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Abstract

We study the forecasting of future realized volatility in the stock, bond, and for-
eign exchange markets, as well as the continuous sample path and jump components
of this, from variables in the information set, including implied volatility backed out
from option prices. Recent nonparametric statistical techniques of Barndorff-Nielsen &
Shephard (2004, 2006) are used to separate realized volatility into its continuous and
jump components, which enhances forecasting performance, as shown by Andersen,
Bollerslev & Diebold (2005). We generalize the heterogeneous autoregressive (HAR)
model of Corsi (2004) to include implied volatility as an additional regressor, and to
the separate forecasting of the realized components. We also introduce a new vector
HAR (VecHAR) model for the resulting simultaneous system, controlling for possible
endogeneity issues in the forecasting equations. We show that implied volatility con-
tains incremental information about future volatility relative to both continuous and
jump components of past realized volatility. Indeed, in the foreign exchange market,
implied volatility completely subsumes the information content of daily, weekly, and
monthly realized volatility measures, when forecasting future realized volatility or its
continuous component. In addition, implied volatility is an unbiased forecast of future
realized volatility in the foreign exchange and stock markets. Perhaps surprisingly,
the jump component of realized return volatility is, to some extent, predictable, and
options appear to be calibrated to incorporate information about future jumps in all
three markets.

Keywords: Bipower variation, HAR, Heterogeneous Autoregressive Model, implied
volatility, jumps, options, realized volatility, VecHAR, volatility forecasting.

JEL classification: C22, C32, F31, G1.

*Corresponding author. Please address correspondence to: Morten Orregaard Nielsen, Department of
Economics, Cornell University, 482 Uris hall, Ithaca, NY 14853, USA; phone: +1 607 255 6338; fax: +1
607 255 2818; email: mon2Q@cornell.edu



1 Introduction

In both the theoretical and empirical finance literatures, volatility is generally viewed as
one of the most important determinants of risky asset prices, such as exchange rates, stock
and bond prices, and hence interest rates. Since valuation involves the level and riskiness
of future payoffs, the forecasting of future volatility is particularly important for asset
pricing as well as derivative pricing, hedging, and risk management. Indeed, for all these
reasons, realized volatility (essentially, the summation of squared high-frequency returns
over a specified time interval) is now a traded asset. In the recent literature, statistical
techniques have been developed that allow separating the continuous sample path and
jump components of the return volatility process and using them individually and in new
combinations to build volatility forecasts. Andersen et al. (2005) present results from such
an analysis for the foreign exchange market and the U.S. stock and Treasury bond markets.
They show that for all markets, improved volatility forecasts may be obtained by splitting
realized return volatility into its continuous and jump components and combining these
optimally.

In the present paper, we consider the alternative route of including derivative prices
and forecasting future volatility using implied volatility estimates. Specifically, we inves-
tigate whether implied volatility from options on foreign currency futures, S&P 500 index
futures, or 30 year Treasury bond (T-bond) futures contains incremental information when
assessed against volatility forecasts based on high-frequency (5-minute) current and past
spot exchange rate returns, index futures returns, respectively T-bond futures returns,
using the recently available statistical techniques to generate efficient measurements of
realized volatility and its separate continuous and jump components. Furthermore, we in-
vestigate the predictability of the separate volatility components, including the role played
by implied volatility in forecasting these.

The construction and analysis of realized volatility from high-frequency return data as
a consistent estimator of integrated volatility or quadratic variation have received much
attention in recent literature, see e.g. French, Schwert & Stambaugh (1987), Schwert
(1989), Andersen & Bollerslev (1998a), Andersen, Bollerslev, Diebold & Ebens (2001),
Andersen, Bollerslev, Diebold & Labys (2001), Barndorff-Nielsen & Shephard (2002a),
Andersen, Bollerslev & Diebold (2004), and Barndorff-Nielsen & Shephard (2007). In par-
ticular, Andersen, Bollerslev, Diebold & Labys (2003) and Andersen, Bollerslev & Meddahi
(2004) show that simple reduced form time series models for realized volatility constructed
from historical returns outperform commonly used GARCH and related stochastic volatil-
ity models in forecasting future volatility. In recent theoretical contributions, Barndorft-
Nielsen & Shephard (2004, 2006) derive a fully nonparametric separation of the continuous
sample path and jump components of realized volatility. Applying this nonparametric sep-
aration technique, Andersen et al. (2005) extend results of Andersen, Bollerslev, Diebold &
Labys (2003) and Andersen, Bollerslev & Meddahi (2004) by including both the continuous
and jump components of past realized volatility as separate regressors in the forecasting



of future realized volatility. They show that the continuous sample path and jump com-
ponents play very different roles in volatility forecasting. Significant gains in forecasting
performance are achieved by splitting the explanatory variables into the separate continu-
ous and jump components, compared to using only total past realized volatility. While the
continuous component of past realized volatility is strongly serially correlated, the jump
component is found to be distinctly less persistent, and almost not forecastable.

Many recent studies stress the importance of separate treatment of the jump and contin-
uous sample path components, particularly in the stock market. This work considers both
the estimation of parametric stochastic volatility models (e.g. Andersen, Benzoni & Lund
(2002), Chernov, Gallant, Ghysels & Tauchen (2003), Eraker, Johannes & Polson (2003),
Eraker (2004), Ait-Sahalia (2004), and Johannes (2004), who considers interest rates), non-
parametric realized volatility modeling (e.g. Barndorff-Nielsen & Shephard (2004, 2006),
Huang & Tauchen (2005), and Andersen et al. (2005), who also consider the stock, bond,
and foreign exchange markets), empirical option pricing (e.g. Bates (19964, 1996b) for the
foreign exchange market, and Bates (1991) and Bakshi, Cao & Chen (1997) for the stock
market), and information arrival processes (e.g. Andersen & Bollerslev (1998b) and Ander-
sen, Bollerslev, Diebold & Vega (2003)). Indeed, in the stochastic volatility and realized
volatility literatures, the jump component is found to be far less predictable than the con-
tinuous sample path component, clearly indicating separate roles for the two components
in volatility forecasting.

We study high-frequency (5-minute) returns to the $/DM exchange rate and monthly
prices of $/DM futures options, as well as 5-minute returns on S&P 500 index futures and
30 year Treasury bond futures and monthly prices of associated options. We compute alter-
native volatility measures from the two separate data segments, return-based resp. option
implied measures. The return-based measures are realized volatility and its continuous
and jump components from high-frequency returns, while the option-based measure is im-
plied volatility. The latter is widely perceived as a natural forecast of integrated volatility
over the remaining life of the option contract (under risk-neutral pricing). As discussed
by Bollerslev & Zhou (2006), implied volatility is also a relevant forecast in a stochastic
volatility setting even if volatility risk is priced, although in this case it would get a coeffi-
cient below unity in forecasting regressions. Since options expire at a monthly frequency,
we consider the forecasting of one-month volatility measures. The issue is whether implied
volatility retains incremental information about future integrated volatility when assessed
against return-based measures from the previous month. Here, measures covering the entire
previous month may not be the only relevant yardstick, since squared returns nearly one
month past may not be as informative about future volatility as squared returns that are
only one or a few days old. To accommodate this feature in our econometric framework, we
apply the heterogeneous autoregressive (HAR) model proposed by Corsi (2004) for realized
volatility analysis and extended by Andersen et al. (2005) to include the separate continu-
ous (C) and jump (J) components of realized volatility as regressors. Specifically, we follow
Andersen et al. (2005) and include daily, weekly, and monthly explanatory variables in the



HAR forecasting specifications. As a novel feature, we generalize the HAR framework to
include implied volatility from option prices as an additional regressor. Furthermore, be-
cause of the different time series properties of the continuous and jump components, as
documented in Andersen et al. (2005), separate forecasting of these is relevant for pricing
and risk management purposes, and we extend the HAR methodology to the forecasting
of each of the volatility components C' and J individually, again using implied volatility as
an additional explanatory variable.

