (1982) and Bickel
et al. (1998). For further discussion of these high-level assumptions, see Schick (1986)
and Klaassen (1987).

6. U	��
������� E���� D�
��������	


This section obtains semiparametric power envelopes for tests of the unit root hy-
pothesis in the case where f is (essentially) unrestricted in the sense that is assumed
to be known only that f belongs to FDQM , the class of densities satisfying Assump-
tion DQM. In the spirit of Stein (1956), the semiparametric power envelopes will be
defined as the infimum of the power envelopes associated with parametric submodels
embedding the true error density. In light of the striking similarities between the
results derived so far and the corresponding results for the location model, it seems
plausible that these asymptotic power envelopes should admit an interpretation anal-
ogous to the interpretation of the semiparametric power envelope for tests in the
location model. That conjecture turns out to be correct. Specifically, it turns out
that the least favorable submodels in the unit root model coincide with the least
favorable submodels in the location model.

In the location model, a least favorable submodel is any submodel for which the
associated ℓη maximizes the squared correlation I2fηI−1ff I−1ηη of ℓf (ε) and ℓη (ε) subject
to the restriction ℓη ∈ Lη. As was seen in Section 4, this property is shared by the
unit root model in the Gaussian case, where Iff = 1 and any submodel has Ifη = 0
(and is least favorable). Presuming that the property is shared by the unit root model
also if Iff > 1, it follows that the semiparametric power envelopes for tests of the
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unit hypothesis “should” be given by the envelopes ΨS
F and ΨI

F associated with a
submodel F for which ℓη (ε) = ℓf (ε)− ε.

Theorem 5 makes the preceding heuristics precise. Let (W,Bf ) and (Λf ,Sf ,Hff)
be as in Section 3 and define

ΨS
f (c, α) := E

[
ψS

f

(
Sf ,Hff ,SS

f |c, α
)

exp (Λf (c))
]
, (34)

ΨI
f (c, α) := E

[
ψI

f

(
SI
f ,HI

ff |c, α
)

exp (Λf (c))
]
, (35)

where16

ψS
f

(
Sf ,Hff ,SS

f |c, α
)

:= 1
[
Λf (c) > KS

α

(
SS
f , c;J LF

f

)]
,

ψI
f

(
SI
f ,HI

ff |c, α
)

:= 1
[
ΛI

f (c) > KI
α

(
c;J LF

f

)]
, ΛI

f (c) := cSI
f −

1

2
c2HI

ff ,

SS
f := Bf (1)−W (1) , J LF

f :=

(
Iff Iff − 1

Iff − 1 Iff − 1

)

SI
f := Sf −

(∫ 1

0

W (r) dr

)
SS
f , HI

ff := Hff − (Iff − 1)

(∫ 1

0

W (r) dr

)2
.

Finally, for any f ∈ FDQM , let Jf denote the set of matrices IF associated with
submodels F satisfying Assumption DQM*.

Theorem 5. If f ∈ FDQM , then

infF :IF∈Jf ΨS
F (c, α) = ΨS

f (c, α) ∀c < 0, (36)

infF :IF∈Jf ΨI
F (c, α) = ΨI

f (c, α) ∀c < 0. (37)

The proof of (36) first shows that

infF :IF∈Jf ΨS
F (c, α) ≥ ΨS

f (c, α) ∀c < 0. (38)

The proof of (38) is constructive in the sense that it shows that the test based on

φSf,T (YT |c, α) := 1

[
cSf

T −
1

2
c2Hff

T > KS
α

(
Sf,S
T , c;J LF

f

)]
(39)

16As defined, ψSf and ψIf are the test functions ψSF and ψIF of Section 4 corresponding to a
submodel with ℓη (ε) = ℓf (ε)− ε.
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attains ΨS
f and is locally asymptotically α-similar in any smooth submodel, where

Sf,S
T := T−1/2

T∑

t=2

[ℓf (∆yt)−∆yt] .

Then, using the fact that ΨS
F is continuous in IF , an inequality in the opposite

direction is obtained by showing that J LF
f belongs to the closure of Jf . A similar

strategy is used to obtain (37) .

FIGURES 2 AND 3 ABOUT HERE

Figures 2 and 3 plot ΨS
f (·, 0.05) and ΨI

f (·, 0.05) for various values of Iff . Compar-
ing Figures 2 and 3 to Figure 1, the semiparametric power envelopes are seen to lie
well above the power envelope corresponding to the Gaussian distribution.17 In spite
of the fact that there is no obvious connection between the analytical semiparametric
efficiency results for the unit root model and those for the stable AR(1) model, the
numerical results displayed in Figures 2 and 3 are therefore qualitatively similar to
the well known results for the stable AR(1) model insofar as Figures 2 and 3 suggest
that nonnormality can be a source of potentially substantial power gains in unit root
tests even in the absence of knowledge of the error distribution.

It is therefore of significant interest to investigate whether the power bounds
reported in Figures 2 and 3 are sharp. The fact that completely consistent (in the
terminology of Andrews (1986)) goodness of fit tests exist can be used to show that
for any f̄ ∈ FDQM it is possible to construct tests that are locally efficient at f̄ in
the sense that they are locally asymptotically α-similar/α-invariant in any smooth
submodel F with f (·|0) ∈ FDQM and attain ΨS

f /Ψ
I
f when f = f̄ . For instance,

consider

φ∗f̄ ,T (YT |c, α) := ϕT

(
YT |f̄

)
φSf̄,T (YT |c, α) +

[
1− ϕT

(
YT |f̄

)]
φERS
T (YT |c, α) ,

where φERS
T (YT |c, α) is the test function of ERS’s point optimal test and ϕT

(
·|f̄
)
is

a (goodness of fit) test function for which

ϕT

(
YT |f̄

)
= 1

(
f = f̄

)
+ op0,f (1) ∀f ∈ FDQM .

