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Abstract

A nonparametric kernel estimator of the drift (di¤usion) term in a di¤usion
model are developed given a preliminary parametric estimator of the di¤usion
(drift) term. Under regularity conditions, rates of convergence and asymptotic
normality of the nonparametric estimators are established. We develop mis-
speci�cation tests of parametric di¤usion models based on the nonparametric
estimators, and derive the asymptotic properties of the tests. We also propose a
Markov Bootstrap method for the test statistics to improve on the �nite-sample
approximations. The �nite sample properties of the estimators are examined in
a simulation study.
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1 Introduction

Di¤usion processes are widely used in the modelling of the dynamics of for example
interest rates, stock prices, and exchange rates; an overview of such models can be
found in Björk (2004). To a lesser extent these have also been used to model the
dynamics of macroeconomic variables, see e.g. Bergstrom (1990). Unfortunately,
economic theory has very little to say about the precise speci�cation of the processes.
As a consequence, a wide range of parametric models have been suggested in the
literature, for example Ahn and Gao (1999), Chan et al. (1992), Cox et al. (1985),
Vasicek (1977). By nature, a parametric speci�cation imposes restrictions on the
dynamics allowed for in the observed data. If the model is misspeci�ed, this can have
serious implications on the conclusions drawn from the �tted model. This motivates
the use of non- and semiparametric estimation techniques which to a lesser degree
su¤er from these de�ciencies.

In this study, we develop nonparametric kernel estimators of the drift and di¤usion
term given low-frequency observations from a univariate di¤usion model. For each of
the two estimators, we assume that a preliminary parametric estimator of the other
term is available, and combine this with a kernel density estimator to obtain the
nonparametric estimator of the drift or di¤usion term. Our estimators are of interest
in themselves in a semiparametric framework, but as we demonstrate they can also
be used to construct goodness-of-�t tests of parametric models. The advantage of
the proposed test statistics is that, in case of rejection, they allow the researcher to
detect in which direction the parametric model departs from the semi-nonparametric
alternative. Thus, the two proposed test statistics seem well-suited as a guide in
the search for an appropriate parametric speci�cation. We also propose a Bootstrap
method to better approximate the �nite sample distribution of the test statistics.

Our nonparametric estimators are based on the fact that the stationary density
can be expressed in terms of the drift and di¤usion term. Inverting this expres-
sion, one can write the drift (di¤usion) term as a functional of the density and the
di¤usion (drift) term. This allows us to identify the drift (di¤usion) term given a
parameterisation of the di¤usion (drift) together with a nonparametric estimator of
the stationary density. This identi�cation scheme originates from Wong (1964), and
was further developed in Hansen and Scheinkman (1995), and Hansen et al. (1998).
Using kernel methods to estimate the stationary density, we derive the asymptotic
distribution of the two estimators under regularity conditions.

We then proceed to develop misspeci�cation tests of fully parametric models based
on the semi-nonparametric estimators. Assuming estimators of a fully parametric
model are available, we de�ne statistics based on L2 distances between the para-
metric and nonparametric estimators of the drift and di¤usion function. Under the
hypothesis that the parametric speci�cation is correct, we derive their asymptotic
distribution. We do this for two cases: The �rst is the case where the bandwidth of
the kernel estimator shrinks to zero at a suitable rate. Using standard U-statistics
results, this leads to a Normal distribution asymptotically. In the second case, the
bandwidth is kept �xed which in turn leads to an asymptotic distribution of an in�nite
sum of weighted �2 random varibles.
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These two sets of results indicate that in �nite sample, the asymptotic distrib-
ution may be a poor proxy. This is also supported by simulation studies of kernel
estimators in persistent di¤usion processes, c.f. Pritsker (1998). To obtain a bet-
ter approximation of the �nite-sample distribution, we propose a Markov Bootstrap
technique of the test statistics. It is shown that the proposed Bootstrap method is
consistent.

As a byproduct of the asymptotic analysis of our test statistics, we generalize
recent results by Fan (1998) and Fan and Ullah (1999) to L2 distance metrics of
nonlinear transformations of parametric versus nonparametric density estimates.

One can divide the literature on the non- and semiparametric estimation of dif-
fusion processes into two categories: In the �rst category high frequency data is
assumed to be available while in the second only low frequency data is assumed. In
the former, the time distance between the discrete observations shrinks to zero, see
e.g. Bandi and Phillips (2003,2005), Jiang and Knight (1997). Thus, for a �xed
time distance, these estimators will in general su¤er from a discretisation bias, c.f.
Nicolau (2003). On the other hand, the asymptotics of these estimators do not rely
on stationarity of the observed process.

In a �xed-time-distance framework, Aït-Sahalia (1996a) and Conley et al (1997)
developed estimators of two speci�c semiparametric di¤usion models and derived
their asymptotic distributions. Kristensen (2006a) consider two general classes of
semiparametric models for which estimators of the parametric component are de-
veloped. Nonparametric sieve estimators of di¤usion models have been proposed in
Chen et al. (2000a), Darolles and Gouriéroux (2001) and Gobet et al. (2004). Unfor-
tunately, the asymptotic distributions of these sieve estimators are not known which
in e¤ect hamper their use in applied work. Nonparametric methods have also been
employed to develop misspeci�cation tests of parametric models.Aït-Sahalia (1996b)
considered two types of goodness-of-�t test statistics where an L2-distance metric was
used to compare the density implied by the parametric model with a nonparametric
kernel density estimator. An alternative nonparametric goodness-of-�t test statistics
were derived in Hong and Li (2004) where the data was transformed to uniformly
distributed random variables. While all the above studies are more appropriate when
only low-frequency data is available, they rely on a stationarity assumption of the
observed di¤usion process which may be questionable in some applications.

The remains of the paper is organized as follows: In Section 2, the nonpara-
metric estimators of the drift and di¤usion term are presented and their asymptotic
properties derived. In Section 3, we propose a number of di¤erent test statistics for
a parametric speci�cation against the semi-nonparametric alternative and analyse
their asymptotic behaviour. A bootstrap method for the test statistics is developed
in Section 4. The �nite-sample performance of the estimators are examined through
a simulation study in Section 5. We conclude in Section 6. All proofs and lemmas
have been relegated to Appendix A and B respectively.

The following notation will be used: Let f � g (z) =
R
R f (u) g (u+ z) du denote

the convolution of functions f and g. The derivative of order s � 0 of f (x) is denoted
f (s) (x).
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2 Semi-Nonparametric Estimators of the Drift and Dif-
fusion Term

Consider the continuous time process fXtg = fXt : t � 0g which is the solution to a
univariate time-homogenous di¤usion model,

dXt = � (Xt) dt+ � (Xt) dWt; (1)

where fWtg is a standard Brownian motion. The domain of fXtg is denoted I = (l; r)
where �1 � l < r � 1. The functions � : I 7! R and �2 : I 7! R+ are the so-called
drift and di¤usion term respectively. Note that fXtg is a Markov process whose
dynamics are fully characterised by its transition density fptg,Z

A
pt (yjx) dy = P (Xs+t 2 AjXs = x) ; s; t � 0;

for any Borel set A � I.
In a fully parametric framework, both the drift and di¤usion would be speci�ed

up to some unknown parameter � 2 � � Rk, � (�; �) and �2 (�; �). We are here
interested in imposing fewer functional restriction on the drift and di¤usion, and
instead consider models which are situated in either (or both) of the two following
classes:

Class 1: �2 (�) = �2 (�;�) for some parameter � 2 A.

