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Abstract
This paper presents a quantitative method for gaining knowledge about patterns

in customer behavior and related business revenue generation, based on customer
transaction histories and a customer relationship statespace. The method enables
the study of patterns conditional on a large set of individual customer characteris-
tics, requiring minimal assumptions about the functional form of this relation.
Assuming that customer behavior follows a markov decision process and given

a discount factor and revenue generated in each relationship state, the internal
variance of the life-time value of a group of customers can be calculated. Given a
set of customer characteristics, an ensemble of decision trees is grown by searching
for customer characteristics that will split the sample into two groups that minimize
internal variance of the life-time value. The trees are pertubed by bagging and
random feature selection, thus enabling out of sample fit measures to be calculated,
along with measures of variable importance and observation similarity.
The model is applied in a study of a newspaper’s customer database, where event

histories are linked to sociodemographic variables.

Contents
1 Introduction 80

2 Customer Behavior on a Markov Chain 81
2.1 Customer Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3 Tree Ensembles 84
3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.1.1 Out-of-bag Fit Measure . . . . . . . . . . . . . . . . . . . . . . . . 86
3.1.2 Variable Importance . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1.4 Speed of Algorithm and Search Resolution . . . . . . . . . . . . . . 89
3.1.5 Empty Cells - A Bayesian Solution . . . . . . . . . . . . . . . . . . 89
3.1.6 Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.1.7 State-specific Discount Rates . . . . . . . . . . . . . . . . . . . . . 90

3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.1 Linear Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.2 Non-linear Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

79



4 Application 93
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Relationship Statespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 State Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.2 Revenue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Aggregate Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1 Aggregate Lifetime Value . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3.2 Growing a Single Tree . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5 Variable Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.7 Segment Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8 LTV and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.9 Perspective to Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Conclusion 117

1 Introduction
Discovering patterns in customer behavior and revenue generation is a very helpful in-
gredient in business decision making. The marketing and management community have
in recent years introduced concepts such as customer relationship management, customer
equity and customer life-time value to address the appetite for frameworks to understand
customer-revenue dynamics. To apply these concepts to real data, a range of quantitative
methods have been utilized, such as event history analysis and duration or hazard-models.
In my own study of various companies’ customer transaction databases, I felt a better

method-toolbox was needed. Traditional methods have difficulties meeting the challenges
of the typical scenario faced by a business analyst. The typical scenario involves:

• Many customer transaction histories
• Many explanatory variables
• Little willingness to assume anything about the relation between customer transac-
tion histories and explanatory variables

Parametric methods such as linear regression, logit/probit models and basic hazard
models involve rather restrictive assumptions about the functional relation of transaction
histories and explanatory variables, a critique that applies equally well to a range of
semi-parametric models that are flexible with respect to unobserved heterogeneity, such
as the Cox-model. Methods from machine learning, such as decision trees and neural
networks, and non-parametric statistical methods such as conditional kernel regression,
address the problem of specification in increasing degree of generality. Decision trees are
very easy to understand and apply, but their predictive ability is dominated by neural
networks and conditional kernel density regression in most realistic cases. Neural networks
are difficult to set up and computationally expensive, while conditional kernel density
regression and the search for an optimal bandwidth-vector does not scale well in the
number of explanatory variables with respect to algorithm time consumption.
Ensembles of decision trees or random forests, as described in Breiman (2001), seem

to improve on many of these limitations. They are flexible, can handle many explanatory
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variables, seem robust in noisy datasets, see Hamza & Larocque (2005), and scale well
with respect to time consumption.
In marketing papers there have been few applications of tree ensembles. One is Buck-

inx & Van den Poel (2005), another is Lariviere & Poel (2005). Common for these and
many other quantitative models of customer lifetime value is the lack of a unified the-
oretical approach. Tree ensembles and other flexible methods have been used to model
and predict a discrete or continous dependent variable outcome. This paper develops a
variant of tree ensembles that apply to full customer event histories on a markov chain,
sometimes referred to as a markov decision process, and a derived lifetime value score.
The main source and inspiration for the tree ensemble implementation has been

Breiman (2001), Breiman & Cutler (2001)’s fortran source code and the R-implementation
authored by Andy Liaw and Maathew Wiener, described in Liaw & Wiener (2002).

2 Customer Behavior on a Markov Chain
What is customer behavior? Any person that might already be a customer, a former or
future customer, is sometimes referred to as an agent. The status of the relation between
an agent and a business is thought to be in one distinct state at any point in time. The
set of all possible states is the relationship statespace. Customer behavior is transitions
between states.
A newspaper subscription database is studied in a subsequent section, so let an imag-

inary newspaper serve as an illustration of these ideas. In one scenario we might decide
to classify agents from year to year as

• 0: Not a customer
• R: Rebate/discount program. The customer participates in an introductory sub-
scription program, to allow him to sample the newspaper.

• F: Full price. The customer has entered a full price subscription program.

The relation statespace contains three states {0, R, F}. A typical event history could
then follow patterns like, say, {R,0}, {R, F, 0} and {R,F,F,0,0,R,F}. The first event
history represents a customer who accepted a discount program, but didn’t enter into
full price subscription. The second event history represents a customer who also entered
a discount program, then accepted entry into full price subscription, but churned after
one period. The final event history also represents someone entering a discount program,
follow by two periods of full-price subscription. He then churns, but acceptes entry into
a discount program a second time.
Are there any regularities in customer behavior? We will assume that customers live

on a discrete Markov process, the Markov chain.
Assume we are given a relationship statespace S = {0, ..., S}. An event history is a

sequence of states h = {si} ,∀i : si ∈ S . The transition probability function p describes
the probability of observing a state conditional on various information. In particular,
if the probability of observing a given state is a function of nothing but the prior state
occupied, then the system is said to have the Markov property and can be said to be
a Markov chain. A Markov transition matrix is a matrix of |S| × |S| elements, such
that element (i, j) contains p (st+1 = j|st = i) . A Markov transition matrix completely
describes a Markov chain.
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First we will assume that all agents live on the same chain, while later introducing
separate chains for different groups of customers, that is, a transition probability function
that vary with agent characteristics.

0 R F
0 0.99 0.01 0
R 0.8 0 0.2
F 0.1 0 0.9

 (1)

Given the {0, R, F} statespace and a transition matrix as in eq. 1, we would say that
the probability of moving from "0" to "R" in a given year is 0.01. To go on from "R"
to "F" is related with a probability of 0.2. A transition from "F" and back to "0" would
happen with probability 0.1.
The imagined case serves to illustrate some obvious problems with the Markov prop-

erty. Think of event history number three. A former full price-paying customer in state
"0" is just as likely as a newbie to enter into a rebate program. It would be more reason-
able to think that the former customer is either much less likely, because of dissatisfaction,
or much more likely to come back, since he has displayed some interest in the product
earlier on. A second example is that of a very loyal customer, who has been subscribing
to the full price package for many years. He is as likely to churn as someone who just
entered that state.
One solution to that particular problem is to expand the statespace. One could insert

states some variant "0"-states, say, "0F" and "0R", for agents having churned from the
full price or the rebate program. To model the loyalty aspect, variant "F"-states, say,
"F.1", "F.2" and so on, could be inserted. The first year full price subscribers would
enter "F.1". Those surviving from "F.1" could enter "F.2" and so on.
Expanding the statespace is not free however, as we are introducing more parameters

into the model. Balancing model complexity against the available number of observations
and computier power is a problem facing any empirical researcher.

2.1 Customer Value

From this point and onwards it is assumed that the period-value of an agent’s state-
occupany can be specified. Let the the revenue vector r contain this information.
In subsequent sections we want to group agents together according to similarity in

behavior. There are many methods for judging similarity, such as likelihood or the gini-
measure, but for a business the notion of life-time value is an appropriate measure. It
is more important to predict the overall discounted value of a future event history right
then it is to estimate probabilities in the transition matrix accurately. The two goals
are related, but the issue lies in weighting the errors when minimizing the overall error,
say, with respect to the tradeoff between the (0,0) transition versus the (F,F) transition.
Given an abundance of 0-state agents, and few F-state agents, a likelihood approach would
result in a heavy weighing of errors in the 0-state. With respect to the revenue stream
flowing to the company, we would want to weight the F-state relatively more.
What is the present value of an agent? Given a discount factor β, if we knew the

future event history with certainty, the lifetime value v would be as stated in eq. 2. Let
ri denote the i’th element in vector r.

v = rs0 + βrs1 + β2rs2 + ... =
∞X
i=0

βirsi (2)
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In the face of uncertainty we are looking for the expected value of a discounted sto-
chastic revenue flow. Let M be a transition probability matrix for an agent, for example,
as in eq. 1. Looking one period into the future, we can expect to earn v0 = Mr, the
expected revenue for state i shown in the i’th element of v0. In the course of two periods,
we can expect to earn, in discounted value, v1 = Mr + βMv0. So,

v0 = Mr

v1 = Mr + βMv0 = Mr + βMMr

v2 = Mr + (βM)Mr + (βM)2Mr

...

vn =
¡
I + βM + (βM)2 + ...+ (βM)n−1¢Mr + (βM)nMr,

I being the identity matrix. Taking vn to the limit and observing that no entry in
M is larger than one and assuming that β ∈ [0, 1[ it will be true that each element of
limn→∞ (βnMn) is zero. Thus we are left with a geometric series in βM , leading to the
useful representation in eq. 3.

E (v) = lim
n→∞

vn = (I − βM)−1Mr (3)

Using the {0,R,F} statespace as an example, let β = 0.9 per year. Assume our revenue
from non-customers is $0, the discount program costs $10/year and full price customers
earns us $20/year, so r =

¡
0 −10 20

¢0
.

