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Abstract

A conjectured O (n)-method for computation of unconditional kernel density
estimates is extended to conditional density estimation and regression. Empirical
calculation time is investigated on simulated data with a limited dependent variable.
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1 Introduction

When conducting many types of inference in the presence of a large number of observa-
tions, kernel density estimation and regression can be an attractive choice of method due
to its nearly assumption-free nature. However, computing time is a signi�cant barrier to
usage of the method. For a naive implementation computing time scales with the number
of observations n as O (n2) :
In Gray & Moore (2001, 2003a,b) a new algorithm is introduced for unconditional

kernel density estimation that is conjectured to scale O (n) and seems to do so on a range
of simulated and real-world datasets. In this paper, the Gray algorithm is extended to
conditional kernel density estimation.
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1.1 Note on Dimensionality

It is sometimes argued that nonparametric methods are useless in higher dimensions, since
the number of observations needed to attain a �xed level of estimate con�dence grows
exponentially with the number of dimensions. The empty space phenomena, Scott &
Thomsen (1983), illustrates the problem. A ten-dimensional multivariate normal distri-
bution will on average have some 99% of observations falling outside the one standard
deviation hypercube. However, many real-world high-dimensional datasets are spanned by
lower-dimensional manifolds, and so can be said to be of a lower intrinsic dimensionality.

2 Kernel Methods

This section is based on Pagan & Ullah (1999) and Racine & Li (2004).
The goal of density estimation is to approximate a proper density function f : RD !

R+
0 ; D 2 N ; given a set of n realisations fxigni=1 from f: The main idea behind kernel

density estimation is as follows. Given a point of interest x� 2 RD we estimate f (x�) by
calculating the proportion of observations falling in the neigborhood of x�; each observa-
tion xi weighted proportionally to its distance to x�:
Given a weight function, also called a kernel, K (�) ; the kernel density estimate f̂ for

f is calculated by eq. (1).

f̂ (x�) =
1

n

nX
i=1

K (x� � xi) (1)

A kernel is any function for which
R
RD K (x) dx = 1 and is often taken to be a product of

univariate smooth functions Kd (�), such as gaussians. The distance metric is scaled by a
bandwidth hd along each dimension, resulting in eq. (2). Bandwidth scaling of distance
necessitates the inclusion of additional normalization terms 1

hd
; to ensure

R
RD f̂ (x) dx = 1:

f̂ (x�jh) = 1

n

nX
i=1

DY
d=1

1

hd
Kd

�
x�;d � xdi
hd

�
; (2)

x�;d and xdi being the d�th element of vectors x
� and xi; respectively.

Conditional kernel density estimation is a straightforward extension of plain estima-
tion. Given a point of interest z� = (y�; x�) we can estimate f (y�jx�) by eq. (3).

f̂ (y�jx�; h) =
(

f̂(z�jh)
f̂(x�jh) for f̂ (x�jh) > 0
0 for f̂ (x�jh) = 0

(3)

The possibility of zero probability in eq. (3) can in practice lead to optimization
problems, so a modi�ed version will often be used as described in section 3.3, p. 70.
Limited dependent variables can be accomodated by discrete kernels. The simplest

possible is the counting measure, Kcount (yi; yj) = 1 (yi = yj) : The unordered categorical
kernel shown in eq. (4) is a more sophisticated choice in allowing for a variable degree of
smoothing.

Kuc (yi; yjj�) =
�
� for yi = yj
1��
c�1 for yi 6= yj

; � 2 [1
c
; 1]; yi; yj 2 f0; : : : ; c� 1g; (4)
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c being the number of categories for yi: For � = 1 eq. (4) equals the counting measure,
while � = 1

c
results in an indiscriminate kernel giving equal weight to matching and

non-matching observations.

3 Algorithm

The following is a simpli�ed walk-through of the mechanisms of the unconditional kernel
density algorithm, based on Gray & Moore (2003a).
Many previous kernel-estimation algorithms achieved calculation time speedups through

binning, the process of grouping data. The new method is based on a form of sophisti-
cated binning. Instead of clustering observations on an evenly spaced grid, a binary tree
stores observations hierachially in clusters of similar observations.
In the root node, all observations are available. Then along the most wide dimension,

data is split along the middle of this dimension into two groups, thus creating two new
nodes. Each node is decorated with information on the bounds of all data it contains.
The process is iterated until each node contains a preset maximum of observations.

