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Abstract

A kernel weighted version of the standard realised integrated volatility es-
timator is proposed. By di¤erent choices of the kernel and bandwidth, the
measure allows us to focus on speci�c characteristics of the volatility process.
In particular, as the bandwidth vanishes, an estimator of the realised spot
volatility is obtained. We denote this the �ltered spot volatility. We show con-
sistency and asymptotic normality of the kernel smoothed realised volatility
and the �ltered spot volatility. The choice of bandwidth is discussed and data-
driven selection methods proposed. A simulation study examines the �nite
sample properties of the estimators.
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1 Introduction

Continuous time models for the dynamics of asset returns have widespread use in
�nancial economics. They lead to simple, yet elegant pricing formulas of �nancial
instruments, and are the primary building blocks in the literature on portfolio man-
agement and risk analysis, see for example Björk (2004). One of the main components
in these models is the conditional 2nd moment or volatility of the processes which
plays a central role in the asset pricing formulas. It has long been recognized that
volatility varies over time, and considerable e¤ort has been put into modelling and
forecasting this variable, see e.g. Andersen, Bollerslev and Diebold (2005) and Shep-
ard (2005) for reviews.
The increased access to high-frequency intradaily data of asset returns within

the past decade has given rise to new empirical measures of the volatility process. In
particular, the so-called realised volatility measure has received considerable attention
and been widely used in the empirical �nance literature. The realised volatility gives
a measure of the integrated volatility over a given time period and have been used in
a wide range of applications from forecasting of daily volatility to detection of jump
components.
It is however not obvious that the integrated volatility is the only correct measure

of the volatility in asset returns. This has led to other measures being proposed such
as the range-based volatility and power volatility, see e.g. Alizadeh et al (2002). Most
of these alternatives are also integrated measures over some time window. This raises
the question, what an appropriate choice of the window is. In empirical applications,
one day is the standard time window length over which the (transformed) volatility
is integrated. In many cases, one would expect that the optimal solution would be to
try to recover the actual instantaneous volatility instead; if nothing else, one would
then be able to calculate any time integral over (a transformation of) the volatility,
and thereby recover any of the integrated measures in the literature.
We here propose to estimate the instantaneous volatility by kernel methods. The

estimator is a kernel weighted version of the standard integrated volatility estimator
which depends on a kernel function and a time window/bandwidth chosen by the
user.1 For a �xed bandwidth and a uniform kernel, it collapses to the standard realised
volatility measure, but in general it can be seen as a continuous-time weighted moving
average of the instantaneous volatility. The bandwidth choice allows the user to focus
on the volatility behaviour at speci�c points in time, and give di¤erent weights to the
volatility over the window used. In particular, we demonstrate that as the bandwidth
shrinks to zero, the instantaneous (or spot) volatility can be extracted. Thus, the
inclusion of a kernel and bandwidth in the calculation of the interated volatility allows
us to get a better picture of the behaviour of the volatility process.
Given high-frequency data, a nonparametric estimator of the kernel smoothed in-

1Barndor¤-Nielsen, Hansen, Lund and Shepard (2004) also employ kernels in the estimation of
integrated volatility, but for a completely di¤erent reason, namely to adjust for measurement errors.
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tegrated volatility is easily constructed using the same idea as for the realised volatility
estimator: We simply take a kernel weighted average of the squared increments of
data. We derive its asymptotic properties, showing consistency and mixed asymptotic
normality. We do this for both �xed and shrinking bandwidths. In the former case,
our results are a generalisation of already existing ones found in the literature (see
e.g. Barndor¤-Nielsen and Shephard, 2004a,b) to include weighting. In the latter
case, the limit is the instantaneous volatility process and we denote our estimator the
�ltered volatility in this case.
As already pointed out, a nice feature of the �ltered volatility is that it can be

used to estimate any functional of the instantaneous volatility, including the standard
integrated volatility. We demonstrate that for a broad class of nonlinear integrated
volatility measures, we obtain

p
n-consistent estimators by substituting in the �ltered

volatility.
The �ltered version of the instantaneous volatility has direct use in �nancial mar-

kets. For example, a trader will able to measure the most recent volatility of the
market he trades in. Also, in option pricing with stochastic volatility, the current
volatility is needed as an input in the option pricing formulas. Furthermore, the
�ltered volatility has several interesting applications in �nancial econometrics: The
�ltered volatility can be used in the analysis of periodic components in intradaily
volatility as found in e.g. Andersen and Bollerslev (1997). By an appropriate choice
of the kernel, it has potential usage in detecting jumps in the volatility process, see
e.g. Wu and Chu (1993). The local nature of the �ltered volatility means that the
presence of market microstructure noise potentially can be dealt with.
Finally, the �ltered volatility allows for a new estimation strategy of stochastic

volatility models. Given that the volatility process is a latent variable, not observed
by the econometrician, previous work on this have based the estimation of volatility
models on the raw return data itself (Andersen and Lund, 1997; Chib et al, 2002) or
the realised integrated volatility (Andersen et al, 2003; Bollerslev and Zhou, 2002).
Our �ltered version of the instantaneous volatility opens up for a new class of estima-
tors, where one can directly estimate the stochastic volatility model by substituting
the �ltered version for actual observations of the volatility. One thereby circumvents
the problem of latent variables/missing data. This new class of estimators should al-
low for simple numerical calculation and inference. Renò (2006) presents Monte Carlo
evidence for a nonparametric estimator of a SV-model using integrated volatility.
The proposed kernel smoothed version of the realised volatility can be regarded as

a kernel regression estimator in the time domain. A similar approach to the estimation
of the instantaneous volatility but in a deterministic setting was taken in Mikosch
and St¼arica (2005). Fan et al (2003) also consider kernel estimation of deterministic
functions of time in the context of term structure models.
Our estimator includes as a special case the rolling window estimator proposed

by Foster and Nelson (1996); see also Andreou and Ghysels (2002) and Mykland and
Zhang (2003,2006). Our theoretical results complement the ones found in these stud-
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ies. Alternative approaches are pursued in Genon-Catalot et al (1992) and Malliavin
and Marcino (2006). The former study considers a deterministic, smooth volatility
process and use wavelets methods to estimate the instantaneous volatility. The latter
study obtains an expression of the volatility in the frequency domain and derive an
estimator of it in terms of Fourier transforms; see also Barucci and Renò (2002) and
Høg and Lund (2003) for related work.
While our kernel estimator is established in the time domain, spatial kernel esti-