Class 2: � (�) = � (�;�) for some parameter � 2 B.

If a model is situated exclusively in Class 1 (2), the drift (di¤usion) term is
unspeci�ed, and the model is semiparametric. If a model is situated both in Class 1
and 2, both the drift and di¤usion are speci�ed, and the model is fully parametric
with � = (�; �). We will assume that a preliminary estimator of either � or � is
available, and use this to obtain a nonparametric estimator of either the drift or
di¤usion term for models in Class 1 and 2 respectively. We make no assumptions
about where the preliminary estimator has arrived from, merely that it is su¢ ciently
well-behaved.

The nonparametric estimators rely on the assumption of stationarity. Suppose
that fXtg is strictly stationary and ergodic, in which case it has a stationary marginal
density which we denote � satisfying

R
A � (x) dx = P (Xt 2 A), for any t � 0 and

Borel-set A � I. It can be shown that the stationary density is given by

� (x) =
Mx�

�2 (x)
exp

�
2

Z x

x�

� (y)

�2 (y)
dy

�
; (2)

for some some arbitrary point x� 2 intI, and normalization factor Mx� > 0, c.f.
Karlin and Taylor (1981, Section 15.6). It is possible to revert (2) in either of the
two following ways,

� (x) =
1

2� (x)

@

@x

�
�2 (x)� (x)

�
; (3)

�2 (x) =
2

� (x)

Z x

l
� (y)� (y) dy: (4)
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From these expressions, we see that instead of specifying the drift and di¤usion term,
an alternative speci�cation scheme would be to specify the marginal density together
with either the drift or the di¤usion term, an idea originating from Wong (1964); see
Hansen and Scheinkman (1995), Hansen et al. (1998). This could be done in a fully
parametric framework, but here we instead rely on a nonparametric estimator of �.

We now use the expressions in (3) and (4) to construct nonparametric estimators
of the drift (in Class 1) and the di¤usion (in Class 2) respectively. We assume that
we have observed n observations from (1), X�; X2�:::; Xn�, where � > 0 is the �xed
time distance between observations; without loss of generality, we set � � 1 in the
following. Under stationarity, the following nonparametric kernel estimator of � is
available:

�̂ (x) =
1

nh

nX
i=1

Kh (x�Xi) ; (5)

where Kh (z) = K (z=h) =h, K is a kernel, and h > 0 is a bandwidth; see Silverman
(1986) for an introduction to this estimator.

Let us now consider a model from Class 1: In this case, the di¤usion term is
parameterised and an estimator �̂ is available together with the kernel estimator �̂.
We then estimate � by substituting �2(x; �̂) and �̂ into Eq. (3):

�̂ (x) =
1

2�̂ (x)

@

@x

�
�2(x; �̂)�̂ (x)

�
: (6)

In Class 2, two alternative estimators present themselves: The obvious thing
would be to directly substituting �(y; �̂) and �̂ into Eq. (4),

~�2 (x) =
2

�̂ (x)

Z x

l
�(y; �̂)�̂ (y) dy:

However, the integral
R x
l � (y)� (y) dy can be estimated without bias by a sample

average,
1

n

nX
i=1

I fXi � xg�(Xi)!P

Z x

l
� (y)� (y) dy;

where I f�g is the indicator function. So we suggest to estimate �2 (x) by

�̂2 (x) =
2

�̂ (x)

1

n

nX
i=1

I fXi � xg�(Xi; �̂): (7)

To establish the asymptotic properties of these two estimators, we impose the
following assumptions:

A.1 (i) The drift � (�) and di¤usion �2 (�) > 0 are continuously di¤erentiable.
(ii) there exists a twice continuously di¤erentiable function V : R 7! R+ with
V (x)!1 as jxj ! 1, and constants b; c > 0 such that

� (x)V 0 (x) +
1

2
�2 (x)V 00 (x) � �cV (x) + b: (8)
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A.2 The marginal density � is uniformly di¤erentiable of order m + 1 � 4 with
bounded derivatives. The conditional density p (yjx) � p1 (yjx) is uniformly
fourth-order di¤erentiable with

sup
x;y2I

p (yjx)� (x) <1

A.3 1. � 7! � (x;�) is continuously di¤erentiable, satisfying jj@i�� (x;�) jj � V (x),
i = 0; 1.

2. � 7! �2 (x;�) is continuously di¤erentiable satisfying jj@ijx;��2 (x;�) jj �
V (x), i; j = 0; 1.

A.4 There exists functions  k with E [ k (X1jX0)] = 0 and E
�
jj k (X1jX0) jj2+�

�
<

1, k = 1; 2, such that:

1. �̂ = �0 +
Pn
i=1  1 (XijXi�1) =n+ oP (1=

p
n).

2. �̂ = �0 +
Pn
i=1  2 (XijXi�1) =n+ oP (1=

p
n).

B.1 The kernel K is di¤erentiable with���K(i) (z)
��� � C jzj�� ;

���K(i) (z)�K(i)
�
z0
���� � C

��z � z0�� ; i = 0; 1

and Z
R
zjK (z) dz =

8<:
1; j = 0;
0; j = 1; :::;m� 1;

<1; j = m:
:

As noted earlier, we have to assume that fXtg is stationary and ergodic in order
to be able to identify the unspeci�ed term. In fact, Assumption (A.1) is su¢ cient
for fXtg to be well-de�ned, stationary and geometrically �-mixing. (A.1) is based
on results by Meyn and Tweedie (1993); alternative mixing conditions for di¤usion
processes can be found in Hansen and Scheinkman (1995) and Veretennikov (1997);
see also Karatzas and Shreve (1991, Section 5.5). We here require it to be geomet-
rically �-mixing eventhough some of the results stated in this section will actually
hold under weaker mixing conditions. But since in the next section we need �-mixing
of geometric order to employ U-statistics results for dependent sequences (see Yoshi-
hara, 1976; Fan and Li, 1999), we impose this restriction throughout for clarity. Many
models found in the �nance literature satisfy (A.1) under suitable restrictions on the
parameters, including all the models cited in the Introduction.

The existence of higher order derivatives of � assumed in (A.2) combined with the
use of a higher order kernel as given in (B.1) reduces the bias of the kernel estimator
and its �rst derivative. The smoothness of � as measured by its number of derivatives,
m+ 1, determines how much the bias can be reduced with. The condition that � is
m+1 times di¤erentiable is satis�ed if � and �2 are m and m+1 times di¤erentiable
respectively, c.f. Eq. (2). The conditions on the conditional density p are used to
control the variance component of the kernel estimator.
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Assumption (A.3) ensures that E
h
@i�� (X0;�)

i
<1 and E

h
@ijx;��2 (X0;�)

i
<1.

These moments are used when demonstrating uniform convergence of the nonpara-
metric estimators.

The conditions on the preliminary estimators given in (A.4) is only needed in
Theorem 5. All other results can be established under the weaker assumption that
they converge at a faster rate than the kernel estimator. The condition is satis�ed
under great generality for most well-behaved estimators. For the fully parametric
MLE, Aït-Sahalia (2002) gives conditions for (A.4) to hold, while Kristensen (2006a)
give conditions under which a class of semiparametric estimators satisfy the condition.

