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A������. This paper is concerned with inference on the coefficient on
the endogenous regressor in a linear instrumental variables model with a sin-
gle endogenous regressor, nonrandom exogenous regressors and instruments,
and i.i.d. errors whose distribution is unknown. It is shown that under mild
smoothness conditions on the error distribution it is possible to develop tests
which are “nearly” efficient when identification is weak and consistent and as-
ymptotically optimal when identification is strong. In addition, an estimator
is presented which can be used in the usual way to construct valid (indeed,
optimal) confidence intervals when identification is strong. The estimator is of
the two stage least squares variety and is asymptotically efficient under strong
identification whether or not the errors are normal.
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1. I	��������	

This paper is concerned with inference on the coefficient on the endogenous regressor
in a linear instrumental variables (IVs) model with a single endogenous regressor,
nonrandom exogenous regressors and IVs, and i.i.d. errors. Models of this type have
been studied intensively in recent years, with particular attention being devoted to the
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case where the IVs are weak.1,2 Analyzing such a model in which the i.i.d. errors are
furthermore assumed to be Gaussian, Andrews, Moreira, and Stock (2006) find that
the conditional likelihood ratio test proposed by Moreira (2003) is “nearly” efficient
when identification is weak and asymptotically efficient when identification is strong.

The purpose of the present paper is to explore the consequences of relaxing the
assumption of normality on the part of the i.i.d. errors in a model which is otherwise
identical to the model studied by Andrews, Moreira, and Stock (2006) (and others).
Recent work by Andrews and Marmer (2007) and Andrews and Soares (2006) shows
that departures from normality can be exploited for power purposes when the errors
satisfy a certain symmetry condition. Although these papers do not establish opti-
mality results on the part of the rank-based testing procedures proposed therein, the
findings of the papers imply in particular that for certain classes of error distributions
the conditional likelihood test ceases to be (“nearly”) optimal once the assumption
of normality is relaxed. This paper addresses the issue of optimality and shows that
under mild smoothness conditions on the (otherwise unknown) error distribution it
is possible to develop tests which are (“nearly”) optimal whether or not the errors
are Gaussian.

The asymptotic optimality theory developed herein treats the distribution of the
i.i.d. errors as an unknown nuisance parameter and is therefore of the semiparametric
variety. In fact, under the assumption that the model contains an intercept (an
assumption which we maintain throughout), we establish adaptation results, namely
that one can construct procedures which perform asymptotically as well as procedures
which (optimally) utilize knowledge of the error distribution. This adaptation result
bears more than a superficial resemblance to Bickel’s (1982) celebrated result on
adaptive estimation of the slope coefficients in a regression model. Specifically, it
turns out that the problem of conducting inference in an IV model with an unknown
error distribution can be decomposed into two separate problems, each of which is well
understood (in isolation) from the works of Bickel (1982) and Andrews, Moreira, and
Stock (2006), respectively. The first of these problems concerns efficient estimation of
the slope coefficients in the reduced form of the IV model. That problem is a bivariate
version of the problem addressed by Bickel (1982) and can be solved in essentially
the same way. Because efficient estimators of the slope coefficients turn out to be

1Important contributions to the weak IV literature include Nelson and Startz (1990a, 1990b),
Bound, Jaeger, and Baker (1995), Dufour (1997), Staiger and Stock (1997), Kleibergen (2002),
Moreira (2003), and Andrews, Moreira, and Stock (2006). For reviews, see e.g. Stock, Wright, and
Yogo (2002), Dufour (2003), Hahn and Hausman (2003), and Andrews and Stock (2006).

2Improved understanding of the properties of models with a “large” number of instruments has
also been achieved in recent years. Papers on that topic include Bekker (1994), Hahn (2002), Chao
and Swanson (2005), Stock and Yogo (2005), Hansen, Hausman, and Newey (2005), Andrews and
Stock (2007), and Chioda and Jansson (2006). The present paper does not employ many (weak)
instruments asymptotics, but it would be of interest to generalize our results along those lines.
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asymptotically sufficient statistics for the relevant parameters of the IV model, the
problem of conducting optimal inference can be reduced to the problem of optimally
extracting information from the efficient estimators of the reduced form regression
coefficients. The mathematical structure of that problem turns out to be the same
whether or not the errors are Gaussian, implying that we can utilize the results of
Andrews, Moreira, and Stock (2006) to construct test statistics which combine the
efficient estimators of the reduced form regression coefficients in a “nearly” optimal
way.

Our construction of feasible inference procedures proceeds in several steps, cul-
minating with a procedure which is “nearly” efficient when identification is weak
and consistent and asymptotically optimal when identification is strong. The result-
ing procedure is of the conditional likelihood ratio variety, but being optimal (or
“nearly” so, depending on the strength of identification) it is of necessity different
from Moreira’s (2003) procedure. Analogously to Moreira’s (2003) procedure, a po-
tential drawback of our procedure is that although it enjoys optimality properties
when identification is strong, it is somewhat tedious to invert it in order to obtain
confidence intervals in strongly identified models. To address this issue, we present
an estimator (and an accompanying standard error formula) which can be used in the
usual way to construct valid (indeed, optimal) confidence intervals when identifica-
tion is strong. The estimator, which would appear to be new, is of the two stage least
squares (2SLS) variety and is asymptotically efficient (under strong identification)
whether or not the errors are normal.

The paper proceeds as follows. Section 2 presents the model and the assumptions
under which the asymptotic analysis will proceed. Section 3 is concerned with as-
ymptotic inference under the assumptions that the error distribution is known and
identification is weak. The counterfactual assumption that the error distribution is
known is dispensed with in Section 4, where it is also shown how strong identification
can be accommodated. Section 5 presents some simulation results, while mathemat-
ical derivations have been relegated to an Appendix.

2. T�
 M��
�

We consider a model given by

y1i = Γ′1xi + βy2i + ui,

y2i = γ′2xi + π
′zi + v2i (i = 1, . . . , n) , (1)

where y1i, y2i ∈ R, xi ∈ Rp, and zi ∈ Rq are observed variables; ui, v2i ∈ R are
unobserved errors; and β ∈ R, π ∈ R

q, and Γ1, γ2 ∈ R
p are parameters. The
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exogenous variables xi and zi are fixed (i.e., nonrandom) and the first element of xi is
assumed to equal unity. The errors (ui, v2i) are i.i.d. from a continuous distribution
with zero mean and finite variance.3

It turns out to be convenient to work with the reduced form of the model. The
reduced form is given by the pair of equations

y1i = γ′1xi + βπ
′zi + v1i,

y2i = γ′2xi + π
′zi + v2i (i = 1, . . . , n) , (2)

where γ1 = Γ1 + γ2β and v1i = v2iβ + ui. The parameters of the reduced form are β,
π, γ = (γ′1, γ

′
2)
′ , and f, the Lebesgue density of vi = (v1i, v2i)

′ . The analysis of the
reduced form is facilitated by the fact that it can be embedded in the model

y1i = γ′1xi + δ
′
1zi + v1i,

y2i = γ′2xi + δ
′
2zi + v2i (i = 1, . . . , n) , (3)

where δ1, δ2 ∈ Rq and the other parameters are as in (2) . (The model (3) reduces to
(2) when δ = (δ1, δ2)

′ = (βπ′, π′)′ .) Indeed, the main results of this paper can and
will be derived as relatively simple consequences of results concerning the model (3) ,
which itself can be analyzed by means of fairly standard tools.

Our goal is to develop powerful tests of

H0 : β = β0 vs. H1 : β �= β0,

treating π, γ, and f as unknown nuisance parameters.4 Replacing y1i by y1i − β0y2i
if necessary, we assume without loss of generality that β0 = 0.

The analysis proceeds under the following assumptions.5

3The assumption that (first and) second moments exist serves three purposes. First, it implies
that the Fisher information matrix I defined in (4) is nonsingular. Second, it implies that the

√
n-

consistency requirements of Assumptions 6-8 are met by OLS estimators. Finally, it is required for
the validity of the statements concerning procedures based on the Gaussian (quasi-)likelihood that
are made throughout the paper. As in Bickel (1982), the main results of this paper are valid (and
Assumptions 6-8 are met by suitable estimators) even without moment assumptions provided it is
assumed that I > 0.

4Testing problems of this type are of interest partly because the duality between hypothesis test-
ing and interval estimation implies that confidence intervals for β can be obtained by test inversion.

5In Assumption 1 and elsewhere in the paper, ‖·‖ is the Euclidean norm and limits are taken as
n→∞, except where otherwise noted.
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Assumption 1. (a) Qzz,n = n
−1
∑n

i=1 ziz
′
i → Qzz > 0 and max1≤i≤n ‖zi‖ /

√
n→ 0.

(b) Qxx,n = n
−1
∑n

i=1 xix
′
i → Qxx > 0 and max1≤i≤n ‖xi‖ /

√
n→ 0.

Assumption 2. The density f admits a function ḟ such that
(a) for almost every v ∈ R2, f is differentiable at v, with (total) derivative ḟ .
(b) for every v ∈ R2,

f (v + θ)− f (v) = θ′
∫ 1

0

ḟ (v + θt) dt, ∀θ ∈ R2.

(c)
∫
R2
‖ℓ (v)‖2 f (v) dv <∞, where

ℓ (v) = − ḟ (v)
f (v)

1 [f (v) > 0] .

Assumption 3. Qxz,n = n
−1
∑n

i=1 xiz
′
i = 0.

Assumption 1 is a standard assumption concerning the exogenous variables. It
holds in probability if the (x′i, z

′
i)
′ are a realization of an i.i.d. sequence with positive

definite variance matrix and finite second moment.6 Assumption 2 is a relatively mild
smoothness condition on the error density. Parts (a) and (b) of Assumption 2 hold if,
but do not require that, f is continuously differentiable.7 An immediate implication
of Assumptions 1(a) and 2 is that

1√
n

n∑

i=1

ℓ (vi)⊗ zi →d N (0, I ⊗Qzz) ,

where

I =
∫

R2

ℓ (v) ℓ (v)′ f (v) dv (4)

is the Fisher information for the location family generated by f.
Assumption 2 furthermore implies that the model (3) is differentiable in quadratic

mean at any (γ, δ) (see (6) in the proof of Theorem A.1 in the Appendix) and enables

6If the exogenous variables (x′i, z
′
i)
′ are treated as random, then independence of {vi} and{

(x′i, z
′
i)
′} would be required for the results of this paper to remain valid. It seems plausible that

certain forms of heteroskedasticity can be accommodated by adapting the methods of Schick (1997),
but no attempts to do so will be made in this paper.

7Assumption 2 accommodates mild departures from continuous differentiability, such as that
which occurs when the elements of vi (or some rotation thereof) are independent and double expo-
nentially distributed.
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nonparametric estimation of ℓ (as demonstrated by Theorem A.2 in the Appendix).
In other words, the roles played by parts (a) and (b) of Assumption 2 are analogous to
those played by the assumption of absolute continuity routinely invoked in regression
models with scalar errors. In fact, the scalar counterpart of Assumption 2(b) is the
assumption of absolute continuity.8,9

Assumption 3 is a normalization which greatly simplifies the derivation and state-
ments of asymptotic results. Specifically, because the limit of Qxz,n is a zero matrix
under Assumption 3, the parameters (β, π) and γ are orthogonal (in the sense of Cox
and Reid (1987)). This fact, which is an immediate consequence of the fact that
δ = (δ1, δ2)

′ and γ are orthogonal in (3) , implies that the analysis can proceed under
the “as if” assumption that γ is known. Similarly, the fact that

∑n
i=1 zi = 0 under

Assumption 3 (because the first element of xi equals unity) implies that the analysis
can proceed under the “as if” assumption that f is known. This is so because δ in (3)
can be estimated adaptively, the latter fact essentially following from Bickel’s (1982)
result on adaptive estimation of slope coefficients in a regression model.