mators drift and di¤usion estimators of a fully observed Markov process are proposed
in Bandi and Phillips (2003); see also Florens-Zmirou (1993). In their setting, the
volatility process is a function of the observed process only, and they estimate the
instantaneous volatility by kernel smoothing over the spatial domain of the observed
process. We smooth over the time domain instead which enables us to estimate the
volatility process without imposing any Markov restrictions.We also consider a drift
estimator in the time domain, and demonstrate that one cannot recover the drift
process; this holds even as the time span over which the estimation is performed
diverges. This is in contrast to Bandi and Phillips (2003) whose spatial estimator of
the drift is consistent as the time span goes to in�nity.
The remains of the paper is organized as follows: In the next section, we intro-

duce the kernel smoothed measure of volatility and discuss its relationship to already
existing measures. In Section 3, the asymptotic properties of the volatility estimator
is established, while Section 4 deals with the equivalent drift estimator. The choice of
bandwidth is discussed in Section 5, while the results of a simulation study are pre-
sented in Section 6. We conclude in Section 7. The regularity conditions imposed on
the model are given in Appendix A. All proofs and lemmas can be found in Appendix
B and C respectively.

2 Kernel Smoothed Realised Volatility

Consider the Brownian semimartingale (SMG) fXtg = fXt : t � 0g solving

dXt = �tdt+ �tdWt; (1)

where fWtg is a standard Brownian motion, while f�tg and f�tg are adapted sto-
chastic processes. The process f�2tg is usually denoted the (instantaneous) volatility
process, while f�tg is the drift process. In the �nance literature, this is a commonly
used model for log-asset prices, and the focus is normally on the volatility since this
is the essential ingredient in asset pricing. However, f�2tg is not observed and one
instead has to rely on observations of the process fXtg to draw inference on the
volatility.
One very fruitful approach to extracting information regarding the volatility is the

so-called realised volatility which has received considerable attention over the past
decade. This estimator centers around the concept of the quadratic variation of fXtg
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which gives a convenient representation of the integrated volatility. The quadratic
variation at time t > 0, [X]t, can be de�ned as

[X]t = lim
�!0

mX
i=1

�
Xti �Xti�1

�2
(2)

for any partition 0 = t0 < t2 < :::: < tm = t with � := maxi=1;:::;m jti � ti�1j, c.f Prot-
ter (2004, Theorem II.22). The quadratic variation gives an alternative representation
of the time integral of the volatility as follows:

[X]t =

Z t

0

�2sds:

The right hand side is normally referred to as the integrated volatility (IV). Thus,
given a continuously observed trajectory fXt : 1 � t � Tg, the integrated volatility
over any subinterval of window length h > 0 in [0; T ] can be recovered perfectly,

IV (�) :=
Z �

��h
�2sds = [X]� � [X]��h =

Z �

��h
d [X]s : (3)

E.g. if time is measured in days, IV(i), i = 0; 1; :; ; ; [T ] � 1, with h = 1 will give us
daily integrated volatility over the time span [0; T ].
In general however, a full trajectory is not available. The most we can hope for

is a high-frequency discrete sample fXti : i = 0; :::; ng over the interval [0; T ]. This
can be used to obtain an estimate of the quadratic variation which in turn converges
towards the integrated volatility as the time distance between observations shrinks
to zero. A natural estimator of the quadratic variation is to simply take a sample
average of the squared increments over the time interval of interest,

c[X]t = nX
i=1

I fti�1 < tg�X2
ti�1 ;

where I f�g denotes the indicator function, and �Xti�1 = Xti � Xti�1, i = 1; :::; n.
This leads to the so-called realised volatility (RV) estimator of IV(�) given by

RV (�) =
Z �

��h
dc[X]s = nX

i=1

I f� � h < ti�1 < �g�X2
ti�1 : (4)

This estimator has received widespread attention in empirical �nance within the past
decade. see e.g. Andersen et al (2003). Its theoretical properties have been studied
in detail in, amongst others, Barndor¤-Nielsen and Shepard (2004a,b) and Barndor¤-
Nielsen et al (2004,2006) under the in�ll assumption: Assuming that the time dis-
tance between observations � := maxi=1;:::;n jti � ti�1j shrinks to zero, consistency
and mixed asymptotic normality of RV(�) can be derived.
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One can regard the realised volatility estimator in (4) as a histogram estimator
of the instantaneous volatility where h > 0 is the binwidth. Here, we propose an
alternative measure of the integrated volatility and construct an estimator of it in
the same spirit as the realised volatility. The measure we will consider is

KV (�) =
Z T

0

Kh (s� �)�2sds =
Z T

0

Kh (s� �) d [X]s :

whereKh (z) := K (z=h) =h,K : R 7!R is a kernel which we normalise to
R
RK (z) dz =

1, and h > 0 is the bandwidth. KV(�) delivers a kernel weighted average of the
quadratic variation. Note that with

K (z) = I f�1 < z < 0g : KV (�)h = IV (�) :

So with the above uniform kernel, the standard integrated volatility can be recovered
for a �xed band/window width. This is a member of the class of so-called one-sided
kernels where K (z) = 0, z > 0. For this class of kernels, � 7! KV (�) is an adaptive
process since it only utilises information available up to time � of the observed process,

K (z) = 0, z > 0 : KV (�) =
Z �

0

Kh (s� �) d [X]s :

The fact that with a one-sided kernel/�lter we can calculate KV (�) from a continuous
record of fXtg up to time � makes it suitable for forecasting purposes. The function
� 7!KV(�) can be seen as a continuous-time equivalent of the �lter or rolling window
examined in Foster and Nelson (1996) and Andreou and Ghysels (2002); the kernel
can be chosen to satisfy the weighting schemes proposed there while the bandwidth
determines the lag length. In general, with two-sided kernels, KV(�) takes a weighted
average of the instantaneous volatility over the whole sample period relative to the
point in time 0 < � < T . The weighting scheme is jointly determined by the choice
of K and h.
As demonstrated above, for �xed h > 0, KV(�) gives a weighted measure of the

integrated volatility. However, as h ! 0 we are able to recover the instantaneous
volatility at any point of continuity � of t 7! �2t . Using standard results for kernel
estimators, one can easily show that

�2� = lim
h!0

KV (�) :

This holds irrespective of the kernel being one- or two-sided. So if our object of
interest is the instantaneous volatility, KV (�) for h > 0 gives us a "biased" estimate
of this. By letting the bandwidth shrink to zero however, we recover �2� . So while the
integrated volatility gives us a measure of the volatility over a given window in time,
we are also able to obtain a snapshot of the volatility at any given point in time by
letting that window shrink to zero.
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From a theoretical point of view, a measure of the instantaneous volatility should
always be preferable to the integrated volatility since the latter can always be calcu-
lated given the former. In fact, we shall consider the following generalised version of
the standard integrated volatility over some �xed time window,