We show that option implied volatility contains incremental information relative to both
the continuous and jump components of realized volatility when forecasting subsequently
realized return volatility in all three ($/DM, stock, and bond) markets. In fact, implied
volatility completely subsumes the information content of the daily, weekly, and monthly
return-based measures in the foreign exchange market. However, implied volatility is not
the only relevant forecaster in the stock and bond markets, where, in particular, it should be
used in conjunction with the daily continuous and jump components in the stock market
and the monthly jump component in the bond market when forecasting future realized
volatility. Our results also show that although in all three markets there is clearly volatility
information in option prices which is not contained in return data, implied volatility is only
an unbiased forecast of future realized volatility in the foreign exchange and stock markets.

Using our extended HAR methodology for the separate forecasting of the continuous
and jump components of future realized volatility, our results show that implied volatility
has predictive power for both components, again largely subsuming the information content
of the daily and weekly continuous and jump components of realized volatility. The fore-
casting of the continuous component is very much like the forecasting of realized volatility
itself, whereas jumps are forecast quite differently. In particular, we show that even the
jump component of realized volatility is, to some extent, predictable, with both option
implied volatility and the past monthly components significant in the jump forecasting
relation.

As an additional novel contribution, we also introduce a vector heterogeneous autore-
gressive (labelled VecHAR) model for the joint modeling of implied volatility and the
separate components of realized volatility. This new system approach allows handling si-
multaneity issues which may arise from a number of sources. Since implied volatility is the
new variable added in our study, compared to the realized volatility literature, and since
it may potentially be measured with error stemming from non-synchronicity between sam-
pled option prices and corresponding futures prices, bid-ask spreads, model error, etc., we
take special care in handling this variable. The simultaneous VecHAR analysis controls for
possible endogeneity issues in the forecasting equations including, e.g., measurement error
in implied volatility and correlation among system errors. Furthermore, the simultaneous
system approach allows testing interesting cross-equation restrictions.

The results from full information maximum likelihood (FIML) estimation of the VecHAR
model reinforce our earlier conclusions. In particular, when forecasting the continuous com-
ponent of future volatility, option implied volatility should be included in the information



set, and, indeed, it subsumes the information content of all return-based volatility mea-
sures in the foreign exchange market. On the other hand, implied volatility should be used
together with monthly, but not weekly or daily, separate continuous and jump components
of past realized volatility in case of the bond market, and together with daily continuous
components in the stock market. Finally, the VecHAR results support the finding that
implied volatility is a forecast of the sum of the two components, i.e., of total realized
volatility, indeed an unbiased forecast in the foreign exchange and stock markets. In par-
ticular, even the jump component of realized volatility is, to some extent, predictable,
and implied volatility has incremental information about future jumps in all three markets
considered.

In the previous literature on the foreign exchange market, Jorion (1995) and Covrig &
Low (2003) show that implied volatility outperforms past realized volatility as a forecast of
future realized volatility, although it remains a biased forecast. Our work complements this
literature by testing whether the conclusions hold up after allowing the two components of
past realized volatility to act separately. In addition, the earlier literature on the relation
between implied and realized volatility has considered realized volatility constructed from
daily return observations, due to data limitations, and this could be one reason for im-
precise measurement of realized volatility and might have biased the results on forecasting
performance in favor of implied volatility from option prices, c.f. Poteshman (2000) and
Blair, Poon & Taylor (2001), who consider the stock market, and Pong, Shackleton, Taylor
& Xu (2004), who consider the foreign exchange market. In response, these authors include
high-frequency returns, but they do not separate the continuous and jump components of
realized volatility. In sum, what is needed is an assessment of the incremental forecasting
power of implied volatility relative to the separate continuous and jump components of
realized volatility based on high-frequency returns, and this is what we provide.

It seems plausible that complete reliance on return data possibly does not yield an
efficient volatility forecast, given investors’ information set. If option market participants
are rational and markets are efficient, then implied volatility backed out from traded option
prices should reflect available information about future volatility through expiration of the
options, including that contained in past returns. Ignoring option price data in forecasting
volatility therefore does not seem natural. In fact, in case of the stock market, Christensen
& Prabhala (1998) consider more than a decade of return and option price data for the S&P
100 index and find that implied index option volatility is an unbiased and efficient forecast
of future realized volatility, subsuming the information content of past realized volatility
as a forecast. Other studies documenting the incremental information in implied volatility
relative to past realized volatility in the stock market include Day & Lewis (1992), Canina
& Figlewski (1993), Lamoureux & Lastrapes (1993), Fleming (1998), Poteshman (2000),
and Blair et al. (2001), but none of these separate realized volatility into its continuous and
jump components, and this may bias the results in favor of implied volatility. Our work
contributes to this literature by examining the role of implied volatility from option prices
in the context of the most recent realized volatility modeling and forecasting literature.



In case of the bond market, no previous study has compared the volatility forecast-
ing performance obtained by using return-based volatility measures computed from high-
frequency data with that obtained using implied volatility extracted from associated bond
options. Amin & Morton (1994) use the Heath, Jarrrow & Morton (1992) approach to
calculate daily implied interest rate volatilities and compare observed option prices with
model prices based on current futures prices and one-day lagged implied volatilities, but
they do not consider realized volatility, jumps, or longer term volatility forecasting. In an-
other study using the same data, along with daily spot interest rates, Amin & Ng (1997)
examine the performance of implied interest rate volatility as a forecast of future interest
rate volatility by including implied volatility in GARCH-type equations, but they do not
consider bond returns, high-frequency data, or jumps. Bliss & Ronn (1998) use interest
rate volatility implied from callable T-bonds to reveal empirical anomalies, but do not
consider option data. In contrast to the other studies, we extract option implied bond
return volatility and do not explicitly consider interest rate volatility, and our realized
measures use high-frequency bond futures returns and the new nonparametric separation
of the continuous and jump components of realized volatility. This allows us to investigate
the incremental forecasting power of implied volatility in the bond market, too, relative to
the improved realized volatility forecasting obtained by Andersen et al. (2005).

The remainder of the paper is laid out as follows. In the next section we briefly describe
realized volatility and the nonparametric identification of its separate continuous sample
path and jump components. In Section 3 we discuss the bond and exchange rate derivatives
pricing models. Section 4 describes our data and provides summary statistics. In section
5 the empirical results are presented, and section 6 concludes.