In other words, Assumption 3 implies that π is the only nuisance parameter which
matters asymptotically. Concerning π, particular attention will be devoted to the
weakly identified case where π is “close” to zero in the sense of the following assump-
tion.

Assumption 4W. π = c/
√
n for some constant c ∈ Rq and β is a constant.

Under the local-to-zero parameterization of π specified by Assumption 4W, contigu-
ous alternatives to H0 are of the form β = β0+O (1) . Accordingly, β is modeled as a
constant in the weakly identified case. Although our main emphasis is on the weakly
identified case, we shall on occasion employ one of the following (strong identification)
assumptions.

Assumption 4SC. π is a nonzero constant and β = b/
√
n for some constant b ∈ R.

Assumption 4SF. π is a nonzero constant and β is a constant.

When π is a nonzero constant, identification is strong and contiguous alternatives to
H0 are of the form β = β0+O (1/

√
n) . Assumption 4SC covers that case and is appro-

priate when studying local asymptotic power properties under strong identification.

8In the scalar context, but apparently not otherwise, it follows from Lebesgue’s differentiation
theorem (e.g., Dudley (2002, Theorem 7.2.1)) that the counterpart of Assumption 2(a) is implied
by the counterpart Assumption 2(b).

9In models where dependence between the errors v1i and v2i is allowed, the present smoothness
condition imposed on the density would appear to be more natural than the assumption of absolute
continuity, the reason being that parts (a) and (b) of Assumption 2 involve only partial derivatives
of order one, whereas the assumption of absolute continuity involves second-order cross partials.



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 7

In contrast, Assumption 4SF assumes strong identification and furthermore holds β
fixed. This combination of strong identification and fixed alternatives is appropriate
when studying the consistency properties of various tests. Moreover, Assumption
4SF is useful when studying the properties of point estimators of β under strong
identification.10

Assumptions 4W, 4SC, and 4SF are nonnested, but it seems natural to study them
in the order indicated above. This is so because the assumptions impose decreasingly
strong upper bounds on the magnitude of the parameters δ1 and δ2 of (3) . Specif-
ically, Assumption 4W implies that δ1 = O (1/

√
n) and δ2 = O (1/

√
n) . Relative

to Assumption 4W, Assumption 4SC removes the requirement δ2 = O (1/
√
n) and

Assumption 4SF furthermore relaxes the requirement δ1 = O (1/
√
n) . In this paper,

these differences are important because the feasible inference procedures constructed
in Section 4 employ one-step estimators of δ. As usual, one-step estimators utilize
initial estimators that are required to be

√
n-consistent. Under Assumption 4W, this

requirement is met by the zero vector, while Assumption 4SC and 4SF imply that
nondegenerate initial estimators of δ2 and (δ1, δ2) , respectively, are required in order
to guarantee that one-step estimators of δ are well behaved. Accordingly, the three
constructions presented in Section 4 differ in terms of (and only in terms of) the
nature of the initial estimators of δ being employed.

3. T�
 L�����	# E+�
��
	� $�
	 I�
	���������	 �� W
��

This section is concerned with asymptotic inference under the assumptions that (i) the
nuisance parameters γ and f are known and (ii) identification is weak. As mentioned
in the previous section, Assumption 3 ensures that (i) can be dispensed with. Precise
statements to that effect will be provided in the next section, where it is also shown
how departures from (ii) can be accommodated.

When f is Gaussian and the reduced form variance

Ω =

∫

R2

vv′f (v) dv

is known, the problem of testing β = β0 vs. β �= β0 is nonstandard, but amenable to
finite sample analysis using the theory of curved exponential families (e.g., Moreira
(2003) and Andrews, Moreira, and Stock (2006)). This feature is lost, in general,
when f is not Gaussian. On the other hand, it turns out that the family of limit-
ing experiments associated with non-Gaussian error distributions coincides with the
family of limiting experiments for the Gaussian case.

10In addition, Assumption 4SF would be natural in investigations of the large deviation (efficiency)
properties of inference procedures (e.g., Puhalskii and Spokoiny (1998)). We do not employ large
deviations techniques in this paper.
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In the Gaussian case, the limiting experiment is that of a single observation from
the N [µ (b, c) ,Ω⊗Q−1zz ] distribution, where

µ (b, c) =

(
b
1

)
⊗ c.

Equivalently, because Ω = I−1 when f is Gaussian, the limiting experiment in the
Gaussian case is that of a single observation from the N [µ (b, c) , I−1 ⊗Q−1zz ] distrib-
ution. The latter characterization generalizes readily to non-Gaussian error distribu-
tions. To give a precise statement, define the log likelihood ratio function

Ln (β, c) =
n∑

i=1

log f
(
y1i − γ′1xi − βc′zi/

√
n, y2i − γ′2xi − c′zi/

√
n
)

−
n∑

i=1

log f (y1i − γ′1xi, y2i − γ′2xi) ,

and let “op0 (1)” and “→d0” be shorthand for “op (1) under the distributions associated
with (β, π) = (0, 0)” and “→d under the distributions associated with (β, π) = (0, 0)”,
respectively.

Theorem 1. If Assumptions 1(a) and 2 hold, then

Ln (β, c) = µ (β, c)
′ (I ⊗Qzz)∆n −

1

2
µ (β, c)′ (I ⊗Qzz)µ (β, c) + op0 (1)

for every (β, c) , where

∆n =
(
I−1 ⊗Q−1zz

) 1√
n

n∑

i=1

ℓ (y1i − γ′1xi, y2i − γ′2xi)⊗ zi →d0 N
(
0, I−1 ⊗Q−1zz

)
.

Theorem 1 is a special case of a local asymptotic normality (LAN) result for the
model (3) . The general LAN result is given in Theorem A.1 in the Appendix.

Theorem 1 and Le Cam’s third lemma can be used to show that if Assumptions
1(a), 2, and 4W hold, then the asymptotically sufficient statistic ∆n satisfies

∆n →d N
[
µ (β, c) , I−1 ⊗Q−1zz

]
.

In other words, the limiting experiment is that of a single observation from the
N [µ (β, c) ,I−1 ⊗Q−1zz ] distribution whether or not the errors are Gaussian.
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Under the same assumptions, the (quasi-)sufficient statistic11

∆̄n =
(
Ω⊗Q−1zz,n

) 1√
n

n∑

i=1

ℓ̄ (y1i − γ′1xi, y2i − γ′2xi)⊗ zi, ℓ̄ (v) = Ω−1v,

obtained from the Gaussian (quasi-)likelihood satisfies

∆̄n →d N
[
µ (β, c) ,Ω⊗Q−1zz

]
.

The Cauchy-Schwarz inequality can be used to show that I−1 ≤ Ω, with equality
if and only if ℓ (v) is linear in v (on the support of f). By implication, procedures
based on the Gaussian quasi-likelihood are asymptotically inefficient in general. More
specifically, any test based on a “smooth” (e.g., almost everywhere continuous) func-
tion of ∆̄n, such as those proposed by Anderson and Rubin (1949), Kleibergen (2002),
and Moreira (2003), will be dominated (under weak identification and whenever the
inequality I−1 ≤ Ω is strict) by a test which is efficient (or “nearly” so) under the
assumptions of Theorem 1.12

Nevertheless, the results obtained under the assumption of Gaussian errors are of
considerable relevance also in models with non-Gaussian errors. This is so because
the limiting experiments (indexed by I−1 ⊗ Q−1zz ) in the general case are isomorphic
to the limiting experiments (indexed by Ω ⊗ Q−1zz ) associated with Gaussian errors,
a very convenient result because it implies that the insights concerning the relative
merits of various testing procedures obtained under the assumption of normality are
directly applicable in the general case.

To be specific, let Sn, Tn ∈ Rq be given by

(
Sn
Tn

)
=
[
I1/2′ ⊗Q1/2′zz

]
∆n,

where M1/2 denotes the upper triangular Cholesky factor of a (symmetric, positive
semi-definite) matrix M ; that is, M =M1/2M1/2′, where M1/2 is upper triangular.13

The pair (Sn, Tn) is a non-Gaussian counterpart of

11The statistic ∆̄n does not depend on Ω, but the present formulation facilitates comparison of
∆̄n and ∆n and we therefore prefer it to one which does not involve Ω.

12Section 4 will exhibit tests which are “nearly” efficient under the assumptions of Theorem 1.
13In particular, letting Iij denote element (i, j) of I, we have:

I1/2 =
( √I11.2 I12/

√I22
0

√I22

)
, I11.2 = I11 − I212/I22.
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(
S̄n
T̄n

)
=
[(
Ω−1
)1/2′ ⊗Q1/2′zz,n

]
∆̄n,

which features prominently in the work by Moreira (2003), Andrews, Moreira, and
Stock (2006), and others.

In terms of
(
S̄n, T̄n

)
, the (known Ω) Anderson-Rubin, Lagrange multiplier, and

likelihood ratio test statistics popularized by Anderson and Rubin (1949), Kleibergen
(2002), and Moreira (2003), respectively, can be expressed as

ARn = S̄
′
nS̄n, LMn =

(
S̄ ′nT̄n

)2

T̄ ′nT̄n
,

LRn =
1

2

(
S̄′nS̄n − T̄ ′nT̄n +

√(
S̄ ′nS̄n − T̄ ′nT̄n

)2
+ 4
(
S̄ ′nT̄n

)2
)
.

In perfect analogy with the Gaussian case, let

ARn = S
′
nSn, LMn =

(S′nTn)
2

T ′nTn
,

LRn =
1

2

(
S′nSn − T ′nTn +

√
(S ′nSn − T ′nTn)2 + 4 (S ′nTn)2

)
.

The tests which rejectH0 when ARn > χ
2
α (q) , LMn > χ

2
α (1) , and LRn > κα (Tn)

have asymptotic size α, where χ2α (d) is the 1 − α quantile of the χ2 distribution
with d degrees of freedom and κα (t) is the 1 − α quantile of the distribution of

1
2

(
Z ′Z − t′t+

√
(Z ′Z − t′t)2 + 4 (Z ′t)2

)
, where Z ∼ N (0, Iq) .

14 Because of the

isomorphism between the Gaussian case and the general case, the relative merits of
these testing procedures are well understood from the numerical work of Andrews,
Moreira, and Stock (2006). In particular, it follows from Andrews, Moreira, and
Stock (2006) that the test which rejects when LRn > κα (Tn) is “nearly efficient”
in the sense that its power function is “close” to the two-sided power envelope for
invariant similar tests.

Remark. The existence of tests which are equivalent to procedures based on the
Gaussian quasi-likelihood under the assumption of normality and enjoy improved
power properties for certain non-Gaussian error distributions has been pointed out

14As shown by Moreira (2003), κα (t) depends on t only through ‖t‖ , is monotonically decreasing
in ‖t‖ , and satisfies lim‖t‖→∞ κα (t) = χ

2

α (1) . The latter result will be utilized when studying the
behavior of the test based on LRn under strong identification.
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by Andrews and Marmer (2007) and Andrews and Soares (2006). The rank-based
tests proposed in those papers, while superior to tests based on the Gaussian quasi-
likelihood under some conditions, are also inefficient in general (even for those error
distributions for which they dominate tests based on the Gaussian quasi-likelihood).