Thus the higher up the tree one moves, the more similar observations will be. In computer
science such a tree is called a kd-tree, for k-dimensional tree.
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Assume the existence of two datasets: a query set and a training set. Suppose we
would like to calculate the likelihood of the query set, using the training set to form the
kernel density estimate at each query point. First, a kd-tree is generated for each set.
Each pair of nodes in the trees are now processed iteratively. Given a node Q from the
query tree and a node T from the training tree, we can infer about the lower bound dl
and upper bound du of the likelihood contribution of T to Q; by comparing the pre-
calculated data boundaries saved in the nodes. If jdu� dlj is below some preset thresold,
the likelihood contribution is approximated by letting each xt 2 T contribute, say, jdu�dlj2

to each xq 2 Q: Now all pairwise comparisons of the child nodes of T and Q can be
pruned. Chunks of data in Q is compared against chunks of data in T . Pairs of chunks
with high relative heterogeneity is examined more closely in smaller chunks, while those
with low heterogeneity can be put aside.

3.1 Unconditional Density Algorithm

Below is a simpli�ed version of the Gray-algorithm, while the conditional density version is
presented in the following section. The iterative scheme is started out by calling dualtree
on the two root nodes of the training and query tree.

dualtree(Q; T )
dl = NTK (maxdist (Q; T ))
du = NTK (mindist (Q; T ))
if jdu� dlj < �

for each q 2 Q
lq = lq + dl
uq = uq + du�NT
return

if leaf(Q) and leaf(T )
dualtree_base(Q; T )
return

dualtree(Q:left; T:left)
dualtree(Q:left; T:right)
dualtree(Q:right; T:left)
dualtree(Q:right; T:right)

end dualtree

dualtree_base(Q; T )
for each q 2 Q

for each t 2 T
c = K (xq; xt)
lq = lq + c
uq = uq + c� 1

end dualtree_base

Notation. maxdist and mindist calculates the maximum and minimum distances
between points in supplied nodes, using the boundary information of supplied nodes. leaf
is true if the supplied node has no children.
lq; uq lower and upper bounds on the likelihood for individual observation q:
NT number of observations contained in node T:
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3.2 Conditional Density Algorithm

Each node in the training tree is now decorated with an additional piece of information:
The empirical density of the dependent variable based on the information available at the
node-level fY;T (y).

dualtree(Q; T )
dl = NTKX (maxdist (Q; T ))
du = NTKX (mindist (Q; T ))
if jdu� dlj < �

for each q 2 Q
lX;q = lx;q + dl
ux;q = ux;q + du�NT
for each y� 2 Y

cxy = KY (yq; y
�)� fY;T (y�)

lxy;q = dl � cxy
uxy;q = du� cxy

return
if leaf(Q) and leaf(T )

dualtree_base(Q; T )
return

dualtree(Q:left; T:left)
dualtree(Q:left; T:right)
dualtree(Q:right; T:left)
dualtree(Q:right; T:right)

end dualtree

dualtree_base(Q; T )
for each q 2 Q

for each t 2 T
cx = KX (xq; xt)
lx;q = lx;q + cx
ux;q = ux;q + cx � 1
cyx = cx �KY (yq; yt)
lxy;q = lxy;q + cxy
uxy;q = uxy;q + cxy

end dualtree_base

Lower and upper bounds on the global log-likelihood are calculated as a function of
the individual boundaries lx;i; ux;i; lxy;i and uxy;i:

(Ll; Lu) =

 
NX
i=1

log

�
lx;i
uxy;i

�
;
NX
i=1

log

�
ux;i
lxy;i

�!
: (5)

3.3 Outliers

A situation can arise in which one or more observations in Q has no neighbours in T:
One can choose to ignore a �xed proportion of far-�ung observations in the hope that
no outliers will be included, as is often done in practice and in the literature. As an
alternative you can assume a mixed model generates the data. Assume probability � of
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observing an instance of the non-parametric model fnp, and a small probability (1� �)
of observing an instance from a multivariate uniform distribution funif bounded by the
range of T:

fmix (x) =

�
�fnp (x) with probability �

(1� �) funif (x) with probability (1� �)
Note that � is �xed in advance and not considered a part of the estimation. Now all

observations will be assigned some probability, though it will be very small for observations
without neighbours.
A third alternative exists for conditional density estimation. When an observation

turns up with no probability mass, a crude nearest neighbour-principle can be used.
Since a tree has already been generated, a "tree-nearest-neighbour" search is carried out
by sweeping the parent leaf and maybe a few neighbouring leafs.