2 The Econometrics of Jumps

Most contemporary continuous time asset pricing theory is cast in terms of a stochastic
volatility model, possibly with an additive jump component. Thus, we assume that the
logarithm of the asset price (exchange rate, stock price, or bond price), p (t), follows the
general stochastic volatility jump diffusion model

dp(t) =p(t)dt+o(t)dw(t) +r(t)dg(t), t>0. (1)

The mean g () is assumed continuous and locally bounded and the instantaneous volatility
o (-) > 0 cadlag, both independent of the driving standard Brownian motion w (-). The
counting process ¢ (t) is normalized such that dg (t) = 1 corresponds to a jump at time
t and dq (t) = 0 otherwise. Hence, & (t) is the random jump size at time ¢ if dq (¢t) = 1.
We write A (t) for the possibly time varying intensity of the arrival process for jumps.!

"Formally, Pr(q(t) —q(t —h)=0)=1—[' A(s)ds+o(h), Pr(q(t) —q(t—h)=1)= [' , X(s)ds+
o(h), and Pr(q(t) — q(t — h) > 2) = o(h). This rules out infinite activity Lévy processes, e.g. the normal
inverse Gaussian process, with infinitely many jumps in finite time.



Stochastic volatility allows returns in the model (1) to have leptokurtic (unconditional)
distributions and exhibit volatility clustering, which is empirically relevant.
An important quantity in this model is the integrated volatility (or integrated variance)

o2 (£) = /0 o2 (s) ds. (2)

In option pricing, this is the relevant volatility measure, see Hull & White (1987). Estima-
tion of integrated volatility is studied e.g. in Andersen & Bollerslev (1998a). Integrated
volatility is closely related to quadratic variation [p] (), defined for any semimartingale
(see Protter (2004)) by

M
. 2
[P (£) = plim Y _ (p(s;) —p(s5-1))°, (3)
j=1
where 0 = sg < s1 < ... < s)y = t and the limit is taken for max;|s; —s;j—1| — 0

as M — oo. In particular, the quadratic variation process for the model (1) is in wide

generality given by
q(t)

[P (t) = 0™ (1) + Y K> (), (4)
j=1

where 0 < ¢; < to < ... are the jump times, dg(t;) = 1. In (4), quadratic variation is
decomposed as integrated volatility plus the sum of squared jumps that have occurred
through time ¢ (see e.g. Andersen, Bollerslev, Diebold & Labys (2001, 2003)). Recent
studies on the stock market (e.g., Andersen et al. (2002), Chernov et al. (2003), Eraker
et al. (2003), Eraker (2004), and Ait-Sahalia (2004)), on interest rates (Johannes (2004)),
and on exchange rates (Bates (1996a, 1996b)) all find that jumps are empirically impor-
tant. To investigate the importance of jumps in foreign exchange, stock, and bond market
volatility forecasting, we follow Andersen et al. (2005) and include the jump component
explicitly in these markets, too. Rather than modeling (1) directly at the risk of adopt-
ing erroneous parametric assumptions, we use high-frequency return data and invoke a
powerful nonparametric approach to identification of the two separate components of the
quadratic variation process (4), integrated volatility respectively the sum of squared jumps,
following Barndorff-Nielsen & Shephard (2004, 2006) and Andersen et al. (2005).

Let us assume that 7" months of intra-monthly asset price observations are available
and denote the M +1 evenly spaced intra-monthly observations for month ¢ on the log-price
by p¢,;. The one month time interval is used in order to match the sequence of consecutive
non-overlapping one month option lives available given the monthly option expiration cycle.
The M continuously compounded intra-monthly returns for month ¢ are

Tt,j = Pt,j — Pt,j—1, ] = 17"'7M7 t= 17""T' (5)
Realized volatility for month ¢ is given by the sum of squared intra-monthly returns,
M
RV, =) r7; t=1,..T (6)
j=1



Some authors refer to the quantity (6) as realized variance and reserve the term realized
volatility for the square root of (6), e.g. Barndorff-Nielsen & Shephard (2001, 2002a,
2002b), but we shall use the more conventional term realized volatility. The nonparametric
estimation of the separate continuous sample path and jump components of quadratic
variation, following Barndorff-Nielsen & Shephard (2004, 2006), also requires the related
bipower and tripower variation measures. The (first lag) realized bipower variation is
defined as

M
1

BV =— E regllregal, t=1,..,T, (7)
K1 j=2

where p; = \/2/7 In theory, a higher value of M improves the precision of the estimators,
but in practice it also makes them more susceptible to market microstructure effects, such
as bid-ask bounces, stale prices, measurement errors, etc., see e.g. Hansen & Lunde (2006)
and Barndorff-Nielsen & Shephard (2007). These effects potentially introduce artificial
(typically negative) serial correlation in returns. Huang & Tauchen (2005) show that the
resulting bias in (7) is mitigated by considering the staggered (second lag, i.e. skip-one)

realized bipower variation

M
o7, 1
BV, = —— | rejol, t=1,..,T. 3

' M%(1—2M—1);mﬂmu 2| (8)

The staggered version avoids the sharing of the price p; ;1 which by (5) enters the definition
of both r,; and ;1 in the non-staggered version (7). A further statistic necessary for
construction of the relevant tests is the realized tripower quarticity measure
M
TQr=—— Y |regl? Irega P rey—o ™, t=1,..T, (9)
4/3 j=3

where py /3 = 22/3T (7/6) /T (1/2). The associated staggered realized tripower quarticity is

M
A M 4/3 4/3 4/3

TQt = — |rt7j’ |Tt,j—2| |Tt,j—4| , t=1,..T, (10)
S

again avoiding common prices in adjacent returns. As the staggered quantities BV ¢+ and
T\Q/)t are asymptotically equivalent to their non-staggered counterparts BV; and T'Q);, stag-
gered versions of test statistics can be applied for robustness against market microstructure
effects without sacrificing asymptotic results.

Using (3), RV, in (6) is by definition a consistent estimator of the monthly increment to
the quadratic variation process (4) as M — oo (Andersen & Bollerslev (1998a), Andersen,
Bollerslev, Diebold & Labys (2001) and Barndorff-Nielsen & Shephard (2002a, 2002b)). At
the same time, BV; is consistent for month ¢ integrated volatility, the component of the



increment to quadratic variation due to continuous sample path movements in the price
process (1), i.e.,

t

BV, —, 0% = / o2 (s)ds, as M — oo, (11)

t—1
as shown by Barndorff-Nielsen & Shephard (2004). It follows that the difference between
realized volatility and realized bipower variation converges to the sum of squared jumps
that have occurred during the course of the month. Of course, in finite samples, RV; — BV,
may be non-zero due to sampling variation even if no jump occurred during during month
t, so a notion of a “significant jump component” is needed. Following Barndorff-Nielsen &
Shephard (2004) and Huang & Tauchen (2005) we apply the (ratio) test statistic

(RV; — BV))RV;"
((r* +2p7% = 5) max{1, TQtBVfZ})l/T

7, =il (12)

which, in the absence of jumps, satisfies
Zy —q N (0,1), as M — oc.