One might also wish to have uniform convergence of the semi-nonparametric es-
timators. However, since the estimators and the limits themselves potentially are
unbounded functions, this is not readily possible. To circumvent this problem, we
control the tail behaviour of the estimator by trimming, ensuring that the nonpara-
metric estimator equals zero outside a compact, but growing set. We de�ne a sequence
of trimming sets Â = Ân by

Â = fx 2 Ij�̂ (x) � ag (9)

for some sequence a = an ! 0. We then show uniform convergence on the increasing
set Â by combining results of Hansen (2006) and Andrews (1995).

In the following let fxigNi=1 be a �xed set of distinct points in the domain I,
xi 6= xj for i 6= j. We then give pointwise and uniform results for each of the two
estimators:

Theorem 1 (Class 1) Assume that (A.1)-(A.2) (A.3.1)-(A.4.1) and (B.1) hold.
Then:

1. As h! 0, nh3 !1 and nh3+m ! 0:

p
nh3 f�̂ (xi)� �0 (xi)gNi=1

d! N
�
0;diag(fV� (xi)gNi=1)

�
;

where

V� (x) =
�4 (x)

4� (x)

Z
R
K(1) (z)2 dz:

2.

sup
x2Â

j�̂ (x)� � (x)j =
1X
s=0

n
OP

�p
log (n)a�1�sn�1=2h�(1+2s)=2

�
+OP

�
a�1�shm

�o
:

Theorem 2 (Class 2) Assume that (A.1)-(A.3), (A.4.2)-(A.5.2) and (B.1) hold.
Then:

1. As h! 0, nh!1, and nh1+m ! 0:

p
nh
�
�̂2 (xi)� �2 (xi)

	N
i=1

d! N
�
0;diag(fV� (xi)gNi=1)

�
;
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where

V� (x) =
�4 (x)

� (x)

Z
R
K (z)2 dz:

2.
sup
x2Â

���̂2 (x)� �2 (x)�� = OP

�p
log (n)a�2n�1=2h�1=2

�
+OP

�
a�2hm

�
:

The pointwise asymptotic variances for �̂ (x) and �̂2 (x) respectively can be esti-
mated by:

V̂� (x) =
�4(x; �̂)

4�̂ (x)

Z
R
K(1 (z)2 dz; V̂� (x) =

�̂4 (x)

�̂ (x)

Z
R
K (z)2 dz: (10)

We here only stated results for the estimation of � and �2 but one can easily
derive similar results for the estimators of the derivatives of � and �2. Observe
that both nonparametric estimators are asymptotically independent across the points
fxigNi=1. This is a well-known property of kernel-estimators, cf. Robinson (1983),
which facilitates global inference, for example when constructing pointwise con�dence
bands, and testing hypotheses (see Section 3).

The �rst part of the result stated in Theorem 2 has already been obtained by
Aït-Sahalia (1996a) for the semiparametric model where � (x;�) = �1 (�2 � x) and
�2 was left unspeci�ed. We here have extended his result to two general classes of
semiparametric di¤usion models.

The rate of convergence of �̂ is slower than the one of �̂2. This owes to the fact
that �̂ depends on both �̂ and its �rst derivative, �̂(1), while �̂2 is only a function of
�̂. The density derivative has slower weak convergence rate than �̂,

p
nh3 relative top

nh, which the drift estimator inherits. Thus, the drift is more di¢ cult to estimate
than the di¤usion term in aour setting. This observation has been made elsewhere
in the literature. Gobet et al. (2003) show that the optimal convergence rate of the
nonparametric estimation of the drift is lower than for the di¤usion, and coin the
nonparametric estimation of � given discrete observations as an �ill-posed problem�.
Similarly, Bandi and Phillips (2003) demonstrate that for a stationary di¤usion, it is
only possible to estimate � (x) nonparametrically with

p
n�h-rate, while �2 (x) can

be estimated at the faster rate
p
nh as �! 0 and n�!1.

3 Goodness-of-Fit Testing

In this section, we propose a number of di¤erent speci�cation tests for a parametric
di¤usion model against semiparametric alternatives. We consider the fully parametric
hypothesis,

H0 : �
2 (�) = �2 (�;�) and � (�) = � (�;�) for some (�; �) 2 A� B.

We then wish to testH0 against each of the two following semiparametric alternatives,

HA;1 : �
2 (�) = �2 (�;�) for some � 2 A and � (�) 6= � (�;�) for all � 2 B;
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and

HA;2 : �
2 (�) 6= �2 (�;�) for all � 2 A and � (�) = � (�;�) for some � 2 B.

Note that the situation �2 (�) 6= �2 (�;�) for all � 2 A and � (�) 6= � (�;�) for all � 2 B
is not included in the two alternatives.

Under the null, the model is fully speci�ed and the parameter vector � = (�; �)
can be estimated using standard parametric estimation methods with the obvious one
being MLE, see e.g. Aït-Sahalia (2002). Alternatively, given a preliminary parametric
estimator of either � or �, one can obtain an estimator of the remaining parameter by
matching our nonparametric estimator with the parametric speci�cation, c.f. Bandi &
Phillips (2005). For example in Class 1, given �̂, we can �rst obtain the nonparametric
estimator �̂ (x) and then estimate � by ~� = argmin�2B n�1

Pn
i=1 [�̂ (x)� � (x;�)]

2;
similarly for Class 2.

Under each of the two alternatives, we use the relevant nonparametric estimator
developed in the previous section. The preliminary parametric component, �̂ or �̂,
can either arrive from the fully parametric submodel such that �̂ = ~� or �̂ = ~�, or
be separate semiparametric estimates. In the latter case, the general semiparamet-
ric estimation method in Kristensen (2006a) can be employed. Under the null, it
will obviously make no di¤erence with regard to the asymptotics whether the pre-
liminary parametric estimators used in the nonparametric estimators arrive from the
fully parametric model or a semiparamtric one. Under the alternative however, we
expect that it will be quite in�uential whether the fully parametric or semiparametric
estimator is used.

We make the following assumption about the estimator ~� obtained under H0:

A.5 Under H0, the estimator ~� = (~�; ~�) satis�es ~� = �0 +
Pn
i=1

~ (XijXi�1) =n +
oP (1=

p
n) with E

h
~ (X1jX0)

i
= 0 and E

h
jj~ (X1jX0) jj2+�

i
<1.

Some of the following results (Theorem 3-4) hold under the weaker assumption
that ~� has a faster rate of convergence relative to the nonparametric estimators.
The

p
n-asymptotic normality which is imposed in (A.5) is only needed to establish

Theorem 5.
The proposed test statistics are based on the square di¤erences between the non-

parametric and parametric estimates of the drift and di¤usion term. We start by
considering test statistics which only compare the semi-nonparametric and fully para-
metric estimator across a �xed number 1 � N <1 of points in the domain, fxigNi=1,
as given in the previous section. For similar test procedures for conditional means, see
e.g. Gozalo (1997). Since we are considering a �xed number of distinct points, The-
orem 1 and Theorem 2 together with the delta method and the continuous mapping
theorem yield the following result:

Theorem 3 Under (A.1)-(A.5) and (B.1): As h! 0, nh3 !1 and nh3+m ! 0,

T1;n = nh3
NX
i=1

24�(xi; ~�)� �̂ (xi)q
V̂� (xi)

352 d! �2 (N) ;
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while, h! 0, nh!1, and nh1+m ! 0,

T2;n = nh
NX
i=1

24�2(xi; ~�)� �̂2 (xi)q
V̂� (xi)

352 d! �2 (N) ;

where V̂� (x) and V̂� (x) are given in (10) and (10) respectively.