4 Experiment

Arti�cial data is generated to test how algorithmic time performance scales with number
of observations, namely how long it takes to calculate a leave-one-out cross-validation
statistic at the optimal bandwidth.
A kernel estimator is preferred in situations with a lot of local structure and a high

number of observations, while other methods such as spline smoothing might be preferred
in scenarios with smoother surfaces and a lower number of observations. The simulated
data is structured as an egg tray, a smooth surface with peaks and valleys distributed
uniformly as seen in �g. 1, p. 72. To someone ignorant about the global structure of the
surface, this surface seems to have a lot of local structure.
A binary variable y is generated as a realization from a density g in eq. 7, a function

of two continous variables x1 and x2:

g� (x1; x2) =
1

4
(sin (�x1) + sin (�x2)) +

1

2
(6)

g (x1; x2) =

�
1 with probability g�(x1; x2)
0 otherwise

(7)

A realization of y is shown in �g. 2, p. 72. Both �gures are zoomed versions of
the actual dataset, where (x1; x2) 2 [0; 128]2. Six datasets of size n are simulated �ve
times each, letting n 2 1000 � f64; 128; 256; 512; 1024; 2048g: The experiment is carried
out using a 2 GHz Intel Centrino processor on a 2 GB ram system running Windows XP.
An approximate optimal bandwidth is found by grid-searching on a shrinking interval

as n grows, examining the cross-validation log-likelihood at each iteration. A relation
between CV log-likelihood and a large bandwidth range is shown in �g. 6 and is used to
set the intial range. A large interval is set initially at the smallest sample size, and the
interval is then shrunk around the expected optimal bandwidth according to table 3.

4.1 Results

The average leave-one-out cross-validation log likelihood as a function of bandwidth is
displayed in �g. 5 for 64k observations, while �gure 7 displays the CV log-likelihood for
the largest sample size. The identi�cation of an optimal bandwidth is easier as n grows.
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n min max
32,000 0.60 8.00
64,000 0.42 5.66

128,000 0.30 4.00
256,000 0.21 2.83
512,000 0.40 1.00

1,024,000 0.28 0.71
2,048,000 0.20 0.50

Figure 3: Ranges for bandwidth grid search

Fig. 8 and table 9 display the average calculation time at the optimal average band-
width for each of the dataset sizes. The speeds are shown next to the estimated time of
a naive ckde implementation.
For the dualtree algorithm, the growth in time consumption as n increases is steeper

than linear, but much less than quadratic. The speed ratio degrades signi�cantly when
moving from 1M to 2M datapoints, but this could be a hardware e¤ect of working memory
being squeezed out of the memory cache. Nonetheless, with the number of observations
ranging in the millions and calculation time ranging in seconds and minutes, conditional
kernel density estimation is feasible on large datasets.
From �g. 6 it is seen how time consumption increases with bandwidth. Time consump-

tion will reach an upper plateau when the bandwidth makes the kernel span the entire
range of the data, and then gradually fade again as approximation can kick in as the rel-
ative distance between observation points converge to zero. In Gray & Moore (2003a) it
is conjectured that time consumption reaches a maximum at the optimal bandwidth, but
for the conditional kernel density case, this is clearly not the case. A real-world dataset
is likely to display some local structure along one or more dimensions, thus ensuring that
the optimal bandwidth along those dimensions is unlikely to span the range.
Another experiment is carried out to look at algorithmic time consumption versus

increased dimensionality. A dataset of size n = 64k is generated, letting (x1; :::; xd) 2
[0; 16]d: Time consumption is recorded at a �xed bandwidth of 0:3_5: As seen from �g.
10, time consumption seems nearly linear. However, this example does not give a clear
indication dimensional performance on real-world datasets, since the optimal bandwidth is
increasing in the number of dimensions at �xed dataset sizes, and the true dimensionality
data. In Gray & Moore (2003a) experiments on real-world data suggests that time grows
in polynomial time as dimensionality is increased.

5 Conclusion

Conditional kernel density estimation is a statistically well understood non-parametric
estimator. Computational feasibility of the method in the presence of large datasets has
been demonstrated in this paper, so any researcher with access to standard computing
resources has little reason to avoid analyzing data with suspected non-linearities. A
similar approach will work for continous and ordered categorical dependent variables,
while presence of categorical independent variables must be given more thought.
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Figure 4: Black line-left axis: Time consumption in seconds. Grey line-right axis: CV
log-likelihood. Both are based on one realization of a dataset of size n = 64k: Log-scales
on both axes.
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Figure 5: Average CV log-likelihood from �ve realizations of a dataset of size n = 64k
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Figure 6: Black line-left axis: Time consumption in seconds. Grey line-right axis: CV
log-likelihood. Both are based on one realization of a dataset of size n = 128k
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Figure 7: Average CV log-likelihood from �ve realizations of a dataset of size n = 2; 048k
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Figure 8: Calculation time in seconds for CV log likelihood at the optimal bandwidth

Dualtree CKDE Naive CKDE
n t (sec.) t approx.

64,000 0.4 4.2 m
128,000 1.0 16.9* m
256,000 2.3 1.1* h
512,000 5.4 4.5* h

1,024,000 13.3 18.0* h
2,048,000 35.1 71.9* h

Figure 9: Calculation time in seconds for CV log likelihood at the optimal bandwidth
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