17The difference between the “oracle” bounds Ψf (·, 0.05) , ΨSf (·, 0.05) , and ΨIf (·, 0.05)
is noticeable in most of the cases considered. Numerical evaluation shows that
supc

∣∣∣Ψf (c, 0.05)−ΨSf (c, 0.05)
∣∣∣ ≈ 0.02, 0.05, 0.07 and supc

∣∣∣Ψf (c, 0.05)−ΨIf (c, 0.05)
∣∣∣ ≈ 0.09, 0.15,

0.16 for Iff = 2, 5, 10.
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This “shrinkage” test is asymptotically equivalent to φSf̄,T (YT |c, α) when f = f̄ and
asymptotically equivalent to ERS’s test otherwise. In particular, the test is locally
asymptotically α-similar in any smooth submodel F with f (·|0) ∈ FDQM and attains
ΨS

f when f = f̄ . A similar construction can be used to show that ΨI
f provides a

(pointwise) sharp upper bound on the local asymptotic power attainable by means
of tests that are locally asymptotically α-invariant in any smooth submodel F with
f (·|0) ∈ FDQM .

The preceding construction is of theoretical interest because it demonstrates by
example that the bounds ΨS

f and ΨI
f are pointwise sharp. (In light of this it seems

reasonable to refer to ΨS
f and ΨI

f as semiparametric power envelopes.) Nevertheless,

the “shrinkage” test based on φS,∗
f̄ ,T

(YT |c, α) is obviously not recommended for actual

use and a more interesting question is therefore whether globally (in f) efficient testing
procedures exist. On the one hand, reasoning similar to that of the remark at the
end of Section 4 shows that “plug-in” versions of φSf,T (YT |c, α) generally fail to attain
ΨS

f even if a valid parametric submodel is postulated. In contrast, Theorem 6 will
show that the assumption f ∈ FAC is sufficient for the envelope ΨI

f to be globally
attainable.

Global attainability of ΨI
f follows from arguments analogous to those used by

Bickel (1982) to show feasibility of adaptive estimation of the slope coefficients in a
standard regression model. The proof of (37) uses a finite sample counterpart of SI

f

given by

Sf,I
T := Sf

T −
(

1

T 3/2

T∑

t=2

yt−1

)
1√
T

T∑

t=2

[ℓf (∆yt)−∆yt] . (40)

Because

Sf,I
T =

1

T

T∑

t=2

yµt−1ℓf (∆yt)+

(
1

T 3/2

T∑

t=2

yt−1

)
1√
T

(yT − y1) , yµt−1 := yt−1−
∑T

s=2 ys−1
T − 1

,

consistent “estimation” of Sf,I
T turns out to be feasible even though ℓf cannot be

estimated with small bias. Specifically, the fact that
∑T

t=2 y
µ
t−1 = 0 implies that

(the natural counterpart of) the assumption (33) can be avoided when constructing
a consistent “estimator” of Sf,I

T .
18

18Because adaptive estimation is impossible in the location model with an (essentially) unrestricted
f, it follows from Klaassen (1987) that there exists no

√
T -unbiased estimator of ℓf when f is

(essentially) unrestricted; that is, the natural counterpart of (33) cannot hold when f is (essentially)
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To demonstrate by example that the bound ΨI
f is globally (in f) sharp, let

φ̂
I

T (YT |c, α) := 1

[
cŜI

T −
1

2
c2ĤI

T > K
I
α

(
c; Ĵ LF

T

)]
, (41)

where, for some integers τT with

limT→∞ τT = ∞ and limT→∞ τT/T = 0, (42)

and for some estimator ℓ̂T of ℓf ,

ŜI
T :=

1

T

T∑

t=τT+1

yt−1ℓ̂T (∆yt)−
(

1

T 3/2

T∑

t=τT+1

yt−1

)(
1√
T

T∑

t=τT+1

[
ℓ̂T (∆yt)−∆yt

])

,

(43)

ĤI
T :=

ÎT
T 2

T∑

t=τT+1

y2t−1 −
(
ÎT − 1

)( 1

T 3/2

T∑

t=τT+1

yt−1

)2

, (44)

Ĵ LF
T :=

(
ÎT ÎT − 1

ÎT − 1 ÎT − 1

)
, ÎT :=

1

T

T∑

t=τT+1

ℓ̂T (∆yt)
2 . (45)

As defined, φ̂
I

T (YT |c, α) is a “plug-in” version of the test φIf,T (YT |c, α) used in the
proof of Theorem 5 (b). In the spirit of Bickel (1982), suppose

ℓ̂T (∆yt) := ℓ̃τT (∆yt|∆y1, . . . ,∆yτT ) , (46)

where ℓ̃T is a sequence of estimators such that, as T →∞,
∫ ∞

−∞

[
ℓ̃T (ε|ε1, . . . , εT )− ℓf (ε)

]2
f (ε) dε = op (1) (47)

whenever ε1, . . . , εT are i.i.d. with density f ∈ FAC .

Theorem 6. If f ∈ FAC and φ̂
I

T is defined as in (41)− (47) , then

limT→∞EρT (c)φ̂
I

T (YT |c̄, α) = E
[
ψI

f

(
SI
f ,HI

ff |c̄, α
)

exp (Λf (c))
]

∀c ≤ 0, c̄ < 0.

unrestricted. In contrast, it follows from Bickel (1982) that the natural counterpart of (32) is
compatible with the assumption f ∈ FAC , so (47) is not void.
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By showing that ΨI
f is sharp, Theorem 6 demonstrates in particular that there is

a sense in which the tests of ERS are asymptotically inadmissible if the assumption
of Gaussian errors is relaxed. This result and the analogous inadmissibility result de-
ducible from Theorem 4 can be viewed as a unit root counterparts the inadmissibility
of the least squares estimator of β in the model

Yi = βXi + εi, (48)

where the εi are i.i.d. with density f and independent of the i.i.d. regressor Xi whose
mean is assumed to be different from zero. Specifically, Bickel (1982, Example 2)
shows that adaptive estimation of β is possible when f is symmetric, while Schick
(1987, Example 2) presents the efficient influence function for β without assuming
symmetry of f and shows in particular that departures from normality can be ex-
ploited for efficiency purposes also in that case.

7. E+��	
��	


Sections 3-6 study a model which assumes away the presence of deterministic compo-
nents and/or serial correlation in the error. In the Gaussian case, the consequences
of relaxing these assumptions are well understood from the work of ERS: parameters
governing serial correlation in the error can be treated “as if” they are known, as can
the value of a constant mean in the observed process, whereas the presence of a time
trend affects the asymptotic power envelope. This section briefly explores whether
these qualitative conclusions remain valid in models with non-Gaussian errors and
finds that they do. In addition, and in perfect analogy with Section 4, it is found
that also in models with a time trend the properties of parametric submodels depend
on whether or not Stein’s (1956) necessary condition for adaptation in the location
model is satisfied.