 1 0 0
0 1 0
0 0 1

− 0.9

 0.99 0.01 0
0.8 0 0.2
0.1 0 0.9

−1  0.99 0.01 0
0.8 0 0.2
0.1 0 0.9

 0
−10
20

 =

 0.879 33
21. 761
95. 153


Agents currently in state 0, R and F is worth, respectively, $0.88, $21.8 and $95.1 in

present value dollars.
Turning our attention to that of the variance of v, we observe that one period ahead,

the expected squared deviation will be u0 = M (r ◦ r) − (Mr) ◦ (Mr) . Sobel (1982)
demonstrates how to derive the variance of a revenue-markov chain, the result shown in
eq. 4. The measure in eq. 4 is also called internal variance.

var (v) =
¡
I − β2M

¢−1
θ, (4)

θ = M (r + βv) ◦ (r + βv)− v ◦ v
◦ Hadamard product/element-by-element multiplication.
Crunching the numbers for the {0,R,F } case results in

var (v) =
¡

126. 11 819. 08 3325. 7
¢T
,

or element-by-element standard deviation

sd (v) = 11. 230 28. 620 57. 669 .
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3 Tree Ensembles
This section deals with the challenge of searching for relations between customer lifetime
value and customer attributes. As mentioned in the introduction, tree ensembles seem
to have some advantages when many explanatory variables are present, when the func-
tional form of the relation betweeen dependent and independents are unknown and when
computing power is limited.
A tree ensemble is a special case of a classifier ensemble, in that the classifiers are

decision trees. In this paper, each tree is built using random feature selection at each
split combined with bagging. When predicting a dependent variable from an attribute
vector, the estimate is formed by some average of the predictions from individual trees in
the ensemble. Breiman (2001) refers to such a type of ensemble as a random forest.
A decision tree is a hierarchical partition of data, usually done to optimize some

measure of similarity. The most common decision tree is the binary tree, that iteratively
splits data into two groups by searching for a single attribute, and a threshold value, that
minimizes weighted dissimilarity within the two partitions formed by splitting data on the
attribute: One group for observations with an attribute value below the thresold value,
another group for observations with an attribute value above or equal to the thresold
value. The iteration is terminated when the number of observations in a leaf drops below
a preset thresold. A function of the observations in the leaf is then used to form a
prediction for all observations fitting the partition criteria.

3.1 Algorithm

Let D = {0, ..., nD − 1} be an index of nD agents, and the matrix Y a collection of
attributes related to each observation, element (i, j) equal to agent i’s j’th attribute yij.
Let K = {0, ..., nK−1} be an index of the nK attributes. The vector hi = {sij}ni−1

j=0 , sij ∈
S contains, in sequence, the event history of length ni of agent i.
For a group D̂ ∈ D of agents, the estimated markov transition matrix M̂D̂ can be

estimated as in eq. 5.

M̂D̂ =

(P
i∈D̂

Pni−1
j=1 1 (si,j−1 = k and si,j = l)P
i∈D̂

Pni−1
j=1 1 (si,j−1 = k)

)
(k,l)∈S×S

(5)

Given a markov transition matrix M , revenue vector r and discount factor β, define
vM as a stochastic vector of lifetime values. The expected value of vM is displayed in eq.
3.
Given a group of agents D̂ ∈ D and their attribute values YD̂ = {yij}, i ∈ D̂, j ∈ K,

we can define two partitioning functions fleft and fright that forms disjoint groups by
partitioning on an attribute k ∈ K and a thresold value y ∈ {yik|i ∈ D̂}. Let

fleft

³
D̂, k, y

´
=
n
i ∈ D̂|yik < y

o
fright

³
D̂, k, y

´
=
n
i ∈ D̂|yik ≥ y

o
.

D̂ can be associated with a vector of estimated lifetime value variance, var
³
vM̂

D̂

´
,

through equations 4 and 5. The goal is to partition D̂ into two groups with a small overall
variance. For an optimization scheme to work, we need a way of collapsing two vectors of
lifetime value variance into a single number.
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In the application section following later, the principles laid out in this section are
used to understand a possible future flow of revenue from new customers. Therefore the
estimated distribution of initial states is used to weight var

³
vM̂

D̂

´
. In other studies, such

as a study with the goal of segmenting the current customer base with respect to future
value, it would be reasonable to weight by the last state in each customer’s event history.
A vector of estimated initial state probabilities finit (·) for a group of agents D̂ is given

in eq. 6.

finit
³
D̂
´

=

ÃP
i∈D̂ 1 (si,0 = k)

|D̂|

!
k∈S

(6)

The weighted lifetime value variance w (·) is as given in eq. 7.

w
³
D̂
´

= finit
³
D̂
´0
var

³
vM̂

D̂

´
(7)

When partitioning D̂, we can weight each group’s lifetime value variance by the number
of agents in the group, thus arriving at an overall measure for lifetime value variance as
seen in eq. 8.

w
³
D̂, k, y

´
=
|Dleft|w(Dleft) + |Dright|w (Dright)

|Dleft|+ |Dright| (8)

Dleft := fleft

³
D̂, k, y

´
Dright := fright

³
D̂, k, y

´
Now to the process of generating a tree ensemble. A bagging procedure is used, to

enable the study of out-of-bag diagnostics and to prevent the model from overfitting.
Bagging, bootstrapping, cross-validation and hold-out samples are all terms with similar
meaning. Bagging involves the generation of a subsample of data, in-the-bag data, on
which a full model or model element is estimated. The remaining data, the out-of-bag, is
then used for validation purposes, such as calculating an out-of-bag fit measure.
Set msample to the number of observations to sample from D in the bagging procedure.

A typical value for msamle is in the range of 50% to 70% of the number of observations
and only extreme values seem to alter the resulting fit.

Random feature selection. When generating the typical single decision tree, each split
is formed by searching through all possible attributes. This is likely to yield a reasonably
good fit, but has some problems similar to those involved in solving optimization tasks in
the plane by greedy hill-climbing. Instead of growing trees using a greedy search, random
feature selection fall in the class of stochastic search techniques. In each split, a random
subset of the attributes are searched over.
Let mtry denote the number of attributes to sample from K at each split iteration.

Continuing an analog to other search algorithms, this parameter can be compared to the
temperature parameter in simulated annealing. A very low mtry can lead to slow or no
progress in the fitting measure when increasing the number of trees, while setting mtry

too high will leave too much of the search space unexplored and generate trees that look
similar.
Tree split iteration is terminated when the number of in-the-bag observations in a leaf

drop below mleaf . The two model parameters, mleaf and mtry, are the most important
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in the search algorithm and can be thought of as the tree ensemble equivivalent to the
bandwidth parameter in kernel density estimation or the nearest-neighbour fraction in
nearest-neighbour clustering.
Let mtree equal the number of trees in the ensemble and collect in-bag and out-of-bag

memberships in the nD ×mtree matrix B. Element (i, j) in B is set to one if observation
i is in-bag in tree j and zero otherwise.
All out-of-bag lifetime value estimates v̂ij for agent i from tree j are collected in the

nD ×mtree matrix V̂ .
A tree ensemble is created by calling ensemble() as described below.

ensemble():
for each i ∈ {0, ..., mtree} :

tree_root(i)

tree_root(t):
Din = sample(D,msample)
for each i ∈ Din:

Bit = 1
Doob = D\Din

tree_branch(t, Din, Doob)

tree_branch(t, Din, Doob):
if |Din| ≤ mleaf :

tree_leaf(t, Din, Doob)
else:

K̂ = sample(K,mtry)
(k∗, y∗) = arg mink∈K̂,y∈{yik|i∈Din}w (Din, k, y)
tree_branch(t, fleft (Din, k

∗, y∗) , fleft (Doob, k
∗, y∗) )

tree_branch(t, fright (Din, k
∗, y∗) , fright (Doob, k

∗, y∗) )

tree_leaf(t, Din, Doob):
for each i ∈ Doob :

v̂it = E
³
vM̂Din

,si0

´
sample(D, n):

return (n elements picked from D with equal probability)

The overall lifetime value prediction for each customer can now be calculated as in eq.
9.

v̂i =
1

|{j|Bij = 1}|
X

{j|Bij=1}
V̂ij (9)

3.1.1 Out-of-bag Fit Measure

When evaluating tree ensemble performance Breiman (2001) uses a mean-square error
criteria for continous outcome variables, while for categorical outcomes he counts the
number of correct predictions. In contrast, this paper is concerned with an empirically
unobservable construct, the lifetime value of a customer.
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The approach taken is to rely on local out-of-bag measures, local in the sense that
it only requires information available within a tree. When creating a leaf, the expected
lifetime value estimate is calculated and compared to the same calculation done on the
out-of-bag observations, to get an estimate of how wrong the guess on mean estimated
value might be. An out-of-bag mean square error σ̂2

oob.mean,t,i is calculated in each tree t,
for each out-of-bag observation i using the procedure in eq. 10.

σ̂2
oob.mean,t,i

=
³
E
³
vM̂Din

,si0

´
−E

³
vM̂Dout

,si0

´´2

(10)

Define the tree mean-square error to σ̂2
oob.mean,t

= Êi∈Doob

³
σ̂2
oob.mean,t,i

´
and the en-

semble mean-square error as σ̂2
oob.mean = Êt∈{0,...,mtree−1}

³
σ̂2
oob.mean,t

´
. The latter is an

estimate of the average error in a tree. The estimate is guaranteed to converge to some
limit, since each generated tree is drawn from the same distribution with respect to how
the bags are formed, how the split candidates are selected at each turn and the maximum
node size. It is a different matter to interpret what inherent meaning the limit carries
with it. It is not a measure of the expected error when estimating the lifetime value of
a single agent, rather it is an estimate of the error in the estimated mean for a group of
agents. The agents are grouped mainly as functions of mtry and mleaf , so ε2

oob.mean can
be thought of as a measure of the error with respect to the segmentation structure laid
out by mtry and mleaf .For example, for larger mleaf , the more coarse the tree partitioning
will be, that is, fewer leaves will be generated in each tree. Fewer leaves means more
observations in each group, which should help in guessing the lifetime value.
A second local measure is the average internal variance of lifetime value σ2

oob.iv.. For
each out-of-bag observation i in each tree t, calculate the internal variance σ̂2

oob.iv,i,t =

var
³
vM̂Doob

,si0

´
, based on eq. 4. Then σ̂2

oob.iv = Êt∈{0,...,mtree−1},i∈Doob,t

¡
σ̂2
oob.iv,i,t

¢
. Thinking

about mleaf again, we can expect σ̂2
oob.iv to increase in mleaf , since it is easier to group

similar event histories when many groups are available for the task.
σ̂2
oob.mean and σ̂

2
oob.iv can help us understand what happens to the average tree in the

ensemble, but it does not help us much in choosing mtree and in understanding more
precisely how the global model fit changes in mtry and mleaf.

An approach to global fit evaluation could be to examine how well the estimated
lifetime value v̂ ranks observations with respect to observed average revenue per time
unit âi =

³Pni−1
j=0 rsij

´
/ni, by some measure. However, α̂i is usually a weak estimator for

the true average revenue, since the event history is likely to be short. Other alternative
measures could be developed, but many obvious candidates suffer from the need of an
individual level estimation of the markov transition matrix. This could clearly be done in
a tree ensemble, but the convergence properties of even more complicated objects would
then be an issue.