Thus, Z; measures whether realized volatility exceeds realized bipower variation by more
than what can be ascribed to chance, so large positive values of Z; indicate the presence of
jumps during month ¢ in the underlying price process. This statistic was shown by Huang &
Tauchen (2005) to have better small sample properties than the alternative asymptotically
equivalent statistics in Barndorff-Nielsen & Shephard (2004, 2006). Using the staggered
versions (8) and (10) of bipower variation and tripower quarticity yields a staggered version
Zy; of the test, and this is recommended by Huang & Tauchen (2005) and Andersen et al.
(2005).
With these definitions, the (significant) jump component of realized volatility is given
by
Ji=Ilz50,_ .y (RVi = BVy), t=1,..,T, (13)

where I7 ) is the indicator function of the event A, ®1_, is the 100 (1 — «) % point of the
standard normal distribution, and « is the chosen significance level. Thus, J; is exactly
the portion of realized volatility not explained by realized bipower variation, and hence
attributable to jumps in the sample path. Accordingly, the estimator of the continuous
component of quadratic variation is the remaining portion of realized volatility,

C,=RV,—J,, t=1,..T. (14)

This way, the month ¢ continuous component equals realized volatility when there is no
significant jump in month ¢, and it equals realized bipower variation when there is a jump,
Le. Cp = Itz,<e,_ BVi + 117,59, ,}BVi. Note that for any standard significance level,
both J; and C; from (13) and (14) are automatically positive, since ®1_, > 0 for o < 1/2.
Since Z; and BV, enter the definition (13), there are staggered and non-staggered versions
of both the continuous and the jump component. Consistency of the separate components



of realized volatility as estimators of the corresponding components of quadratic variation,
i.e.
q(t)
Cy —p 032 and J; —, Z K2 (L)
j=q(t—1)+1

may be achieved by letting @« — 0 and M — oo simultaneously, whether staggered or non-
staggered versions are used. Hence, this high-frequency data approach allows for month-
by-month separate nonparametric consistent estimation of both components of quadratic
variation, i.e. the jump component and the continuous sample-path or integrated volatility
component, as well as the quadratic variation process for log-prices itself.

3 Derivative Pricing Models

We consider options written on $/DM futures, S&P 500 index futures, and 30 year US
Treasury bond (T-bond) futures contracts. Let ¢ denote the (European call) option price,
K the strike price, 7 the time to expiration of the option, F' the price of the underlying
futures contract expiring A periods after the option, and r the riskless U.S. interest rate.
Following Bates (19964, 1996b), the futures option pricing formula is given by

o(F,K,7,Ar,0) = e T [Fd(d) — K&(d— 0v/7)), (15)

g - In(F/K) + 3021

o\ T ’
where @ (-) is the standard normal c.d.f. and o is the futures return volatility. This is
a Black & Scholes (1973) and Merton (1973) (BSM) style option pricing formula, based
on a geometric Brownian motion specification for the underlying asset, and for the case
A = 0 (no delivery lag) it corresponds to the well-known Black (1976) and Garman &
Kohlhagen (1983) futures option pricing formula, replacing the asset price in the BSM
formula with the discounted futures price e "("*2) F. Jorion (1995) used the formula (15)
with A = 0 for the currency option market, whereas Bates (19964, 1996b) adjusted the
formula for a delivery lag specific to the Philadelphia Exchange (PHLX) respectively the

Chicago Mercantile Exchange (CME) by replacing 7 by 7+ A in the discount factor where
A is the delivery lag from option expiration until the delivery date of the underlying futures
contract.

Since we consider $/DM and S&P 500 futures options traded at the CME, we follow
Bates (1996a) and use the adjusted formula (15) with non-zero delivery lag, A (typically,
A = 3/365, i.e., three day delivery lag). A similar argument applies to the American
style T-bond futures options traded at the Chicago Board of Trade (CBOT), where A =
3/365. Although CME options are American style, the Black (1976) formula produces
implied volatilities that are very comparable to those from stochastic volatility option
pricing formulas for short-term, at-the-money options, as noted by Jorion (1995). It now
becomes an empirical question whether these implied volatilities also reflect information
about future jumps, even though the derivation of (15) assumes no jumps.
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Given observations on the option price ¢ and the remaining variables F, K, 7, A, and
r, an implied volatility (IV) estimate can be backed out from the option pricing formula
in (15) by numerical inversion of the nonlinear equation

c=c(F K,7,A,r,IVY?) (16)

with respect to IV1/2. Newton’s method may be applied to compute IV estimates by
iterating the scheme
c—c(F,K,T,A,T,Ianm)

V(F, K, 7,A, 7, IV,

IVn+1 :[Vn+

until convergence, where V(F, K, 7,A,r, Ian/z) = F\/1¢(d)e " "tA) is the vega of the
option formula (see e.g. Hull (2002)) and ¢ (-) is the standard normal p.d.f. The last factor
in vega, e "("*2) | does not enter, e.g., in the vega of the standard Black & Scholes (1973)
formula, but enters here since the futures contract can be regarded as an asset paying a
continuous dividend yield equal to the risk-free rate r. In our empirical work, the algorithm
is stopped when ‘c —c(F,K,7,A,r, Ian/2)‘ <1077,

4 Data and Descriptive Statistics

For the currency options, we consider options on $/DM futures traded at the CME over the
period January 1987 (month where option price is sampled—expiration is following month)
to May 1999.2 The delivery dates of the underlying futures contract follow the quarterly
cycle March, June, September, and December. In 1987 serial futures options with monthly
expiration cycle were introduced. Thus, some of the options expire in the two months
between the quarterly delivery dates of the futures contracts. The futures options are
American with expiration dates two Fridays prior to the third Wednesday of each month.
The delivery dates of the underlying futures contracts are on the third Wednesday of each
of month in the quarterly (March) cycle. Upon exercise the holder of the option contract
is provided a position at the strike price in the underlying futures contract on the following
trading day, i.e., the following Monday, along with a cash amount equal to the intrinsic
value of the option, which implies a delivery lag of A = 3/365 (from Friday to Monday).
Serial S&P 500 futures options (American style) with monthly expiration cycle similarly
trade at the CME, and our sample covers the period January 1990 to November 2002.
The underlying futures contract follows the same quarterly delivery cycle as the currency
futures, with delivery date on the third Friday of the delivery month. To avoid “triple
witching hour” problems associated with simulaneous maturing on the third Friday every

2Trading in $/DM options declined near the introduction of the Euro, and no January 1999 price of the
relevant serial (monthly) option contract is available in the data from the Commodity Research Bureau,
even though prices are available for the quarterly contracts expiring in March 1999. A monthly implied
volatility estimate for January 1999 is constructed using linear interpolation between the December 1998
and February 1999 estimates.

11



third month of the S&P 500 futures contract, the associated futures options, and the options
on the underlying stock index, the expiration date of the futures options was in the second
quarter of 1986 (before the start of our sample period) shifted to the preceding Thursday,
while keeping the delivery date for the underlying futures on Friday. Upon exercise the
holder of the option contract is provided a position at the strike price in the underlying
futures contract on the following trading day, plus the intrinsic value of the option in cash.
This results in a delivery lag of A = 1/365 every third month, according to the March
quarterly cycle, whereas A = 3/365 for the serial options expiring on the third Friday of
each of the two intermediate months.

In October 1990 serial 30 year T-bond futures options with monthly expiration cycle
were introduced at the CBOT, and our sample covers the period October 1990 to November
2002. The underlying futures contract follows the same quarterly delivery cycle of as the
currency and stock futures. The particular T-bond serving as underlying asset for the
futures is not uniquely identified by the contract specifications. It is simply required that
the T-bond is not callable for at least 15 years from the first day of the contract month
(the delivery month of the underlying futures contract), or, for a noncallable T-bond, has
a maturity of at least 15 years from the first day of the contract month. For a detailed
description of the 30 year T-bond futures, see e.g. Hull (2002). The options are American
and expire on the last Friday followed by at least two business days in the month prior to
the contract month. As for the currency options, upon exercise the holder of the option
contract is provided a position at the strike price in the underlying futures contract on the
following Monday, plus the intrinsic value in cash, again implying A = 3/365.