The actual choice of N and fxigNi=1 is not obvious. Gozalo (1997) proposes to
perform a random selection of points over I. Also, he shows that the number of
points N used in the test statistic for � (�2) can grow with n as long as it does so
at a rate slower than

p
nh3 (

p
nh). Still, the test statistics will be sensitive to the

actual choice of fxigNi=1 which is a less attractive feature of the two test statistics.
Given this defect, we now develop test statistics that evaluate the square di¤erence

between the semi-nonparametric estimator and the parametric over the whole domain
I. We do this by considering,

�T1;n =

Z
I
[�(x; ~�)� �̂ (x)]2! (x) dx;

�T2;n =

Z
I
[�2(x; ~�)� �̂2 (x)]2! (x) dx;

for some weighting function ! : I 7! R+.
Assume for the moment that � is known. Then,

�T1;n =

Z
I
[G1 (x; �̂ (x))�G1 (x; ~� (x))]2! (x) dx;

where ~� (x) = �(x; �̂) and

G1 (x; � (x)) =
1

2� (x)

@

@x

�
�2 (x)� (x)

�
:

Similar expression holds for �T2;n, if � was known. This highlights that �T1;n and �T2;n
are in fact testing the parametric speci�cation of the marginal density, � (�) = �(�; �)
for some � 2 �, against the nonparametric alternative, � (�) 6= �(�; �) for all � 2 �.
One could therefore test the hypothesis H0 against both semiparametric alternatives
by considering

R
I [�̂ (x) � ~� (x)]

2! (x) dx. This test statistic has been examined in
Aït-Sahalia (1996b), Fan (1994, 1995, 1998) and Fan and Ullah (1999). However,
observe that �T1;n and �T2;n involve nontrivial transformations of the marginal density
and therefore test di¤erent directions of departure from the null. In particular, if for
example �T1;n rejects the null while �T2;n accepts it, the di¤usion term appears to be
correctly speci�ed while it would be necessary to modify the parametric speci�cation
of the drift term. This is in contrast to

R
I [�̂ (x) � ~� (x)]

2! (x) dx where a rejection
does not give any guidance to a more appropriate speci�cation of the parametric
model.
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The following theorem gives asymptotic results of the two test statistics as h !
0. The proof strategy is to linearize the test statistics in terms of � such that for

appropriate weighting function w1 and w2,
R h

�̂(k) (x)� �(k) (x)
i2
wk (x) dx, k = 1; 2,

will drive the asymptotic distributions of the two test statistics. We may then use
same arguments as in Fan (1994) and Fan and Ullah (1999) to obtain the asymptotic
distributions. The theorem is shown under the following regularity condition on the
weighting function:

B.2 The weighting function ! : I 7! R+ has compact support.

The assumption of a �xed, compact support of ! is made in order to control
the tail behaviour of the estimators of the drift and di¤usion term. Under suitable
regularity conditions on the tail behaviour of ! and the drift and di¤usion, one
should be able to allow for ini�nite support by introducing a trimmed version, e.g.
!̂ (x) = Ifx 2 Âg! (x) where Â is the trimming set introduced in the previous section;
in the limit !̂ would have same support as !. This would lead to more technical proofs
however, and we therefore maintain (B.2) throughout for simplicity.

Theorem 4 Under (A.1)-(A.5) and (B.1)-(B.2):

1. As h! 0, nh3 !1, and nh3=2+2m ! 0,

nh5=2
�
�T1;n � c1=

�
nh3

��
!d N

�
0; �21

�
;

where

c1 =
1

4

�Z
R
K(1) (z)2 dz

��Z
I

�4 (x)

� (x)
! (x) dx

�
;

�21 =
1

8

�Z
R

h
K(1) �K(1)

i2
(z)

�4 (z)

�2 (z)
! (z) dz

��Z
I
�4 (x)! (x) dx

�
:

2. As h! 0, nh!1, and nh1=2+2m ! 0,

nh1=2
�
�T2;n � c2= (nh)

�
!d N

�
0; �22

�
;

where

c2 =

�Z
R
K (z)2 dz

��Z
I

�4 (x)

� (x)
! (x) dx

�
;

�22 = 2

�Z
R
[K �K]2 (z) �

4 (z)

�2 (z)
! (z) dz

��Z
I
�4 (x)! (x) dx

�
;

Consistent estimates of ck (n) and �2k can be obtained by substituting the unknown
quantities entering these, that is, �2 (z) and � (z), for their estimates.

11



Next, we consider a slight modi�cation of the test statistics,

~T1;n =

Z
I
[~�(x)� �̂ (x)]2! (x) dx;

~T2;n =

Z
I
[~�2(x)� �̂2 (x)]2! (x) dx;

where �̂ (x) and �̂2 (x) are the same semi-nonparametric estimators as before, while

~� (x) =
1

2 (Kh � ~�) (x)
@

@x

�
�2 (x; ~�) (Kh � ~�) (x)

�
; (11)

~�2 (x) =
2

(Kh � ~�) (x)

Z x

l
�
�
y; ~�

�
(Kh � ~�) (y) dy; (12)

~� (x) =
Mx�(~�)

�2 (x; ~�)
exp

"
2

Z x

x�

�(x; ~�)

�2 (x; ~�)
dy

#
: (13)

So we here transform the parametric density estimator ~� by K � ~�, thereby remov-
ing the bias incurred from the nonparametic kernel density estimation. The same
strategy as in Fan (1994, Proof of Theorem 4.1) can be used to show that ~Tk;n has
the same asymptotic distribution as �Tk;n, k = 1; 2, but without the requirement that
nh3=2+2m ! 0 and nh1=2+2m ! 0 respectively. Furthermore, we can derive the as-
ymptotics of these test statistics for �xed h > 0; this is based on an extension of the
results found in Fan (1998).

Theorem 5 Under (A.1)-(A.5) and (B.1)-(B.2), for any �xed h > 0 and k = 1; 2,

n ~Tk;n !d

Z
Rd
Z2k (x; h)! (x) dx; n!1;

where Zk (�; h) � N (0;�k (�; h)) and �k (�; h) satis�esZ
Rd
�k (x; h) a (x)! (x) dx = Var

�D
� 
k
0 (h) ; a

E�
+ 2

1X
i=1

Cov
�D
� 
k
0; a
E
;
D
� 
k
i (h) ; a

E�
;

ha; bi =

Z
Rd
a (x) b (x)! (x) dx;

with the random functions � ki (�; h), k = 1; 2 being given in Eq. (22) and (23) respec-
tively.

This theorem highlights that the asymptotic distribution given in Theorem 4
may deliver a poor �nite sample approximation. This may be further distorted by
the need to estimate the unknown quantities entering the asymptotic distribution and
the dependence in data, see e.g. Pritsker (1998). We therefore in the next section
propose a Markov bootstrap method to obtain a better approximation of the �nite
sample distribution of the test statistics.
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4 A Parametric Bootstrap

We here develop a parametric bootstrap for the test statistics proposed in the previous
section along the same lines as in Fan (1995, 1998). We propose to draw a new sample
from the parametric transition density p(yjx; ~�) and use these to approximate the
distributions. In the following, Tn denotes either one of the test statistics developed
in the previous description.

Step 1 Draw X�
1 � �(�; ~�), and recursively X�

i � p(�jX�
i�1;

~�), i = 2; :::; n.

Step 2 Replace the data fXigni=1 with the bootstrap sample fX�
i g
n
i=1 in the estima-

tion of the parametric components and the relevant test statistic; we denote
these �̂�, �̂

�
, ~�

�
and T �n respectively.