3.1.2 Variable Importance

Several measures to judge variable importance are used in the tree ensemble literature
and code base. The term importance, and not significance, is used to emphasize that the
primary objective is to know if an attribute matters when explaining the variational pat-
terns in an outcome variable, not how it matters in the sense of directional influence. The
importance rankings should preferably be significant, but some measures with unknown
statistical properties are used as a guiding tool for exploratory analysis anyway.
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A measure used primarily as a guiding tool is easily calculated as a by-product of tree
generation: The average change in w (·) , in eq. 7, from splitting on a variable, averaged
over all trees.
A second measure with a degree of statistical validity is based on a permutation

approach. Given a local measure of out-of-bag fit ρ, for each attribute, the measure is
calculated by doing one or more random permutations of the attribute in every tree and
record the resulting change in ρ. The t-score for the mean change can then be calculated
by observing the mean, standard deviation and number of trees. Note that ρ is a measure
of fit with respect to a single tree, not a measure of how the trees fit collectively. In this
paper ρ is set to a pseudo chi-square test, a form of average chi-square taken over all
observations in a leaf, using the out-of-bag means instead of some observed quantity as
in the actual chi-square.

ρ = Ê

³
E
³
vM̂Din

,si0

´
−E

³
vM̂Doob

,si0

´´2

1
|Din| σ̂

2
in.iv,i,t + 1

|Doob| σ̂
2
oob.iv,i,t

(11)

The averaging is over all out-of-bag observations in a tree, and Din and Doob is implicitly
understood to vary with each leaf as described in the algorithm-section.

3.1.3 Segmentation

Breiman (2001) suggests a novel and interesting way of evaluating observation proximities
in tree ensembles. The idea is to count how often observations end up in the same
leaf, then transform this information into a matrix of dissimilarity measures. Finally,
multidimensional scaling, as described in Cox & Cox (1994), can be applied, to visualize
proximities.
Initialize the nD × nD matrix F to zeroes and let Fi,j denote element (i, j) in F. In

function tree_leaf(·) we extend the leaf updating mechanism as stated below.

for each i ∈ Doob :

v̂it = E
³
vM̂Din

´
for each j ∈ Doob :

Fi,j = Fi,j + 1

Upon termination of the algorithm, we can now calculate a dissimilarity matrix F dis

as in eq. 12.

F dis = InD×nD
− diag (F )−1 F (12)

Each entry in F dis is guaranteed to reside in the unit interval. A low value of Fi,j can
be interpreted as if observation i and j are similar with respect to attributes that carry
importance in determining outcome.
For larger values of nD some special precautions are necessary when performing these

computations. Firstly, some multidimensional scaling algorithms are unable to handle
nD’s ranging in the thousands. Secondly, a nD × nD matrix of say, 4 byte integer
values or 8 byte real values, eats up memory. F dis for nD = 10000 would consume
(100002 × 8) /10242 ≈ 763 megabytes of memory. The solution used by this author is to
use a sparse matrix memory layout and then sample a low number of rows and columns
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to be used by the multidimensional scaling package. Another solution would be to mark a
small random subsample of D for proximity calculation and then count leaf memberships
for this sample alone.

3.1.4 Speed of Algorithm and Search Resolution

If D is large and S contains many elements, then it can be very time-consuming to
complete a search sweep for the best split. Just one sweep along a single dimension
would involve inverting a |S| × |S| matrix up to nD times. A way to mitigate this is to
coarsen the search resolution. In the tree_branch(·) function, instead of varying y such
that y ∈ {yik|i ∈ Din}, we can vary y over every mresolution’th element in the range, thus
bringing the necessary number of evaluations down from |{yik|i ∈ Din}| to the nearest
|{yik |i∈Din}|
mresolution

.The gain in speed comes at the cost of decreased precision, but different values
can be tried out on small tree ensembles to judge the effects in each case.
A second solution is to increase the available processing power. Tree ensembles are

very easy to run in parallel on more processors, since each tree does not need information
from any other tree during generation.

3.1.5 Empty Cells - A Bayesian Solution

When partitioning D into smaller groups, there is a risk that eq. 5 is undefined since

X
i∈D̂

ni−1X
j=1

1 (si,j−1 = k) = 0.

This happens when agents in a partition never occupy state k. In some scenarios this
could have perfectly reasonable explanations due to some inherent properties of the studied
phenomena. In such cases it would be preferable to explicitly build such knowledge into
the model, but that is outside the scope of this paper.
In other scenarios the empty cells could arise from a low probability of entering the

state, either from other states or as an initial state. The approach taken in this paper is to
use a Bayesian weighing scheme, combining aggregate information about behavior from
a transition probability matrix Mprior with local information in each leaf. A new step
is entered in function tree_root(·), letting Mprior = M̂Din

. Given a prior weight α > 0,
the procedure used in calculating the group-level transition probability matrix is changed
from eq. 5 to eq. 13. Note that for α = 0 the latter equation collapses to the former.

M̂D̂ =


³P

i∈D̂
Pni−1

j=1 1 (si,j−1 = k and si,j = l)
´

+ α
¯̄̄
D̂
¯̄̄
Mprior

k,l³P
i∈D̂

Pni−1
j=1 1 (si,j−1 = k)

´
+ α

¯̄̄
D̂
¯̄̄


(k,l)∈S×S

, (13)

Mprior
k,l denoting element (k, l) from Mprior. The entries of Mprior is weighted with the

number of observations in the group, to distribute the mass of the prior over all leaves in
the tree. Failing to weight by

¯̄̄
D̂
¯̄̄
would result in a skewing of the search in the sense that

each new leaf entering would introduce more probability mass in the model. Typically α
would be set in proportion to 1

|D̂| .
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3.1.6 Censoring

The Markov property of the model helps in dealing with random censoring of observations.
For an event history hi = {si,0, si,1, .., si,ni−1} , sij = −1 if it is censored, we form a sequence
of observed transitions h0i = {(si,j−1, si,j) |si,j−1 6= −1 and si,j 6= −1} and modify eq. 5 to

M̂D̂ =

(P
i∈D̂

P
j∈h0

i
1 (j0 = k and j1 = l)P

i∈D̂
P

j∈h0
i
1 (j0 = k)

)
(k,l)∈S×S

. (14)

Here ji is element i in the tuple. If h0i is empty we are forced to ignore the observation,
since it carries no information with respect to transitions.
If si,0 is censored we cannot calculate eq. 6 correctly, but can instead ignore the

censored observations with respect to their initial data. This introduces the possibility of
having a group of observations all having censored initial states. In that case, as in the
section above, a Bayesian approach is utilized based on the aggregate Din in the function
tree_root(·).

3.1.7 State-specific Discount Rates

In the application section we will study a scenario with states of varying duration. This
has implications for how a discount rate is incorporated, since revenue following a state of
a long duration must be discounted more than the opposite situation. Let gi denote the
time unit duration of state i. For a discount factor β expressed in the same time units, let
the |S| × |S| diagonal matrix G = diag ({βgi}) . It can be shown that the former results
regarding internal variance and expected lifetime value holds, if we exchange in eq. 3 β
for G and modify eq. 4 as in eq. 15.

var (v) = (I −GMG0)−1
θ, (15)

θ = M (r +Gv) ◦ (r +Gv)− v ◦ v

3.2 Simulation

Let us now return to our imaginary newspaper scenario. Suppose instead of a fixed markov
transition matrix, as on p. 82, that probabilities vary with some observed attributes while
the revenue and discount factor are unchanged.

3.2.1 Linear Scenario

For agent i, suppose that attribute j, xij lies on a unit interval. Suppose also that a
markov transition probability matrix Mi varies with the first two of k attributes as in eq.
16.

Mi =


0 R F

0 0.8 0.2 0
R 1− x0 0 x0

F 1− x1 0 x1

 (16)

x0 could be interpreted as the propensity to enter into a full-price subscription, while
x1 is a loyalty dimension.
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Figure 1: Linear scenario. Pearson correlation of estimated ltv and true ltv as a function
of ensemble size

A simulation with n = 1000 such agents are generated, with k = 10 attributes. 20
events are simulated for each agent and the initial distribution is picked at random. The
true expected lifetime value is recorded and compared to the estimated.
An ensemble with mtry = 8 and mleaf = 70 is grown. The correlation between

estimated and expected value as a function of ensemble size is shown in figure 1 p. 91.
Variable importance is showed in figure 2 p. 92. It is clear that x0 and x1 are dominant,
as expected.
The proximity matrix of 500 agents is sampled and two compontens are extracted via

multidimensional scaling. The plot is seen in figure 3 p. 92. Colors represent an index of
the estimated lifetime value over the full sample’s average lifetime value. Three distinct
segments seem to exist, representing sets of (x0, x1) . The most valuable fifth, the white
segment, has a median x0, x1 of 0.73 and 0.91. The least valuable segment, the black
segment, has a median x0 and x1 of 0.19 and 0.37. The middle segment has a median
x0 of 0.83 and x1of 0.73, so they enter into full-time subscription, but only for at short
period.

3.2.2 Non-linear Scenario

Let us now introduce a non-linear complication. Define

Mopposite
i =


0 R F

0 0.8 0.2 0
R x0 0 1− x0

F x1 0 1− x1

 ,
and let

M 0
i =

½
Mi if xi2 ≤ 1

2

Mopposite
i if xi2 > 1

2

.

M 0
i is used as the new transition probability matrix when simulating, but everything

else is set up as in the previous section. As seen from figure 4 p. 93, the convergence in
pearson correlation is slower and reaches a plateau at a lower level. It is more difficult to
predict correctly due to the non-linearity.

91



-5 0 5 10 15 20 25 30 35 40
t-score for mean change

X8

X3

X2

X7

X5

X9

X4

X6

X1

X0

E
xp

lan
ato

ry V
a
riab

le
s

Figure 2: Linear scenario. Variable importance as t-score for mean change in pseudo
chi-square measure
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Figure 3: Plot of two dimensions from a multidimensional scaling of the linear scenario
proximity matrix. Colors represent est. ltv over average ltv
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Non-linear Scenario
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Figure 4: Non-linear scenario. Pearson correlation of estimated ltv and true value as a
function of ensemble size

The variable importance plot picks out the correct variables again, as seen in figure 5
p. 5. Many simple linear models would not have found x0 and x1 significant in this case.
The segmentation plots, shown in figures 6 and 7, are constructed with three compo-

nents, since a two-component plot was more difficult to interpret. In figure 7 we see a
white cluster of high-value customers again. Those are customers with either very high
or very low values of x0 and x1, depending on the value of x2. The segmentation is a bit
more difficult to visualize, due to the non-linearity.
All in all, the simulations indicate that the model could be useful in the face of real

data.