The consequences of accommodating deterministic components and/or serial cor-
relation in the error will be explored by studying a model in which the observed data
y1, . . . , yT is generated as

yt = µ+ δt+ ut, (1− ρL) γ (L) ut = εt, (49)

where µ and δ are the parameters governing the deterministic component, the lag
polynomial γ (L) = 1 − γ1L − . . . − γpLp is of (known, finite) order p, 19 the initial
conditions are u0 = u−1 = . . . = u1−p = 0, and the εt are unobserved i.i.d. errors from

19Adapting the methods of Jeganathan (1997), it should be possible to allow γ (L) to be a smoothly
parameterized lag polynomial of infinite order. The qualitative conclusions of this section will not
be affected by such an extension, so to conserve space it will not be pursued here.
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a continuous distribution with full support, zero mean, unit variance, and density f.
It is assumed that min|z|≤1 |γ (z)| > 0 so that the unit root testing problem is that of
testing H0 : ρ = 1 vs. H1 : ρ < 1. As in Section 4, the density f is embedded in a
smooth family of densities.

As before, local reparameterizations will be employed in the asymptotic analysis.
The appropriate reparameterizations of µ, δ, and γ (L) are of the form

µ = µT (m) := µ0 +m, δ = δT (d) := δ0 +
γ0 (1)√
T
d, (50)

γ (L) = γT (L; g) := γ0 (L) +
g (L)√
T
, (51)

where µ0 and δ0 are known constants, γ0 (L) := 1−γ1,0L− . . .−γp,0Lp is a known lag
polynomial with min|z|≤1 |γ0 (z)| > 0, whereas the unknown parameters are m, d, and
the coefficients g := (g1, . . . , gp)

′ of the lag polynomial g (L) := −g1L− . . .− gpLp.20

Without loss of generality, it is assumed that µ0 and δ0 are equal to zero.
The log likelihood ratio function associated with the chosen reparameterization is

of the form

LFT (c,m, d, g, h) := L0T (c,m, d, g, h)

+
T∑

t=p+2

log f [εt (c,m, d, g) |ηT (h)]−
T∑

t=p+2

log f [εt (0, 0, 0, 0) |ηT (0)] ,

where L0T (c, h,m, d, g) represents the contribution of y1, . . . , yp+1 and

εt (c,m, d, g) := [1− ρT (c)L] γT (L; g)

[
yt −m−

d√
T
t

]
, t ≥ p+ 2.

If yt is generated by (49) , (cT , hT ,mT , dT , gT ) is a bounded sequence, and mild
smoothness conditions on F hold, then LFT admits an expansion of the form

LFT (cT ,mT , dT , gT , hT ) = Lfδη
T (cT , dT , hT ) + Lµ (mT ) + Lγ

T (gT ) + op0,f (1) , (52)

where “op0,f (1)” is shorthand for “op (1) when H0 holds, (m,d, g) = (0, 0, 0) , and ε

has density f” and the functions Lfδη
T , Lµ, and Lγ

T are given by

20The term γ0 (1) appears in the definition of δT (d) because the resulting definition gives rise to
a limiting experiment which depends on d in a particularly simple way.
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Lfδη
T (c, d, h) := cSf

T −
1

2
c2Hff

T + d
[
Sδ
T (c)− cHfδ

T (c)
]
− 1

2
d2Hδδ (c)

+ h
[
Sη
T − cHfη

T − dHδη (c)
]
− 1

2
h2Hηη,

Lµ (m) :=

p∑

j=0

log f
(
∆x1+j + γj,0m

)
−

p∑

j=0

log f (∆x1+j) , γ0,0 := −1,

Lγ
T (g) := g′Sγ

T −
1

2
g′Hγγg,

where

Sf
T :=

1

T

T∑

t=p+2

xt−1ℓf (∆xt) , Hff
T :=

Iff
T 2

T∑

t=p+2

x2t−1,

Sδ
T (c) :=

1√
T

T∑

t=p+2

ξc

(
t− 1

T

)
ℓf (∆xt) , Hfδ

T (c) :=
Iff
T 3/2

T∑

t=p+2

xt−1ξc

(
t− 1

T

)
,

Sη
T :=

1√
T

T∑

t=p+2

ℓη (∆xt) , Hfη
T :=

Ifη
T 3/2

T∑

t=p+2

xt−1,

Sγ
T :=

1√
T

T∑

t=p+2

(∆yt−1, . . . ,∆yt−p)
′ ℓf (∆xt) ,

(ℓf , ℓη) and (Iff ,Ifη,Hηη) are as in Section 4, xt := γ0 (L) yt,
21 ξc (r) := 1 − cr,

Hδδ (c) := Iff (1− c+ c2/3) , Hδη (c) := Ifη (1− c/2) , Hγγ := ΣγγIff , and Σγγ is a
p× p matrix with element (i, j) given by E

[
γ0 (L)−1 εt−iγ0 (L)−1 εt−j

]
.

Because neither Lµ (·) nor Lfδη
T (·) is quadratic, the model with a deterministic

component does not admit LAQ likelihood ratios. Nevertheless, the model is well
suited for analysis using the limits of experiments approach, as the interesting part
of the limiting experiment belongs to a curved exponential family and is amenable to
analysis using existing tools. Indeed, for every (c, h,m, d, g) ,

[
Lfδη

T (c, d, h) , Lµ (m) , Lγ
T (g)

]
→d0,f [Λfδη (c, d, h) ,Λµ (m) ,Λγ (g)] , (53)

21The (presample) values of y0, . . . , y1−p are set equal to zero in the definition of x1, . . . , xp.