IV (�) =

Z �

0

g
�
t; �2t

�
dt: (5)

where g : [0; T ] � R 7!R is a time-dependent transformation of the volatility. This
includes most standard measures. For example, with g (t; x) = x, we obtain the
standard integrated volatility. But for general functions g, this measure cannot be
estimated using standard realised volatility estimators.
A natural estimator of KV (�) is to extend RV(�) to include kernel weights. In

the following we shall write RV (�) for the following kernel smoothed sample average
of the squared increments,

RV (�) =

Z T

0

Kh (s� �) dc[X]s = nX
i=1

Kh (ti�1 � �)�X2
ti�1 :

This is a Nadaraya-Watson type kernel estimator. Kernel smoothing is a familiar
technique in nonparametric econometrics where kernels are used to recover objects
such as densities and regression functions; an overview can be found in Silverman
(1986). Here, we smooth over the time domain which can be considered as the re-
gressor while �2t is the dependent variable. By an appropriate choice ofK, the realised
measure RV (�) includes as special cases the standard realised volatility estimator.
Observe that in contrast to these integrated volatility estimators, � 7!RV(�) here can
be made continuous and di¤erentiable by choosing K to have these properties.
When we consider shrinking bandwidth sequences, h! 0, we shall write

�̂2� =
nX
i=1

Kh (ti�1 � �)�X2
ti�1 (6)

to emphasise that we are working with an estimator of the instantaneous volatility
at time � . An interpretation of �̂2� is as a local version of the standard parametric
estimator in the Black-Scholes model, �̂2 =

Pn
i=1�X

2
ti�1=T . Alternatively, one may

use the estimator

�̂2� =

Pn
i=1Kh (ti�1 � �)�X2

ti�1Pn
i=1Kh (ti�1 � �) (ti � ti�1)

: (7)

The denominator will converge towards I f0 � � � Tg as n!1 and nh! 0, so the
two estimators in Eq. (6) and (7) are asymptotically equivalent.
One usually uses symmetric kernels such as the Gaussian one in kernel smoothing,

but as discussed above one may prefer for some applications to use an one-sided kernel.
Choosing the one-sided kernel appropriately, we recover the rolling-window estimator
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of Foster and Nelson (1996). One-sided kernels have the advantage that it is adapted
to the observed process, and will in general lead to a more precise estimate when �
is close to T . In a standard regression framework, one-sided kernels are used in the
estimation of end and jump points, see for example Zhang and Karunamuni (1998)
and Wu and Chu (1993). We can carry over much of the theory established there to
our setting.
Once �̂2� has been obtained, it can be used for various purposes as discussed in

the introduction. For example, we can easily obtain an estimator of the generalised
version of the integrated volatility measure in Eq. (5) by

cIV (�) = Z �

0

g
�
t; �̂2t

�
dt: (8)

3 Asymptotics of the Volatility Estimator

We here derive the asymptotics of the volatility estimators RV (�) and �̂2� introduced
in the previous section. All our results are derived under the following standard
assumptions in the econometrics literature on realised volatility:
We shall throughout work under the following set of conditions:

A.1 The process is sampled at ti = i�, i = 0; 1; :::; n, where T = n�.

A.2 The processes f�tg and f�2tg are jointly independent of fWtg.

A.3 The volatility process f�2tg is locally bounded away from zero and there exists
� > 0 such that:

lim
�!0

p
�

nX
i=1

����si � ��ti�� = 0
for any sequences (i� 1)� � si � ti � i�, i = 1; :::; n.

A.4 The mean process f�tg satis�es

lim
�!0

nX
i=1

���i� � �(i�1)���
�

<1.

For a discussion of the above conditions with extensions to more realistic settings,
we refer to Barndor¤-Nielsen et al (2004). Note in particular that we assume that
f�2tg is independent of fWtg. This allows us in the following to make all arguments
conditional on f�2tg.
While the above conditions su¢ ce to derive the asymptotics of RV (�) for �xed

bandwidth h > 0, we need to impose smoothness assumptions on the volatility process
for h ! 0 in order to control the bias component. A standard approach to bias
reduction is to assume the object of interest is di¤erentiable up to a certain order.
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This assumption is however violated by standard stochastic volatility models. Instead,
we here work under the weaker assumption that f�2tg is smooth of order 
 2 (0; 1]
almost surely:

A.5 f�2tg satis�es ���2t+� � �2t �� = Lt (�) �
 + oP (�
) a.s.
as � ! 0, where � 7! Lt (�) is a slowly varying (random) function at zero,
t 7! Lt (0) is continuous, and 0 < 
 � 1.

This is a rather weak assumption which are satis�ed by many stochastic volatility
models. In particular, it holds for any model driven by a Brownian motion for any

 < 1=2, c.f. Revuz and Yor (1998, Ch. V, Exercise 1.20). We shall also consider
the case where t 7! �2t satis�es the stronger condition that it is m � 1 times almost
surely di¤erentiable:

A.6 t 7! �2t is a.s. m � 1 times continuous di¤erentiable on [0; T ].

Under (A.6), the use of a so-called higher-order kernel of orderm as given in (K.2)
below will further reduce the bias of the kernel estimator. The smoothness condition
in (A.6) was also employed in Genon-Catalot et al (1992) where �2t was assumed to
be a deterministic function of time.
Finally, we need to impose regularity conditions on the kernel function:

K.1 The kernelK is continuously di¤erentiable and satis�es
R
RK (z) dz = 1,

R
R jK (z)j dz <

1; jzj
��K(s) (z)

��! 0 as jzj ! 1; supz
��K(s) (z)

�� <1, s = 0; 1.
Under (A.6), we will in addition assume that K is a higher-order kernel of order

m:

K.2
R
R z

iK (z) dz = 0, i = 1; :::;m� 1, and
R
R jzj

mK (z) dz <1 for some m � 1.