4 Application
In this section the subscriber transaction history database of a daily newspaper is ex-
plored. The goal is to learn how customer lifetime value derived from transitions through
a relationship statespace varies across customer attributes and possibly identify distinct
customer segments. The relationship statespace consists of various introductory offers
that lead to states of full-price subscription. The introductory offers are provided at a
cost to the company or yield little revenue, while full price states generate the majority
of revenue.
Due to the nature of the data, we do not observe agents before they enter a subscription

program. Conclusions derived from this study is thus conditional on the subset of all
agents willing to enter into a least one type of subscription at some point in time.
The newspaper is anonymous to avoid handing out sensitive information. It can be

characterized as a mainstream media outlet with a circulation that puts it among some
of the largest in it’s country. Besides a core section of general news being published every
day, extra sections about food, cars, fashion and so on is added at various fixed days of
the week. The weekend edition is special, in that many extra sections are available to the
reader. The paper is sold at newsstands and on a subscriber basis, but this study will
concentrate on the subscriber part only.
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Figure 5: Non-linear scenario. Variable importance measured as t-score for change in
pseudo chi-square measure
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Figure 6: Non-linear scenario. Three components extraced from the proximity matrix
with multidimensional scaling
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Figure 7: Non-linear scenario. Plot of component 1 and 3 from multidimensional scaling
of proximity matrix.

4.1 Data

10,237 current or former customer event histories are sampled from the newspaper’s data-
base. 1st of January 1998 is set as the starting date for an observation to be eligible for
sample inclusion, while the15th of January 2006 marks the ending date of any observa-
tion. The mean duration of an event history is 29.3 months and the median is 27 months,
including the non-customer as an event.
A fine-grained commercial database provides address-linked sociodemographic infor-

mation about customers. The information is provided on varying group levels due to
laws, and the practice of laws, that regulate the commercial use of of person data regis-
ters. They require varying minimum calculation group sizes as some data elements are
perceived as more sensitive than others. In general, very sensisitive statistics require a
minimum of 150 households, while less sensitive items require in the range of 50 house-
holds. The commercial database links customer addresses to flexible map polygons that
meet the required demands. Customers are then assigned the aggregate statistics relating
to all households within the polygon.
An overview of all 82 attributes are listed in figure 8. Nearly all variables are in

percentages i.e. jt_agri =5 means that 5% of all people in the local polygon are employed
in jobs related to agriculture.
To get a feeling for a typical event history 50 agents are sampled at random. Their

event histories are plotted in figure 9. Each line represents the event history of a single
agent, from the time he first entered into any type of relationship with the newspaper, to
the end of the observation window. The varying lengths of event histories are a function of
the starting date: Later starting dates result in short event histories. Figure 9 illustrates
how most agents start out by receiving an introductory discount on their subscription.
The typical discount for an one-month introductory subscription is around 50%, while
discounts for longer subscriptions usually range around 35% on the full price.

95



Map x Map x-coordinate
Coordinates y Map y-coordinate

cap_dist Distance from capital

Age age_0_11 Percentage of group Education edu_primary Primary School
age_12_16 aging from a to b, edu_gym Gymnasium
age_17_22 shown as _a_b and edu_egym Business Gymnasium
age_23_29 66p as 66 years and edu_crft Craft
age_30_39 above edu_short Short education
age_40_49 edu_medium Medium education
age_50_59 edu_bach Bachelor degree
age_60_65 edu_grad Graduate degree
age_66p edu_na No information

Job Status js_selfemp Self-employed Job Type jt_agri Agriculture
js_basic Basic, medium, jt_manufact Manufacturing
js_mid high and top-leader jt_supply Utilities
js_hi jobs according to jt_construct Construction
js_topleader responsibility. jt_trade Trade, hospitality
js_cashbenefit Public benefit jt_transport Transport
js_erl_ret Early Retired jt_finance Finance
js_j_rel_pen Job-release Pension jt_public Public and personal services
js_student Student jt_na No information
js_pension Pensioner jt_child Children
js_na No information jt_unempl Unemployed
js_child Children, not working jt_pension Pension

Building Types bt_agri Farm buildings Ownership Types ot_owner Owned
bt_house Houses (house ownership) ot_privaterent Rented, private
bt_mult Multi-houses ot_publicrent Rented, publiv
bt_terrace Terraced houses ot_coop Cooperative
bt_apts Apartments
bt_na No information Building Sizes bs_40b Below 40m2

bs_40_70
Family Type f_sic Single income w/child bs_71_90

f_sinc Single income no child bs_91_130
f_dic Double income w/child bs_130p 130m2 or more
f_dinc Double income no child
f_na No information Household Income inc_b33 Below $33k

inc_33_75
Household w_0_1 Percentage households inc_75p 75k$ or more
Wealth w_1_5 with wealth in national

w_5_25 [a,b] percentile Personal Income of pinc_b20 Income in national
w_25_50 Highest Household pinc_20_40 [a,b] percentile
w_50_75 Earner pinc_40_60
w_75_90 pinc_60_80
w_90_95 pinc_80_100
w_95_99
w_99_100

Figure 8: Variable overview and explanation.
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Figure 9: A random sample of event histories. Yellow: Discount subscription, green:
Full-price subscription, red: no subscription, grey: unobserved.
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4.2 Relationship Statespace

Let us now construct a relationship statespace that models key customer events. States
are constructed to take into account if a customer is participating in some kind of discount
program or if he is a regular customer paying the full price. Other properties of a customer
relationship state include the length of the subscription term, a measure of commitment,
and how often the newspaper is delivered.
The statespace is a simplified representation of the true possibilities facing a customer.

For instance, one can choose to get nothing but the Sunday edition of the newspaper, but
in the model it is only possible to choose between a daily and a weekend edition. The
subscription term may also vary beyond the given option of three months and twelve
months, but most customers happen to fall in the mentioned categories. Event histories
that don’t fit the statespace are modified to fit in. As an example, a customer with a six
month full-price subscription is simply chopped into two three-month subscriptions. The
statespace is simplified to minimize the computational and data degrees of freedom cost,
while also easing interpretation of later model output.
The names of relation states are coded to minimize the size of each state symbol in

graphs and diagrams.

4.2.1 State Codes

Pricing Scheme. A customer is either participating in an introductory pricing program,
is paying the full price or receives some other type of rebate, such as a loyalty rebate.

• I Introductory Rebate
• F Full Price
• R Non-introductory Rebate

Product type. A customer is either subscribing for the daily newspaper or the weekend
edition.

• D Daily
• WWeekend Edition

Duration of commitment. An introductory rebate might run for around a month, a
quarter or a full year. Full price subscription states are simplified to run over a quarter
or a year only.

• M Comitted for a month

• Q Quarter
• B Biannually
• Y Comitted for a full year

Duration of stay in full-price states. The number of consecutive times the customer
pays the full price is counted up to a limit. Example: State "FDY.2" means that a
customer is subscribing for a daily, with a commitment running over a year. He has been
paying the full price for 2 years in a row. State "FWQ.3" is for a customer subscribing
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State Revenue State Revenue

FDQ.1 100.00 FWQ.1 46.00
FDQ.2 100.00 FWQ.2 46.00
FDQ.3 100.00 FWQ.3 46.00
FDQ.4 100.00 FWQ.4 46.00

FDY.1 373.00 FWY.1 169.00
FDY.2 373.00 FWY.2 169.00
FDY.3 373.00 FWY.3 169.00

State Revenue State Revenue

IDB 22.00 IWB -20.00
IDM -6.00 IWM -3.00
IDQ 13.00 IWQ -1.00
IDY 34.00 IWY -11.00

RDQ 45.00 RWQ 21.00
RDY 181.00 RWY 84.00

0 0.00

Figure 10: Revenue index earned in a given state. Index set to revenue from a full-price
daily subscription in a quarter.

for the weekend edition with the commitment running over a quarter. A customer in
this state has been paying the full price for 3 quarters in a row. States with yearly
commitments count no more than three years, while quarterly commitment are counted
up to four quarters.

Churn state. Former customers enter state "0". State 0 is assumed to last for a
quarter. Then it might be re-entered, which is the most common pattern.

4.2.2 Revenue

Figure 10 p. 99 shows the revenue earned when a customer occupy a given state. The
numbers are not exact in order to protect the newspaper, but the relative magnitude is
true to the actual values. Since all states represent a simplification of reality, the rev-
enue numbers are modified to mirror this. As an example, quarterly revenue on weekend
edition subscriptions are taken as a weighted average of Fri-Sat-Sun subscribers and Sun-
day subscribers alone. The weights set to reflect the relative frequency of the various
subscription forms.
We will think of the 100 units earned from a full-price daily in a quarter, FDQ, as

$100. It is clear that the company earns more from daily subscribers, than from weekend
edition subscribers. Introductory rebates are higher than non-introductory rebates, so
less money is earned from the former. For introductory rebates, we see that weekend
edition discounts are handed out at a loss, while introductory daily discounts still earns
the company a bit of revenue.
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State n p
FDQ.1 217 0.026
FDY.1 53 0.006
FWQ.1 109 0.013
IDB 953 0.112
IDM 216 0.025
IDQ 3712 0.438
IDY 1157 0.136
IWB 459 0.054
IWM 452 0.053
IWQ 977 0.115
IWY 175 0.021
Sum 8480 1