4. F
�����
 I	�

	�
 P��
��
�

The results of the previous section were obtained under the (tacit) assumption that
γ and f are known. In addition, it was assumed to be known that identification is
weak (i.e., that π is “close” to zero). This section relaxes these assumptions.

4.1. Inference without knowledge of γ and f . First, consider the problem
of conducting inference under weak identification without knowledge of the nuisance

parameters γ and f. Doing so is easy provided we can find a pair
(
∆̂n, În

)
which is

asymptotically equivalent to (∆n,I) under weak identification and can be computed
without knowledge of (γ, f) . To that end, let

∆̂n =
(
Î−1n ⊗Q−1zz,n

) 1√
n

n∑

i=1

ℓ̂i,n ⊗ zi, În = n−1
n∑

i=1

ℓ̂i,nℓ̂
′
i,n,

where ℓ̂i,n is an estimator of ℓ (y1i − γ′1xi, y2i − γ′2xi) . In the spirit of Schick (1987,

1993), we assume that ℓ̂i,n = ℓ̂n (v̂i) , where v̂i = (y1i − γ̂′1nxi, y2i − γ̂′2nxi)
′
for some

estimator γ̂n = (γ̂
′
1n, γ̂

′
2n)

′
of γ and

ℓ̂n (v) = −
∂f̂n (v) /∂v

f̂n (v) + an
, f̂n (v) =

1

nh2n

n∑

i=1

K

(
v − v̂i
hn

)
,

where K is a kernel and an and hn are positive sequences. Theorem 2 shows that
this construction, which does not involve sample splitting, works when the following
assumptions hold.15,16

Assumption 5. (a)K (s1, s2) = k (s1) k (s2) , where k is a bounded, symmetric, con-
tinuously differentiable density satisfying

∫

R

r2k (r) dr <∞ and supr∈R |k′ (r)| /k (r) <∞.

15If the variances of v1 and v2 are suspected to be of different magnitude it may be desirable to
let K be a product kernel of the form K (s1, s2) = σ−1

1
σ−1
2
k (s1/σ1) k (s2/σ2) , where σ1 and σ2

are positive constants and k is as in Assumption 5(a). All results (and their proofs) remain valid if
Assumption 5(a) is modified in this way.

16In Assumption 6, the statement “γ̂n is discrete” is shorthand for the assumption that γ̂n takes
only values in the grid

{
κZ/

√
n : Z ∈ Z2p

}
, where κ is some (constant) 2p× 2p matrix. A similar

remark applies to Assumptions 7 and 8.
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(b) an → 0, hn → 0, and na2nh
4
n →∞.

Assumption 6. γ̂n is discrete and
√
n (γ̂n − γ) = Op (1) .

Assumption 5(a) holds if k is the logistic density, but not if k is the standard
normal density, the reason being that the normal density violates the condition
supr∈R |k′ (r)| /k (r) < ∞. As explained in a remark following the proof of Theo-
rem A.2 in the Appendix, it is possible to accommodate the normal kernel provided

the error density f is such that supv∈R2
∥∥∥ḟ (v)

∥∥∥ <∞ (and provided the requirement

limn→∞hn/an < ∞ is added to Assumption 5(b)). Assumption 6 is satisfied (under
both weak and strong identification) by a discretized version of

γ̂OLSn =

[
(
∑n

i=1 xix
′
i)
−1
(
∑n

i=1 xiy1i)

(
∑n

i=1 xix
′
i)
−1
(
∑n

i=1 xiy2i)

]
,

the OLS estimator of γ.

Theorem 2. If Assumptions 1-3, 4W, and 5-6 hold, then

(
∆̂n, În

)
= (∆n, I) + op (1) .

In the model (3) , the statistic ∆̂n/
√
n can be interpreted as a one-step estimator

of δ which uses the zero vector as an initial estimator. As a consequence, Theorem
2 can (and will) be derived as a special case of a general adaptation result, Theorem
A.2 in the Appendix, for one-step estimators of δ in the model (3) . Theorem A.2
assumes existence of a (discrete)

√
n-consistent initial estimator of δ. This require-

ment is easily met, especially so under weak identification because the zero vector
can serve as a (discrete)

√
n-consistent estimator of δ in that case.17 Somewhat sur-

prisingly, perhaps, some aspects of conducting inference are therefore simplified by
the assumption of weak identification.

Theorem 2 (and the continuous mapping theorem) can be used to show that if
identification is weak, then the local asymptotic power properties of the tests based
on ARn, LMn, and LRn are matched by those of the tests based on

ÂRn = Ŝ
′
nŜn, L̂Mn =

(
Ŝ ′nT̂n

)2

T̂ ′nT̂n
,

17The full force of Theorem A.2 will be needed when Assumption 4W is replaced by Assumption
4SC or 4SF.
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and

L̂Rn =
1

2

(
Ŝ ′nŜn − T̂ ′nT̂n +

√(
Ŝ ′nŜn − T̂ ′nT̂n

)2
+ 4
(
Ŝ ′nT̂n

)2
)
,

respectively, where
(
Ŝ ′n, T̂

′
n

)′
=
[
Î1/2′n ⊗Q1/2′zz,n

]
∆̂n. More specifically, we have the

following corollary, which implies in particular that the (feasible) test which rejects

when L̂Rn > κα

(
T̂n

)
is “nearly efficient” when identification is weak.

Corollary 3. If Assumptions 1-3, 4W, and 5-6 hold, then

[
ÂRn, L̂Mn, L̂Rn, κα

(
T̂n
)]
=
[
ARn, LMn, LRn, κα (Tn)

]
+ op (1) .

Remark. The statistic ∆̂n/
√
n is a bivariate version of the adaptive estimator con-

structed by Schick (1987) (following the seminal work of Bickel (1982)). In scalar
regression models, adaptive estimators of slope coefficients can alternatively be based
on regression quantiles of Koenker and Bassett (1978) (Portnoy and Koenker (1989)),
Hansen’s (1982) generalized method of moments (GMM) (Newey (1988, 2004)), or a
series estimator of the log density function (Faraway (1992), Jin (1992)). It would be
of potential interest to generalize these constructions to our bivariate setting.

4.2. Inference when identification may be strong. Next, consider the con-
sequences of relaxing the assumption that identification is known to be weak. We
are interested in finding a pair of statistics, computable without knowledge of (γ, f) ,
which is asymptotically equivalent to (∆n, I) under weak identification and is “well
behaved” also when identification is strong.

When Assumptions 1-3 and 4SC hold, the quasi-sufficient statistic ∆̄n obtained
from the Gaussian quasi-likelihood satisfies18

∆̄n −
√
n

(
0
π

)
→d N

[(
bπ
0

)
,Ω⊗Q−1zz

]
.

It follows immediately from this result that if Assumptions 1-3 and 4SC holds, then

ARn →d χ
2
(
q; b2ω−111 π

′Qzzπ
)
,

18The displayed property and the other asymptotic properties of ∆̄n mentioned in this paper are
shared by feasible versions of ∆̄n which replace γ and Ω by estimators (provided the estimator of Ω
is invertible). A similar remarks applies to the pair

(
S̄n, T̄n

)
and smooth functions thereof provided

Ω is replaced by a consistent estimator.
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LMn = LRn + op (1) =

(
S̄ ′nQ

1/2′
zz π

)2

π′Qzzπ
+ op (1)→d χ

2
(
1; b2ω−111 π

′Qzzπ
)
,

and κα
(
T̄n
)
= χ2α (1)+op (1) , where ω11 is element (1, 1) of Ω and χ2 (d;λ) denotes the

noncentral χ2 distribution with d degrees of freedom and noncentrality parameter λ.
The convergence result for ∆̄n derives in part from the linearity of ℓ̄ and an analogous
result will typically fail to hold for ∆n and/or ∆̂n. Indeed, at the present level of
generality very little can be said about the asymptotic null properties of statistics
such as L̂Rn under strong identification. This observation motivates the search for
a statistic which is asymptotically equivalent to ∆n under weak identification and
exhibits behavior qualitatively similar to that of ∆̄n under Assumption 4SC.

Theorem 4 gives conditions under which this property is enjoyed by19

∆̂∗
n =

(
0√
nπ̂n

)
+
(
Î∗−1n ⊗Q−1zz,n

) 1√
n

n∑

i=1

ℓ̂∗i,n ⊗ zi, Î∗n = n−1
n∑

i=1

ℓ̂∗i,nℓ̂
∗′
i,n,

with ℓ̂∗i,n = ℓ̂
∗
n (v̂

∗
i ) , where v̂

∗
i = (y1i − γ̂′1nxi, y2i − γ̂′2nxi − π̂′nzi)

′
for some estimators

(γ̂n, π̂n) of (γ, π) , and

ℓ̂∗n (v) = −
∂f̂ ∗n (v) /∂v

f̂ ∗n (v) + an
, f̂ ∗n (v) =

1

nh2n

n∑

i=1

K

(
v − v̂∗i
hn

)
.

As defined, ∆̂∗
n/
√
n is a one-step estimator of δ (in the model (3)) which uses

(0′, π̂′n)
′
as an initial estimator of δ. This initial estimator is

√
n-consistent under

Assumption 4SC provided π̂n satisfies the following condition.

Assumption 7. π̂n is discrete and
√
n (π̂n − π) = Op (1) .

Assumption 7 holds (under both weak and strong identification) if π̂n is a dis-
cretized version of π̂OLSn = (

∑n
i=1 ziz

′
i)
−1
(
∑n

i=1 ziy2i) .

Theorem 4. (a) If Assumptions 1-3, 4W, and 5-7 hold, then

(
∆̂∗
n, Î∗n

)
= (∆n, I) + op (1) .

19The pair
(
∆̂∗n, Î∗n

)
reduces to

(
∆̂n, În

)
when π̂n = 0. Moreover,

√
nπ = O (1) under weak

identification, so Theorem 2 is a special case of Theorem 4 (a).
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(b) If Assumptions 1-3, 4SC, and 5-7 hold, then Î∗n = I + op (1) and

∆̂∗
n −

√
n

(
0
π

)
→d N

[(
bπ
0

)
, I−1 ⊗Q−1zz

]
.

As a consequence of Theorem 4, we have the following result concerning the sta-
tistics

ÂR
∗

n = Ŝ
∗′
n Ŝ

∗
n, L̂M

∗

n =

(
Ŝ∗′n T̂

∗
n

)2

T̂ ∗′n T̂
∗
n

,

L̂R
∗

n =
1

2

(
Ŝ∗′n Ŝ

∗
n − T̂ ∗′n T̂ ∗n +

√(
Ŝ∗′n Ŝ

∗
n − T̂ ∗′n T̂ ∗n

)2
+ 4
(
Ŝ∗′n T̂

∗
n

)2
)
,

where
(
Ŝ∗′n , T̂

∗′
n

)′
=
[
Î∗1/2′n ⊗Q1/2′zz,n

]
∆̂∗
n.

Corollary 5. (a) If Assumptions 1-3, 4W, and 5-7 hold, then

[
ÂR

∗

n, L̂M
∗

n, L̂R
∗

n, κα

(
T̂ ∗n

)]
=
[
ARn, LMn, LRn, κα (Tn)

]
+ op (1) .

(b) If Assumptions 1-3, 4SC, and 5-7 hold, then

ÂR
∗

n = ARn + op (1)→d χ
2
(
q; b2I11.2π′Qzzπ

)
,

L̂M
∗

n = L̂R
∗

n + op (1) =

(
S ′nQ

1/2′
zz π

)2

π′Qzzπ
+ op (1)→d χ

2
(
1; b2I11.2π′Qzzπ

)
,

and κα

(
T̂ ∗n

)
= χ2α (1) + op (1) .