We are now ready to derive the asymptotics of RV (�) and �̂2� . For the moment,
suppose �t = 0. Then �Xti�1 = Xti �Xti�1 can be written as

�Xti =

Z ti

ti�1

�sdWs
law
=

sZ ti

ti�1

�2sdsUi

where Ui, i = 1; :::; n, are i.i.d N (0; 1). De�ne

Vn;i (�) = Kh (ti�1 � �)
Z ti

ti�1

�2sds:

such that

RV (�)�
nX
i=1

Vn;i (�)
law
=

nX
i=1

Vn;i (�)
�
U2i � 1

�
:
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The right hand side is a weighted sum of i.i.d. random variables, and we can therefore
employ limit theorems for triangular arrays of independent variables.
Let us �rst consider the case of �xed h > 0: We easily obtain,

RV (�)�
nX
i=1

Vn;i (�)!P 0;
RV (�)�

Pn
i=1 Vn;i (�)q

2
Pn

i=1 V
2
n;i (�)

!d N (0; 1) ;

by applying the results of Barndor¤-Nielsen and Shephard (2004a). Furthermore, it
can be shown that

nX
i=1

Vn;i (�)!
Z T

0

Kh (s� �)�2sds; n

nX
i=1

V 2n;i (�)!
Z T

0

K2
h (s� �)�4sds;

as �! 0. The above results can be extended to allow for �t 6= 0 as described in the
full proof found in Appendix B.

Theorem 1 Under (A.1)-(A.4) and (K.1),

sup
�2[0;T ]

jRV (�)�KV (�)j = OP
�
n�1=2

�
:

and p
n fRV (�)�KV (�)g !d Z (�) ;

where Z is a zero mean Gaussian process with covariance

Cov (Z (�) ; Z (t)) = 2

Z T

0

Kh (s� �)Kh (s� t)�4sds:

In particular,

p
n fRV (�)�KV (�)g !d N

�
0; 2

Z T

0

K2
h (s� �)�4sds

�
:

A consistent estimator of
R T
0
K2
h (s� �)�4sds can be obtained by the realised quar-

ticity,

RQ(�) :=
n

3

nX
i=1

K2
h (ti�1 � �)�X4

ti�1 ; (9)

c.f. Proof of Theorem 1, such that

p
n
RV (�)�KV (�)p

2RQ (�)
!d N (0; 1) :

Simulation studies found in Barndor¤ Nielsen and Shephard (2001) suggest that a
better �nite sample performance of the above asymptotic result is obtained by con-
sidering a log-tranformation of RV (�).
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Next, we deal with the case h ! 0: First, combining standard results for kernel
estimators with the above results, it holds that for any � 2 (0; T )

E
�
�̂2�
�
= �2� + o (1) ; Var

�
�̂2�
�
=
2�4�
nh

Z
R
K2 (z) dz + o (1= (nh)) ; (10)

as �; h! 0. Using the standard bias-variance argument, we conclude that as h! 0
and nh!1, �̂2� !P �2� .
To show asymptotic normality, we need to re�ne the bias rate in Eq. (10). Under

(A.5), we obtain

E
�
�̂2�
�
� �2� =

Z
R
K (z)

�
�2�+zh � �2�

�
dz = L� (0)h


 + oa:s: (h

) ; (11)

where 
 2 (0; 1] is the smoothness parameter. Note that the convergence rate is
potentially slower than in the case of a di¤erentiable volatility process. Under (A.6)
and (K.2), the above bias expression is still valid with 
 = m � 1 and Lt (0) =
@m�2t=@t

m
R
zmK (z) dz=m!.

Given the above expression for the bias, we can establish asymptotic normality.
We write

p
nh

�̂2� � �2�q
2�4�

R
RK

2 (z) dz
=

�̂2� �
R T
0
Kh (s� �)�2sdsq

2
R T
0
K2
h (s� �)�4sds

sR T
0
K2
h (s� �)�4sds

�4�
R
RK

2 (z) dz=h

+
p
nh

R T
0
Kh (s� �)�2sds� �2�p

2�2�
:

By standard CLT results for triangular arrays, the �rst term converges towards weakly
towards N (0; 1) as h! 0 and nh!1, while the bias term goes to zero as nh2
+1 !
0.
All the above results only go through for � 2 (0; T ) for general kernels satisfying

(K.1). In order to obtain results for � = 0 and T , we need to use either boundary
kernels or local polynomial estimators. This is discussed in further detail in Section
5.

Theorem 2 Under (A.1)-(A.5) and (K.1), for any " > 0,

sup
�2[";T�"]

���̂2� � �2� �� = OP (h
) +OP (1=pnh);
where 0 < 
 � 1 is the order of smoothness of �2t . If in addition nh ! 1 and
nh1+2
 ! 0,

p
nh
�
�̂2� � �2�

	
!d N

�
0; 2�4�

Z
R
K2 (z) dz

�
;

with asymptotic independence across distinct points.
If (A.6) and (K.2) also hold, the above results go through with 
 = m � 1 being

the number of derivatives.
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It is easily shown that the unknown component in the variance, �4� , can be con-
sistently estimated by

�̂4� =
n

3

nX
i=1

Kh (ti�1 � �)�X4
ti�1 :

Observe that for a given level of smoothness of �2t , the highest attainable rate of
convergence is OP

�
n�
=(2
+1)

�
when the bandwidth is chosen as h = O

�
n�1=(2
+1)

�
.

In the case 
 = 1=2, this aligns with the convergence rate reported in Foster and
Nelson (1996). Bandi and Phillips (2003, Theorem 6) consider the following spatial
kernel estimator,

~�2� =

Pn
i=1Kh

�
Xti�1 �X�

�
�X2

ti�1

�
Pn

i=1Kh

�
Xti�1 �X�

� ;

when �2t = �
2 (Xt). Under regularity conditions, it satis�es,

p
nh
�
~�2� � �2�

	
!d N

�
0;
2�4�

R
RK

2 (z) dz
�LT (T;X� ) =T

�
;

where �LT (T; x) is the chronological local time of fXtg, a random measure of the time
that the process has spent in the vicinity of x over [0; T ]. The factor �LT (T;X� ) =T
determines whether the spatial estimator is more (> 1) or less (< 1) precise than
our time domain estimator (given that the two bandwidths converge with the same
rate). If only (A.5) holds however, then under su¢ cient smoothness conditions on
the function �2 (�), the convergence rate of ~�2� is in general faster since Bandi and
Phillips (2003) can allow for h! 0 at a slower rate.
Finally, we consider the estimator of the generalised integrated volatility measure

given in Eq. (8). Compared to the standard realised volatility measure, the above
estimator carries an additional bias term due to the kernel smoothing inherent in �̂2t .
By letting h! 0 as n!1, this bias term vanishes asymptotically.