Figure 11: Initial state absolute frequency n and relative frequency p

4.3 Aggregate Statistics

The first state an agent is seen in, in the customer database, is interpreted as his initial
state. The initial state is used to weight the internal variance of lifetime value in eq. 7,
but is also interesting in it’s own right. The lifetime value is governed by the transition
probability matrix and the initial distribution, so if the initial distribution varies with
agent attributes it could be an important source of variation of the lifetime value between
segments.
The initial distribution is shown in figure 11. Relative to the total number of obser-

vations, about 17% are unobserved at the initial state.
From the table it is clear that the notion about most agents starting out in a relation-

ship state of some introductory offer is correct. The most frequent initial state is that
of a three month introductory rebate on a daily newspaper, while the second most and
much less frequent state is an introductory rebate on a daily for a full year.
The aggregate transition probability matrix is shown in figure 12 p. 101. It is unwieldy

and many entries are equal to zero, so an alternative representation is shown in figure 13.
A second visual representation of transition probabilities in the form of a graph is

shown in figure 14 p. 103. Transition probabilities below .05 are not shown in the figure,
but their weights are still counted, therefore some outgoing weights will not sum to one.
State 0 is not represented directly to avoid cluttering the figure, but the probability of a
transition to state 0 is shown as a number below each state label.
Studying the graph closer reveals some interesting paths followed by customers. Take

as a point of departure state IDQ, the most frequent state. From here around 0.4 churns,
while 0.54 move on to a full-price daily subscription (FDQ.1) for a quarter. From here,
the majority 0.57 churns, while 0.39 enter into a second quarter of full-price subscription.
From FDQ.2, again, the majority churns, but 0.31 continue to a third quarter. In FDQ.3
the churn rate declines considerably and 0.83 move on to a fourth quarter. In FDQ.4
agents have even lower rates of churn, while 0.91 continues from quarter to quarter. This
is a key path with a close link to the revenue-dynamics of the newspaper.
A similar typical path for the second most frequent initial state,is that, in short form,

of (IDY, FDY.1, RDY, FDY.1, FDY.2, FDY.3). After a year of full-price subscription,
many customers get a loyalty-discount and return to a full-pricing scheme and in time,
ending up in a relatively stable state of repeat-subscription from year 3 and onwards.
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0 FDQ.1 FDQ.2 FDQ.3 FDQ.4 FDY.1 FDY.2 FDY.3 FWQ.1 FWQ.2 FWQ.3 FWQ.4 FWY.1 FWY.2
0 0.968 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FDQ.1 0.570 0.000 0.389 0.000 0.000 0.000 0.002 0.000 0.000 0.008 0.000 0.000 0.000 0.000
FDQ.2 0.565 0.000 0.000 0.310 0.000 0.000 0.008 0.000 0.000 0.000 0.010 0.000 0.000 0.000
FDQ.3 0.140 0.000 0.000 0.000 0.809 0.000 0.008 0.000 0.000 0.000 0.000 0.003 0.000 0.000
FDQ.4 0.068 0.000 0.000 0.000 0.902 0.000 0.013 0.000 0.000 0.000 0.000 0.003 0.000 0.000
FDY.1 0.377 0.000 0.000 0.000 0.010 0.000 0.240 0.000 0.000 0.000 0.000 0.000 0.000 0.002
FDY.2 0.142 0.000 0.000 0.000 0.015 0.000 0.000 0.722 0.000 0.000 0.000 0.000 0.000 0.000
FDY.3 0.080 0.000 0.000 0.000 0.007 0.000 0.000 0.868 0.000 0.000 0.000 0.000 0.000 0.000
FWQ.1 0.432 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.542 0.000 0.000 0.000 0.001
FWQ.2 0.513 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.402 0.000 0.000 0.004
FWQ.3 0.145 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.814 0.000 0.003
FWQ.4 0.109 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.858 0.000 0.005
FWY.1 0.408 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.281
FWY.2 0.239 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FWY.3 0.077 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.000 0.000
IDB 0.235 0.679 0.000 0.000 0.000 0.005 0.000 0.000 0.002 0.000 0.000 0.000 0.002 0.000
IDM 0.811 0.068 0.000 0.000 0.000 0.008 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000
IDQ 0.395 0.541 0.000 0.000 0.000 0.001 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000
IDY 0.177 0.061 0.000 0.000 0.000 0.639 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
IWB 0.269 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.648 0.000 0.000 0.000 0.002 0.000
IWM 0.827 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.051 0.000 0.000 0.000 0.000 0.000
IWQ 0.314 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.593 0.000 0.000 0.000 0.000 0.000
IWY 0.227 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.000 0.603 0.000
RDQ 0.158 0.471 0.000 0.000 0.000 0.032 0.000 0.000 0.049 0.000 0.000 0.000 0.016 0.000
RDY 0.018 0.101 0.000 0.000 0.000 0.784 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000
RWQ 0.137 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.584 0.000 0.000 0.000 0.000 0.000
RWY 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.124 0.000 0.000 0.000 0.465 0.000

FWY.3 IDB IDM IDQ IDY IWB IWM IWQ IWY RDQ RDY RWQ RWY
0 0.000 0.006 0.001 0.006 0.008 0.003 0.001 0.003 0.001 0.000 0.000 0.000 0.000

FDQ.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.007 0.001 0.000
FDQ.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.061 0.031 0.003 0.003
FDQ.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.005 0.000 0.000
FDQ.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.005 0.000 0.000
FDY.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.327 0.001 0.007
FDY.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.065 0.004 0.000
FDY.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.000 0.000
FWQ.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.011 0.002
FWQ.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.055 0.006
FWQ.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000
FWQ.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.013 0.004
FWY.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.028 0.204
FWY.2 0.498 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060
FWY.3 0.689 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019
IDB 0.000 0.057 0.003 0.004 0.002 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
IDM 0.000 0.004 0.004 0.053 0.000 0.008 0.004 0.000 0.000 0.000 0.000 0.000 0.000
IDQ 0.000 0.000 0.001 0.051 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000
IDY 0.000 0.002 0.002 0.001 0.109 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000
IWB 0.000 0.000 0.000 0.002 0.000 0.053 0.000 0.005 0.002 0.000 0.000 0.000 0.000
IWM 0.000 0.000 0.000 0.000 0.002 0.002 0.006 0.090 0.004 0.000 0.000 0.000 0.000
IWQ 0.000 0.000 0.000 0.000 0.001 0.002 0.027 0.054 0.001 0.000 0.000 0.000 0.000
IWY 0.000 0.000 0.004 0.000 0.012 0.004 0.000 0.000 0.074 0.000 0.000 0.000 0.000
RDQ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.134 0.089 0.008 0.000
RDY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.041 0.000 0.000
RWQ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.000
RWY 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062

Figure 12: Aggregate transition probability matrix
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Source state(n): (top_i_destination_state: probability)
0 ( 48078 ): ( 0 : 0.968 ) ( IDY : 0.008 ) ( IDB : 0.006 ) ( IDQ : 0.006 ) ( IWB : 0.003 )
FDQ.1 ( 3371 ): ( 0 : 0.571 ) ( FDQ.2 : 0.390 ) ( RDQ : 0.020 ) ( FWQ.2 : 0.008 ) ( RDY : 0.007 )
FDQ.2 ( 1168 ): ( 0 : 0.570 ) ( FDQ.3 : 0.313 ) ( RDQ : 0.062 ) ( RDY : 0.032 ) ( FWQ.3 : 0.010 )
FDQ.3 ( 383 ): ( FDQ.4 : 0.830 ) ( 0 : 0.144 ) ( RDQ : 0.010 ) ( FDY.2 : 0.008 ) ( RDY : 0.005 )
FDQ.4 ( 3204 ): ( FDQ.4 : 0.905 ) ( 0 : 0.068 ) ( FDY.2 : 0.013 ) ( RDY : 0.005 ) ( RDQ : 0.004 )
FDY.1 ( 970 ): ( 0 : 0.381 ) ( RDY : 0.331 ) ( FDY.2 : 0.242 ) ( RDQ : 0.025 ) ( FDQ.4 : 0.010 )
FDY.2 ( 250 ): ( FDY.3 : 0.752 ) ( 0 : 0.148 ) ( RDY : 0.068 ) ( FDQ.4 : 0.016 ) ( RDQ : 0.012 )
FDY.3 ( 415 ): ( FDY.3 : 0.889 ) ( 0 : 0.082 ) ( RDY : 0.022 ) ( FDQ.4 : 0.007 )
FWQ.1 ( 1295 ): ( FWQ.2 : 0.546 ) ( 0 : 0.436 ) ( RWQ : 0.012 ) ( RDQ : 0.002 ) ( FDQ.2 : 0.002 )
FWQ.2 ( 687 ): ( 0 : 0.521 ) ( FWQ.3 : 0.408 ) ( RWQ : 0.055 ) ( RWY : 0.006 ) ( FWY.2 : 0.004 )
FWQ.3 ( 308 ): ( FWQ.4 : 0.841 ) ( 0 : 0.149 ) ( RWQ : 0.006 ) ( FWY.2 : 0.003 )
FWQ.4 ( 1362 ): ( FWQ.4 : 0.865 ) ( 0 : 0.109 ) ( RWQ : 0.013 ) ( FWY.2 : 0.005 ) ( RWY : 0.004 )
FWY.1 ( 132 ): ( 0 : 0.439 ) ( FWY.2 : 0.303 ) ( RWY : 0.220 ) ( RWQ : 0.030 ) ( RDY : 0.008 )
FWY.2 ( 40 ): ( FWY.3 : 0.625 ) ( 0 : 0.300 ) ( RWY : 0.075 )
FWY.3 ( 42 ): ( FWY.3 : 0.857 ) ( 0 : 0.095 ) ( FWQ.4 : 0.024 ) ( RWY : 0.024 )
IDB ( 1120 ): ( FDQ.1 : 0.685 ) ( 0 : 0.237 ) ( IDB : 0.057 ) ( FDY.1 : 0.005 ) ( IDQ : 0.004 )
IDM ( 255 ): ( 0 : 0.843 ) ( FDQ.1 : 0.071 ) ( IDQ : 0.055 ) ( IWB : 0.008 ) ( FDY.1 : 0.008 )
IDQ ( 4128 ): ( FDQ.1 : 0.542 ) ( 0 : 0.396 ) ( IDQ : 0.052 ) ( FWQ.1 : 0.004 ) ( IWQ : 0.002 )
IDY ( 1466 ): ( FDY.1 : 0.643 ) ( 0 : 0.178 ) ( IDY : 0.110 ) ( FDQ.1 : 0.061 ) ( IDM : 0.002 )
IWB ( 539 ): ( FWQ.1 : 0.660 ) ( 0 : 0.275 ) ( IWB : 0.054 ) ( IWQ : 0.006 ) ( IDQ : 0.002 )
IWM ( 524 ): ( 0 : 0.844 ) ( IWQ : 0.092 ) ( FWQ.1 : 0.052 ) ( IWM : 0.006 ) ( IWY : 0.004 )
IWQ ( 1183 ): ( FWQ.1 : 0.598 ) ( 0 : 0.317 ) ( IWQ : 0.055 ) ( IWM : 0.027 ) ( IWB : 0.002 )
IWY ( 232 ): ( FWY.1 : 0.629 ) ( 0 : 0.237 ) ( IWY : 0.078 ) ( FWQ.1 : 0.034 ) ( IDY : 0.013 )
RDQ ( 236 ): ( FDQ.1 : 0.492 ) ( 0 : 0.165 ) ( RDQ : 0.140 ) ( RDY : 0.093 ) ( FWQ.1 : 0.051 )
RDY ( 208 ): ( FDY.1 : 0.822 ) ( FDQ.1 : 0.106 ) ( RDY : 0.043 ) ( 0 : 0.019 ) ( RDQ : 0.005 )
RWQ ( 48 ): ( FWQ.1 : 0.708 ) ( 0 : 0.167 ) ( RWQ : 0.125 )
RWY ( 22 ): ( FWY.1 : 0.682 ) ( FWQ.1 : 0.182 ) ( RWY : 0.091 ) ( 0 : 0.045 )