It follows from Corollary 5(a) that the test which rejects when L̂R
∗

n > κα

(
T̂ ∗n

)

is “nearly efficient” when identification is weak. Moreover, Theorem A.1 in the Ap-
pendix and Choi, Hall, and Schick (1996, Theorem 2) can be used to show that the

test which rejects for large values of
(
S ′nQ

1/2′
zz π

)2
/ (π′Qzzπ) is asymptotically uni-

formly most powerful unbiased (in the terminology of Choi, Hall, and Schick (1996,
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Section 4)) under the assumptions of Corollary 5(b).20 As a consequence, Corollary

5(b) implies that the test which rejects when L̂R
∗

n > κα

(
T̂ ∗n

)
enjoys demonstrable

optimality properties under strong identification, as does the test which rejects when

L̂M
∗

n > χ
2
α (1) . In particular, under strong identification these (asymptotically equiv-

alent) tests are superior to the tests based on the statistics ARn, LMn, LRn (and
Andrews and Soares’s (2006) rank-based analogues thereof).

4.3. Consistency. Finally, we address the issue of test consistency under strong
identification. The tests based on ARn, LMn, and LRn are all consistent because
(κα (·) is bounded and)

n−1ARn = n
−1LMn + op (1) = n

−1LRn + op (1) = β
2ω−111 π

′Qzzπ + op (1)

under Assumptions 1-3 and 4SF, the displayed results following almost immediately
from the fact that if Assumptions 1-3 and 4SF hold, then

∆̄n −
√
n

(
βπ
π

)
→d N

[(
0
0

)
,Ω⊗Q−1zz

]
.

Once again, this convergence result for ∆̄n derives in part from the linearity of ℓ̄ and
an analogous result will typically fail to hold for ∆n, ∆̂n and/or ∆̂∗

n. In fact, at the

present level of generality there is no guarantee that the tests based on ÂR
∗

n, L̂M
∗

n,

and L̂R
∗

n are consistent under strong identification.
Fortunately this potential problem is easily avoided. Indeed, let21

∆̂∗∗
n =

( √
nΠ̂n√
nπ̂n

)
+
(
Î∗∗−1n ⊗Q−1zz,n

) 1√
n

n∑

i=1

ℓ̂∗∗i,n ⊗ zi, Î∗∗n = n−1
n∑

i=1

ℓ̂∗∗i,nℓ̂
∗∗′
i,n,

with ℓ̂∗∗i,n = ℓ̂
∗∗
n (v̂

∗∗
i ) , where v̂

∗∗
i =

(
y1i − γ̂′1nxi − Π̂′nzi, y2i − γ̂′2nxi − π̂′nzi

)′
for some

estimators
(
γ̂n, π̂n, Π̂n

)
of (γ, π, βπ) ,

20As mentioned by Choi, Hall, and Schick (1996, p. 852), the test furthermore satisfies a location
invariance property and is therefore also the asymptotically uniformly most powerful location invari-
ant test. A potential advantage of imposing location invariance when defining optimality criteria is
that the resulting notion of optimality is applicable in some nonstandard testing problems as well.
In particular, it can be applied to derive attainable semiparametric power envelopes for the unit
root testing problem (Jansson (2007)).

21The pair
(
∆̂∗∗n , Î∗∗n

)
reduces to

(
∆̂∗n, Î∗n

)
when Π̂n = 0. Moreover,

√
nβπ = O (1) under the

assumptions of Theorem 4, so the latter theorem is a special case of Theorem 6(a)-(b).



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 17

ℓ̂∗∗n (v) = −
∂f̂ ∗∗n (v) /∂v

f̂ ∗∗n (v) + an
, f̂∗∗n (v) =

1

nh2n

n∑

i=1

K

(
v − v̂∗∗i
hn

)
,

and Π̂n is assumed to satisfy the following condition, which holds (under weak and
strong identification) if Π̂n is a discretized version of Π̂

OLS
n = (

∑n
i=1 ziz

′
i)
−1
(
∑n

i=1 ziy1i) .

Assumption 8. Π̂n is discrete and
√
n
(
Π̂n − βπ

)
= Op (1) .

Once again, ∆̂∗∗
n /
√
n can be interpreted as a one-step estimator of δ in (3) . Un-

like ∆̂n/
√
n and ∆̂∗

n/
√
n, ∆̂∗∗

n /
√
n employs an initial estimator of δ with global

√
n-

consistency properties. This feature is utilized in the proof of part (c) of the following
result, which in turn can be used to establish consistency of tests based on ∆̂∗∗

n .

Theorem 6. (a) If Assumptions 1-3, 4W, and 5-8 hold, then

(
∆̂∗∗
n , Î∗∗n

)
= (∆n,I) + op (1) .

(b) If Assumptions 1-3, 4SC, and 5-8 hold, then Î∗∗n = I + op (1) and

∆̂∗∗
n −

√
n

(
0
π

)
→d N

[(
bπ
0

)
, I−1 ⊗Q−1zz

]
.

(c) If Assumptions 1-3, 4SF, and 5-8 hold, then Î∗∗n = I + op (1) and

∆̂∗∗
n −

√
n

(
βπ
π

)
→d N

[(
0
0

)
,I−1 ⊗Q−1zz

]
.

Let
(
Ŝ∗∗′n , T̂

∗∗′
n

)′
=
[
Î∗∗1/2′n ⊗Q1/2′zz,n

]
∆̂∗∗
n and define

ÂR
∗∗

n = Ŝ∗∗′n Ŝ
∗∗
n , L̂M

∗∗

n =

(
Ŝ∗∗′n T̂

∗∗
n

)2

T̂ ∗∗′n T̂
∗∗
n

,

L̂R
∗∗

n =
1

2

(
Ŝ∗∗′n Ŝ

∗∗
n − T̂ ∗∗′n T̂

∗∗
n +

√(
Ŝ∗∗′n Ŝ

∗∗
n − T̂ ∗∗′n T̂

∗∗
n

)2
+ 4
(
Ŝ∗∗′n T̂

∗∗
n

)2
)
.

The salient properties of these statistics are characterized in the following corollary
to Theorem 6.
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Corollary 7. (a) If Assumptions 1-3, 4W, and 5-8 hold, then

[
ÂR

∗∗

n , L̂M
∗∗

n , L̂R
∗∗

n , κα

(
T̂ ∗∗n

)]
=
[
ARn, LMn, LRn, κα (Tn)

]
+ op (1) .

(b) If Assumptions 1-3, 4SC, and 5-8 hold, then

ÂR
∗∗

n = ARn + op (1)→d χ
2
(
q; b2I11.2π′Qzzπ

)
,

L̂M
∗∗

n = L̂R
∗∗

n + op (1) =

(
S ′nQ

1/2′
zz π

)2

π′Qzzπ
+ op (1)→d χ

2
(
1; b2I11.2π′Qzzπ

)
,

and κα

(
T̂ ∗∗n

)
= χ2α (1) + op (1) .

(c) If Assumptions 1-3, 4SF, and 5-8 hold, then

n−1ÂR
∗∗

n = n−1L̂M
∗∗

n + op (1) = n
−1L̂R

∗∗

n + op (1) = β
2I11.2π′Qzzπ + op (1) .

In perfect analogy with Corollary 5, parts (a) and (b) of Corollary 7 imply that the

test which rejects when L̂R
∗∗

n > κα
(
T̂ ∗∗n

)
is “nearly” optimal when identification is

weak and demonstrably optimal when identification is strong. Relative to Corollary 5,

which establishes analogous results for the test which rejects when L̂R
∗

n > κα
(
T̂ ∗n

)
,

the additional property that can be claimed on the part of the test based on L̂R
∗∗

n is
that of consistency under strong identification. This, and the analogous consistency

results about the tests based on ÂR
∗∗

n and L̂M
∗∗

n , is the content of Corollary 7(c).

4.4. Inference when identification is strong. If identification is strong, then
the usual duality between estimation and testing holds, implying in particular that

the asymptotic optimality properties of the tests based on L̂R
∗∗

n and L̂M
∗∗

n are shared
by a Wald test based on an asymptotically efficient estimator of β.

Let

β̂
∗∗

n =
∆̂∗∗′
1,nQzz,n∆̂

∗∗
2,n

∆̂∗∗′
2,nQzz,n∆̂

∗∗
2,n

,

where ∆̂∗∗
n =

(
∆̂∗∗′
1,n, ∆̂

∗∗′
2,n

)′
and partitioning is after the qth row. The estimator β̂

∗∗

n

can be interpreted as a non-Gaussian counterpart of the 2SLS estimator of β, the
latter being given by
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β̄n =
∆̄′
1,nQzz,n∆̄2,n

∆̄′
2,nQzz,n∆̄2,n

,

where ∆̄n =
(
∆̄′
1,n, ∆̄

′
2,n

)′
and partitioning is after the qth row. The estimators β̂

∗∗

n

and β̄n are both obtained by means of a generalized least squares (GLS) regression
of an estimator of δ1 onto an estimator of δ2 (in (3)). The GLS regressions utilize
identical weighting matrices, but differ in terms of the estimators of δ being employed,
with β̂

∗∗

n being based on an asymptotically efficient estimator (namely ∆̂∗∗
n /
√
n) and

β̄n being based on the OLS estimator ∆̄n/
√
n.

If Assumptions 1-3 and 4SF hold, then

√
n
(
β̄n − β

)
→d N

(
0, Σ̄β

)
, Σ̄β =

[(
1
−β

)′
Ω

(
1
−β

)]
(π′Qzzπ)

−1
.

The next result, which follows from Theorem 6(c) and the delta method, gives the

corresponding result for β̂
∗∗

n .

Corollary 8. If Assumptions 1-3, 4SF, and 5-8 hold, then

√
n
(
β̂
∗∗

n − β
)
→d N (0,Σβ) , Σβ =

[(
1
−β

)′
I−1
(

1
−β

)]
(π′Qzzπ)

−1
.

Under normality the convergence result in Corollary 8 agrees with that for the
2SLS estimator of β (and its asymptotic equivalents, such as the limited informa-
tion maximum likelihood (LIML) estimator and Fuller’s (1977) modification thereof).

With non-Gaussian errors, on the other hand, the estimator β̂
∗∗

n compares favorably
with β̄n whenever the inequality I−1 ≤ Ω is strict.

The existence of estimators which outperform 2SLS for certain non-Gaussian error
distributions has been known at least since Amemiya (1982) and Powell (1983). For

the purposes of relating β̂
∗∗

n to the two-stage least absolute deviations (2SLAD) and
double 2SLAD (D2SLAD) estimators studied in those papers, define

β̃n (λ1, λ2) =
Π̂n (λ1)

′Qzz,nπ̂n (λ2)

π̂n (λ2)
′Qzz,nπ̂n (λ2)

, (λ1, λ2)
′ ∈ R2,

where

Π̂n (λ1) = λ1Π̂
LAD
n + (1− λ1) Π̂OLSn , π̂n (λ2) = λ2π̂

LAD
n + (1− λ2) π̂OLSn ,
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(
γ̂LAD1 , Π̂LADn

)
= argmin(γ1,Π)

n∑

i=1

|y1i − γ′1xi − Π′zi| ,

(
γ̂LAD2 , π̂LADn

)
= argmin(γ2,π)

n∑

i=1

|y2i − γ′2xi − π′zi| .