The options data consist of daily open auction closing prices obtained from the Com-
modity Research Bureau. The US Eurodollar deposit one-month middle rate (downloaded
from Datastream) is used for the risk-free rate. For the implied volatility (IV) estimates
we use at-the-money (ATM) calls with one month to expiration. The prices are recorded on
the Tuesday after the last trading day of the preceding option contract. In total, a sample
of 149 (currency market), 155 (stock market), and 146 (bond market) annualized monthly
IV observations of ATM calls are available. Hence, although the underlying futures con-
tracts expire at a quarterly frequency, the IV estimates are based on option contracts
covering non-overlapping one-month time intervals. Furthermore, as suggested by French
(1984), the option pricing formula in (15) is extended such that trading days are used for
volatilities and calender days for interest rates.

For RV and its separate components we use the same data as Andersen, Bollerslev,
Diebold & Vega (2004) and Andersen et al. (2005), which are based on linearly inter-
polated five-minute observations (following Miiller, Dacorogna, Olsen, Pictet, Schwarz &
Morgenegg (1990) and Dacorogna, Miiller, Nagler, Olsen & Pictet (1993), among others)
on $/DM spot exchange rates, S&P 500 futures prices, and T-bond futures prices. There is
round-the-clock trading in the $/DM spot market, and the raw data are interbank quotes
from Reuter’s FXFX screen. There is open auction CME trading from 8:30 a.m. to 3:15
p.m. central time in S&P 500 futures, and the data are supplemented with GLOBEX
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prices for the period from 7:10 a.m.. There is open auction T-bond futures trading at
the CBOT from 7:20 a.m. to 2:00 p.m., with our price observations starting at 7:25 a.m.
This provides us with a total of 288 high-frequency returns per day (r;; from (5)) for the
$/DM market, 97 per day for the stock market, and 79 per day for the bond market. The
volatility measures are annualized and constructed on a monthly basis to cover exactly
the same periods as the I'V estimates. For the foreign exchange market we have T' = 149
and M about 6,336 (approx. 22 trading days with 288 returns per day — our data does
not include weekends and holidays), for the stock market we have T'= 155 and M about
2,134 (approx. 22 trading days with 97 returns per day), and for the bond market we have
T = 146 and M about 1,738 (approx. 22 trading days with 79 returns per day). Our time
index refers to the calendar month where implied volatility is sampled. Thus, I'V; can be
regarded as a forecast of RV,11, since implied volatility is sampled at the beginning of the
time interval covered by realized volatility for period ¢ + 1. For example, in the foreign
exchange market, if ¢ and ¢ 4+ 1 correspond to May and June, say, I'V; is sampled on the
Tuesday after the May expiration date, which in this example is two Fridays prior to the
third Wednesday of May, and RV, is calculated from squared returns covering the period
from the sampling of IV; until two Fridays prior to the third Wednesday of June. As sug-
gested by Andersen et al. (2005) a significance level of a = 0.1% is used to detect jumps,
thus providing the series for the jump component J from (13) and continuous component
C from (14) of realized volatility RV'.

The $/DM spot exchange rate differs from the futures rate, which is the price of the
underlying asset for the option contract. However, through the interest rate parity In F' =
p+(rg—rpa )7, well known from international finance?, it is clear that the futures and spot
$/DM exchange rates primarily differ by the discounted interest rate differential. Using
the spot rate instead of the futures price for realized quantities implies that our estimates
of the forecasting power of IV (calculated from futures options) are on the conservative
side in case of the currency market. For the bond market, rather than calculating RV
from returns on T-bonds, which are not uniquely associated with the futures contracts, we
consider RV from returns to the futures contract itself, i.e., precisely the underlying asset
for the futures options. For the stock market, realized quantities are based on returns on
the index futures contract, which is the underlying asset for the options considered, i.e., a
perfect match.

Table 1 about here

Summary statistics for the four different annualized volatility measures are presented
in Table 1. Throughout the paper we use the staggered versions of the realized volatility
measures as advocated by Huang & Tauchen (2005) and Andersen et al. (2005).* Panel A

3The interest parity holds exactly with constant risk free interest rate, i.e. in this case the forward price
equals the futures price (Cox, Ingersoll & Ross (1981)). It holds approximately when the interest rate is
stochastic. Indeed, it is precisely under interest parity that the Garman & Kohlhagen (1983) spot exchange
rate option pricing formula reduces to the Black (1976) futures option formula.

4The corresponding results for the non-staggered volatility measures, as well as results using the square-

13



presents statistics for the currency market, Panel B for the stock market, and Panel C for
the bond market. If implied volatility were given by the conditional expectation of future
realized volatility as traditional option pricing theory suggests, we would expect that RV
and IV had equal unconditional means, and RV higher unconditional standard deviation
in the time series than I'V. This pattern is confirmed in the foreign exchange and stock
markets (Panels A and B), where both RV and C' have higher sample standard deviations
than IV, and almost in the bond market (Panel C), where IV and RV have about the same
standard deviation. The unconditional sample mean of IV is slightly higher than that of
RV in the stock and bond markets, possibly reflecting a negative price of volatility risk (c.f.
Bollerslev & Zhou (2006)) or an early exercise premium, whereas the opposite is the case
for the foreign exchange market. None of these observations rule out that implied volatility
has incremental information in forecasting future realized volatility. Finally, skewness and
excess kurtosis are generally higher for J than for the other volatility measures, and they
are lowest for IV in all three markets, i.e., implied volatility is closer to Gaussianity than
realized volatility and both its continuous and jump components.

Figure 1 about here

Time series plots of the four monthly volatility measures are exhibited in Figure 1. The
volatility measures from the foreign exchange market appear in Panel A, those for the stock
market in Panel B, and those for the T-bond market in Panel C. In the foreign exchange
and stock markets (Panels A and B), the continuous component of realized volatility is
close to realized volatility itself. The new variable in our analysis, implied volatility, is also
close to realized volatility, but not as close as the continuous component. In case of the
T-bond market (Panel C), the continuous component of realized volatility is below realized
volatility itself, and implied volatility hovers above both, consistent with the difference in
means in Table 1. In all three markets, the jump component clearly behaves differently
from the other volatility measures. There are 148 out of 149 months with significant jumps
in the foreign exchange market, 120 out of 155 in stock market, and 138 out of 146 months
with significant jumps in the T-bond market. Thus, jumps are non-negligible in all three
markets, and the jump series clearly exhibit less serial dependence compared to the other
series as found also by Andersen et al. (2005). Hence, Figure 1 provides clear indication of
the importance of analyzing the continuous and jump components separately.

5 Econometric Models and Empirical Results

In this section we study the relation between realized volatility together with its disen-
tangled components and implied volatility from the associated option contract. We apply
both standard univariate regression models and heterogeneous autoregressive (HAR) mod-
els, and we introduce new multivariate extensions of the latter, which turn out to prove

root and log-transformation of the volatility measures, are similar and available from the authors upon
request.