Because xt = yt when p = 0, the present definitions of SfT , H
ff
T , SηT , and Hfη

T are consistent with
those of the previous sections.
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where “→d0,f” is shorthand for “→d when H0 holds, (m,d, g) = (0, 0, 0) , and ε has
density f” and Λfδη (c, d, h) , Λµ (m) , and Λγ (g) are mutually independent with

Λγ (g) := g′Sγ −
1

2
g′Hγγg, Sγ ∼ N (0,Hγγ) ,

Λµ (m) ∼
p∑

j=0

log f
(
ε1+j + γj,0m

)
−

p∑

j=0

log f (ε1+j) ,

and

Λfδη (c, d, h) := cSf −
1

2
c2Hff + d [Sδ (c)− cHfδ (c)]− 1

2
d2Hδδ (c)

+h [Sη − cHfη − dHδη (c)]− 1

2
h2Hηη,

where (Sf ,Hff ,Sη,Hfη) and (W,Bf , Bη) are as in Section 4 and

Sδ (c) :=

∫ 1

0

ξc (r) dBf (r) , Hfδ (c) := Iff
∫ 1

0

W (r) ξc (r) dr.

The mutual independence of Λfδη (c, d, h) and [Λµ (m) ,Λγ (g)] and the additively
separable structure of the right-hand side of (52) imply that the derivation of asymp-
totic power envelopes for tests of the unit root hypothesis can proceed under the “as
if” assumption that µ and the coefficients of γ (L) are known. Moreover, the distri-
bution of Λfδη (c, d, h) does not depend on the coefficients of γ0 (L) , so the power
bounds developed in the previous sections (under the assumption that d is known to
equal zero) are valid also in the presence of a constant mean and/or serial correlation
in the error. Furthermore, the presence of a constant mean and/or serial correlation
in the error does not weaken the sense in which the bounds are sharp because

1

T

T∑

t=p+2

x̂t−1ℓf (∆x̂t) = Sf
T + op0,f (1) ,

Iff
T 2

T∑

t=p+2

x̂2t−1 = Hff
T + op0,f (1) ,

and so on, where x̂t := γ̂ (L) (yt − µ̂) , µ̂ := y1, and γ̂ (L) is a discretized,
√
T -

consistent estimator of γ (L) . These qualitative conclusions, which are in perfect
agreement with those obtained by ERS in the Gaussian case, show in particular that
the inability to do adaptive unit root testing when f is (essentially) unrestricted
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is not an artifact of the assumption that the deterministic component is known.
Nevertheless, it is of some interest to investigate whether the condition Ifη = 0
continues to play an important role also in models with a time trend.

In the case where a time trend is accommodated, the relevant limiting experiment
is an extended version of that studied in Section 4. The extended limiting experiment
involves the three-dimensional parameter (c, d, h) and is characterized by log likeli-
hood ratios of the form Λfδη (c, d, h) . As in Section 4, a location invariance restriction
can be used to remove the nuisance parameter h, the associated log likelihood ratio
being given by

Λfδ.η (c, d) := maxh Λfδη (c, d, h)−maxh Λfδη (0, 0, h)

= cSf.η −
1

2
c2Hff.η + d [Sδ.η (c)− cHfδ.η (c)]− 1

2
d2Hδδ.η (c) ,

where (Sf.η,Hff.η) is as in Section 4 and

Sδ.η (c) := Sδ (c)− Hδη (c)

Hηη

Sη, Hfδ.η (c) := Hfδ (c)− Hfη

Hηη

Hδη (c) ,

Hδδ.η (c) := Hδδ (c)− Hδη (c)2

Hηη
.

Similarly, the remaining nuisance parameter d can be removed using the principle
of invariance.22 Indeed, in perfect analogy with ERS’s analysis of the Gaussian case,
Lehmann and Romano (2005, Problem 6.9) and the fact that Λfδ.η (c, d) is quadratic
in d for any fixed c can be used to show that the power envelope associated with
α-invariant tests in the extended limiting experiment is given by

Ψδ
F (c, α) := E

[
1
(
Λf.δη (c) > Kδ

α (c; IF )
)

exp (Λf (c))
]
, (54)

where Kδ
α (c; IF ) is the 1− α quantile of

22The invariance condition in question is an asymptotic counterpart of the restriction that infer-
ence should be invariant under transformations of the form

yt → yt + bδt, bδ ∈ R.

(This transformation induces a transformation on the parameter δ of the form δ → δ+bδ, but leaves
all other parameters unchanged.)
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Λf.δη (c) := maxd Λfδ.η (c, d)−maxd Λfδ.η (0, d)

= cSf.η −
1

2
c2Hff.η +

1

2

[Sδ.η (c)− cHfδ.η (c)]2

Hδδ.η (c)
− 1

2

Sδ.η (0)2

Hδδ.η (0)
.

Analogous reasoning shows that if h is assumed to be known to equal zero, then the
power envelope associated with α-invariant tests in the relevant limiting experiment
is given by

Ψ̄δ
F (c, α) := E

[
1
(
Λ̄f.δ (c) > K̄δ

α (c; Iff)
)

exp (Λf (c))
]
, (55)

where K̄δ
α (c; Iff ) is the 1− α quantile of

Λ̄f.δ (c) := maxd Λfδη (c, d, 0)−maxd Λfδη (0, d, 0)

= cSf −
1

2
c2Hff +

1

2

[Sδ (c)− cHfδ (c)]2

Hδδ (c)
− 1

2

Sδ (0)2

Hδδ (0)
.

By inspection, it is seen that Λ̄f.δ (·) and Λf.δη (·) coincide if and only if Ifη = 0. In
other words, Stein’s (1956) necessary condition for adaptation in the location model
remains a necessary condition for adaptive unit root testing even when a time trend
is included in the deterministic component.

Remark. Proceeding as in Section 6, it should be possible to give an explicit char-
acterization of the semiparametric power envelope Ψδ

f (c, α) := infF :IF∈Jf Ψδ
F (c, α)

obtained by minimizing Ψδ
F (c, α) with respect to the submodel F and to demon-

strate by example that the envelope is sharp. To conserve space, the details of these
extensions are left for future work.

8. C�	���
��	

This paper has derived asymptotic power envelopes for tests of the unit root hypoth-
esis in a zero-mean AR(1) model. The power envelopes have been derived using the
limits of experiments approach and are semiparametric in the sense that the underly-
ing error distribution is treated as an unknown infinite-dimensional nuisance parame-
ter. Adaptation has been shown to be possible when the error distribution is known
to be symmetric and to be impossible when the error distribution is (essentially)
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unrestricted. In the latter case, two conceptually distinct approaches to nuisance
parameter elimination were employed in the derivation of the semiparametric power
envelopes. One of these power bounds, derived under an invariance restriction, was
shown by example to be sharp, while the other, derived under a similarity restriction,
was conjectured not to be globally attainable.