In this notation β̃n (0, 0) is the 2SLS estimator, while nonzero pairs (λ1, λ2) give rise
to estimators that are asymptotically distinct from the 2SLS estimator. The Bahadur
representation of any β̃n (λ1, λ2) is readily obtained (by means of the delta method)
from the Bahadur representations of Π̂LADn , Π̂OLSn , π̂LADn , and π̂OLSn . Utilizing these
Bahadur representations it can be shown that β̃n (λ1, 0) is asymptotically equivalent
to the 2SLAD(λ1) estimator and that β̃n (1, 1) is asymptotically equivalent to the
D2SLAD estimator(s).

Because
(
∆̂∗∗
1,n/

√
n, ∆̂∗∗

2,n/
√
n
)
is an asymptotically efficient estimator of (δ1, δ2)

in (3) , it compares favorably with
(
Π̂n (λ1) , π̂n (λ2)

)
for any value of (λ1, λ2) . This

superiority is inherited by β̂
∗∗

n , which compares favorably with all estimators of the
form β̃n (λ1, λ2) (and their asymptotic equivalents, such as the 2SLAD and D2SLAD

estimators). In fact, Theorems A.1 and A.2 can be used to show that β̂
∗∗

n is an
asymptotically efficient (i.e., best regular) estimator of β under strong identification.22

As a consequence, one would expect the strong identification local asymptotic

power properties of the tests based on L̂R
∗∗

n and L̂M
∗∗

n to be matched by those of the

test which rejects when Ŵ ∗∗
n > χ

2
α (1) , where

Ŵ ∗∗
n =

(
β̂
∗∗

n

)2

Σ̂∗∗β /n
, Σ̂∗∗β =

[(
1

−β̂∗∗n

)′
Î∗∗−1n

(
1

−β̂∗∗n

)]
(π̂′nQzz,nπ̂n)

−1
.

The next result, which follows from Theorem 6(b) and the delta method, verifies that
conjecture.

22This result, and the other optimality results obtained under the assumption of strong identi-
fication, should generalize straightforwardly to models with multiple endogenous regressors. The
distribution theory developed under weak identification can also be generalized to models with mul-
tiple endogenous regressors, but to the best of our knowledge the “near” optimality properties of
Moreira (2003)-type inference procedures has not been established for models of this type.
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Corollary 9. If Assumptions 1-3, 4SC, and 5-8 hold, then

Ŵ ∗∗
n =

(
S ′nQ

1/2′
zz π

)2

π′Qzzπ
+ op (1)→d χ

2
(
1; b2I11.2π′Qzzπ

)
.

An attractive feature of Ŵ ∗∗
n is that its ingredients, β̂

∗∗

n and Σ̂∗∗β , can be combined
in the usual way to form a Wald test of any null hypothesis regarding β, not just the
null hypothesis that β = 0. This feature is particularly convenient when hypothesis
tests are used to construct confidence intervals by inversion, as it implies that valid
(indeed, optimal) confidence intervals are trivial to construct. Indeed, a confidence
interval with asymptotic coverage probability 1− α is given by


β̂∗∗n −

√

χ2α (1)
Σ̂∗∗β
n
, β̂

∗∗

n +

√

χ2α (1)
Σ̂∗∗β
n


 .

It should be emphasized, however, that the displayed confidence interval is invalid
(i.e., does not have asymptotic coverage probability 1−α) under weak identification.

As a consequence, while the computational simplicity of Ŵ ∗∗
n makes it an attractive

competitor to L̂M
∗∗

n and L̂R
∗∗

n under strong identification, the Wald statistic does not

enjoy the robustness (and, in the case of L̂R
∗∗

n , “near” optimality) properties under

weak identification that Corollary 7(a) establishes on the part of L̂M
∗∗

n and L̂R
∗∗

n .
23

Remarks. (i) The relation between β̂
∗∗

n and the 2SLS estimator β̄n can be further
elucidated by noticing that

β̂
∗∗

n =

∑n
i=1 ŷ

∗∗
2i ŷ

∗∗
1i∑n

i=1 ŷ
∗∗
2i ŷ

∗∗
2i

, ŷ∗∗ji = z
′
i∆̂

∗∗
j,n/
√
n (j = 1, 2) ,

a representation perfectly analogous to

β̄n =

∑n
i=1 ȳ2iȳ1i∑n
i=1 ȳ2iȳ2i

, ȳji = z
′
i∆̄j,n/

√
n (j = 1, 2) ,

the latter being Basmann’s (1959) interpretation of 2SLS.

(ii) For the purposes of understanding the asymptotic efficiency of β̂
∗∗

n , it may be
useful to recognize that it admits a minimum distance interpretation. Indeed,

23A “conditional” version of the Wald test will be valid also under weak identification, but will

be no easier to implement than the test based on L̂R
∗∗

n and will not be “nearly” efficient when
identification is weak (Andrews, Moreira, and Stock (2007)).
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(
∆̂∗∗
2,n/

√
n, β̂

∗∗

n

)
= argmin(π,β)

(
∆̂∗∗
1,n/

√
n− πβ

∆̂∗∗
2,n/

√
n− π

)′
(I ⊗Qzz,n)

(
∆̂∗∗
1,n/

√
n− πβ

∆̂∗∗
2,n/

√
n− π

)
,

a characterization which closely resembles the following (well known) minimum dis-
tance interpretation of β̄n :

(
π̂OLSn , β̄n

)
= argmin(π,β)

(
∆̄1,n/

√
n− πβ

∆̄2,n/
√
n− π

)′ (
Ω−1 ⊗Qzz,n

)( ∆̄1,n/
√
n− πβ

∆̄2,n/
√
n− π

)
.

(iii) The LIMLK (i.e., LIML with known Ω) estimator of β is given by

argminβ
(1,−β)

(
∆̄1,n, ∆̄2,n

)
Qzz,n

(
∆̄1,n, ∆̄2,n

)′
(1,−β)′

(1,−β)Ω (1,−β)′ .

This estimator is asymptotically equivalent to the 2SLS estimator β̄n when identifica-
tion is strong, but enjoys certain advantages over β̄n when identification is weak (e.g.,
Staiger and Stock (1997)). Analogously, the following non-Gaussian counterpart of

the LIMLK estimator of β is asymptotically equivalent (superior) to β̂
∗∗

n under strong
(weak) identification:

argminβ
(1,−β)

(
∆̂∗∗
1,n, ∆̂

∗∗
2,n

)
Qzz,n

(
∆̂∗∗
1,n, ∆̂

∗∗
2,n

)′
(1,−β)′

(1,−β) Î∗∗−1n (1,−β)′
.

(iv) Recently, Hansen, McDonald, and Newey (2006) have proposed a nonlinear
IV estimator of β based on a parametric family of densities for ui in a model of the
form

y1i = Γ
′
1xi + βy2i + ui (i = 1, . . . , n) . (5)

(That is, their model consists of the first equation of (1) , but does not contain a
first stage equation relating the endogenous regressor to the instruments.) If the
true density of ui is a member of the family used for estimation purposes, Hansen,
McDonald, and Newey’s (2006) estimator is locally efficient at the model (1) under

the assumptions of that paper. On the other hand, their estimator is inferior to β̂
∗∗

n

under the (stronger) assumptions made herein. (Their estimator is asymptotically

equivalent to β̂
∗∗

n when the errors ui and v2i in (1) are mutually independent and/or
Gaussian, but not in general.)
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5. S��������	�

This section presents the results of a simulation study investigating the finite-sample
performance of the procedure considered in this paper. Although we primarily focus

on power properties of the tests based on ÂR
∗∗

n , L̂M
∗∗

n , and L̂R
∗∗

n , we also discuss the

properties of the point estimator β̂
∗∗

n under strong identification.

5.1. Model Setup. The data is generated by the model (2) . Specifically, we set
xi = 1 and set q, the dimension of the instrumental variable, equal to 4. The in-
struments are randomly generated from a standard Gaussian distribution, demeaned,
and then kept fixed throughout the experiment. For the errors we consider two differ-
ent specifications, based on (i) the standard normal distribution and (ii) a Gaussian
mixture distribution with density

f̃ (v) =
1

3

1√
2π
exp

[
−1
2
(v + 1)2

]
+
2

3

1√
8π
exp

[
−1
8
(v − 3)2

]
,

respectively. (The Fisher information for the location model generated by the Gaussian
mixture distribution is approximately 1.9 times the inverse of its variance, so non-
trivial power gains can potentially be achieved by using an adaptive procedure.) The
probability densities associated with the distributions are depicted in Figure 1.

FIGURE 1 ABOUT HERE

We generate 2n independent (studentized) errors ṽi = (ṽ1i, ṽ2i)
′ from each distri-

bution and define

v1i = ṽ1i and v2i =
√
1− ρ2ṽ2i + ρṽ1i,

hereby inducing a correlation of ρ between the errors v1i and v2i. Consistent with the
previous discussion, we take β0 = 0. The 4× 1 vector π is given by

π = ι ·
√

ζ

ι′Z ′Zι
,

where ι is a 4 × 1 vector of ones, Z is the n × 4 matrix of instruments, and ζ
is the concentration parameter π′Z ′Zπ/q, which determines the “strength” of the
instruments. For the simulations, we chose n = 1, 000 as the sample size, S = 5, 000
as the number of simulations, ρ = 0.5, and ζ taking on the values 1 and 10. In addition
we chose α = 0.05 for the size of our tests.24

24We obtained qualitatively similar results for other choices of n, S, ρ, and ζ, but omit these to
conserve space.
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5.2. Implementation. The new procedures are compared to two benchmark pro-
cedures. The first of these is the Gaussian procedure constructed using a feasible
version of the quasi-sufficient statistics

(
S̄n, T̄n

)
employing the OLS estimator

Ω̂OLSn =
1

n− p− q
n∑

i=1

v̂OLSi v̂OLS′i =
1

n− 5
n∑

i=1

v̂OLSi v̂OLS′i

of Ω, where v̂OLSi are the OLS residuals. We will refer to this technique as “OLS” for
simplicity.

The second benchmark procedure utilizes an “oracle” version of ∆̂∗∗
n . Specifically,

using the true ℓ instead of its estimate, we obtain

∆̂MLE
n =

( √
nΠ̂OLSn√
nπ̂OLSn

)
+
(
Î−1ℓ ⊗Q−1zz,n

) 1√
n

n∑

i=1

ℓ
(
v̂OLSi

)
⊗ zi,

where

Îℓ =
1

n

n∑

i=1

ℓ
(
v̂OLSi

)
ℓ
(
v̂OLSi

)′
.

It should be noted that this is not a true “oracle” procedure in the sense that it
uses the estimated error terms rather than their true values and also relies on an
estimate of the information matrix. We include this additional benchmark in an
effort to identify the effects on performance of using nonparametric estimates of the
score function. Although a slight abuse of notation, we will refer to this technique as
“MLE” for simplicity.