Step 3 Repeat Step 1-2 B � 1 times, each new sample being independent of the
previous ones, yielding T �n;1; :::; T

�
n;B. Use the empirical distribution of these to

estimate the bootstrap one.

The initialization of the Bootstrap sample could be exchanged for X�
1 = X1 since

we are working with a geometrically ergodic Markov chain. In order to show that
the proposed Bootstrap method is consistent, we impose an additional assumption,
which is a modi�ed version of the ones stated in Fan (1995, 1998):

A.6 �̂� = �̂ + 1
n

Pn
i=1  1 (XijXi�1) + oP � (1=

p
n), �̂

�
= �̂ + 1

n

Pn
i=1  2 (XijXi�1) +

oP � (1=
p
n), ~�

�
= ~� + 1

n

Pn
i=1

~ (XijXi�1) + oP � (1=
p
n).

Proposition 6 Under (A.1)-(A.6) and (B.1)-(B.2), the distribution of T �k;n; �T
�
k;n

and ~T �k;n converge almost surely to the same limit as the distribution of Tk;n; �Tk;n and
~Tk;n respectively , k = 1; 2.

We will not give a proof of this result since it proceeds along the exact same lines
as in Fan (1995,1998).

5 A Simulation Study

We here examine how the nonparametric estimators perform in �nite sample. For an
application of the estimators to interest rates, we refer to Kristensen (2006b). We
choose as data generating models the CKLS model and a submodel of the model
proposed in Aït-Sahalia (1996b),

dXt = f�1 + �2Xtg dt+
q
�1X

�2
t dWt; (CKLS)

dXt =
�
�1 + �2Xt + �3X

2
t + �4X

�1
t

	
dt+

q
�1X

�2
t dWt: (AS)

The data-generating parameters are chosen to match the estimates obtained when
�tting the model by MLE to the Eurodollar interest rate data considered in Aït-
Sahalia (1996a,b). The parameter estimates satisfy the �-mixing conditions found
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in Aït-Sahalia (1996b) such that (A.1) holds. We measure time in years and set the
time distance to � = 1=252, thereby e¤ectively ignoring holidays and weekends, and
consider two sample sizes, n = 2500, 5000.

For each sample, we estimate the two following semiparametric models when
CKLS and AS is the data generating process respectively,

CKLS 1: dXt = � (Xt) dt+
q
�1X

�2
t dWt; (14)

CKLS 2: dXt = f�1 + �2Xtg dt+ � (Xt) dWt; (15)

AS 1: dXt = � (Xt) dt+
q
�1X

�2
t dWt; (16)

AS 2: dXt =
�
�1 + �2Xt + �3X

2
t + �4X

�1
t

	
dt+ � (Xt) dWt; (17)

The parameters of the semiparametric models are estimated using the MLE method
proposed in Kristensen (2006a). Once the parameteric component has been esti-
mated, we calculate �̂ (x) and �̂2 (x) for models in Class 1 and 2 respectively. We
also estimate the fully parametric models (CKLS)-(AS) by MLE which allows us
to compare the semiparametric and parametric estimates. In order to evaluate the
likelihood in both the parametric and semiparametric case, we employ the simulated
likelihood method of Kristensen and Shin (2006); see also Kristensen (2006a, Section
5). This is implemented by simulating N = 100 values for each observation, using
the Euler scheme with a step length of � = �=10.

We �rst investigate the behaviour of the nonparametric estimators for the CKLS
model. We consider two sets of data generating parameter values, (i) � = (1:8207; 2:6217),
� = (0:0344;�0:2921) and (ii) � = (0:1547; 1:7079), � = (0:0271;�0:4455). These
are estimates from the Eurodollar data set using (i) the full sample 1973-1995 and (ii)
the subsample 1982-1995. The �rst parameter set generates high volatility and low
mean reversion while the second one generates just the opposite behaviour. In Figure
1-2, pointwise means and con�dence bands of the the fully parametric and nonpara-
metric drift estimates are plotted for the parameters (i) and (ii) respectively. For
(i), Figure 1 shows that the nonparametric drift estimator performs well in the range
x 2 [0:03; 0:12] while it is rather imprecise in tails. This is probably a consequence
of that the process rarely visits outside this interval and that the strong persistence
makes the nonparametric density estimator more biased. This is con�rmed by the
performance in Figure 2 where the nonparametric drift estimator becomes more pre-
cise in the tails with increased mean reversion. In Figure 3-4, the di¤usion estimators
are plotted. For both choices of parameter values, the estimator is very imprecise
out in the right tail of the support. Moreover, a decrease in the volatility seemingly
leads to a further deterioration of the performance.

Next, we examine the behaviour of the AS model. We do this with the parameters
�tted to the full sample. In Figure 5 and 6 respectively, the drift and di¤usion
estimators are plotted. The parametric drift estimator is not very precise which owes
to the fact that the drift parameters in the AS model are di¢ cult to pin down, see
also Kristensen (2006a, Section 5). In comparison, the nonparametric drift estimator
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performs fairly well, and has more or less the same level of precision as the parametric
one. The performance of the nonparametric di¤usion estimator is not quite so good
though.

6 Concluding Remarks

Extensions of our results to multivariate di¤usion models would be of interest. How-
ever, our identi�cation scheme cannot readily be extended to general multivariate
di¤usion models, since the link between the invariant density, the drift and the dif-
fusion term utilised here does not necessarily hold in higher dimensions. If one is
ready to restrict the attention to the class of multivariate models which does satisfy
this relation, the proposed estimation procedure should still work. For example, one
may consider the class of d-dimensional di¤usions with drift � : Rd 7! Rd and di¤u-
sion �2 : Rd 7! Rd�d, where the following relationship holds between the drift and
di¤usion,

�i (x) =
1

2� (x)

dX
j=1

@

@xj

�
�2ij(x)� (x)

�
: (18)

This restriction is for example imposed by Chen et al (2000b) in their nonparametric
study of multivariate di¤usion models. Again, � (x) can be estimated by kernel
density methods which together with a parametric speci�cation for �2 will lead to
the same type of estimators considered here.
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A Proofs

Proof of Theorem 1. We �rst show pointwise weak convergence: For any given
x 2 I,

�̂ (x)� � (x) =
1

2
�2 (x; �0)

"
�̂(1) (x)

�̂ (x)
� �

(1)
0 (x)

�0 (x)

#

+
1

2

h
@x�

2(x; �̂)� @x�2 (x; �0)
i
+
�̂(1) (x)

2�̂ (x)

h
�2(x; �̂)� �2 (x; �0)

i
= : I1 (x) + I2 (x) + I3 (x) :

We have Ik (x) = OP (1=
p
n), k = 2; 3, since, by (A.4),

@ix�
2(x; �̂)� @ix�2 (x; �0) = @ix _�

2
�
x; ��i

�
(�̂ � �0) = OP

�
1=
p
n
�
;

for some ��i 2 [�0; �̂], i = 0; 1. For the �rst term,

p
nh3

�̂(1) (x)

�̂ (x)
� �

(1)
0 (x)

�0 (x)
=

1

�0 (x)

p
nh3[�̂(1) (x)� �(1)0 (x)]

��
(1)
0 (x)

�20 (x)

p
nh3 [�̂ (x)� �0 (x)]

+
p
nh3O

�
j�̂(1) (x)� �(1)0 (x) j2 + j�̂ (x)� �0 (x)j2

�
:

Using standard methods for kernel estimators, see Robinson (1983), we obtain

p
nh3f�̂(1) (xi)� �(1)0 (xi)gNi=1

d! N
�
0;diag(fV� (xi)gNi=1)

�
;

where V� (x) = �0 (x)
R
K(1) (z) dz, while the two remainder terms are oP (1). The

�rst part of the theorem now follows from Slutsky�s Theorem.
To prove the uniform convergence result we introduce some additional trimming

sets. De�ne
A (") = A1 (") \A2 (") (19)

where
A1 (") = fxj�̂ (x) � "ag ; A2 (") = fxj� (x) � "ag ; (20)

for any " > 0. As shown in Andrews (1994, p. 588), A (") � A1 (2") with probability
1 as n!1 under our conditions. Since

sup
x2A1(1)

j� (x; �̂)� � (x;�0)j � sup
x2A(1=2)

j� (x; �̂)� � (x;�0)j ;

we establish convergence uniformly over A (1=2). We have

sup
x2A(1=2)

jI2 (x)j �
1

2a

(
sup

x2A(1=2)
�0 (x) jj@x _�2

�
x; ��i

�
jj
)
jj�̂ � �0jj = OP

�
a�1n�1=2

�
;

19



sup
x2A(1=2)

jI3 (x)j �
C

a2
sup

x2A(1=2)

�
�0 (x) jj _�2

�
x; ��i

�
jj
	
jj�̂ � �0jj = OP

�
a�2n�1=2

�
;

and

sup
x2A(1=2)

jI1 (x)j �
1

2a

(
sup

x2A(1=2)
�0 (x)�

2 (x; �0)

)
sup

x2A(1=2)

"
�̂(1) (x)

�̂ (x)
� �

(1)
0 (x)

�0 (x)

#

where

sup
x2A(")

����� �̂(1) (x)�̂ (x)
� �(1) (x)

� (x)

�����
� sup

x2A(")

n
�̂ (x)�1 j�̂(1) (x)� �(1) (x) j

o
+ sup
x2A(")

j�(1) (x) j
���� 1

�̂ (x)
� 1

� (x)

����
� Ca�1jj�̂(1) � �(1)jj1 + Ca�2 k�̂ � �k1 :

The result now follows from Lemma 7 with s = 0; 1.

Proof of Theorem 2. We have

�̂2 (x)� �2 (x) =
2

�̂ (x)

1

n

nX
i=1

n
�(Xi; �̂)� �(Xi; �0)

o
I fXi � xg

+
2

�̂ (x)

1

n

nX
i=1

�
�(Xi; �0)I fXi � xg �

Z x

l
�(y; �0)� (y) dy

�
+2

Z x

l
�(y; �0)� (y) dy

�
1

�̂ (x)
� 1

� (x)

�
= : I1 (x) + I2 (x) + I3 (x) ;

where I2 (x) = OP
�
n�1=2

�
by the CLT for mixing processes, c.f. Doukhan et al

(1994), and

I1 (x) =
2

�̂ (x)

(
1

n

nX
i=1

_�(Xi; ��)I fXi � xg
)
(�̂ � �0) = OP

�
n�1=2

�
:

For the third term, �rst note that

1

�̂ (x)
� 1

� (x)
= � 1

�2 (x)
[�̂ (x)� � (x)] + [�̂ (x)� � (x)]2

4 (��̂ (x) + (1� �)� (x))3
;

for some � 2 [0; 1]. Using standard results for kernel estimators, see Robinson (1983),
we obtain p

nh f�̂ (xi)� � (xi)gNi=1
d! N

�
0;diag(fV� (xi)gNi=1)

�
;

where V� (x) = � (x)
R
K (z)2 dz, while

�̂ (x)� � (x) = OP (n
�1=2h�1) +OP (h

m):
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Slutsky�s Theorem now gives the claimed asymptotic distribution.
Recall the de�nition of A (") in (19), and the results associated with this trimming

set. Then

sup
x2A(1=2)

jI1 (x)j �
2

a

(
1

n

nX
i=1

_�(Xi; ��)

)
jj�̂ � �0jj = OP

�
a�1n�1=2

�
;

sup
x2A(1=2)

jI2 (x)j �
2

a

1

n

nX
i=1

�
�(Xi; �0)I fXi � xg �

Z x

l
�(y; �0)� (y) dy

�
= OP

�
a�1n�1=2

�
;

sup
x2A(1=2)

jI3 (x)j � 2
Z r

l
j�(y; �0)j� (y) dy

�
1

�̂ (x)
� 1

� (x)

�
� O

�
a�2

�
sup

x2A(1=2)
j�̂ (x)�� (x) j:

The result now follows from Lemma 7 with s = 0.

Proof of Theorem 3. First consider T1;n: Under H0, �(xi; �̂) � �0 (xi) =

_�(xi; ��)(�̂ � �) = OP
�
n�1=2

�
such that

p
nh3

�̂ (xi)� �(xi; �̂)
V̂
1=2
� (xi)

=
V̂
1=2
� (xi)

V
1=2
� (xi)

p
nh3

�̂ (xi)� �0 (xi)
V
1=2
� (xi)

+ oP (1)
d! Zi;

for i = 1; :::; N , where fZigni=1 are i.i.d. standard Normal, c.f. Theorem 1. The result
now follows by the continuous mapping theorem. The asymptotic distribution of T2;n
is derived in a similar fashion.

Proof of Theorem 4. De�ne ̂ =
�
�̂; �̂(1)

�
. We then have

nh5=2 �T1;n = nh5=2
Z
I
[G1(x; ̂ (x) ; �̂)�G1(x; ~ (x) ; ~�)]2! (x) dx;

where

G1 (x; y;�) =
@�2 (x;�)

@x
+
�2 (x;�) y2

2y1
: (21)

The result now follows from Lemma 10.
Since n�1

Pn
i=1 I fXi � xg�(Xi; �̂) =

R x
l �(z;�)� (z) dz +OP

�
n�1=2

�
, we have

nh1=2 �T2;n = nh1=2
Z
I
[G2(x; �̂ (x) ; �̂)�G2(x; ~� (x) ; ~�)]2! (x) dx+ oP (1)

where

G2(x; y;�) =
2

y

Z x

l
�(z;�)� (z) dz:

Again, Lemma 10 supplies us with the desired result.
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Proof of Theorem 5. The result for ~T1;n follows from an application of Lemma 8
on G1 de�ned in (21) such that

	1i (x; h) =
�4 (x)K��(1) (x)2

4K�� (x)2
1

h2

�
K

�
Xi � x
h

�
� E

�
K

�
Xi � x
h

���
(22)

+
�4 (x)

4K�� (x)

1

h2

�
K(1)

�
Xi � x
h

�
� E

�
K(1)

�
Xi � x
h

���
+

�4 (x)

4K�� (x)

@
�
K��(1)

�
(x; �0)

@�

�
 3 (XijXi�1)
 4 (XijXi�1)

�
+

1

2� (x)

@

@x

�
@�2 (x;�)

@�0
� (x)

�n
 1 (XijXi�1) + ~ 1 (XijXi�1)

o
:

For ~T2;n, we need to take into account the presence of n�1
Pn
i=1 I fXi � xg�(Xi; �̂).