Theorem 3 Let g (t; x) be continuous in t and twice continuously di¤erentiable in x.
Under (A.1)-(A.5), as h! 0,

sup
�2[0;T ]

jcIV (�)� IV (�) j = OP (h
) +OP �1=pn� :
If in addition nh2
 ! 0,

p
n
ncIV (�)� IV (�)o!d N

 
0; 2

Z �

0

�
@g (t; �2t )

@x

�2
�4tdt

!
:

If (A.6) and (K.2) also hold, the above results go through with 
 = m being the number
of derivatives.
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4 Boundary E¤ects

As demonstrated in the previous section, estimation of �2� in the interior of the interval
over which we have observed fXtg can in principle be done using standard symmetric
kernels. However, it may be of interest to obtain estimates near or at the boundaries
of the interval. In particular, the point � = T may be important since this will yield
an estimate of the most recent realised volatility. Using a standard symmetric kernel
to estimate �2� at � = T will lead to E

�
�̂2T
�
= 1

2
�2T +o (1) as h! 0; this can be shown

by, for example, following Müller (1991). This is caused by the so-called boundary
or edge e¤ect, well-known in the kernel estimation literature: For a given bandwidth,
the symmetric kernel assigns weight outside the support of the data which causes
distortion. A number of di¤erent solutions to this problem have been suggested;
see Zhang and Karunamuni (1998) for an overview. We here focus on two speci�c
solutions in turn: Local linear kernel regression methods, and asymmetric kernels.
We �rst consider the following local linear volatility estimator,

�̂2� =

Pn
i=1wti�1 (�)�X

2
ti�1Pn

i=1wti�1 (�)
; (12)

where

wti�1 (�) = �Kh (ti�1 � �) fSn;2 � (ti�1 � �)Sn;1g ; Sn;k = �
nX
i=1

Kh (ti�1 � �) (ti�1 � �)k :

This is similar in spirit to the estimators of deterministic time trends considered in
Fan et al (2003). The local linear estimator is known to adapt automatically to the
boundaries, thereby not su¤ering from a boundary bias. By adapting the results
of Fan and Gijbels (1992) to our setting, we can show that under (A.5), the bias
and the variance in the interior of [0; T ] takes the same form as for the Nadaraya-
Watson estimator while under (A.6) with m = 1, the bias expansion in Eq. (11)
holds with 
 = 2 and L� (0) = 1

2

�R
z2K�

0 (z) dz
	
@�2�=@� ;where K

�
0 is the so-called

equivalent kernel, c.f. Fan and Gijbels (1992, Theorem 1). Choosing � = T � ch, for
some constant c > 0, the bias expansion remains valid but now the equivalent kernel
takes the form given in Fan and Gijbels (1992, Theorem 4). Thus, the estimator
is not asymptotically biased at the boundary in contrast to the Nadaraya-Watson
estimator with a symmetric kernel.
An alternative method is to use asymmetric kernels. For an overview of asym-

metric kernel estimators, we refer to Bouezmarni and Scaillet (2005) who focus on
the case of densities with non-negative support. We consider the following speci�c
asymmetric kernel estimator based on Chen (2000),

�̂2� =

Pn
i=1K (ti�1=T ; �=T; h)�X

2
ti�1

�
Pn

i=1K (ti�1=T ; �=T; h)
; (13)
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where K (�; y; h) is the Beta (y=h+ 1; (1� y) =h+ 1) density. This kernel adapts to
where we are in the domain [0; T ] and in particular gives zero weight outside of this
interval. By following the arguments in Chen (2000), one can show that E

�
�̂2�
�
=

�2� + L� (0)h

 + o (h
) uniformly over � 2 [0; T ], while the variance has the standard

form. If (A.6) holds with m = 2, then 
 = 1 and L� (0) = (1� 2�=T ) @�2�=@� +
1=2�=T (1� �=T ) @2�2�=@� 2. So the bias is of a higher magnitude relative to the local
linear estimator.

5 A Nonparametric Drift Estimator

As mentioned earlier the drift and di¤usion term can be interpreted as the instan-
taneous conditional mean and variance. In a standard regression framework, an
estimator of the conditional mean is �rst obtained and the variance is then estimated
from the residuals, see e.g. Mikosch and St¼arica (2005). In contrast, in the di¤usion
setting considered here, one does not need to take into account the presence of �t
when estimating �2t as demonstrated in the previous section. But one might believe
that controlling for the presence of �t could yield a better (�nite sample) performance
of our estimator of �2t ; this idea is for example considered in Andreou and Ghysels
(2002, Eq. 1.2). Also, one might be interested in �t itself; for example in bond
pricing, see e.g. Fan et al (2003). However, as demonstrated in the following, one
cannot estimate �t consistently using the kernel �ltering approach taken here; further
structure has to be imposed on �t to obtain a consistent estimator of it.
We start out by considering an estimator of the integrated mean (or drift),

IM (�) =

Z T

0

Kh (s� �)�sds:

A natural choice for this is the corresponding "realised mean" estimator,

RM(�) =
nX
i=1

Kh (ti�1 � �)�Xti�1 :

When we consider the case h! 0, we will write

�̂� =
nX
i=1

Kh (ti�1 � �)�Xti�1 :

Theorem 4 Under (A.1)-(A.4) and (K.1),

sup
�2[0;T ]

jRM(�)� IM (�)j = OP (1) :

and

RM(�)� IM (�)!d N

�
0;

Z T

0

K2
h (s� �)�2sds

�
:
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So our integrated drift estimator is inconsistent: The estimator is unbiased but
the variance does not decrease with sample size. This result carries through to the
�ltered estimator of the instantaneous drift: As h ! 0, the bias disappears, but the
variance term prevents us from getting a consistent estimator of the instantaneous
drift estimator. In fact, the variance diverges as h! 0.

Theorem 5 Under (A.1)-(A.5) and (K.1), for any " > 0,

sup
�2[";T�"]

j�̂� � �� j = oP (1) +OP (1=h) ;

and as h! 0,
p
h f�̂� � ��g !d N

�
0; �2�

Z
R
K2 (z) d�

�
:

The inconsistency result of drift estimators given a �xed time span was already
noted by Merton (1980) for the case of a geometric Brownian motion; see also Bert-
simas, Kogan and Lo (1996). Similar �ndings are established in Bandi and Phillips
(2003): Their spatial kernel estimator of the drift term for Markov processes only
converges as T ! 1 and at a slower rate than the di¤usion estimator. However,
while the spatial estimator is consistent as T !1, an increasing time span will not
change the asymptotic properties of our time domain estimator. The failure of re-
covering the drift in our setting owes to the fact that the observed process only visits
a given point in the time domain once whether the time span grows or not. The
observations around a given point in time carries enough information to extract the
di¤usion term, but not the drift term. On the other hand, if the process is recurrent,
it visits any given point in the spatial domain in�nitely often as time goes to in�nity,
which allows Bandi and Phillips (2003) to recover the drift by smoothing over the
spatial domain.
The results obtained in the previous section for the boundary, � = T , can easily

be adapted to the drift estimator.