Figure 13: Aggregate group. Top 5 transition probabilities from source state (first entry
in row) to destination state (entry two and onwards).
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Figure 14: Graph of agent behavior
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State E(v) E(v)-E(v_0) State E(v) E(v)-E(v_0)

FDQ.1 492 168 FWQ.1 384 60
FDQ.2 644 320 FWQ.2 406 82
FDQ.3 1113 789 FWQ.3 501 177
FDQ.4 1218 894 FWQ.4 523 199

FDY.1 934 610 FWY.1 347 23
FDY.2 1538 1214 FWY.2 358 35
FDY.3 1733 1409 FWY.3 410 86

IDB 498 175 IWB 370 47
IDM 344 20 IWM 327 3
IDQ 468 144 IWQ 378 54
IDY 960 637 IWY 409 85

RDQ 587 263 RWQ 323 -1
RDY 1062 738 RWY 304 -20

0 324 0

Figure 15: Expected lifetime value by state for the full sample

4.3.1 Aggregate Lifetime Value

The discount rate is set to 10% per year, so β = 0.9. The expected lifetime value for
the aggregate group is displayed in figure 15 p. 104. Column one shows the expected
lifetime value, while column two shows the difference down to the expected value of
former customers. It could seem counter-intuitive that state 0 customers should have a
high expected lifetime value, but here it is important to remember that the analysis is
conditional on current and former customers. Former customers might have an expected
value of $324, but it would be outside the bounds of the model to conclude that non-
customers, the rest of the world, would earn a similar amount.
It is interesting to note that the expected value increases with loyalty. For instance,

customers in FDY.2 can be expected to earn 1538−934 = 604 more in present value than
FDY.1 customers.
RWQ and RWY, when compared to state 0 customers, carry a negative present value.

4.3.2 Growing a Single Tree

To get a feeling of what the groups might look like, a single tree is grown withmleaf = 1000
i.e. no leaf is allowed to contain more than a thousand observations. All variables are
permitted to be a candidate at each split, so mtry = 82. The tree is grown on a random
subsample, to permit out-of-bag error-estimates. The result is shown in figure 16 p. 105.
The figure shows the number of observations n in each branch and leaf. For each leaf,

the weighted expected lifetime value is reported, the weights governed by the empirical
initial state in the leaf-group. An out-of-bag root of the mean squared error is also
reported, oob_sd.
The least valuable segment has a wltv of 241, while the most valuable segment is

at wltv=951.0, a considerable difference. The least valuable segment is characterized by
below average wealth (w_75_90 < 16.34), few working in high job positions and few
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w_75_90 < 16.34 n=2558 
   js_hi < 9.93 n=1789 
      bt_house < 49.09 n=1610 
         js_job_rel_pen < 1.19 n=315 wltv=241.0 oob_sd=21.86 
         js_job_rel_pen >= 1.19 n=1295 
            capital_dist < 3761.92 n=259 wltv=251.0 oob_sd=102.59 
            capital_dist >= 3761.92 n=1036 
               bs_40b < 5.59 n=829 wltv=375.0 oob_sd=32.7 
               bs_40b >= 5.59 n=207 wltv=347.0 oob_sd=182.69 
      bt_house >= 49.09 n=179 wltv=584.0 oob_sd=182.05 
   js_hi >= 9.93 n=769 wltv=383.0 oob_sd=79.9 
w_75_90 >= 16.34 n=2561 
   w_75_90 < 28.54 n=1535 
      pinc_60_80 < 16.60 n=306 wltv=951.0 oob_sd=93.23 
      pinc_60_80 >= 16.60 n=1229 
         age_23_29 < 2.10 n=118 wltv=640.0 oob_sd=513.44 
         age_23_29 >= 2.10 n=1111 
            edu_grad < 3.11 n=107 wltv=547.0 oob_sd=159.24 
            edu_grad >= 3.11 n=1004 
               age_40_49 < 17.99 n=801 wltv=694.0 oob_sd=51.13 
               age_40_49 >= 17.99 n=203 wltv=427.0 oob_sd=61.98 
   w_75_90 >= 28.54 n=1026 
      y < 6128535.00 n=103 wltv=793.0 oob_sd=384.8 
      y >= 6128535.00 n=923 wltv=747.0 oob_sd=170.2 

Figure 16: A partition by a single tree

people on job release pension, a special public pension offered to people in the last phase
of their job market participation.
The most valuable segment is characterized by above average wealth (w_75_90 >

16.34), but not way above average (w_75_90 < 28.54). Personal income of highest
household earner in the 60-80 percentile is also below average.
In general, the tree tells us to expect wealth and income to be key predictors for

customer value, while job position, building types in an area and age plays a significant
but smaller role.

4.4 Parameter Selection

The model is run at several parameter values to get an impression of what to expect
in terms of out-of-bag mean error and internal variance. mtry is allowed to vary over
mtry ∈ {2, 4, 8, 16, 32, 48, 64, 82} and mleaf ∈ {250, 500, 1000}. The in-bag/out-of-bag
sampling rate is set to 0.5. Each pair of parameters are taken through an ensemble of size
25.
Results are shown in figure 17 p. 106. It is seen that small values of mtry lead to

high internal variance together with relatively high oob mean error. For mtry ≥ 48 there
seems to be a kind of efficiency barrier across ensembles of varying mleaf combinations.
This barrier probably shows us the optimal trade-off we must do, when choosing between
a small internal variance of groups, versus levels of oob mean error.
Without a fixed global fit measure, the authors choice of oob mean error and internal

variance is set rather arbitrarily by picking mtry = 48 and mleaf = 700. From the figure,
one should expect average internal variance near 520 and oob.mean error near 150.
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Figure 17: Black: mleaf = 250, grey: mleaf = 500, white: mleaf = 1000. The size of a dot
corresponds to mtry ∈ {2, 4, 8, 16, 32, 48, 64, 82}
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Figure 18: Top 20 variable importance. t—score is for mean change in pseudo chi-square
fit measure

4.5 Variable Importance

The top 20 most important variables are shown in figure 18 p. 107 and the score for all
variables are shown in figure 19 p. 108. Significant t-values are shown in bold.
The important measures are not very high, compared to the simulation case. This has

to do with the multicollinearity in the data. As an example, if w_95_99 is very high it
will almost always be the case that w_5_25 is very low. If two variables were perfectly
correlated, both importance measures could be expected to be approximately halved.
We see that expected lifetime value and variance varies with the degree to which

building types in an area is unknown, the degree to which households are cooperatives, if
building sizes are below 40 square meters, the proportion of very wealthy households, the
presence of jobs in agriculture, the proportion of apartments in a place, and so on. The
next section will hand out more useful information on how lifetime varies, so no further
attempt to interpret the patterns in importance will be carried out. However, there is one
interesting observation on the importance measures within groups. For the building sizes,
household wealth and personal income groups, it seems that the algorithm finds more
information in the extremes than in the middle. For example, for building sizes, bs_40b
and bs_130p are significant, while the remaining intervals in-between are not. This is
probably often the case in a marketing setting, that data about extremes is more valuable
than data about the average.
The importance measure could help an analyst eliminate some variables to simplify

the model. In other scenarios we could have a much higher range of insignificant variables,
but it is typical for sociodemographic data, that most attributes alone are weak predictors.
One strength of a tree ensemble is the ability to cope with multicollinearity. Importance
measures might be affected, but the predictive properties of an ensemble can be shown to
be unaffected by the presence of the phenomena.

4.6 Segmentation

A two-component multidimensional scaling of the proximity matrix is show in figure 20
p. 109. There seems to be a gradual separation of high- to lower value agents, with
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Map x 0.70
Coordinates y 1.54

cap_dist 1.77

Age age_0_11 1.6 Education edu_primary 1.33
age_12_16 0.1 edu_gym 0.52
age_17_22 1.5 edu_egym 1.37
age_23_29 1.6 edu_crft 3.52
age_30_39 1.0 edu_short 1.52
age_40_49 3.3 edu_medium 2.43
age_50_59 2.0 edu_bach 3.31
age_60_65 3.0 edu_grad 2.72
age_66p 2.0 edu_na 1.02

Job Status js_selfemp 2.06 Job Type jt_agri 5.25
js_basic 2.16 jt_manufact 2.59
js_mid 0.94 jt_supply 3.06
js_hi 1.45 jt_construct 2.32
js_topleader 1.04 jt_trade 1.78
js_cashbenefit 1.65 jt_transport 3.19
js_erl_ret 3.50 jt_finance 1.95
js_j_rel_pen 2.99 jt_public 2.89
js_student 0.29 jt_na 1.69
js_pension 1.28 jt_child 0.68
js_na 3.08 jt_unempl 2.49
js_child 2.62 jt_pension 2.35

Building Types bt_agri 4.57 Ownership Types ot_owner 0.68
bt_house -0.33 (house ownership) ot_privaterent 0.65
bt_mult 0.60 ot_publicrent 0.43
bt_terrace 3.81 ot_coop 5.30
bt_apts 5.16
bt_na 5.39 Building Sizes bs_40b 5.29

bs_40_70 1.24
Family Type f_sic 2.83 bs_71_90 1.71

f_sinc 1.54 bs_91_130 0.46
f_dic 1.53 bs_130p 2.78
f_dinc 2.50
f_na 2.78 Household Income inc_b33 2.87

inc_33_75 2.40
Household w_0_1 0.94 inc_75p 2.22
Wealth w_1_5 2.36

w_5_25 2.24 Personal Income of pinc_b20 1.36
w_25_50 1.53 Highest Household pinc_20_40 2.10
w_50_75 0.48 Earner pinc_40_60 1.64
w_75_90 2.41 pinc_60_80 -0.03
w_90_95 1.96 pinc_80_100 3.39
w_95_99 5.29
w_99_100 2.02

Figure 19: Variable importance. t-score for mean change in pseudo chi-square measure
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Figure 20: Plot of two dimensions from amultidimensional scaling of the proximity matrix.
Colors represent an index of est. ltv over a full-group average ltv.