Lemma 8 can easily be extended to allow for this yielding the claimed result with

	2i (x; h) =
�4 (x)

K�� (x)

1

h

�
K

�
Xi � x
h

�
� E

�
K

�
Xi � x
h

���
(23)

+
2

K�� (x)

�
I fXi � xg�(Xi)�

Z x

l
� (y)� (y) dy

�
+

�4 (x)

K�� (x)

@ [K��] (x; �0)

@�0

�
~ 1 (XijXi�1)
~ 2 (XijXi�1)

�
+

2

K�� (x)

Z x

l

@� (y;�0)

@�0
� (y) dy

n
 2 (XijXi�1) + ~ 2 (XijXi�1)

o
:

B Lemmas

We state the needed lemmas for a more general class of processes. We shall work
under the following set of assumptions:

C.1 fXtg, Xt 2 Rd, is stationary and �-mixing with mixing coe¢ cients satisfying
�t = O

�
�t
�
for some 0 < � < 1.

C.2 The marginal density f : Rd 7! R has s+m � 2, derivatives which are bounded
and uniformly continuous. For t � 1, the density of (X0; Xt), ft : R2d 7! R is
uniformly fourth-order di¤erentiable and supt;x;y ft (x; y) <1.

C.3 The kernel K : Rd 7! R has s derivatives which satisfy

jD�K (z)j � C jzj�� ;
��D�K (z)�D�K

�
z0
��� � C

��z � z0�� ;
for j�j = s, andZ

z�11 � � � z�dd K (z) dz =

8<:
1; j�j = 0
0 j�j = 1; :::;m� 1;
C j�j = m

;
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The �rst lemma give uniform convergence rate of the density derivative estimator:

Lemma 7 Under (C.1), (C.6)-(C.7), with h = cn�, 0 <  < 1,

sup
x2I

���D�f̂ (x)�D�f (x)
��� = OP

�p
log (n)n�1=2h�(d+2s)=2

�
+OP (h

m) ;

for j�j = s � m.

Proof. Using standard techniques, we obtain under (C.6)-(C.7) that for some �h 2
[0; h],

E[D�f̂ (x)]�D�f (x) =
hm

m!

X
jaj=m

Z
D�+jajf

�
x+ z�h

�
za11 � � � z

ad
d K (z) dz = O (hm)

uniformly in x 2 I. Next, we de�ne

Ĝ (x) =
1

nh

nX
i=1

G

�
x�Xi
h

�
; G (z) = D�K (z) :

It is easily checked that our choice of G satis�es Assumption 1 in Hansen (2005)
under (C.6). We then obtain from Hansen (2005, Proof of Theorem 3) that

E
h
(Ĝ (x)� E[Ĝ (x)])2

i
= OP

�
log (n)n�1h�d

�
uniformly in x 2 I. Thus,

E
h
(D�f̂ (x)�D�f (x))2

i
=

n
E[D�f̂ (x)]�D�f (x)

o2
+ h�2sE

h
(Ĝ (x)� E[Ĝ (x)])2

i
= O

�
h2m

�
+OP

�
log (n)n�1h�(d+2s)

�
:

Next, we give asymptotic results for statistics of the following form

~Tn =

Z
Rd

h
G(x; ̂ (x) ; �̂)�G(x;K�~ (x) ; ~�)

i2
! (x) dx;

and
�Tn =

Z
Rd

h
G(x; ̂ (x) ; �̂)�G(x; ~ (x) ; ~�)

i2
! (x) dx;

where ̂ (x) = (̂1 (x) ; :::; ̂k (x)), ~ (x) = (~1 (x) ; :::; ~k (x)), and

̂i (x) =
1

nhd

nX
i=1

D�iK

�
x�Xi
h

�
;

~i (x) = D�i ~f (u) ; i (x) = D�if (u)

~f (x) = f(x; ~�) for some estimator ~�:
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The functions ! : Rd 7! R+ and G : Rd�Rm�� 7! R are known functions, and
�̂; ~� 2 � � Rl are parametric estimators. We shall work under the null,

H0 : 9�0 2 � : f (�) = f(�; �0);

where equality holds in the almost sure sense w.r.t. the Lebesgue measure.
We derive two sets of asymptotic results. The �rst concerns the case where h > 0

is �xed, while the second the case where h ! 0 as n ! 1. We make the following
assumptions in addition to (C.1)-(C.3):

C.4 The parametric density f (x; �) and its �rst two derivatives w.r.t. � are bounded.
The function D�f (x; �) and its �rst two derivatives w.r.t. � are bounded by a
function B (x) satisfying

R
Rd B (x) d (x) <1.

C.5 �̂ = �0 +
1
n

Pn
i=1  (XijXi�1) + oP (1=

p
n) and ~� = �0 +

1
n

Pn
i=1

~ (XijXi�1) +
oP (1=

p
n), where E [ (X1jX0)] = E

h
~ (X1jX0)

i
= 0, E

�
jj (X1jX0) jj2+�

�
<

1 and E
h
jj~ (X1jX0) jj2+�

i
<1.

C.6 The function G (x; y; �), x 2 Rd, y 2 Rk, � 2 �, is twice continuously di¤eren-
tiable in its 2nd and 3rd argument

C.7 ! (x) has bounded support.

We obtain the following result for the case where the bandwidth h > 0 is �xed as
n!1:

Lemma 8 Under (C.1)-(C.7), for any �xed h > 0,

n ~Tn !d

Z
Rd
Z2h (x)! (x) dx;

where Zh � N (0;�h) and �h satis�es for any function a 2 L2 (!) =
�
gj
R
Rd g

2 (x)! (x) dx <1
	
,

h�h; ai = Var (h	0;h; ai) + 2
1X
i=1

Cov (h	0;h; ai ; h	i;h; ai) ;

ha; bi =

Z
Rd
a (x) b (x)! (x) dx;

with

	i;h (x) =
kX
i=1

@G (x;K� (x) ; �0)

@yi

1

hd+j�ij

�
D�iK

�
Xi � x
h

�
� E

�
D�iK

�
Xi � x
h

���
+
@G (x;K� (x) ; �0)

@y

@ [K� (�; �)] (x)
@�0

 (XijXi�1)

+
@G (x;K� (x) ; �0)

@�0

n
 (XijXi�1) + ~ (XijXi�1)

o
:
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Proof. By a 2nd order Taylor expansion,

G(x; y; �)�G(x; y0; �0) =
@G (x; y0; �0)

@y
[y � y0] +

@G (x; y0; �0)

@�
[� � �0]

+
1

2

kX
i;j=1

@2G
�
x; �y; ��

�
@yi@yj

[yi � y0;i] [yi � y0;j ]

+
1

2

lX
i;j=1

@2G
�
x; �y; ��

�
@�i@�j

[�i � �0;i] [�i � �0;j ]

+
1

2

kX
i=1

lX
j=1

@2G
�
x; �y; ��

�
@yi@�j

[yi � y0;i] [�j � �0;j ]

for some �y between y and y0 and �� between � and �0. We then apply this to both
G(x; ̂ (x) ; �0) and G(x;K�~ (x) ; �0), and collect all the �rst order terms in Zn (x) =Pn
i=1	i (x) =

p
n where 	i (x) is given in the lemma.