Both sets of restrictions imposed when deriving the semiparametric power en-
velopes have natural counterparts in models with LAN likelihood ratios and give rise
to identical power envelopes in such models. The fact that the two sets of restrictions
give rise to distinct power envelopes in the present context is perhaps surprising and
clearly shows that not all methodological conclusions from the existing literature on
semiparametrics will generalize to models not admitting LAN likelihood ratios. On
the other hand, it is interesting that one approach to nuisance parameter elimination
(albeit one that has not received much attention in the existing literature) “works”
both in conventional models and in the model studied herein. It would be of interest
to investigate whether this approach to nuisance parameter elimination also “works”
in other nonstandard hypothesis testing problems involving infinite-dimensional nui-
sance parameters.
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9. A�	��+: P����


Proof of Lemma 2. Suppose f satisfies Assumption DQM.
The result ℓf ∈ Lf follows from standard arguments. Specifically, E [ℓf (ε)] = 0

and E
[
ℓf (ε)2

]
< ∞ by van der Vaart (2002a, Lemma 1.8). Furthermore, using van

der Vaart (2002a, Example 1.15) the property E [εℓf (ε)] = 1 can be deduced from the
fact that the functional

∫∞
−∞ f (ε− θ) dε = θ is differentiable in the ordinary sense and

the sense of van der Vaart (2002a, Definition 1.14). Finally, by the Cauchy-Schwarz
inequality, E

[
ℓf (ε)2

]
≥ E [ε2] /E [εℓf (ε)]2 = 1.

To establish the LAQ property, let cT be a bounded sequence. The log likelihood
ratio Lf

T (cT ) admits the expansion

Lf
T (cT ) =

cT
T

T∑

t=2

yt−1ℓf (∆yt) +
T∑

t=2

RTt −
1

4

T∑

t=2

[cT
T
yt−1ℓf (∆yt) +RTt

]2
(1 + βTt) ,

where

RTt := Rf

(
∆yt,

cT
T
yt−1

)
, βTt := β

[cT
T
yt−1ℓf (∆yt) +RTt

]
,

and the defining properties of Rf (·) and β (·) are

√
f (ε− θ)
f (ε)

= 1 +
1

2
θℓf (ε) +

1

2
Rf (ε, θ) , log (1 + r) = r − 1

2
r2 [1 + β (2r)] .

The proof of Lemma 2 will be completed by showing that

T∑

t=2

RTt = −1

4
c2T
Iff
T 2

T∑

t=2

y2t−1 + op0,f (1) , (56)

T∑

t=2

[cT
T
yt−1ℓf (∆yt) +RTt

]2
(1 + βTt) = c2T

Iff
T 2

T∑

t=2

y2t−1 + op0,f (1) . (57)

In the rest of the proof, suppose H0 holds and let ϑT be any positive sequence for
which ϑT → 0 and

√
TϑT →∞ (as T →∞).

Proof of (56) . Let

R̃Tt := 1
(∣∣∣
cT
T
yt−1

∣∣∣ ≤ ϑT
)
RTt
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denote a truncated version of RTt. Because max2≤t≤T

∣∣∣cTyt−1/
√
T
∣∣∣ = Op (1) and

√
TϑT → ∞, the sequences R̃Tt and RTt are asymptotically equivalent in the sense

that

T∑

t=2

RTt =
T∑

t=2

R̃Tt + op (1) . (58)

Now,

Et−1

(
R̃2Tt

)
= 1

(∣∣∣
cT
T
yt−1

∣∣∣ ≤ ϑT
)
Et−1

[
Rf

(
εt,
cT
T
yt−1

)2]
≤ Vf (ϑT )

c2T
T 2
y2t−1,

where

Vf (ϑ) := sup|θ|≤ϑ,θ �=0 θ
−2E

[
Rf (ε, θ)2

]

and Et−1 [·] denotes conditional expectation given {ε1, . . . , εt−1} . By Assumption
DQM, limϑ↓0 Vf (ϑ) = 0. As a consequence, using ϑT = o (1) and E

(
y2t−1

)
= t− 1,

T∑

t=2

Et−1
(
R̃2Tt

)
≤ Vf (ϑT )E

(
c2T
T 2

T∑

t=2

y2t−1

)

= Vf (ϑT )O (1) = o (1) ,

implying that

T∑

t=2

R̃Tt =
T∑

t=2

Et−1
(
R̃Tt

)
+ op (1) . (59)

Moreover,

T∑

t=2

Et−1
(
R̃Tt

)
= −1

4
Iff
c2T
T 2

T∑

t=2

1
(∣∣∣
cT
T
yt−1

∣∣∣ ≤ ϑT
)
y2t−1

+
T∑

t=2

1
(∣∣∣
cT
T
yt−1

∣∣∣ ≤ ϑT
)
rf
(cT
T
yt−1

)
, (60)

where
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rf (θ) :=
1

4
Iffθ2 + E [Rf (ε, θ)]

and

1

T 2

T∑

t=2

1
(∣∣∣
cT
T
yt−1

∣∣∣ ≤ ϑT
)
y2t−1 =

1

T 2

T∑

t=2

y2t−1 + op (1)

because max2≤t≤T

∣∣∣cTyt−1/
√
T
∣∣∣ = Op (1) and

√
TϑT → ∞. The proof of (56) can

therefore be completed by showing that

T∑

t=2

1
(∣∣∣
cT
T
yt−1

∣∣∣ ≤ ϑT
)
rf

(cT
T
yt−1

)
= op (1) .

The relation in the preceding display follows from ϑT = o (1) and the fact that

∣∣∣∣∣

T∑

t=2

1
(∣∣∣
cT
T
yt−1

∣∣∣ ≤ ϑT
)
rf
(cT
T
yt−1

)
∣∣∣∣∣
≤ vf (ϑT )

c2T
T 2

T∑

t=2

y2t−1 = vf (ϑT )Op (1) ,

where vf (ϑ) := sup|θ|≤ϑ,θ �=0 θ
−2 |rf (θ)| = o (1) as ϑ ↓ 0 (Pollard (1997, Lemma 1)).