14



useful in our context with implied volatility as well as separate continuous and jump mea-
sures of realized volatility. Each of the tables in the empirical analysis consists of three
panels with results for the foreign exchange market in Panel A, the stock market in Panel
B, and the T-bond market in Panel C.%

5.1 Forecasting Realized Volatility

We consider regression of realized return volatility, RV, on option implied volatility, IV,
as well as lagged RV or its continuous and jump components. The general form of the
one-month ahead forecasting equation is

R%+1:a+ﬁlm+7xt+€t+l7 t:172737"‘7 (17)

where o denotes the intercept, § is the slope parameter for I'V, and ;1 is the forecasting
error. Either RV or the vector (C, J) is contained in z;, where ~ is the associated coefficient
(vector). For some of the regressions presented, 5 = 0 or v = 0 is imposed.

Table 2 about here

In Table 2 we report coefficient estimates (estimated standard errors in parentheses)
together with adjusted R?, and the Breusch (1978) and Godfrey (1978) (henceforth BG)
test statistic for residual autocorrelation up to lag 12 (one year), which is used instead of
the standard Durbin-Watson statistic due to the presence of lagged endogenous variables
in several of the regressions. Under the null hypothesis of absence of serial dependence in
the residuals, the BG statistic is asymptotically x? with 12 degrees of freedom.

The first order autocorrelation coefficient in the regression of realized volatility on its
own lag in the first row of each panel in Table 2 is .46, .63, and .55 in the foreign exchange,
stock, respectively T-bond markets, with associated t-statistics of 6.3, 10.1, and 7.9. In
the following, this serves as a useful benchmark for assessing the new nonparametric tools,
as well as the incremental information in option prices. We first address the importance
of separating realized volatility into its continuous and jump components when forecasting
future volatility. It is immediately clear that the two components of realized volatility
play very different roles in forecasting realized volatility. The coefficient on the continu-
ous component is .54 (.62) [.63] for the foreign exchange (stock) [T-bond] market, clearly
significant with a t-statistic of 4.8 (7.7) [8.9], and close to that of the realized volatility
regression. In contrast, in the foreign exchange and bond markets, the coefficient on the
jump component is negative and insignificant with ¢-statistics of -.2 and -1.2, suggesting
very little impact from the jump component on future realized volatility. This accords well
with the consensus in the empirical finance literature that jumps are very hard to predict
(e.g. Andersen et al. (2005)). Our results complement this notion by showing that jumps

% Again, results for non-staggered volatility measures and for other transformations, are similar and
available from the authors upon request.
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in the foreign exchange and bond markets are of little importance in predicting future re-
alized volatility. On the other hand, the jump component is significant in the stock market
with a t-statistic of 2.7 and a positive coefficient close to that of the continuous component.
Thus, C and J generally play very different roles in a forecasting context, but there are
important differences across markets. The results show that it is not generally appropriate
to use total lagged realized volatility as in the regression in the first row, imposing equal
coefficients on C' and J.

As a novel contribution we introduce currency, stock, and bond option implied volatility
into this forecasting regression framework with separate continuous and jump components.
This allows assessing the incremental information from option prices relative to the non-
parametric volatility measures extracted from high-frequency returns.

The third row of each panel in Table 2 examines the information content of implied
volatility in forecasting future realized volatility. The regression coefficient on implied
volatility is .89 (.1.06) [.56] in Panel A (Panel B) [Panel C] and strongly significant with
a t-statistic of 10.0 (15.9) [8.7]. Based on the estimated standard errors, we fail to reject
the unbiasedness hypothesis 5 = 1 in (17) for the foreign exchange and stock markets,
where also adjusted R2, at 39% resp. 62%, is much higher than that in the regression
on past realized volatility or its components in rows one and two, and the BG test does
not indicate any misspecification. In the T-bond market, the unbiasedness hypothesis is
rejected, adjusted R? is in between those in the first two rows of the panel, and the BG
test shows signs of residual serial correlation when IV is the sole regressor.

The incremental information in implied volatility vis-a-vis realized volatility and its
separate components is next assessed by including these simultaneously as regressors. The
results in the fourth line of each panel in Table 2 confirm the differences between the
three markets. In the foreign exchange and stock markets, past realized volatility carries
no incremental information relative to implied volatility. The coefficient on lagged RV is
small in magnitude, negative, and insignificant in both markets. On the other hand, in the
bond market, when both realized and implied volatility are included in the regression, each
of them has incremental information and remains significant. The last line of each panel
shows the results when including both implied volatility and the separate continuous and
jump components of realized volatility. Implied volatility subsumes the information content
of both the continuous and jump components of realized volatility in the foreign exchange
market, but not in the stock market where the jump component remains significant with a
negative coefficient, although adjusted R? does not increase much relative to the regression
where IV is the sole regressor (62.9% resp. 62.2%) and the BG test now shows signs of
misspecification. Moreover, all variables are significant in the T-bond market, where this
regression gets the highest adjusted R? at 45%, although the BG tests show mild signs of
misspecification.

Recall that our implied volatility measure is backed out from the modified Black (1976)
futures option pricing formula (15), as is standard among practitioners and in the empirical
literature. The formula is consistent with a time-varying volatility process for a continuous
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sample path futures price process but does not incorporate jumps in prices, and hence
the jump component may not be explained by implied volatility. Nevertheless, our results
show that implied volatility can in fact predict return volatility, which does include a jump
component. Further results below on the direct forecasting of the jump component of future
volatility support this interpretation. This suggests that option prices, at least to some
extent, are calibrated to incorporate the effect of jumps, thus reducing the empirical need to
invoke a more general option pricing formula allowing explicitly for jumps in prices. Such an
approach would entail estimating additional parameters, including prices of volatility and
jump risk. This would be a considerable complication, but would potentially reveal that
even more information is contained in option prices. While leaving the alternative, more
complicated analysis for future research, we note that our approach yields a conservative
estimate of the information content on future return volatility contained in option prices.

5.2 Heterogeneous Autoregressive (HAR) Model

In forecasting future realized volatility, the OLS regressions in Table 2 above use measures
of past realized volatility and the components of this, where squared returns are assigned
equal weight throughout the month. This way squared returns nearly one month ago
are given the same weight as squared returns one or two days ago. This may not be
relevant if squared returns observed close to one month ago are nearly obsolete, and recent
squared returns much more informative about future volatility. Instead, it may be more
relevant to place higher weight on recent squared returns than on squared returns that are
more distant in the past, and one way to do so in a parsimonious fashion is to apply the
heterogeneous autoregressive (HAR) model proposed by Corsi (2004). When applying this
only to realized volatility itself, we follow Corsi (2004) and denote the model HAR-RV. We
also follow Andersen et al. (2005) and separate the realized volatility regressors into their
continuous (C') and jump (J) components in what they denote the HAR-RV-CJ model.
In our analysis we modify and generalize the HAR-RV-CJ model in four directions.
First, we include implied volatility (IV') as an additional regressor and abbreviate the model
HAR-RV-CJIV. Secondly, in the following subsection HAR regressions are used to predict
each of the separate continuous and jump components rather than total realized volatility,
and we denote the corresponding models HAR-C-CJIV respectively HAR-J-CJIV. Thirdly,
in HAR type estimations data are measured on different time scales, such as daily, weekly,
and monthly. Both Corsi (2004) and Andersen et al. (2005) normalize the time series to the
daily frequency. However, in line with our previous analysis and without loss of generality,
we annualize the data instead of normalizing to the daily frequency. Fourth, Andersen et al.
(2005) estimate HAR models with the regressand sampled at overlapping time intervals,
e.g. monthly RV is sampled at the daily frequency, causing serial correlation in the error
term. This does not necessarily invalidate the parameter estimates, although an adjustment
must be made to obtain correct corresponding standard errors. However, options expire
on a monthly basis and the analysis in Christensen & Prabhala (1998) suggests that use of
overlapping data may lead to erroneous inferences in a setting with both implied volatility
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from option prices and realized volatility. Hence, we sample monthly, weekly, and daily
measures of realized volatility and its components at the monthly frequency, with the
weekly (daily) measures covering the last five trading days (last day) of the corresponding
monthly measures.