The space L2 (!) de�ned in the lemma is a Hilbert space. Since ! has bounded
support and 	i (x) is continuous a.s., we easily see that Zn 2 L2 (!) a.s. Then,
by Politis and Romano (1994, Theorem 2.3), Zn !d Z in L2 (!) where Z has been
de�ned in the lemma. We claim that

n

Z
Rd

h
G(x; ̂ (x) ; �̂)�G(x;K�~ (x) ; ~�)

i2
! (x) dx =

Z
Rd
Z2n (x)! (x) dx+ oP (1) :

If this holds, then the result follows by the continuous mapping theorem since g 7!R
Rd g

2 (x)! (x) dx is a continuous functional on L2 (!).
The claim will hold if we can show that all squared higher order terms in the 2nd

order Taylor expansions are oP (1). We do this only for the �rst one; the remaining
ones follow by the same argument:

n

Z
Rd

@G
�
x;D� �f (x) ; ��

�
@yi@y0j


2

k̂ (x)�K� (x)k4 ! (x) dx

=
1

n

Z
Rd

@G
�
x;D� �f (x) ; ��

�
@yi@y0j


2  ~Zn (x)4 ! (x) dx

� B

n

Z
Rd

 ~Zn (x)4 ! (x) dx
=

1

n
�OP (1) ;

since, again using Politis and Romano (1994, Theorem 2.3), ~Zn =
�
~Zn;1; :::; ~Zn;k

�0
given by

~Zn;j (x) :=
1p
n

nX
i=1

�
D�jK

�
Xi � x
h

�
� E

�
D�jK

�
Xi � x
h

���
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weakly converges in L2 (!) towards ~Z where ~Z is a Gaussian process.
Next, we consider the asymptotics as h! 0. We �rst consider the case where the

parametric density is smoothed.

Lemma 9 Under (C.1)-(C.6), for any bounded function w : Rd 7! R+ and j�j = s �
0,

nhd=2+2s
�Z

Rd

h
D�f̂ (x)�K�D� ~f (x)

i2
w (x) dx� c�=

�
nhd+2s

��
!d N

�
0; �2�

�
;

as nhd+2s !1, where

c� =

�Z
Rd
D�K (z)2 dz

��Z
Rd
f (x)w (x) dx

�
;

�2� = 2

�Z
Rd
[D�K �D�K]2 (z)w (z) dz

��Z
Rd
f2 (x)w (x) dx

�
:

If furthermore nhd=2+2s+2m ! 0,

nhd=2+2s
�Z

Rd

h
D�f̂ (x)�D� ~f (x)

i2
w (x) dx� c�=

�
nhd+2s

��
!d N

�
0; �2�

�
:

Proof. We show this by an extension of Fan and Ullah (1999, Theorem 4.1), applying
the U-statistics result in Fan and Li (1994). We have thatZ

Rd

h
D�f̂ (x)�K�D� ~f (x)

i2
w (x) dx

=

Z
Rd

h
D�f̂ (x)�K�D�f (x)

i2
w (x) dx

+

Z
Rd

h
K�D�f (x)�K�D� ~f (x)

i2
w (x) dx

+2

Z
Rd

h
D�f̂ (x)�K�D�f (x)

i h
K�D�f (x)�K�D� ~f (x)

i
w (x) dx

= : In;1 + In;2 + In;3:

First,

In;1 =
2

n2h2(d+s)

X
1�i<j�n

Hn (Xi; Xj) +
1

n2h2(d+s)

nX
i=1

Gn (Xi) ;

where

Hn (u; v) =

Z
Rd

�
�Kn (x; u)� E

�
�Kn (x;X1)

�	 �
�Kn (x; v)� E

�
�Kn (x;X1)

�	
w (x) dx;

Gn (u) =

Z
Rd

�
�Kn (x; u)� E

�
�Kn (u;X1)

�	2
w (x) dx;

and �Kn (x; y) = D�K ((x� y) =h). We easily see that Hn (u; v) is a symmetric func-
tion with E [Hn (u;X1)] = 0, and we can therefore apply Fan and Li (1994, Theorem
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2.1) on Un :=
P
1�i<j�nHn (Xi; Xj). Observe that Hn (Xi; Xj) takes the same form

as the function �Hn (Xi; Xj) in Fan and Ullah (1999, Eq. (17)) except that our kernel
�Kn (z) is given as D�Kn (z=h) and we have a weighting function w (x). One can
follow the steps in Fan and Ullah (1999, Proof of Theorem 4.1) to show that under
(C.1)-(C.7),

p
2Un= (n�n)!d N (0; 1) as nh ! 0 for some  > d+ 2s, where

�2n : = E
h
H2
n

�
~X1; ~X2

�i
�

Z Z
E
h
�Kn

�
x; ~X1

�
�Kn

�
y; ~X1

�i2
w (x)w (y) dxdy

�
Z Z �Z

�Kn (x; z) �Kn (y; z) f (z) dz

�2
w (x)w (y) dxdy

� h3d
Z Z �Z

D�K (u)D�K (u+ v) f (x� uh) du
�2

w (x)w (v) dxdv

� h3d
Z Z �Z

D�K (u)D�K (u+ v) du

�2
f (x)2w (x)w (v) dxdv

� h3d�2�:

Thus,

nhd=2+2s

8<: 2

n2h2(d+s)

X
1�i<j�n

Hn (Xi; Xj)

9=;!d N
�
0; �2�

�
:

For the second term, one can show, again following the arguments in Fan and Ullah
(1999, Proof of Theorem 4.1), that

1

n2h2(d+s)

nX
i=1

Gn (Xi)

=
1

n2hd+2s

nX
i=1

Z
Rd

1

hd
�
�Kn (x;Xi)� E

�
�Kn (x;X1)

�	2
w (x) dx

=
1

nhd+2s

Z
Rd

(Z
Rd

1

hd
D�K

�
x� u
h

�2
f (u) du

)
w (x) dx+ oP

�
1

nhd+2s

�
=

1

nhd+2s

Z
Rd

�Z
Rd
D�K (z)2 f (x+ zh) dz

�
w (x) dx+ oP

�
1

nhd+2s

�
=

1

nhd+2s
c� + oP

�
1

nhd+2s

�
:

Following the same arguments as in Fan and Ullah (1999, Proof of Theorem 4.1), one
can show that nhd=2+2sIn;k = oP (1), k = 2; 3. This yields the �rst result.

To show the second result, we have to account for an additional bias term, In;4,
due to the non-centering of D� ~f (x). This is given by

In;4 :=

Z
Rd

h
K�D� ~f (x)�D� ~f (x)

i2
w (x) dx = OP

�
h2m

�
:

The additional requirement ensures that this vanishes asymptotically.
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Lemma 10 Assume (C.1)-(C.7) hold and j�kj = s � 0 while j�ij < s, i = 1; :::; k�1.
Then,

nhd=2+2s
n
~Tn � c�k=

�
nhd+2s

�o
!d N

�
0; �2�k

�
;

as nhd+2s !1, where c� and �2� are given in Lemma 9 with

w (x) =

�
@G (x;K� (x) ;�0)

@ym

�2
! (x) :

If furthermore nhd+2s+2m ! 0,

nhd=2+2s
n
�Tn � c�m=

�
nhd+2s

�o
!d N

�
0; �2�m

�
;

where now

w (x) =

�
@G (x;  (x) ;�0)

@ym

�2
! (x) :

Proof. We make the exact same expansions as in the proof of Lemma 8, and apply
Lemma 9 on each linear term. We see that all terms associated with lower order
derivatives �i, i = 1; :::;m�1, of the kernel estimator and the parametric components
will disappear at a faster rate, and so the asymptotics will only be driven by the kernel
estimator with the highest derivative, �k. That is,

nhd=2+2s
n
~Tn � c�k=

�
nhd+2s

�o
= nhd=2+2s

�Z
Rd

h
D�k f̂ (x)�K�D�k ~f (x)

i2
w (x) dx� c�k=

�
nhd+2s

��
+ oP (1)

with w given in the lemma, and similar for �Tn.
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