Proof of (57) . To prove (57) , it suffices to show that

T∑

t=2

[cT
T
yt−1ℓf (εt) +RTt

]2
= c2T

Iff
T 2

T∑

t=2

y2t−1 + op (1)

and

max2≤t≤T

∣∣β
[
cTT

−1yt−1ℓf (εt) +RTt

]∣∣ = op (1) .

By Taylor’s Theorem, β (r) → 0 as |r| → 0. Moreover,

max2≤t≤T

∣∣∣
yt−1
T
ℓf (εt)

∣∣∣ ≤ max2≤t≤T

∣∣∣∣
yt−1√
T

∣∣∣∣max2≤t≤T

∣∣∣∣
ℓf (εt)√
T

∣∣∣∣ = Op (1) op (1) = op (1) ,

and max2≤t≤T |RTt| ≤
√∑T

t=2R
2
Tt. Therefore, the desired result will follow from

1

T 2

T∑

t=2

y2t−1ℓf (εt)
2 =

Iff
T 2

T∑

t=2

y2t−1 + op (1) (61)
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and

T∑

t=2

R2Tt = op (1) . (62)

As noted by Jeganathan (1995, Lemma 24), (61) can be deduced with the help of
the proof of Hall and Heyde (1980, Theorem 2.23) if it can be shown that

1

T 2

T∑

t=2

Et−1
[
y2t−1ℓf (εt)

2 1
(∣∣∣
yt−1
T
ℓf (εt)

∣∣∣ > ̺
)]

= op (1) ∀̺ > 0.

To do so, let ̺ > 0 be given and define Qf (r) := E
[
ℓf (ε)2 1 (|ℓf (ε)| > r)

]
. Because

Qf is nonincreasing and limr→∞Qf (r) = 0,

1

T 2

T∑

t=2

Et−1

[
y2t−1ℓf (εt)

2 1
(∣∣∣
yt−1
T
ℓf (εt)

∣∣∣ > ̺
)]

=
1

T 2

T∑

t=2

y2t−1Qf




√
T̺∣∣∣yt−1/
√
T
∣∣∣



 ≤
(

1

T 2

T∑

t=2

y2t−1

)

max2≤t≤T Qf




√
T̺∣∣∣yt−1/
√
T
∣∣∣





= Op (1) op (1) = op (1) ,

where the penultimate equality uses max2≤t≤T

∣∣∣yt−1/
√
T
∣∣∣ = Op (1) .

It can be shown that
∑T

t=2R
2
Tt =

∑T
t=2 R̃

2
Tt + op (1) . Moreover,

T∑

t=2

Et−1

[
R̃2Tt1

(∣∣∣R̃Tt

∣∣∣ > ̺
)]
≤

T∑

t=2

Et−1

(
R̃2Tt

)
= op (1) ∀̺ > 0,

where the equality was established in the proof of (56) . A second application of the
proof of Hall and Heyde (1980, Theorem 2.23) therefore establishes (62) . �

Proof of Theorem 3. Let c < 0 be given.
Proof of (a). Because ΛF (0, h) = hSη − 1

2
h2Iηη, it follows from the completeness

properties of linear exponential families (e.g., Lehmann and Romano (2005, Theorem
4.3.1)) that ψ satisfies (15) if and only if E [ψ (SF ,HF ) |Sη] = α. Using this charac-
terization of (15) and the properties of curved exponential families (e.g., Lehmann
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and Romano (2005, Lemma 2.7.2)), the Neyman-Pearson lemma can be used to show
that if ψ satisfies (15) , then E [ψ (SF ,HF ) exp (Λf (c))] ≤ ΨS

F (c, α) .
Proof of (b). By the Neyman-Pearson lemma, the right-hand side in (17) is no

greater than ΨI
F (c, α) if (14) holds. To complete the proof, it therefore suffices to

show that (17) holds whenever (16) does. Now,

(
Sf
Sη

)
∼ N

[( ∫ 1
0
W (r) dW (r)

0

)
,

(
(Iff − 1)

∫ 1
0
W (r)2 dr Ifη

∫ 1
0
W (r) dr

Ifη
∫ 1
0
W (r) dr Iηη

)]

conditional on W. As a consequence, Sη ∼ N (0,Iηη) is independent of (Sf.η,HF ) .
Furthermore,

ΛF (c, h) = Λf.η (c) +

(
c
Hfη

Hηη
+ h

)
Sη −

1

2

(
c
Hfη

Hηη
+ h

)2
Iηη ∀ (c, h) . (63)

These facts imply that E [exp (ΛF (c, h)) |Sf.η,HF ] = exp (Λf.η (c)) for any (c, h) , from
which the desired conclusion follows. �

Remark. Using (63) and the fact that Sη ∼ N (0, Iηη) is independent of (Sf.η,HF ) ,
it can be shown that, for any c, h, bη and for any bounded, measurable function κ,

E [κ (Sf.η,Sη + bη,HF ) ΛF (c, h)] = E

[
κ (Sf.η,Sη,HF ) ΛF

(
c, h+

bη
Iηη

)]
.

Let
(
Sf.η
∞ , S

η
∞,H

F
∞
)
denote the weak limit of

(
Sf.η
T , S

η
T , H

F
T

)
(under a sequence of

parameterizations of the form (ρ, η) = (ρT (c) , ηT (h)) for some fixed (c, h)).23 In
view of the preceding display, any transformation of the form

(
Sf.η
∞ , S

η
∞, H

F
∞
)
→

(
Sf.η
∞ , S

η
∞ + bη, H

F
∞
)
, bη ∈ R, (64)

induces a transformation of the parameter (c, h) given by

(c, h) →
(
c, h+

bη
Iηη

)
.

23When (c, h) = (0, 0) ,
(
Sf.η∞ , Sη∞,HF

∞

)
∼ (Sf.η,Sη,HF ) .
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Because h is a nuisance parameter, the testing problem under consideration is in-
variant with respect to (location) transformations of the form (64) . The associated
maximal invariant is

(
Sf.η
∞ , H

F
∞
)
. Condition (16) on the test function ψ asserts that

the test depends on
(
Sf.η
∞ , S

η
∞, H

F
∞
)
only through this maximal invariant.

The following simple lemma is used in the proofs of Theorems 4 and 5.

Lemma 7. There exists a (unique) continuous function KS
α such that ψS

F satisfies
E
[
ψS

F (SF ,HF |c, α) |Sη

]
= α.