For the HAR-RV-CJIV model, which is the HAR equivalent of the least squares re-
gression equation in (17), we denote the h-day realized variation normalized to the annual
frequency by

RVyyin = 25207 (RViy1 + RVigo + ... + RViyp)

where h = 1,2, ... Here, and throughout the rest of the paper, we use ¢ to indicate trading
days rather than months for all volatility measures. For instance, RV; now denotes the
daily realized volatility for day ¢. Thus, RV ;4 may denote a daily (h = 1), weekly (h = 5),
or monthly (h = 22) realized volatility measure. Similar measures may be computed for
the continuous (C};4p) and jump (Jy¢yp) components of realized volatility. Note that
RV; 441 = 252RV;;1 and under stationarity E [RV} 44]) = 252E [RVi44] for all h.

In our empirical work the monthly realized measures are constructed using a value of h
exactly matching the number of trading days covered by the associated implied volatility.
However, for notational convenience we continue to use h = 22 to indicate monthly realized
measures even when the exact number of trading days in a given option cycle is slightly
different. Finally, I'V; now denotes the implied volatility backed out from the price of the
relevant one-month option sampled on day ¢.

The monthly frequency HAR-RV-CJIV model is

RViiyoo = o+ v @i—221 + Vo®i—st + Va®e + BIVy + €1 4400, t=22,44,66,..., (18)

where €4 ;129 is the monthly forecasting error, z;_29 is either RV;_23 4 or the vector (Cy—22+, Ji—22.¢),
and similarly for the weekly and daily variables x;_5; respectively z;. When a variable

is not included in the specific regression, 5 = 0 or v,, = v, = 74 = 0 is imposed. Note

that x;_92+ corresponds to the one-month lagged realized volatility measures included in

the earlier regressions, whereas z;_5; and x; allow extracting information about future
volatility from the more recent history of past squared returns.

Table 3 about here

Table 3 shows the results for the HAR-RV-CJIV model in (18). The format is the same
as in Table 2, so Panel A is for foreign exchange data. In the first regression depicted in the
panel, past realized volatility is not split into its separate continuous and jump components.
The combined impact from the monthly, weekly, and daily realized volatility measures on
future realized volatility is .224+.10+.17 = .49, strikingly close to .46, i.e. the corresponding
estimate from the first regression in Table 2. The t-statistics for the monthly, weekly, and
daily RV parameter estimates are 1.92, .68, and 2.06, respectively, indicating that the
weekly variable contains only minor information concerning future monthly exchange rate
volatility. In the stock market (Panel B), all three RV measures are significant and the
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weekly measure gets a negative coefficient. In contrast to the foreign exchange market,
the BG test is significant. Panel C is for Treasury bond data and the results in the first
line are similar to those in the first line of Panel A, except that daily RV is insignificant.
In all three markets, adjusted R? increases considerably compared to the first line of each
panel of Table 2 (from 19.3% to 26.0% in the foreign exchange market, from 39.7% to
53.0% in the stock market, and from 29.7% to 32.5% in the bond market). This shows the
value of the HAR approach, i.e., of including volatility measures of different frequencies in
predicting future volatility.

Turning to the results in row two of each panel of Table 3, where the continuous and
jump components of realized volatility enter separately in the regression, the conclusions
for the continuous component variable are similar to the those for RV in the first row of
the table, except that the monthly and weekly continuous components become insignificant
in the stock market. As in Table 2 the jump components are mostly insignificant, with
the exception that the daily jump component is significant in the stock and bond markets.
Adjusted R? improves when moving from the second line of each panel of Table 2 to the
second line of each panel of Table 3, showing that the HAR approach is useful also when
considering the separate components of RV. Adjusted R? also improves when moving
from first to second line of each panel of Table 3, thus confirming the enhanced forecasting
performance obtained by splitting RV into its separate components also found by Andersen
et al. (2005).

Next, implied volatility is added to the information set at time ¢ in the HAR regres-
sions. When RV is included together with IV, fourth row, all the realized volatility
coefficients turn insignificant in the foreign exchange and bond markets, whereas daily RV
remains significant in the stock market. However, IV gets t-statistics of 6.15, 6.84, and
4.46 in the three markets, providing clear evidence for the relevance of implied volatility in
forecasting future volatility. The last row of each panel shows the results when including
the separate continuous and jump components of realized volatility together with implied
volatility, i.e. the new HAR-RV-CJIV model. In the foreign exchange market (Panel A)
implied volatility subsumes the information content of both the continuous and jump com-
ponents of realized volatilities at all frequencies. Adjusted R? is about the same as in
the third line of the panel where IV is the sole regressor. In the stock market (Panel
B) both daily components of RV remain significant and the adjusted R? increases from
62% to 68% relative to having I'V as the sole regressor. In the bond market (Panel C),
implied volatility gets the highest t-statistics, as in the other two markets. In this case, the
monthly jump component J;_22; is also significant and adjusted R? improves markedly,
both between lines three and four (adding realized volatility) and between lines four and
five (separating the RV components). The BG test shows mild signs of misspecification in
all three markets.

The finding so far is that implied volatility as a forecast of future volatility contains
incremental information relative to return-based measures in all three markets, even when

The regression in row three of Table 3 duplicates that in row three of Table 2, and is included for clarity.
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allowing more weight to be placed on more recent squared returns and when separating the
continuous and jump components of the realized volatility regressor. Indeed, in the foreign
exchange market, our results show that implied volatility subsumes the information content
of high-frequency realized volatility and its separate components. All relevant information
about future exchange rate volatility is reflected in the option prices. This shows that
the conclusions of Jorion (1995) hold up even when adding high-frequency return data,
using the new nonparametric techniques to disentangle and optimally combine the separate
continuous and jump components of the realized volatility forecast, and invoking the HAR
methodology to exploit potential forecasting power of the RV components at different
frequencies. We next use the HAR framework to assess whether the conclusions extend to
separate forecasting of the continuous and jump components of future realized volatility.

5.3 Forecasting the Continuous and Jump Components

We now split realized return volatility, RV} ;122, into its separate continuous sample path
and jump components, C; ;122 and J; 4122, and examine how these are forecast by the vari-
ables in the information set at time ¢. This is particularly interesting since Andersen et al.
(2005) have shown that the time series properties of the continuous and jump components
are very different, consistent also with our findings in Section 4. This suggests that the
two components should be forecast in different ways. In the following we extend the HAR
methodology to the forecasting of the separate continuous and jump components of future
volatility. Although Andersen et al. (2005) did not consider the forecasting of the separate
components, our analysis below shows that the HAR methodology is well suited also for
this purpose. In addition, since our generalized specification includes implied volatility as
well, we are able to assess the incremental information in option prices on future continuous
and jump components of volatility.