Finally, the (feasible) adaptive procedure based on ∆̂∗∗
n is referred to as “ADP”

for notational simplicity.25 This procedure is fully data-driven, but requires the ad-
ditional choice of three parameters: the kernel k, the trimming parameter a, and the
smoothing parameter h. For specificity we chose a Gaussian kernel and we set a = 0
for simplicity. We experimented with a variety of procedures and specifications for
the choice of the kernel smoothing parameter h. In terms of procedures we considered
both first-generation and second-generation bandwidth selection procedures for both
univariate density and derivative estimation and bivariate density and derivative es-
timation (e.g., Ichimura and Todd (2006)). In terms of specifications, we considered
a common bandwidth as well as different combinations of alternative bandwidths for
densities and partial derivatives. Unfortunately, for modest sample sizes our prelim-
inary findings showed that these procedures have disappointing size properties. A

25Although we confine attention to a one-step version of the adaptive procedure, it would be of
interest to explore whether k-step versions exhibit superior finite sample performance.
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possible explanation is that these techniques are engineered to minimize a criterion
function related to the distance between the estimated and true function and do not
necessarily lead to the optimal bandwidth choice for the adaptive procedure consid-
ered in this paper. This is consistent with previous Monte Carlo results on adaptive
estimation in the univariate case (e.g., Steigerwald (1992)).

Since our explicit goal is to show that the asymptotic optimality properties of
adaptive procedures are inherited at least partially in finite samples, we leave for
future research a formal fully data-driven procedure for optimal bandwidth selection.
Instead, due to the lack of formal procedures we opted for a simple re-scaling of a
rule of thumb choice for bivariate density estimation.26 Specifically, our bandwidth

estimators were of the form h1 = c
√
ω̂OLS11 /

8
√
n and h2 = c

√
ω̂OLS22 /

8
√
n, where h1 and

h2 are the bandwidth choice for the first and second dimension of the nonparametric
score estimator, respectively, and the constant c is chosen from a grid of possible
values to obtain approximately correct empirical size. As expected, these grid values
were sensitive to the true distribution of the error terms. In our simulations, we used
c = 0.65 and c = 0.50 for the Gaussian and non-Gaussian model, respectively, as
these values produced testing procedures with good size properties.

5.3. Results. Figure 2 presents the power graphs for the AR, LM, and CLR tests
for the case where the reduced form errors are generated from a Gaussian distribution.

FIGURE 2 ABOUT HERE

The strength of the instruments is equal to 1 and 10 in the first row and second row of
graphs, respectively. In this particular case, the OLS andMLE estimators of the linear
coefficients coincide, while the second-moment matrices are equal up to a constant
multiple which converges to 1 with the sample size. As a consequence, the power
curves of the tests based on these two procedures are virtually equivalent. Because
the adaptive procedures employ a nonparametric estimator of ℓ, we would expect
them to have reduced finite sample power relative to the “oracle” procedures and this
does indeed seem to be the case. Nevertheless, the power loss is encouragingly small
and the findings suggest that the ADP procedures can dominate the OLS procedures
when the errors are non-Gaussian.

FIGURE 3 ABOUT HERE

26Unfortunately, there is a limited number of results concerning the choice of smoothing para-
meters for adaptive estimators. To our knowledge, the only results available are particular to the
case of univariate densities: Linton and Xiao (2001) derived a second-order approximation for an
adaptive estimator of the regression coefficient under more severe assumptions than we allow for
and which do not apply to the model considered here.
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Figure 3 presents the results for the case when the errors are generated from a
non-Gaussian distribution. Again, the first and second rows differ by the choice of
the strength of the instruments. The results in this case are consistent with the
theoretical predictions. The tests based on the MLE estimator have superior power
relative to the test statistics based on the OLS estimator, while the test statistics
based on the ADP estimator have power curves which reside in between the other
two. Presumably the difference between the MLE and ADP power curves can be
attributed to the fact that ADP employs a nonparametric estimator of the nuisance
parameter ℓ. In other words, the asymptotic theory probably overstates the extent
to which departures from Gaussianity can be exploited in finite samples. On the
other hand, the qualitative predictions of the asymptotic theory are borne out in the
simulations insofar as Figure 3 clearly suggests that even in finite samples the ADP
procedures can enjoy power advantages over the OLS procedures when the errors are
non-Gaussian.

FIGURE 4 ABOUT HERE

Finally, in Figure 4 we present (kernel density estimators of) the sampling distri-
butions of the estimators of β using each procedure when instruments are “strong.”
The sampling distribution of the ADP estimator β̂

∗∗

n is more concentrated than that
of the “OLS” estimator β̄n and less concentrated than that of the “oracle” estimator.
This is also consistent with the theoretical predictions.27

In our view, the Monte Carlo results provide evidence in favor of the procedure(s)
developed in this paper. The key potential drawback of the new procedure(s), which
is common to all nonparametric procedures, is the fact that no firm guidance on the
choice of the smoothing parameter is available. As discussed above, the lack of formal
theory in this area led us to consider a simple rule-of-thumb procedure which includes
a constant parameter that needs to be chosen and depends on the underlying design.
Although this constant is arbitrary and set in advance for each design, we showed
that if this constant is chosen so that the empirical size is approximately correct, then
important power gains are realized by constructing test statistics based on the ADP
estimates of the sufficient statistics. This would appear to suggest that in practice a
bootstrap procedure (in the spirit of Hsieh and Manski (1987), but targeted at the
size properties of the test rather than the mean squared error of the estimator) is
likely to produce tests with good size and power.

27Similar results were obtained for the ADP estimator of the reduced-form coefficients. We omit
the results to conserve space.
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6. A��
	��+: P����

The main results of the paper will follow from two facts, Theorems A.1 and A.2, about
the model (3) . Neither result is particularly surprising, but we have been unable to
find statements of these results in the literature.

Theorem A.1 is an LAN result. To state it, let

Ln (d, g) =
n∑

i=1

log f
[
y1i − γ1n (g1)′ xi − δ1n (d1)′ zi, y2i − γ2n (g2)′ xi − δ2n (d2)′ zi

]

−
n∑

i=1

log f [y1i − γ′1xi − δ′1zi, y2i − γ′2xi − δ′2zi]

denote the log likelihood ratio function associated with the local reparameterization

γ =

[
γ1n (g1)
γ2n (g2)

]
=

[
γ1 + g1/

√
n

γ2 + g2/
√
n

]
, δ =

[
δ1n (d1)
δ2n (d2)

]
=

[
δ1 + d1/

√
n

δ2 + d2/
√
n

]
,

let “opδ,γ (1)” and “→dδ,γ” be shorthand for “op (1) under the distributions associated
with (d, g) = (0, 0)” and “→d under the distributions associated with (d, g) = (0, 0)”,
respectively, and let

ℓi = ℓ (y1i − γ′1xi − δ′1zi, y2i − γ′2xi − δ′2zi) .

Theorem A.1. Suppose (y1i, y2i) is generated by (3) .

(a) If Assumptions 1(a) and 2 hold and dn is a bounded sequence, then

Ln (dn, 0) = Lδn (dn) + opδ,γ (1) ,

where

Lδn (dn) = d′n (I ⊗Qzz)∆δ
n−

1

2
d′n (I ⊗Qzz) dn, ∆δ

n =
(
I−1 ⊗Q−1zz

) 1√
n

n∑

i=1

ℓi⊗ zi,

∆δ
n →dδ,γ N

(
0,I−1 ⊗Q−1zz

)
.
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(b) If, moreover, Assumptions 1(b) and 3 hold and gn is a bounded sequence, then

Ln (dn, gn) = Lδn (dn) + Lγn (gn) + opδ,γ (1) ,

where

Lγn (gn) = g′n (I ⊗Qxx)∆γ
n−

1

2
g′n (I ⊗Qxx) gn, ∆γ

n =
(
I−1 ⊗Q−1xx

) 1√
n

n∑

i=1

ℓi⊗xi,

(
∆δ
n

∆γ
n

)
→dδ,γ N

[(
0
0

)
,

(
I−1 ⊗Q−1zz 0

0 I−1 ⊗Q−1xx

)]
.

Theorem A.2 is an adaptation result for one-step estimators of δ. Given initial esti-

mators δ̂n =
(
δ̂
′

1n, δ̂
′

2n

)′
and γ̂n = (γ̂

′
1n, γ̂

′
2n)

′
of δ and γ, let

δ̃n

(
δ̂n, γ̂n

)
= δ̂n +

1√
n
∆̂δ
n

(
δ̂n, γ̂n

)
,

where

∆̂δ
n

(
δ̂n, γ̂n

)
=

[
Ĩn
(
δ̂n, γ̂n

)−1
⊗Q−1zz,n

]
1√
n

n∑

i=1

ℓ̂n (v̂i)⊗ zi,

Ĩn
(
δ̂n, γ̂n

)
= n−1

n∑

i=1

ℓ̂n (v̂i) ℓ̂n (v̂i)
′ , v̂i =

(
y1i − γ̂′1nxi − δ̂

′

1nzi

y2i − γ̂′2nxi − δ̂
′

2nzi

)
,

and

ℓ̂n (v) = −
∂f̂n (v) /∂v

f̂n (v) + an
, f̂n (v) =

1

nh2n

n∑

i=1

K

(
v − v̂i
hn

)
.

Theorem A.2. Suppose (y1i, y2i) is generated by (3) . If Assumptions 1-3 and 5

hold,
(
δ̂n, γ̂n

)
is discrete, and

√
n
(
δ̂n − δ, γ̂n − γ

)
= Op (1) , then

Ĩn
(
δ̂n, γ̂n

)
= I + opδ,γ (1)
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and

√
n
[
δ̃n

(
δ̂n, γ̂n

)
− δ
]
= ∆δ

n + opδ,γ (1) .

Proof of Theorem 1. Apply Theorem A.1(a) with δ = 0 and dn = µ (β, c) . �

Proof of Theorems 2, 4, and 6. Theorems 2 and 4 (a) are special cases of
Theorem 6 (a) and Theorem 4 (b) is a special case of Theorem 6 (b), so it suffices to
prove Theorem 6.

Theorem 6 can be derived with the help of Theorem A.2 because

∆̂∗∗
n =

√
nδ̃n
(
δ̂n, γ̂n

)
, Î∗∗n = Ĩn

(
δ̂n, γ̂n

)
,

where δ̂n =
(
Π̂′n, π̂

′
n

)′
and γ̂n is as in the main text.

Proof of Theorem 6(a). If c = 0 in Assumption 4W, then the result can be
obtained by applying Theorem A.2 with δ = (0′, 0′)′ . The result for c �= 0 follows by
the contiguity property implied by Theorem A.1(a).

Proof of Theorem 6(b). If b = 0 in Assumption 4SC, then the result can be
obtained by applying Theorem A.2 with δ = (0′, π′)′ . The result for b �= 0 follows by
applying Theorem A.1(a) with dn = (bπ

′, 0′)′ and using Le Cam’s third lemma.
Proof of Theorem 6(c). Apply Theorem A.2 with δ = (βπ′, π′)′ . �

Proof of Theorem A.1. Define

R (v, θ) = 2

[√
f (v − θ)
f (v)

− 1− 1

2
θ′ℓ (v)

]
1 [f (v) > 0] , v, θ ∈ R2,

and

R̄ (θ) =
1

4
θ′Iθ +

∫

R2

R (v, θ) f (v) dv, θ ∈ R2.

If Assumption 2 holds, then

√
f (v − θ)−

√
f (v) =

1

2
θ′
∫ 1

0

ℓ (v − θt)
√
f (v − θt)dt, ∀v, θ ∈ R2

and for almost every v ∈ R2, √f is differentiable at v, with (total) derivative −1
2
ℓ
√
f.