Proof. For any b, any c < 0, any α ∈ (0, 1) , and any symmetric 2× 2 matrix IF for
which (11) is positive semidefinite, let KS

α (b, c; IF ) be the 1− α quantile of

G (W,Z, b, c; IF ) := c




∫ 1

0

W (r) dW (r) +
Hfη

Hηη

b+

√

Hff.η −
∫ 1

0

W (r)2 drZ



−1

2
c2Hff ,

where Z ∼ N (0, 1) is independent of W and Hfη, Hηη etc. are as in Section 4.
The function KS

α satisfies E
[
ψS

F (SF ,HF |c, α) |Sη

]
= α because it follows from

elementary facts about Brownian motions that

Sf.η −
∫ 1
0
W (r) dW (r)

√
Hff.η −

∫ 1
0
W (r)2 dr

∼ N (0, 1)

independent of W and Sη, where Sf.η and Sη are as in Section 4.
Continuity of KS

α follows from the fact that G (W,Z, bn, cn; IF,n) converges in
distribution to a continuous random variable whenever the sequence (bn, cn,IF,n) is
convergent (and G (W,Z, bn, cn;IF,n) is well defined for each n). �

Proof of Theorem 4. If (a) holds, then (b) holds because it follows from (a)
and the continuity theorem (for convergence in probability) that if f ∈ FS

AC , then

φ̂T (YT |c̄, α) = φf,T (YT |c̄, α) + op0,f (1) .

(The continuity theorem is applicable because it follows from Lemma 7 that Kα is
continuous.)

To prove (a) it suffices to show that
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(
ŜT , ÎT

)
=
(
Sf
T ,Iff

)
+ op0,f (1) ∀f ∈ FS

AC .

Throughout the proof, suppose H0 holds and let f ∈ FSAC be given.
The result ÎT = Iff + op (1) is (essentially) a special case of Drost et al. (1997,

Lemma 3.1) and can be proved in exactly the same way.
The result ŜT = Sf

T + op (1) will be established by showing that

(
ŜT,τ , ŜT − ŜT,τ

)
=
(
Sf
T,τ , S

f
T − Sf

T,τ

)
+ op (1) ,

where

ŜT,τ := T−1
τT∑

t=2

yt−1ℓ̂
S

Tt (∆yt) , Sf
T,τ := T−1

τT∑

t=2

yt−1ℓf (∆yt) .

LetEτ
t−1 [·] denote conditional expectation given {ε1, . . . , εt−1} and {ετT+1, . . . , εT} .

By construction,
√
TEτ

t−1

[
ℓ̂STt (∆yt)

]
is the same for every t ≤ τT , namely

√
TEτ

t−1

[
ℓ̂STt (∆yt)

]
=
√
T

∫ ∞

−∞
ℓ̃ST−τT

(ε|ετT+1, . . . , εT ) f (ε) dε = op (1) ,

where the last equality uses (33) . Furthermore, Eτ
t−1 [ℓf (∆yt)] = E [ℓf (ε)] = 0 and∑τT

t=2 yt−1 = Op

(
T 3/2

)
, so

1

T

τT∑

t=2

Eτ
t−1

[
yt−1

(
ℓ̂STt (∆yt)− ℓf (∆yt)

)]

=

(
1

T 3/2

τT∑

t=2

yt−1

)(√
T

∫ ∞

−∞
ℓ̃ST−τT

(ε|ετT+1, . . . , εT ) f (ε) dε

)
= op (1) .

It now follows from Drost et al. (1997, Lemma 2.2) that ŜT,τ = Sf
T,τ + op (1) because

1

T 2

τT∑

t=2

Eτ
t−1

[
y2t−1

(
ℓ̂STt (∆yt)− ℓf (∆yt)

)2]
=

(
1

T 2

τT∑

t=2

y2t−1

)

op (1) = op (1) ,

where the first equality uses the fact that, for every t ≤ τT ,
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Eτ
t−1

[(
ℓ̂STt (∆yt)− ℓf (∆yt)

)2]
=

∫ ∞

−∞

[
ℓ̃ST−τT

(ε|ετT+1, . . . , εT )− ℓf (ε)
]2
f (ε) dε = op (1) ,

the last equality being a consequence of (32) .
Analogous reasoning can be used to show that ŜT−ŜT,τ = Sf

T−Sf
T,τ +op (1) . �

Proof of Theorem 5. Let f ∈ FDQM be given.
Proof of (36) . The result will be established by proving the inequalities (38) and

infF :IF∈Jf ΨS
F (c, α) ≤ ΨS

f (c, α) ∀c < 0. (65)

To establish (38) , let c < 0 be given, suppose F satisfies Assumption DQM*, and
let

(
SF
T , H

F
T

)
, (W,Bf , Bη) etc. be as in Section 4. Because KS

α is continuous (Lemma
7) and

(
Sf
T , H

ff
T , S

f,S
T , Sη

T

)
→d0,f

(
Sf ,Hff ,SS

f ,Sη
)
,

the sequence φSf,T (·|c, α) defined in (39) satisfies

φSf,T (YT |c, α) →d0,f ψ
S
f

(
Sf ,Hff ,SS

f |c, α
)
.

It follows from these convergence results results, Le Cam’s third lemma, and (12)
that

limT→∞EρT (c
′),ηT (h)φ

S
T (YT |c, α; f) = E

[
ψS

f

(
Sf ,Hff ,SS

f |c, α
)

exp (ΛF (c′, h))
]

for every (c′, h) . In particular, limT→∞EρT (c),ηT (0)φ
S
T (YT |c, α; f) = ΨS

f (c, α) , imply-

ing that the proof of (38) can be completed by showing that φSf,T (·|c, α) is locally
asymptotically α-similar in F.

To do so, it suffices to show that E
[
ψS

f

(
Sf ,Hff ,SS

f |c, α
)
|Sη

]
= α. Let

S⊥η := Sη −
Ifη

Iff − 1
SS
f .