the extreme segments well-separated. We can use this information when thinking about
forming segments. Focusing on the least valuable 20% (low group) and the most valuable
20% (high group), no distinct segments within these groups reveal themselves in the figure,
making the task of characterizing each segment as an entity less hazardous.
A table of attribute means conditional on low group and high group membership is

shown in figure 21 p. 110. Each group contains 2048 agents. Standard deviations are not
reported, because at 2000+ observations, even tiny differences will be significant.
Scanning through the figure, a picture of low group members emerge. Young people

are overrepresented, unmarried and living alone. They live in public or private rented
apartments or coops of size 40-70 m2 in cities. They have a primary school education
or a craft behind them. Their income is somewhat below average and their wealth is
considerably below average. An above average proportion is unemployed or otherwise
involved in a public pension scheme.
The high group is to a large degree made up of mature couples in their 40’s and

50’s, with children having left the home or soon reaching that phase. The overwhelming
majority live in their own house of 130 m2 or more. University degrees are strongly over-
represented along with medium length educations. Income and wealth are considerably
above average.
Looking at importance scores of variables, it is interesting to note that the, say, top 5

most important variables are represented by extreme opposite means in the two segments.
For example, the top 4 w_99_100 is at 0.1 in the low group and at 5.5 in the high group,
while the top 2 ot_coop is at 25.9 in the low group and comes out at 0.4 in the other
group. These variables seperate the two extreme segments well.
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Low-group High-group Low-group High-group
mean mean mean mean

Map x 7.14 7.07
Coordinates y 6.17 6.18

cap_dist 153.0 265.0

Age age_0_11 11.9 16.8 Education edu_primary 26.8 8.6
age_12_16 3.5 6.9 edu_gym 9.2 2.2
age_17_22 7.0 5.2 edu_egym 2.4 0.8
age_23_29 18.9 3.3 edu_crft 29.9 34.2
age_30_39 19.0 13.2 edu_short 4.3 7.2
age_40_49 11.1 16.1 edu_medium 9.9 21.1
age_50_59 9.9 17.7 edu_bach 3.3 1.5
age_60_65 4.8 8.6 edu_grad 7.2 21.2
age_66p 13.8 12.2 edu_na 7.1 3.2

Job Status js_selfemp 2.1 5.9 Job Type jt_agri 0.2 1.8
js_basic 32.5 25.7 jt_manufact 4.4 6.1
js_mid 7.7 11.0 jt_supply 0.2 0.4
js_hi 6.4 11.9 jt_construct 2.2 2.9
js_topleader 0.4 2.6 jt_trade 9.5 9.8
js_cashbenefit 2.4 0.1 jt_transport 4.0 3.3
js_erl_ret 5.8 1.4 jt_finance 9.6 12.0
js_j_rel_pen 2.0 3.2 jt_public 18.9 20.5
js_student 3.8 2.7 jt_na 0.2 0.4
js_pension 12.9 9.1 jt_child 15.5 21.5
js_na 10.1 5.5 jt_unempl 14.7 7.6
js_child 13.8 20.8 jt_pension 20.7 13.7

Building Types bt_agri 0.1 7.7 Ownership Types ot_owner 8.7 93.3
bt_house 1.4 73.1 (house ownership) ot_privaterent 25.0 5.9
bt_mult 6.9 11.5 ot_publicrent 40.4 0.3
bt_terrace 1.2 2.2 ot_coop 25.9 0.4
bt_apts 88.7 4.8
bt_na 1.9 0.7 Building Sizes bs_40b 5.3 0.3

bs_40_70 51.0 1.6
Family Type f_sic 6.7 2.1 bs_71_90 27.7 5.3

f_sinc 56.8 16.4 bs_91_130 14.0 27.8
f_dic 10.1 32.0 bs_130p 2.0 65.1
f_dinc 18.9 42.6
f_na 7.4 6.9 Household Income inc_b33 43.2 7.4

inc_33_75 41.1 23.2
Household w_0_1 0.3 1.4 inc_75p 15.7 69.4
Wealth w_1_5 3.0 2.8

w_5_25 42.2 4.5 Personal Income of pinc_b20 28.6 4.5
w_25_50 29.6 5.9 Highest Household pinc_20_40 24.9 8.7
w_50_75 18.9 18.5 Earner pinc_40_60 19.7 12.2
w_75_90 4.5 26.1 pinc_60_80 16.4 21.3
w_90_95 0.8 16.8 pinc_80_100 10.3 53.3
w_95_99 0.5 18.5
w_99_100 0.1 5.5

Figure 21: Attribute mean values for least valuable 20% of agents and for the most
valuable 20%.
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4.7 Segment Behavior

Continuing our exploration of the low and high group, the groups’ estimated average
lifetime value along with the initial distribution is shown in figure 22 on p. 112. It is
a bit surprising to see only small differences in the initial state relative frequency. The
low group is a bit more likely to enter through IDQ than the high group, while the high
group is a little more likely to commit to six months instead of a quarter. The initial
state distribution is probably not an important source in understanding the behavioral
difference between the two groups.
The expected lifetime value of entry through each state, however, displays big differ-

ences between the two groups. As an example, low group state 0 agents are worth $167,
while high group state 0 agents are worth $575.
To better understand differences in behavior, we turn to individual transition proba-

bilities. Tables of top 5 transition states are shown in figure 23 p. 113 and 24 on p. 114.
Behavior graphs are shown in figures 25 and 26 on p. 115 and p. 116.
Taking the most frequent intitial state, IDQ, as a point of departure we see important

differences in behavior. The sequence {IDQ, FDQ.1, FDQ.2,FDQ.3,FDQ.4} happens
with markedly different transition probabilities. The low group will survive the trip with
probability 0.45× 0.29× 0.35× 0.84 = 0.038. The high group will enter with probability
0.64 × 0.44 × 0.34 × 0.81 = 0.078, an important relative diffence that is reflected in the
estimated LTV of $282 and $499 for the low and high group, respectively. It can also be
noted, that the difference stems from behavior within the first few states. Those with low
reservation prices are weeded out after a round of full-price bills.
Behavior from the initial state IWQ is not so different between the two groups, but

still results in very different lifetime value estimates. It is important to note that agents
can return from state 0, and high group customers do that much more often than low
group agent. Each quarter, there is a 0.041 chance that a high group agent returns, while
the same probability for a low group agent is only 0.020.
Another frequent initial state for high group agents are IDB, a six month introductory

offer. High group agents go through a transition to FDQ.1 with probability 0.784,while
low group customers get there with probability 0.568.
Some analysis could be applied to the non-introductory rebates, all R-states, but the

sample is thin near those states. A bigger sample or a smaller relationship statespace is
needed to solve that problem.

4.8 LTV and Prediction

In this section we will see if we can predict group differences in future revenue using out-
of-bag estimated average lifetime value. Conditioning on state IDQ, the most frequent
initial state, observed discounted revenue is calculated 24 months into the future. Agents
with event histories below this thresold are excluded from the calculation. Note that this
does not impose a selection bias, as event histories include state 0 events. n = 1817
agents are available for the calculation. The sample is partitioned into five segment of
equal size, around 363 in each, according to estimated lifetime value. For each partition,
the corresponding mean and standard deviation of the 24 months discounted revenue is
calculated.
Figure 27 p. 117 displays a table of t-tests for differences in mean. It is peculiar that

the second highest ranked segment actually scores the highest revenue, but the variance
is also much higher and the difference is not significant. All in all the lifetime value seems
to rank future revenue rather well.
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Low Group High Group
State n p LTV n p LTV delta(LTV)

0 0 0.000 167 1 0.001 575 408
FDQ.1 40 0.023 308 45 0.030 805 497
FDQ.2 0 0.000 532 0 0.000 997 465
FDQ.3 0 0.000 963 0 0.000 1510 547
FDQ.4 0 0.000 1030 0 0.000 1612 582
FDY.1 4 0.002 1436 2 0.001 1610 174
FDY.2 0 0.000 1746 0 0.000 2321 576
FDY.3 0 0.000 1870 0 0.000 2449 579
FWQ.1 19 0.011 246 24 0.016 648 402
FWQ.2 0 0.000 280 0 0.000 670 390
FWQ.3 0 0.000 388 0 0.000 773 385
FWQ.4 0 0.000 400 0 0.000 781 381
FWY.1 0 0.000 324 2 0.001 723 399
FWY.2 0 0.000 506 0 0.000 859 353
FWY.3 0 0.000 638 0 0.000 980 341
IDB 126 0.072 310 196 0.130 813 503
IDM 68 0.039 216 63 0.042 622 406
IDQ 927 0.527 282 691 0.458 781 499
IDY 0 0.000 1317 46 0.030 1522 205
IWB 104 0.059 240 117 0.077 628 388
IWM 177 0.101 176 99 0.066 593 418
IWQ 279 0.159 238 184 0.122 640 402
IWY 16 0.009 346 40 0.026 761 414
RDQ 0 0.000 577 0 0.000 1029 452
RDY 0 0.000 1289 0 0.000 1621 332
RWQ 0 0.000 247 0 0.000 674 427
RWY 0 0.000 417 0 0.000 737 320
Sum 1760 1 1510 1