6 Choice of Bandwidth and Kernel

One of the main drawback of the instantaneous volatility estimator, compared to the
integrated volatity one, is its dependence on the bandwidth h. The bandwidth can
be regarded as a nuisance parameter which must be chosen by the econometrician. In
the previous sections, we derived a set of permissible bandwidth sequences yielding
consistency and asymptotic normality of the �ltered volatility process. These are
asymptotic results however and do not give much guidance in choosing the bandwidth
for a given �nite sample. This problem is equivalent to the lag length choice in the
rolling window estimators considered in Foster and Nelson (1996) and Andreou and
Ghysels (2002). In particular, a too large bandwidth will yield a dominating bias
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term, while a too small bandwidth choice will lead to an excessive variance of the
estimator. So in practice, great care has to be shown when choosing the bandwidth,
and data-driven methods for doing so will be useful. We here �rst derive the optimal
bandwidth choice in terms of the mean square error (MSE) criterion, which in turn
allows us to obtain operational devices for the bandwidth choice. We also propose a
data driven method alike the cross-validation method.
Combining the bias and variance expressions given in Eq. (11) and (10) respec-

tively, the approximate pointwise MSE can be written as

MSE (h; �) � h2
L� (0) +
2

nh
�4�


K2



2 ;
where kK2k2 =

R
K2 (z) dz. This is minimised by the following pointwise bandwidth

choice,

hopt;� =

 
�4� kK2k2


L2� (0)

!1=(2
+1)
n�1=(2
+1);

which yields the optimal convergence rate MSE (hopt;� ; �) = O
�
n�2
=(2
+1)

�
. Sim-

ilarly, the integrated MSE,
R T
0
MSE (h; �) d� , vanishes at the same rate when the

bandwidth is chosen globally as

hopt =

 R T
0
�4tdt kK2k2



R T
0
L2t (0) dt

!1=(2
+1)
n�1=(2
+1): (14)

As with standard kernel methods, the optimal bandwidth here depends on un-
known quantities which need to be estimated in order to make the bandwidth choice
operational. In the case of the optimal bandwidth in terms of the IMSE,

R T
0
�4tdt

can be estimated using the realised quarticity in Eq. (9) with a uniform kernel and
� = T , n=3

Pn
i=1�X

4
ti�1 !

P
R T
0
�4tdt:

Under (A.5), the smoothness parameter 
 can be estimated using the method
proposed in Blanke (2002) while it appears di¢ cult to obtain an estimator of Lt (0).
In the case of (A.6), a simple estimator of @m�2t=@t

m is given by

@m�̂2t
@tm

=
1

hm+1

nX
i=1

K(m)

�
ti�1 � t
h

�
�X2

ti�1 ;

which in turn can be used to calculate
R T
0

�
@m�̂2t=@t

m
�2
dt. Unfortunately, @m�̂2t=@t

m

depends on the bandwidth h itself. One way of solving the problem is to use an
approximate parametric model for f�2tg. For example, d�2t = ��2tdt, �2t = �20 exp [�t],
where we can estimate �20 and � as�

log �̂20
�̂

�
=

�
1 � 1
1 � 2

��1 "
log c[X]�1
log c[X]�2

#
:
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We then have @m�̂2t=@t
m = �̂m�̂20 exp [�̂t]. One can obviously run an iterative proce-

dure, where the previous bandwidth choice is plugged into the RHS of Eq. (14), and
a new bandwidth is obtained.
Another way of estimating the optimal bandwidth hopt is by cross-validation which

is a data-driven selection method. Consider the integrated square error,

ISE (h) =

Z Tu

Tl

�
�2t � �̂2t

�2
dt =

Z Tu

Tl

�̂4tdt+

Z Tu

Tl

�4tdt� 2
Z Tu

Tl

�2t �̂
2
tdt;

for 0 � Tl < Tu � T . The second term can be ignored since it is independent of h,
while the �rst and third can be estimated by �

Pn
i=1 I fTl � ti�1 � Tug �̂

4
�i;ti�1 and

2
Pn

i=1 I fTl � ti�1 � Tug�X2
ti�1�̂

2
�i;ti�1 respectively, where �̂

2
�i;t is the leave-one-out

estimator. Note that one cannot evaluate
R Tu
Tl
�̂4tdt using standard formulas involving

the convolution of K since the integral is over the compact interval [Tl; Tu]. If a
symmetric kernel is used, one should normally choose Tl < Tu to avoid any boundary
e¤ects. With a one-sided kernel with K (z) = 0, z > 0, one can choose Tu = T while
Tl should still be chosen greater than zero. We de�ne the cross-validated bandwidth
as

hcv = argmin
h>0

CV (h) ;

where

CV (h) =
nX
i=1

I fTl � ti�1 � Tug
h
�̂4�i;ti�1�� 2�X

2
ti�1�̂

2
�i;ti�1

i
: (15)

One should be able to show that this converges towards hopt by following the argu-
ments in for example Hall (1983).
The optimal symmetric kernel weighting in terms of minimal integrated MSE for

m = 2 proves to be the so-called Epanechnikov (1969) kernel,

K (z) =

�
3=4 (1� z)2 ; jzj � 1

0; otherwise
:

For one-sided kernels, Zhang and Karunamuni (1998) suggest the kernel below which
minimises MSE when the kernel is restricted to have only one sign change,

K (z) =

�
6 (1 + 3z + 2z2) ; �1 � z � 0

0; otherwise
: (16)

Simulation studies show however that the choice of the kernel K in kernel density
and regression estimation has negligible e¤ect, see Silverman (1986, Table 3.1). This
result is supported by the simulation study carried out in the next section.
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7 A Simulation Study

We here examine the performance of the �ltered volatility process. In particular, we
wish to investigate how it performs relative to the time distance between observations,
and how the bandwidth selection rules proposed in the previous section work. We
consider the following stochastic volatility model,

dXt = �dt+ �tdW1;t;

d�2t = �
�
�� �2t

�
dt+ ��tdW2;t;

whereW1;t andW2;t are independent standard Brownian motions. This is the GARCH
continuous-time limit derived in Drost and Werker (1996). The data-generating para-
meters are chosen to match the estimated parameter values in Andersen and Bollerslev
(1998) for the Yen-USD exchange rate. We consider � = 1=(3�60�24), 1=(60�24),
1=(12� 24), and 1=48 corresponding to sampling every 20 sec., 1 min., 5 min. and 30
min., and set T = 2 (48 hrs.). In order to simulate data from the model, we employ
the Milstein discretisation scheme (see Kloeden and Platten, 1999),