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 30

Using these facts and proceeding as in the proof of van der Vaart (1998, Lemma 7.6),
it can be shown that if Assumption 2 holds, then

limη↓0 V (η) = 0, V (η) = sup‖θ‖≤η,θ 
=0 ‖θ‖−2
∫

R2

R (v, θ)2 f (v) dv. (6)

It follows from this result and Lemma 1 of Pollard (1997) that

limη↓0 V̄ (η) = 0, V̄ (η) = sup‖θ‖≤η,θ 
=0 ‖θ‖−2 R̄ (θ) . (7)

The proofs of parts (a) and (b) are completely analogous, so to conserve space we
only establish part (a). The log likelihood ratio Ln (dn, 0) admits the expansion

Ln (dn, 0) = d′n (I ⊗Qzz)∆δ
n +

n∑

i=1

Ri,n

−1
4

n∑

i=1

[
d′n
ℓi ⊗ zi√
n

+Ri,n

]2 (
1 + ξi,n

)
,

where

Ri,n = R

[(
y1i − γ′1xi − δ′1zi
y2i − γ′2xi − δ′2zi

)
,

(
d′1nzi/

√
n

d′2nzi/
√
n

)]
, ξi,n = ξ

[
d′n
ℓi ⊗ zi√
n

+Ri,n

]
,

and the defining property of ξ (·) is log (1 + t) = t− 1
2
t2 [1 + ξ (2t)] .

It suffices to show that the following conditions hold:

n∑

i=1

Ri,n = −
1

4
d′n (I ⊗Qzz) dn + opδ,γ (1) , (8)

max1≤i≤n
∣∣ξi,n
∣∣ = opδ,γ (1) , (9)

n∑

i=1

[
d′n
ℓi ⊗ zi√
n

+Ri,n

]2
= d′n (I ⊗Qzz) dn + opδ,γ (1) . (10)

To do so, suppose (d, g) = (0, 0) .
Proof of (8) . The random variables R1,n, . . . , Rn,n are independent and satisfy
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n∑

i=1

E
(
R2i,n
)
≤

n∑

i=1

V

(∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2
)∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2

≤ max1≤i≤n V

(∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2
)

n∑

i=1

∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2

= o (1)O (1) = o (1) ,

where the penultimate equality uses (6) and Assumption 1(a). As a consequence,

n∑

i=1

Ri,n =
n∑

i=1

E (Ri,n) + op (1) ,

where

n∑

i=1

E (Ri,n) = −
1

4
d′n (I ⊗Qzz,n) dn +

n∑

i=1

R̄

[(
d′1nzi/

√
n

d′2nzi/
√
n

)]
.

By Assumption 1(a),

d′n (I ⊗Qzz,n) dn = d′n (I ⊗Qzz) dn + o (1) .

Moreover,

∣∣∣∣∣
n∑

i=1

R̄

[(
d′1nzi/

√
n

d′1nzi/
√
n

)]∣∣∣∣∣ ≤
n∑

i=1

∣∣∣∣R̄
[(
d′1nzi/

√
n

d′2nzi/
√
n

)]∣∣∣∣

≤
n∑

i=1

V̄

(∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2
)∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2

≤ max1≤i≤n V̄

(∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2
)

n∑

i=1

∥∥∥∥
(
d′1nzi/

√
n

d′2nzi/
√
n

)∥∥∥∥
2

= o (1)O (1) = o (1) ,

where the penultimate equality uses (7) and Assumption 1(a).
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Proof of (9) . Because limt→0 ξ (t) = 0 (by Taylor’s Theorem), the result follows
from the fact that

max1≤i≤n

∥∥∥∥
ℓi ⊗ zi√
n

∥∥∥∥ = op (1)

and

max1≤i≤n |Ri,n| ≤

√√√√
n∑

i=1

R2i,n = op (1) ,

where the first convergence result uses ℓi ∼ i.i.d. (0, I) and Assumption 1(a), while
the second convergence result uses the relation E

(∑n
i=1R

2
i,n

)
= o (1) established in

the proof of (8) .
Proof of (10) . Because

∑n
i=1R

2
i,n = op (1) and

n∑

i=1

[
d′n
ℓi ⊗ zi√
n

]2
= d′n

(
1

n

n∑

i=1

ℓiℓ
′
i ⊗ ziz′i

)
dn,

it suffices to show that

1

n

n∑

i=1

ℓiℓ
′
i ⊗ ziz′i = I ⊗Qzz + op (1) .

The latter result can be established using ℓi ∼ i.i.d. (0, I) and Assumption 1(a). �

Proof of Theorem A.2. The proof uses Schick’s (1987) approach.

First, it follows from Theorem A.1(b) and the properties of
(
δ̂n, γ̂n

)
that we may

assume
(
δ̂n, γ̂n

)
= (δ, γ) . (This is so because Theorem 6.2 of Bickel (1982) can be

used to verify that Condition A of Schick’s (1987) Method 3 holds.) In other words,
it suffices to show that

∆̌δ
n =

[
Ǐ−1n ⊗Q−1zz,n

] 1√
n

n∑

i=1

ℓ̌n (vi)⊗ zi = ∆δ
n + op (1) (11)

and

Ǐn = n−1
n∑

i=1

ℓ̌n (vi) ℓ̌n (vi)
′ = I + op (1) , (12)
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where

ℓ̌n (v) = −
∂f̌n (v) /∂v

f̌n (v) + an
, f̌n (v) =

1

nh2n

n∑

i=1

K

(
v − vi
hn

)
.

To do so, let ℓ̌n,i (·) denote the leave-one-out version of ℓ̌n (·) given by

ℓ̌n,i (v) = −
∂f̌n,i (v) /∂v

f̌n,i (v) + an
, f̌n,i (v) = f̌n (v)−

1

nh2n

[
K

(
v − vi
hn

)
−K (0)

]
.

It follows from (the proof of) Lemma 3.1 and Remark 3.2 of Schick (1987) that
condition (11) is implied by condition (12) , Assumptions 1(a) and 2, and the following
conditions:28

E

[∫

R2

∥∥ℓ̌n (v)− ℓ (v)
∥∥2 f (v) dv

]
= o (1) , (13)

max1≤i≤n E

[∫

R2

∥∥ℓ̌n (v)− ℓ̌n,i (v)
∥∥2 f (v) dv

]
= o

(
1

n

)
. (14)

Utilizing Assumptions 2 and 5 and proceeding as in Schick (1987, p. 100), it can
be shown that

∫

R2

∥∥∥∥−
∂fn (v) /∂v

fn (v) + an
− ℓ (v)

∥∥∥∥
2

f (v) dv = o (1) , (15)

where fn (v) =
∫
R2
f (v − hnr)K (r) dr = E

[
f̌n (v)

]
. It follows from this result that

∫

R2

∥∥∥∥
∂fn (v) /∂v

fn (v) + an

∥∥∥∥
2

f (v) dv = O (1) . (16)

Now, using Assumptions 2 and 5, we have

supv∈R2 E
[∥∥f̌n (v)− fn (v)

∥∥2
]
= O

(
1

nh2n

)

and

28Conditions (13) and (14) are counterparts of Schick’s (1987) conditions (3.2) and (3.6) . No
counterpart of Schick’s (1987) condition (3.1) is needed because

∑n
i=1 zi = 0. Also, the present

definition of ℓ̌n,i ensures that ℓ̌n,i (vi) = ℓ̌n (vi) for every i, implying in particular that the natural
counterpart of Schick’s (1987) conditions (3.5) is satisfied.
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supv∈R2 E
[∥∥∂f̌n (v) /∂v − ∂fn (v) /∂v

∥∥2
]
= O

(
1

nh4n

)
.

Utilizing these facts, (16) , and the decomposition

∂f̌n (v) /∂v

f̌n (v) + an
− ∂fn (v) /∂v
fn (v) + an

= −∂fn (v) /∂v
fn (v) + an

f̌n (v)− fn (v)
f̌n (v) + an

+
∂f̌n (v) /∂v − ∂fn (v) /∂v

f̌n (v) + an
,

it is easily shown that

∫

R2

E

[∥∥∥∥
∂f̌n (v) /∂v

f̌n (v) + an
− ∂fn (v) /∂v
fn (v) + an

∥∥∥∥
2
]
f (v) dv = O

(
1

na2nh
4
n

)
= o (1) , (17)

a result which can be combined with (15) to yield (13) .
It follows from (16)− (17) that

∫

R2

E

[∥∥∥∥
∂f̌n (v) /∂v

f̌n (v) + an

∥∥∥∥
2
]
f (v) dv = O (1) .

Utilizing this fact, Assumption 5, and the decomposition

ℓ̌n (v)− ℓ̌n,i (v) = −
∂f̌n (v) /∂v

f̌n (v) + an

f̌n (v)− f̌n,i (v)
f̌n,i (v) + an

+
∂f̌n (v) /∂v − ∂f̌n,i (v) /∂v

f̌n,i (v) + an
,

it is easily shown that (14) holds.
Finally, condition (12) holds because

Ǐn = n−1
n∑

i=1

ℓ̌n,i (vi) ℓ̌n,i (vi)
′ = n−1

n∑

i=1

ℓiℓ
′
i + op (1) = I + op (1) ,

where the first equality uses the fact that ℓ̌n,i (vi) = ℓ̌n (vi) for each i and the second
equality uses (15) and (17) . �

Remark. With the possible exception of (15) , all steps in the proof of Theorem
A.2 remain valid if the condition supr∈R |k′ (r)| /k (r) < ∞ of Assumption 5(a) is
replaced by the condition

∫
R
k′ (r)2 dr <∞. The latter condition, which is implied by

Assumption 5(a), is satisfied by the normal kernel.
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Furthermore, if the error density f is such that supv∈R2
∥∥∥ḟ (v)

∥∥∥ <∞, then (15) is
satisfied (for any kernel) provided limn→∞hn/an <∞. This is so because

∫

R2

∥∥∥∥−
∂fn (v) /∂v|r=v
fn (v) + an

− ℓ (v)
∥∥∥∥
2

f (v) dv

≤ 2

∫

Sf

∥∥∥∥
∂fn (v) /∂v

fn (v) + an

∥∥∥∥
2 [√

f (v)−
√
fn (v)

]2
dv

+2

∫

Sf

∥∥∥∥∥
∂fn (v) /∂v

fn (v) + an

√
fn (v)−

ḟ (v)

f (v)

√
f (v)

∥∥∥∥∥

2

dv

=
(
supv∈R2

∥∥∥ḟ (v)
∥∥∥
)2
o
(
h2n/a

2
n

)
+ o (1) ,

where Sf = {v ∈ R2 : f (v) > 0} and the last equality uses

∫

Sf

[√
f (v)−

√
fn (v)

]2
dv = o

(
h2n
)
, (18)

∫

Sf

∥∥∥∥∥
∂fn (v) /∂v

fn (v) + an

√
fn (v)−

ḟ (v)

f (v)

√
f (v)

∥∥∥∥∥

2

dv = o (1) , (19)

and the bound

supv∈R2

∥∥∥∥
∂fn (v) /∂v

fn (v) + an

∥∥∥∥
2

≤
(
supv∈R2

∥∥∥ḟ (v)
∥∥∥
)2
/a2n.

The result (18) can be shown by means of Proposition A.7 of Koul and Schick (1996),
while (19) can be established using Vitali’s theorem, the L1-continuity theorem, and
arguments analogous to those used in the proof of Lemma 6.2 of Bickel (1982).



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 36

R
�

	�
�

A�
����, T. (1982): “Two Stage Least Absolute Deviations Estimators,” Econo-
metrica, 50, 689—711.

A	�
��	, T. W., �	� H. R���	 (1949): “Estimation of the Parameters of a Single
Equation in a Complete Set of Stochastic Equations,” Annals of Mathematical
Statistics, 20, 46—63.