Because Bη−Ifη (Iff − 1)−1 (Bf −W ) and (W,Bf) are independent, S⊥η is indepen-

dent of
(
Sf ,Hff ,SS

f

)
and
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E
[
ψS

f

(
Sf ,Hff ,SS

f |c, α
)
|SS

f ,S⊥η
]

= E
[
ψS

f

(
Sf ,Hff ,SS

f |c, α
)
|SS

f

]
= α,

where the second equality is the defining property of KS
α . Because Sη is a function of(

SS
f ,S⊥η

)
, it therefore follows from the law of iterated expectations that

E
[
ψS

f

(
Sf ,Hff ,SS

f |c, α
)
|Sη

]
= E

(
E
[
ψS

f

(
Sf ,Hff ,SS

f |c, α
)
|SS

f ,S⊥η
]
|Sη

)
= α,

as was to be shown.
Next, because f ∈ FDQM , it can be embedded in a family F satisfying Assump-

tion DQM* and it follows from standard spanning arguments (e.g., Newey (1990,
Appendix B)) that the collection of functions ℓη (defined as in Assumption DQM*)
associated with such families F are dense in Lη. As a consequence, the set Jf is dense
in the set of symmetric 2× 2 matrices IF for which the first diagonal element equals
Iff and (11) is positive semidefinite. In particular, the fact that f ∈ FDQM implies
that J LF

f belongs to the closure of Jf .
To complete the proof of (65) , it therefore suffices to show that ΨS

F (c, α) is a con-
tinuous function of IF . Because KS

α is continuous, the continuous mapping theorem
can be used to show that if the sequence IF,n is convergent, then ψS

F,n (SF,n,HF,n|c, α)
(defined from IF,n in the natural way) converges in distribution. Using this fact and
the dominated convergence theorem, it can be shown that ΨS

F (c, α) is a continuous
function of IF .
Proof of (37) . The proof is similar to that of (36) and proceeds by showing that

infF :IF∈Jf ΨI
F (c, α) ≥ ΨI

f (c, α) ∀c < 0 (66)

and

infF :IF∈Jf ΨI
F (c, α) ≤ ΨI

f (c, α) ∀c < 0. (67)

Inequality (67) follows from arguments analogous to those used to prove (65) .
To establish (66) , let c < 0 be given and let F be any submodel satisfying as-

sumption LAQ*. Also, let
(
SF
T , H

F
T

)
, (W,Bf , Bη) etc. be as in Section 4 and define

φIf,T (YT |c, α) := 1

[
cSf,I

T − 1

2
c2Hff,I

T > KI
α

(
c;J LF

f

)]
, (68)

where Sf,I
T is defined in (40) and
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Hff,I
T := Hff

T − (Iff − 1)

(

T−3/2
T∑

t=2

yt−1

)2

.

The statistic φIf,T (YT |c, α) satisfies

limT→∞EρT (c
′),ηT (h)φ

I
T (YT |c, α; f) = E

[
ψI

f

(
SI
f ,HI

ff |c, α
)

exp (ΛF (c′, h))
]

for every (c′, h) . In particular, limT→∞EρT (c),ηT (0)φ
I
T (YT |c, α; f) = ΨI

f (c, α) , so the

proof of (66) can be completed by showing that φIf,T (·|c, α) is locally asymptotically
α-invariant in F.

To do so, it suffices to show that

E
[
ψI

f

(
SI
f ,HI

ff |c, α
)
|SF ,HF

]
= E

[
ψI

f

(
SI
f ,HI

ff |c, α
)
|Sf.η,HF

]
.

A sufficient condition for this to hold is that
(
SI
f ,HI

ff

)
is independent of Sη conditional

on (Sf.η,HF ) . In turn, this conditional independence property follows from simple

algebra and the fact that the conditional distribution of
(
Sf ,SS

f ,Sη
)′

given W is

normal with mean
(∫ 1

0
W (r) dW (r) , 0, 0

)′
and variance






(Iff − 1)
∫ 1
0
W (r)2 dr (Iff − 1)

∫ 1
0
W (r) dr Ifη

∫ 1
0
W (r) dr

(Iff − 1)
∫ 1
0
W (r) dr Iff − 1 Ifη

Ifη
∫ 1
0
W (r) dr Ifη Iηη




 . �

Proof of Theorem 6. Suppose H0 holds and let f ∈ FAC and c̄ < 0 be given.
It suffices to show that

φ̂
I

T (YT |c̄, α) = φIf,T (YT |c̄, α) + op (1) ,

where φIf,T (·|c̄, α) was defined in the proof of Theorem 5. The displayed result will
follow from the convergence theorem (for convergence in probability) if it can be
shown that

ŜI
T = Sf,I

T,τ + op (1) = Sf,I
T + op (1) , (69)
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ĤI
T = Hff,I

T,τ + op (1) = Hff,I
T + op (1) , (70)

ÎT = Iff + op (1) , (71)

where Sf,I
T and Hff,I

T are as in the proof of Theorem 5 and

Sf,I
T,τ :=

1

T

T∑

t=τT+1

yt−1ℓf (∆yt)−
(

1

T 3/2

T∑

t=τT+1

yt−1

)(
1√
T

T∑

t=τT+1

[ℓf (∆yt)−∆yt]

)

,

Hff,I
T,τ :=

Iff
T 2

T∑

t=τT+1

y2t−1 − (Iff − 1)

(
1

T 3/2

T∑

t=τT+1

yt−1

)2

.

The result (71) follows from Bickel (1982, Section 6.2 (i)), while (70) follows from
(71) , limT→∞ τT/T = 0, and simple algebra. The second equality in (69) follows from
limT→∞ τT/T = 0 and simple algebra. Finally, to establish the first equality in (69) ,
let ℓ̌T be a “bias-corrected” version of ℓ̂T given by

ℓ̌T (∆yt) := ℓ̃τT (∆yt|∆y1, . . . ,∆yτT )−
∫ ∞

−∞
ℓ̃τT (ε|∆y1, . . . ,∆yτT ) f (ε) dε.

Reasoning analogous to that of the proof of Theorem 4 can be used to show that

1

T

T∑

t=τT+1

yt−1
[
ℓ̌T (∆yt)− ℓf (∆yt)

]
= op (1) ,

1√
T

T∑

t=τT+1

[
ℓ̌T (∆yt)− ℓf (∆yt)

]
= op (1) .

The first equality in (69) can be established using these results and the fact that

ŜI
T =

1

T

T∑

t=τT+1

yt−1ℓ̌T (∆yt)−
(

1

T 3/2

T∑

t=τT+1

yt−1

)(
1√
T

T∑

t=τT+1

[
ℓ̌T (∆yt)−∆yt

]
)

. �
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