�Xi� = �� + �(i�1)�
p
�"1;i;

��2
i�
= �

�
�2(i�1)� � �

�
� + ��2
(i�1)�

p
�"1;i;

with � = 1=100. We implement four di¤erent estimators of the instantaneous volatil-
ity: The Nadaraya-Watson estimator with either (i) the Gaussian kernel or (ii) the
one-sided kernel given in Eq. (16), and (iii) the asymmetric Beta kernel estimator.
For all three estimators, cross-validation was used to choose the bandwidth; this was
done by minimizing the criterion function CV (h) in Eq. (15).
We �rst only compare the performance over the interval [1=2; 3=2] so we can

ignore any boundary bias; this issue is investigated separately below. To eval-
uate the precision of the volatility estimators, the integrated mean square error
IMSE = E

R 3=2
1=2

�
�̂2t � �2t

�
dt is calculated. We do this using a discrete approxima-

tion of the integral. The results based on 400 simulations are reported in in Table
1. The Gaussian and the Beta kernel estimator have similar bias, variance and MSE
for high-frequencies while the Beta estimator is superior for lower ones. The one-
sided kernel estimator performs signi�cantly worse for all frequencies. So it is not
recommendable to use one-sided kernels for estimation in the interior of the sampling
interval. As predicted by the theory, the bias and variance increases as the sam-
pling frequency ��1 = T�1n shrinks. The Gaussian and Beta kernel estimator still
performs reasonably well for 5 min. sampling, while all three estimators are rather
imprecise when the sampling frequency drops to 30 min.
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Gaussian Kernel One-sided Kernel Beta Kernel
1=� Bias2 Var. MSE Bias2 Var. MSE Bias2 Var. MSE

3� 60� 24 0.33 0.32 0.65 0.59 0.98 1.57 0.44 0.27 0.71
60� 24 0.35 1.30 1.65 1.04 2.72 4.11 0.60 0.74 1.33
12� 24 0.85 6.12 6.97 2.87 12.74 15.60 1.08 2.60 3.68
48 3.00 41.82 44.83 8.15 95.27 103.41 2.06 13.40 15.45

Table 1: Integrated sq. bias (�10�4), variance (�10�4) and MSE (�10�4) of kernel
estimators over t 2 [1=2; 3=2].

Next, we investigate the performance of the three kernel estimators near the
boundary T = 2. In Table 2, the pointwise bias, variance and MSE at t = 1:5, 1:9,
1:95, 1:99, and 2:00 are reported for ��1 = 60 � 24. As expected the performance
of the Gaussian kernel estimator quickly deteriorates as we get nearer the boundary,
while the one-sided kernel estimator is fairly stable, but su¤ers consistently from a
higher variance. The Beta kernel estimator experiences a small increase in bias as we
get closer to the boundary, but is superior in terms of variance, and therefore has the
smallest MSE of the three estimators. Similar results were found at other sampling
frequences.

Gaussian Kernel One-sided Kernel Beta Kernel
t Bias2 Var. MSE Bias2 Var. MSE Bias2 Var. MSE
1:50 0.01 4.16 4.17 0.04 1.97 2.01 0.03 1.19 1.22
1:90 0.23 3.61 3.84 0.02 2.02 2.04 0.05 1.07 1.12
1:95 3.18 6.30 9.48 0.03 2.20 2.23 0.03 1.47 1.50
1:99 34.34 6.52 40.86 0.09 2.68 2.77 0.07 2.15 2.22
2:00 59.79 2.26 62.05 0.11 2.62 2.73 0.06 2.49 2.55

Table 2: Pointwise sq. bias (�10�3), variance (�10�3) and MSE (�10�3) of kernel
estimators.

The �ndings reported above are illustrated in Figure 1-3. We here have simulated
one trajectory of f�2tg, and keep this �xed. We then draw 400 samples of fXtg using
this speci�c volatility trajectory and so analyse the behaviour of f�̂2tg conditional
on f�2tg. In Figure 1-3, the speci�c trajectory is plotted together with the mean
and 95%-con�dence bands of �̂2t using the 3 di¤erent kernels over the interval t 2
[1:5; 2:0]. The plots support the results reported in Table 1 and 2: While the Gaussian
kernel estimator performs well in the interior, as we get closer to the boundary its
performance quickly deteriorates. The one-sided and Beta kernel estimator are both
fairly una¤ected by boundary e¤ects. We ran this last set of simulations conditional
on other volatility trajectories and obtained similar results to those reported here.
The overall conclusion is that the Beta kernel estimator is superior to the Gaussian

and the one-sided one in terms of MSE, performing equally well in the interior and
at the boundary of the sampling interval.
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8 Concluding Remarks

We proposed a kernel smoothed version of the standard realised volatility estima-
tor which allows us to �lter the unobserved volatility process. The �ltered volatility
has potential uses in jump detection, realised volatility estimation with market mi-
crostructure noise, and estimation of stochastic volatility models. Several extensions
of the kernel estimator o¤er themselves: One could consider kernel smoothing of other
transformations of �Xti�1. That is, estimators on the form

RV (�) =
nX
i=1

Kh (ti�1 � �) g
�
�Xti�1

�
;

for some function g. For example, power variation g (x) = jxjp, p � 1, as considered
in Barndor¤-Nielsen and Shephard (2004a). Also, the generalization of our results to
a multivariate setting and to allow for leverage e¤ects would be of interest. These
topics are all left for future research.
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A Proofs

Proof of Theorem 1. De�ne

dX�
t = �tdWt;

and

RV� (�) =
nX
i=1

(X�
ti
�X�

ti�1)
2Kh (ti�1 � �) :

We have
RV� (�)�

Pn
i=1 Vn;i (�)q

2
Pn

i=1 V
2
n;i (�)

=

nX
i=1

cn;i (�) �U
2
i ;

where cn;i (�) = Vn;i (�) =
qPn

i=1 V
2
n;i (�) and �U2i = (U2i � 1) =

p
2 are i.i.d. (0; 1).