A	�
$�, D. W. K., �	� V. M��
 (2007): “Exactly Distribution-Free In-
ference in Instrumental Variables Regression with Possibly Weak Instruments,”
Journal of Econometrics, forthcoming.

A	�
$�, D. W. K., M. J. M�
��, �	� J. H. S���� (2006): “Optimal Two-
sided Invariant Similar Tests for Instrumental Variables Regression,” Econometrica,
74, 715—752.

(2007): “Performance of Conditional Wald Tests in IV Regression with Weak
Instruments,” Journal of Econometrics, 139, 116—132.

A	�
$�, D. W. K., �	� G. S��
� (2006): “Rank Tests for Instrumental Vari-
ables Regression with Weak Instruments,” Econometric Theory, forthcoming.

A	�
$�, D. W. K., �	� J. H. S���� (2006): “Inference withWeak Instruments,”
Advances in Economics and Econometrics, Theory and Applications: Ninth World
Congress of the Econometric Society, forthcoming.

(2007): “Testing with Many Weak Instruments,” Journal of Econometrics,
138, 24—46.

B����		, R. L. (1959): “The Computation of Generalized Classical Estimates of
Coefficients in a Structural Equation,” Econometrica, 27, 72—81.

B
��
, P. A. (1994): “Alternative Approximations to the Distributions of Instru-
mental Variables Estimators,” Econometrica, 62, 657—681.

B���
�, P. J. (1982): “On Adaptive Estimation,” Annals of Statistics, 10, 647—671.

B��	�, J., D. A. J�
#
, �	� R. M. B��
 (1995): “Problems with Instrumen-
tal Variables Estimation When the Correlation Between the Instruments and the
Endogenous Explanatory Variable is Weak,” Journal of the American Statistical
Association, 90, 443—450.

C���, J. C., �	� N. R. S$�	��	 (2005): “Consistent Estimation With a Large
Number of Weak Instruments,” Econometrica, 73, 1673—1692.



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 37

C�����, L., �	� M. J�	���	 (2006): “Optimal Invariant Inference When the
Number of Instruments is Large,” Working Paper, Princeton University.

C���, S., W. J. H���, �	� A. S����� (1996): “Asymptotically Uniformly Most
Powerful Tests in Parametric and Semiparametric Models,” Annals of Statistics,
24, 841—861.

C�+, D. R., �	� N. R. R
�� (1987): “Parameter Orthogonality and Approximate
Conditional Inference (with Discussion),” Journal of the Royal Statistical Society,
Series B, 49, 1—39.

D���
�, R. M. (2002): Real Analysis and Probability. New York: Cambridge Uni-
versity Press.

D����, J.-M. (1997): “Some Impossibility Theorems in Econometrics with Appli-
cations to Structural and Dynamic Models,” Econometrica, 65, 1365—1387.

(2003): “Identification, Weak Instruments, and Statistical Inference in
Econometrics,” Canadian Journal of Economics, 36, 767—808.

F��$��, J. J. (1992): “Smoothing in Adaptive Estimation,” Annals of Statistics,
20, 414—427.

F���
, W. A. (1977): “Some Properties of a Modification of the Limited Informa-
tion Estimator,” Econometrica, 45, 939—953.

H��	, J. (2002): “Optimal Inference with Many Instruments,” Econometric Theory,
18, 140—168.

H��	, J., �	� J. H�����	 (2003): “Weak Instruments: Diagnosis and Cures in
Empirical Econometrics,” American Economic Review, 93, 118—125.

H�	�
	, C., J. H�����	, �	� W. N
$
� (2005): “Estimation with Many In-
strumental Variables,” Working Paper, University of Chicago GSB.

H�	�
	, C., J. B. M�D�	���, �	� W. K. N
$
� (2006): “Instrumental
Variables Estimation with Flexible Distributions,” Working Paper, University of
Chicago GSB.

H�	�
	, L. P. (1982): “Large Sample Properties of Generalized Method of Moments
Estimators,” Econometrica, 50, 1029—1054.

H��
�, D. A., �	� C. F. M�	��� (1987): “Monte Carlo Evidence on Adaptive
Maximum Likelihood Estimation of a Regression,” Annals of Statistics, 15, 541—
551.



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 38

I������, H., �	� P. E. T��� (2006): “Implementing Nonparametric and Semi-
parametric Estimators,” Working paper, University of Tokyo.

J�	���	, M. (2007): “Semiparametric Power Envelopes for Tests of the Unit Root
Hypothesis,” Working Paper, UC Berkeley.

J�	, K. (1992): “Empirical Smoothing Parameter Selection in Adaptive Estimation,”
Annals of Statistics, 20, 1844—1874.

K�
��
#
	, F. (2002): “Pivotal Statistics for Testing Structural Parameters in
Instrumental Variables Regression,” Econometrica, 70, 1781—1803.

K�
	�
, R., �	� G. B���
�� (1978): “Regression Quantiles,” Econometrica, 46,
33—50.

K���, H. L., �	� A. S����� (1996): “Adaptive Estimation in a Random Coefficient
Autoregressive Model,” Annals of Statistics, 24, 1025—1052.

L�	��	, O., �	� Z. X��� (2001): “Second-Order Approximation for Adaptive Re-
gression Estimators,” Econometric Theory, 17, 984—1024.

M�
��, M. J. (2003): “A Conditional Likelihood Ratio Test for Structural Mod-
els,” Econometrica, 71, 1027—1048.

N
���	, C. R., �	� R. S���9 (1990a): “The Distribution of the Instrumental
Variables Estimator and its t-Ratio When the Instrument is a Poor One,” Journal
of Business, 63, S125—S140.

(1990b): “Some Further Results on the Exact Small Sample Properties of
the Instrumental Variables Estimator,” Econometrica, 58, 967—976.

N
$
�, W. K. (1988): “Adaptive Estimation of Regression Models Via Moment
Restrictions,” Journal of Econometrics, 38, 301—339.

(2004): “Efficient Semiparametric Estimation Via Moment Restrictions,”
Econometrica, 72, 1877—1897.

P�����, D. (1997): “Another Look at Differentiability in Quadratic Mean,” in
Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, ed.
by D. Pollard, E. Torgersen, and G. L. Yang. New York: Springer-Verlag, 305-314.

P��	��, S., �	� R. K�
	�
 (1989): “Adaptive L-Estimation for Linear Mod-
els,” Annals of Statistics, 17, 362—381.



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 39

P�$
��, J. L. (1983): “The Asymptotic Normality of Two-Stage Least Absolute
Deviations Estimators,” Econometrica, 51, 1569—1575.

P��������, A., �	� V. S�����	� (1998): “On Large-Deviation Efficiency in Sta-
tistical Inference,” Bernoulli, 4, 203—272.

S�����, A. (1987): “A Note on the Construction of Asymptotically Linear Estima-
tors,” Journal of Statistical Planning and Inference, 16, 89—105.

(1993): “On Efficient Estimation in Regression Models,” Annals of Statistics,
21, 1486—1521.

(1997): “Efficient Estimates in Linear and Nonlinear Regression with Het-
eroscedastic Errors,” Journal of Statistical Planning and Inference, 58, 371—387.

S���#
, D., �	� J. H. S���� (1997): “Instrumental Variables Estimation with
Weak Instruments,” Econometrica, 65, 557—586.

S�
�#
$���, D. G. (1992): “On the Finite Sample Behavior of Adaptive Estima-
tors,” Journal of Econometrics, 54, 371—400.

S����, J. H., J. H. W�#��, �	� M. Y�#� (2002): “A Survey of Weak Instru-
ments and Weak Identification in Generalized Method of Moments,” Journal of
Business and Economic Statistics, 20, 518—529.

S����, J. H., �	� M. Y�#� (2005): “Asymptotic Distributions of Instrumental
Variables Statistics with Many Weak Instruments,” in Identification and Inference
in Econometric Models: Essays in Honor of Thomas J. Rothenberg, ed. by D. W. K.
Andrews, and J. H. Stock. New York: Cambridge University Press, 109-120.

;�	 �
 V���, A. W. (1998): Asymptotic Statistics. New York: Cambridge Uni-
versity Press.



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 40

7. F�#�
�

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

Gaussian
Non−Gaussian

F�#�
 1: P��������� D
	����
�



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 41

−2 −1 0 1 2

0.2
0.4

0.6
0.8

1.0
0.0

5

AR Test − ζ=1

−2 −1 0 1 2

0.2
0.4

0.6
0.8

1.0
0.0

5

LM Test − ζ=1

OLS
MLE
ADP

−2 −1 0 1 2

0.2
0.4

0.6
0.8

1.0
0.0

5

LR Test − ζ=1

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.2
0.4

0.6
0.8

1.0
0.0

5

AR Test − ζ=10

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.2
0.4

0.6
0.8

1.0
0.0

5

LM Test − ζ=10

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.2
0.4

0.6
0.8

1.0
0.0

5

LR Test − ζ=10

F�#�
 2: P�$
 C�;
�, G������	 E��



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 42

−2 −1 0 1 2

0.2
0.4

0.6
0.8

1.0
0.0

5

AR Test − ζ=1

−2 −1 0 1 2

0.2
0.4

0.6
0.8

1.0
0.0

5

LM Test − ζ=1

OLS
MLE
ADP

−2 −1 0 1 2

0.2
0.4

0.6
0.8

1.0
0.0

5

LR Test − ζ=1

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.2
0.4

0.6
0.8

1.0
0.0

5

AR Test − ζ=10

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.2
0.4

0.6
0.8

1.0
0.0

5

LM Test − ζ=10

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.2
0.4

0.6
0.8

1.0
0.0

5

LR Test − ζ=10

F�#�
 3: P�$
 C�;
�, N�	-G������	 E��



I	����
	��� V�����
� R
#
����	 $��� 	�	-G������	 E�� 43

−1.0 −0.5 0.0 0.5

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

OLS
MLE
ADP

F�#�
 4: E�������� �� β



Research Papers 
2007  
 

 
2007-1 Dennis Kristensen: Nonparametric Estimation and Misspecification 

Testing of Diffusion Models 

2007-2 Dennis Kristensen: Nonparametric Filtering of the Realised Spot 
Volatility: A Kernel-based Approach 

2007-3 Bent Jesper Christensen and Morten Ørregaard Nielsen: The Effect of 
Long Memory in Volatility on Stock Market Fluctuations 

2007-4 Amber Anand, Carsten Tanggaard and Daniel G. Weaver: Paying for 
Market Quality 

2007-5 Charlotte Christiansen: Level-ARCH Short Rate Models with Regime 
Switching:  Bivariate Modeling of US and European Short Rates 

2007-6 Charlotte Christiansen: Decomposing European Bond and Equity 
Volatility 

2007-7 Stig Møller: Habit persistence: Explaining cross sectional variation in 
returns and time-varying expected returns 

2007-8 Charlotte Christiansen, Juanna Schröter Joensen and Jesper Rangvid: 
Are Economists More Likely to Hold Stocks? 

2007-9 Thomas Busch, Bent Jesper Christensen and Morten Ørregaard 
Nielsen: The Role of Implied Volatility in Forecasting Future Realized 
Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets 

2007-10 Bent Jesper Christensen, Morten Ørregaard Nielsen and Jie Zhu: Long 
Memory in Stock Market Volatility and the Volatility-in-Mean Effect: 
The FIEGARCH-M Model 

2007-11 Matias D. Cattaneo, Richard K. Crump and Michael Jansson: Optimal 
Inference for Instrumental  Variables Regression with non-Gaussian  
Errors 

  

  

  

 