Figure 22: Low and high group. Estimated average lifetime value and initial state count
n and relative frequency p.
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Low Group
Source state(n): (top_i_destination_state: probability)
0 ( 11526 ): ( 0 : 0.980 ) ( IDQ : 0.005 ) ( IWQ : 0.004 ) ( IDB : 0.002 ) ( IWB : 0.002 )
FDQ.1 ( 600 ): ( 0 : 0.678 ) ( FDQ.2 : 0.293 ) ( RDQ : 0.013 ) ( FWQ.2 : 0.010 ) ( RWQ : 0.003 )
FDQ.2 ( 158 ): ( 0 : 0.551 ) ( FDQ.3 : 0.348 ) ( RDQ : 0.051 ) ( RDY : 0.019 ) ( FWQ.3 : 0.019 )
FDQ.3 ( 58 ): ( FDQ.4 : 0.845 ) ( 0 : 0.138 ) ( FWQ.4 : 0.017 )
FDQ.4 ( 380 ): ( FDQ.4 : 0.889 ) ( 0 : 0.082 ) ( RDY : 0.013 ) ( RDQ : 0.005 ) ( FDY.2 : 0.005 )
FDY.1 ( 32 ): ( FDY.2 : 0.656 ) ( 0 : 0.125 ) ( RDQ : 0.094 ) ( RDY : 0.063 ) ( FWY.2 : 0.031 )
FDY.2 ( 21 ): ( FDY.3 : 0.810 ) ( 0 : 0.143 ) ( RDY : 0.048 )
FDY.3 ( 28 ): ( FDY.3 : 0.857 ) ( 0 : 0.071 ) ( RDY : 0.071 )
FWQ.1 ( 327 ): ( FWQ.2 : 0.505 ) ( 0 : 0.483 ) ( RDQ : 0.003 ) ( RWQ : 0.003 ) ( FDQ.2 : 0.003 )
FWQ.2 ( 161 ): ( 0 : 0.559 ) ( FWQ.3 : 0.366 ) ( RWQ : 0.043 ) ( RWY : 0.019 ) ( FDQ.3 : 0.012 )
FWQ.3 ( 62 ): ( FWQ.4 : 0.823 ) ( 0 : 0.177 )
FWQ.4 ( 249 ): ( FWQ.4 : 0.843 ) ( 0 : 0.133 ) ( RWQ : 0.020 ) ( RDY : 0.004 )
FWY.1 ( 15 ): ( 0 : 0.533 ) ( RWY : 0.333 ) ( FWY.2 : 0.133 )
FWY.2 ( 6 ): ( FWY.3 : 0.500 ) ( 0 : 0.333 ) ( RWY : 0.167 )
FWY.3 ( 4 ): ( FWY.3 : 0.750 ) ( 0 : 0.250 )
IDB ( 146 ): ( FDQ.1 : 0.568 ) ( 0 : 0.308 ) ( IDB : 0.110 ) ( IDM : 0.007 ) ( IDQ : 0.007 )
IDM ( 76 ): ( 0 : 0.829 ) ( FDQ.1 : 0.079 ) ( IDQ : 0.066 ) ( FWQ.1 : 0.013 ) ( FDY.1 : 0.013 )
IDQ ( 1027 ): ( 0 : 0.480 ) ( FDQ.1 : 0.455 ) ( IDQ : 0.055 ) ( FWQ.1 : 0.006 ) ( IDY : 0.002 )
IDY ( 19 ): ( FDY.1 : 0.684 ) ( FDQ.1 : 0.105 ) ( 0 : 0.105 ) ( IDY : 0.105 )
IWB ( 124 ): ( FWQ.1 : 0.645 ) ( 0 : 0.290 ) ( IWB : 0.056 ) ( IDQ : 0.008 )
IWM ( 188 ): ( 0 : 0.878 ) ( IWQ : 0.074 ) ( FWQ.1 : 0.037 ) ( IWM : 0.011 )
IWQ ( 344 ): ( FWQ.1 : 0.581 ) ( 0 : 0.360 ) ( IWQ : 0.049 ) ( IWM : 0.009 )
IWY ( 24 ): ( FWY.1 : 0.542 ) ( 0 : 0.250 ) ( FWQ.1 : 0.125 ) ( IWY : 0.083 )
RDQ ( 40 ): ( FDQ.1 : 0.475 ) ( 0 : 0.175 ) ( RDY : 0.100 ) ( RDQ : 0.075 ) ( FDY.1 : 0.075 )
RDY ( 14 ): ( FDY.1 : 0.714 ) ( FDQ.1 : 0.143 ) ( 0 : 0.143 )
RWQ ( 6 ): ( FWQ.1 : 0.500 ) ( 0 : 0.333 ) ( RWQ : 0.167 )
RWY ( 5 ): ( FWY.1 : 0.600 ) ( RWY : 0.200 ) ( FWQ.1 : 0.200 )

Figure 23: Low group. Top 5 transition probabilities from source state (first entry in row)
to destination state (entry two and onwards).
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High Group
Source state(n): (top_i_destination_state: probability)
0 ( 9313 ): ( 0 : 0.959 ) ( IDY : 0.010 ) ( IDB : 0.008 ) ( IDQ : 0.006 ) ( IWB : 0.006 )
FDQ.1 ( 769 ): ( 0 : 0.525 ) ( FDQ.2 : 0.442 ) ( RDQ : 0.016 ) ( FWQ.2 : 0.010 ) ( RDY : 0.004 )
FDQ.2 ( 297 ): ( 0 : 0.525 ) ( FDQ.3 : 0.340 ) ( RDQ : 0.081 ) ( RDY : 0.037 ) ( FWQ.3 : 0.007 )
FDQ.3 ( 98 ): ( FDQ.4 : 0.806 ) ( 0 : 0.163 ) ( FDY.2 : 0.020 ) ( RDY : 0.010 )
FDQ.4 ( 1095 ): ( FDQ.4 : 0.922 ) ( 0 : 0.058 ) ( FDY.2 : 0.010 ) ( RDY : 0.005 ) ( RDQ : 0.003 )
FDY.1 ( 119 ): ( FDY.2 : 0.387 ) ( RDY : 0.286 ) ( 0 : 0.286 ) ( RDQ : 0.034 ) ( FDQ.4 : 0.008 )
FDY.2 ( 64 ): ( FDY.3 : 0.828 ) ( 0 : 0.078 ) ( RDY : 0.063 ) ( FDQ.4 : 0.031 )
FDY.3 ( 153 ): ( FDY.3 : 0.935 ) ( 0 : 0.059 ) ( RDY : 0.007 )
FWQ.1 ( 291 ): ( FWQ.2 : 0.601 ) ( 0 : 0.381 ) ( RWQ : 0.007 ) ( RDQ : 0.003 ) ( FWY.2 : 0.003 )
FWQ.2 ( 168 ): ( 0 : 0.524 ) ( FWQ.3 : 0.411 ) ( RWQ : 0.054 ) ( FWY.2 : 0.012 )
FWQ.3 ( 70 ): ( FWQ.4 : 0.857 ) ( 0 : 0.129 ) ( RWQ : 0.014 )
FWQ.4 ( 385 ): ( FWQ.4 : 0.865 ) ( 0 : 0.117 ) ( FWY.2 : 0.008 ) ( RWQ : 0.005 ) ( FDQ.4 : 0.003 )
FWY.1 ( 34 ): ( 0 : 0.412 ) ( FWY.2 : 0.382 ) ( RWY : 0.176 ) ( RWQ : 0.029 )
FWY.2 ( 10 ): ( FWY.3 : 0.600 ) ( 0 : 0.300 ) ( RWY : 0.100 )
FWY.3 ( 6 ): ( FWY.3 : 0.833 ) ( 0 : 0.167 )
IDB ( 245 ): ( FDQ.1 : 0.784 ) ( 0 : 0.151 ) ( IDB : 0.049 ) ( IWB : 0.012 ) ( FDY.1 : 0.004 )
IDM ( 71 ): ( 0 : 0.873 ) ( FDQ.1 : 0.070 ) ( IDQ : 0.042 ) ( FDY.1 : 0.014 )
IDQ ( 769 ): ( FDQ.1 : 0.637 ) ( 0 : 0.303 ) ( IDQ : 0.051 ) ( IDY : 0.003 ) ( IDM : 0.003 )
IDY ( 116 ): ( FDY.1 : 0.698 ) ( 0 : 0.129 ) ( FDQ.1 : 0.078 ) ( IDY : 0.078 ) ( IDM : 0.009 )
IWB ( 140 ): ( FWQ.1 : 0.700 ) ( 0 : 0.236 ) ( IWB : 0.064 )
IWM ( 125 ): ( 0 : 0.808 ) ( IWQ : 0.104 ) ( FWQ.1 : 0.064 ) ( IDY : 0.008 ) ( IWM : 0.008 )
IWQ ( 225 ): ( FWQ.1 : 0.640 ) ( 0 : 0.258 ) ( IWQ : 0.053 ) ( IWM : 0.044 ) ( IWY : 0.004 )
IWY ( 64 ): ( FWY.1 : 0.656 ) ( 0 : 0.172 ) ( IWY : 0.094 ) ( IDY : 0.031 ) ( FWQ.1 : 0.031 )
RDQ ( 46 ): ( FDQ.1 : 0.522 ) ( RDY : 0.174 ) ( 0 : 0.109 ) ( FWQ.1 : 0.087 ) ( RDQ : 0.043 )
RDY ( 52 ): ( FDY.1 : 0.750 ) ( FDQ.1 : 0.192 ) ( RDY : 0.058 )
RWQ ( 8 ): ( FWQ.1 : 1.000 )
RWY ( 4 ): ( FWQ.1 : 0.500 ) ( FWY.1 : 0.500 )

Figure 24: High group. Top 5 transition probabilities from source state (first entry in
row) to destination state (entry two and onwards).
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Figure 25: Low group. Behavior graph.
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Figure 26: High group. Behavior graph.
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Estimated LTV
[255,321] (321,382] (382,524] (524,653] (653,907]

Mean 44.4 49.8 67.8 78.3 76.9
SD 63.7 66.2 76.5 98.7 67.8

Estimated LTV
[255,321] 0.0 1.1 4.5 5.5 6.6
(321,382] 1.1 0.0 3.4 4.6 5.5
(382,524] 4.5 3.4 0.0 1.6 1.7
(524,653] 5.5 4.6 1.6 0.0 0.2
(653,907] 6.6 5.5 1.7 0.2 0.0

n= 1817

Figure 27: Mean, standard deviation and t-tests for difference in mean for 24 months of
discounted revenue, grouped by estimated lifetime value.

4.9 Perspective to Other Models

It is difficult to compare the presented approach to other models. The outcome variable
is a complicated function of a matrix, not a simple univariate outcome. This makes
direct comparisons with methods such as logistics regression and simple duration models
impossible. The recency, frequency and monetary value approach could be compared to
a version of the model focused on predicting customer value from the last observed path,
but the application section in this paper takes the initial state as the point of departure.
Directed clustering methods also need a univariate outcome variable, while non-directed
clustering methods do not. The latter set of methods could be used to form segments for
comparison, but then a comparison criteria would be needed. Predicted revenue is one
such measure, as used in the previous section, but it is important to note that the tree
ensemble does not optimize for prediction. The problem can in some respect be compared
to the challenge involved in comparing any segmentation method, that it is difficult to
claim that one set of segmentation structures are better than another set. When arguing
for and against the approach presented in this paper, the author will claim that optimizing
directly for lifetime value has a high degree of face value in the context of business decision
making..

5 Conclusion
The presented model seems like a useful tool for anyone exploring event histories with
some type of revenue or reward involved. Many of the attractive properties of decision
trees are kept with tree ensembles, while a range of useful additional information can be
learned, such as variable importance and case proximity. The application of the model
resulted in a meaningful segmentation of current and former customers, yielding easily
interpretable results. A simple test of predictive performance did also yield a positive
result. Despite a lack of knowledge regarding aspects of the model’s statistical properties,
simulation and application results provide encouraging evidence for the viability of the
approach.
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