Since
Pn

i=1 c
2
n;i (�) = 1, and maxi cn;i (�)! 0, the pointwise convergence results then

follows by Barndor¤-Nielsen and Shephard (2004, Corollary 3.1 and 3.2) together
with Lemma 6. The extension of the weak convergence to the interval [0; T ] follows
from, for example, Van der Vaart and Wellner (1996, Example 1.5.10) since we have
pointwise weak convergence, RV� (�) clearly is stochastically equicontinuous, and
[0; T ] is compact.
Next, we show that the e¤ect of a non-zero drift term is negligible. We have

RV (�)� RV� (� 0)

=
nX
i=1

�Z ti

ti�1

�sds

�2
Kh (ti�1 � �) + 2

nX
i=1

Z ti

ti�1

�sdWs

Z ti

ti�1

�sdsKh (ti�1 � �) ;

where, c.f. Lemma 6,

nX
i=1

�Z ti

ti�1

�sds

�2
Kh (ti�1 � �) = �

Z T

0

�2sKh (s� �) ds+ o
�
�3=2

�
;

while the 2nd term has mean zero and variance

4
nX
i=1

Z ti

ti�1

�2sds

Z ti

ti�1

�sdsKh (ti�1 � �) = 4�
Z T

0

�2s�sKh (s� �) ds+ o
�
�3=2

�
:

We conclude that
p
n [RV (�)� RV� (� 0)] = oP (1).

The proof of RQ(�) !P
R T
0
K2
h (s� �)�4sds follows by the same arguments as

above. The uniform convergence in probability follows by the fact that

sup
�2[0;T ]

p
n jRV� (�)� IV (�)j =

p
n sup
�2[0;T ]

p
2

nX
i=1

jVn;i (�)j �U2i ;
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where the RHS has mean zero and bounded variance.
Proof of Theorem 2. All of the pointwise convergence results in the proof of
Theorem 1 still go through with h ! 0 by appealing to Lemma 7 instead of 6. For
any two distinct points t 6= � , due to Cov

�
�Ui; �Uj

�
= 0, i 6= j,

Cov
�p
nh�̂t;

p
nh�̂�

�
= 2nh

nX
i=1

Kh (ti�1 � t)Kh (ti�1 � �)
�Z ti

ti�1

�2sds

�2
+ o (1)

= 2h

Z T

0

�4tKh (s� t)Kh (s� �) ds+ o (1)

=

Z
R
K (z)K

�
z +

� � t
h

�
�4�+hzdz + o (1)

= o (1) :

One can now show the asymptotic independence result by the Cramer-Wold device.
The uniform convergence is established by noting that the �rst term of the variance

component given in Eq. (11) is of order OP (1=h) as h! 0 while the bias expansion
holds uniformly in � 2 ["; T � "].
Proof of Theorem 3. We have

cIV (�)� IV (�) =

Z �

0

g
�
t; �̂2t

�
� g

�
t; �2t

�
dt

=

Z �

0

@g (t; �2t )

@x

�
�̂2t � �2t

�
dt+

1

2

Z �

0

@g (t; ��2t )

@x

���̂2t � �2t ��2 dt
where ��2t 2

�
�̂2t ; �

2
t

�
. The two terms satisfyZ �

0

����@g (t; ��2t )@x

���� ���̂2t � �2t ��2 dt � C sup
t2[0;T ]

���̂2t � �2t ��2 = OP �h2v�+OP (1= (nh)) ;
Z �

0

@g (t; �2t )

@x
�̂2tdt =

nX
i=1

�X2
ti�1

Z �

0

@g (t; �2t )

@x
Kh (ti�1 � t) dtdt

=
nX
i=1

I fti�1 < �g�X2
ti�1

@g (t; �2t )

@x
+OP (h

v)

where v = 
 under (A.5) and v = m under (A.6). We can now employ the same
techniques as in the proof of Theorem 1 to show the result.
Proof of Theorem 4. De�ne

Mi (�) = Kh (ti�1 � �)
Z ti

ti�1

�sds; Vi (�) = Kh (ti�1 � �)

sZ ti

ti�1

�2sds;
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such that
RM(�)�

Pn
i=1Mi (�)qPn

i=1 V
2
n;i (�)

=
nX
i=1

cn;i (�)Ui;

where cn;i (�) = Vn;i (�) =
qPn

i=1 V
2
n;i ((�)). We proceed as in the proof of Theorem 1,

and obtain from Lemma 6,

nX
i=1

Mi (� ; h)!
Z T

0

Kh (s� �)�sds;
nX
i=1

V 2i (� ; h)!
Z T

0

K2
h (s� �)�2sds:

Proof of Theorem 5. The convergence results in the proof of Theorem 4 still hold
as h! 0 under the additional conditions stated by appealing to Lemma 7 instead of
6.

B Lemmas

Lemma 6 (Fixed h > 0) Let the function K and the process fftg satisfy:

1. supz
��K(s) (z)

�� <1, s = 0; 1.
2.
R T
0
jfsj ds <1.

Then with � := maxi=1;:::;n jti � ti�1j:
nX
i=1

Kh (ti�1 � �)
Z ti

ti�1

fsds =

Z T
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fsKh (s� �) ds+O (�) ;

��1
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�
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Z ti

ti�1

fsds

�2
=

Z T

0

f 2sK
2
h (s� �) ds+ o(

p
�);

uniformly over � 2 [0; T ].
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Proof. First, for some ti;s 2 [ti�1; � ],
nX
i=1

Z ti

ti�1

fsKh (ti�1 � �) ds�
Z T

0

fsKh (s� �) ds

=
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Using the same arguments as in Barndor¤-Nielsen and Shephard (2004a, proof of
Lemma 2),
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f 2s ds+ o
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;

and the second result follows from the �rst part of the lemma.

Lemma 7 Let the function K satisfy (A.5) and ft is smooth of order 
 2 (0; 1].
Then:
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;

where � := maxi=1;:::;n jti � ti�1j. If t 7! Lt (0) is continuous, the results hold uni-
formly over � 2 (0; T ).
If ft is m times di¤erentiable and K in addition satis�es (A.6), the above results

hold with 
 = m and L� (0) = @mf�=@�m
R
zmK (z) dz.
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Proof. Combining
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where we have applied Pagan and Ullah (1999, Lemma A.2.6.1), with the expression
derived in the proof of Lemma 6, it holds that
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Next, by standard arguments, we obtain,Z T
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) :

This shows the �rst result. Next, observe that
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=

nX
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;

and using the same arguments as before, we obtain the second result.
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Figure 1: Gaussian Kernel estimator
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Figure 2: One-sided kernel estimator
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Figure 3: Beta Kernel Estimator
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