Our HAR-C-CJIV model for forecasting the continuous component of future volatility
is given by

Ciito2 = 0+ 7V Ti—22t + VouTi—5¢ + VTt + BIVy + €422, t=22,44,66,..., (19)

where C 4192 replaces RV} 4422 on the left-hand side of the regression compared to (18) and
2 now contains either C' or the vector (C,J). Table 4 shows the results from estimation
of this model. The format is the same as in Table 3, except that C' and J are always
considered separately rather than combined in the form of RV.

Table 4 about here

The results in Table 4 are similar to the corresponding results in Table 3. The BG tests
show only modest signs of misspecification, except in the bond market when I'V; is the sole
regressor or in the stock and bond markets when only continuous components are included.
Throughout, adjusted R? is higher than in comparable specifications in Table 3, confirming
that C' is more amenable to forecasting than RV, and hence demonstrating the value of the
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new approach of separate HAR modeling of the continuous and and jump components of
realized volatility. In Table 4, when forecasting C, implied volatility generally gets higher
coefficients and t-statistics than the lagged continuous and jump components of realized
volatility, and adjusted R? is highest when implied volatility is included along with these.
In the foreign exchange market, implied volatility completely subsumes the information
content of the realized volatility measures, just as in Panel A of Table 3. In the stock
market, the daily continous component remains significant, as in Table 3, but the daily
jump component becomes insignificant. In the bond market, the monthly jump component
remains significant as in Table 3.

We next consider the predictability of the jump component of realized volatility. The
relevant HAR-J-CJIV model takes the form

Jii422 = @+ V22t + Vo Ti—5t + Vgt + LIV + €4 4422, ¢ =22,44,66,..., (20)

where x now contains either .J or the vector (C, J). Table 5 reports results from regression
of the future jump component, J; ;122, on the relevant variables in the information set at
time {.

Table 5 about here

In the first line of panels A and C (foreign exchange and bond markets), only the
monthly jump component is significant while the daily and weekly jump components are
insignificant. In line two of these two panels the continuous component is added to the
regression but turns out insignificant. The monthly jump components remain significant,
and in the foreign exchange market the weekly jump component now gets a significant
(although negative) coefficient, too. In the stock market (Panel B), the weekly and daily
jump components are significant in the first two lines with a negative coefficient on the
daily component, and when adding the continuous components in line two, the daily com-
ponent is significant. In line three of each panel, implied volatility is used to predict the
jump component of future volatility. It is strongly significant in all three markets and gets
higher t¢-statistics than all other variables considered. The highest adjusted R?s in the
table are obtained in the fourth line of each panel, where all variables are included. Here,
the BG test shows no signs of misspecification in the foreign exchange and bond markets,
although it does in the stock market. Implied volatility remains highly significant in all
three markets and turns out to be the strongest predictor of future jumps (in terms of ¢-
statistics) even when the continuous and jump components at all frequencies are included.
The coefficient on implied volatility ranges between .10 and .23 across markets and speci-
fications, consistent with the mean jump component being an order of magnitude smaller
than implied volatility in Table 1. Indeed, in the bond market, implied volatility subsumes
the information content of both components of realized volatility at all frequencies. In the
foreign exchange market, the monthly continuous component gets a negative coefficient
which is now significant, along with implied volatility. In the stock market, all three jump
components remain significant, with positive coefficient on the weekly and negative on the
monthly and daily measures.
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Comparing across Tables 3, 4, and 5, it is clear that the results are most similar in
Tables 3 and 4 and quite different in Table 5. Clearly, realized volatility and the contin-
uous component of this behave similarly, also in this forecasting context, and our results
show that implied volatility from option prices are important in forecasting both. The
difference in results when moving to Table 5 again reinforces that the continuous and jump
components should be treated separately. When doing so, we find that, firstly, jumps are
predictable from variables in the information set, and, secondly, implied volatility retains
incremental information, thus suggesting that option prices incorporate jump information.
Both are interesting and novel results.

5.4 The Vector Heterogeneous Autoregressive (VecHAR) Model

Our results so far show that realized volatility should be separated into its continuous and
jump components for forecasting purposes, and that implied volatility from option prices
has incremental information for the forecasting of both. We now introduce a simultaneous
system approach for the joint analysis of implied volatility and the separate continuous
and jump components of realized volatility. The reason a simultaneous system approach
is needed is firstly that results up to this point have been obtained in different regres-
sion equations which are not independent, so the relevant joint hypotheses actually involve
cross-equation restrictions. Secondly, our variables may be contaminated with measure-
ment error. In particular, implied volatility may be measured with errors stemming from
non-synchronous option and futures prices, misspecification of the option pricing formula,
etc. Even a simple errors-in-variables problem in implied volatility of this kind generates
correlation between the implied volatility regressor and the error terms in the forecasting
equations for the continuous and jump components, and thus a particular case of an en-
dogeneity problem. In addition, realized volatility and its separate components contain
sampling error, as studied in detail by, e.g., Barndorff-Nielsen & Shephard (2002a, 2007).
Our simultaneous system approach provides an efficient method for handling the resulting
endogeneity issues.
Thus, we consider the vector heterogeneous autoregressive (VecHAR) system
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The first two equations in our simultaneous VecHAR system comprise the forecasting
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equations (19) and (20) for the separate components of realized volatility and the third
equation endogenizes implied volatility. In the representation (21) of our VecHAR model,
the three coefficient matrices on the right hand side are associated with monthly, weekly,
and daily volatility measures, respectively. There are two sources of simultaneity in the
VecHAR system. Firstly, the off-diagonal terms 8; and 3, in the leading coefficient matrix
accommodates dependence of Cy ;422 and J; ;422 on the endogenous variable IV;. Secondly,
the system errors may be contemporaneously correlated. In the third equation, option
prices at the end of the month may reflect return movement over the course of the month,
although via the HAR type specification, more recent returns may receive higher weight. In
addition, our specification allows dependence on one-day lagged implied volatility, IV;_1,
i.e., implied volatility sampled on Monday for the same option contract as in IV;, which
is sampled on Tuesday. The specification of the third equation is similar to using IV;_; as
an additional instrument for IV} in an instrumental variables treatment of the endogeneity
problem, but the full system approach in (21) is more general and efficient.

Table 6 about here

In Table 6 we present the results of Gaussian full information maximum likelihood
(FIML) estimation of the VecHAR system with robust standard errors (sandwich-formula,
H-'VH=! where H is the Hessian and V the outer-product-gradient matrix) in paren-
theses. Of course, the results are asymptotically valid even in the absence of Gaussianity.
Similarly to the univariate HAR results in Tables 3-5, the BG tests show no signs of mis-
specification in the foreign exchange and bond markets, although the tests are significant
in two of the equations for the stock market.

Implied volatility is strongly significant in the forecasting equations for both the con-
tinuous and jump components of future volatility in all three markets, showing that option
prices contain incremental information beyond that in high-frequency return-based volatil-
ity measures. In the foreign exchange market, implied volatility subsumes the information
content of all other variables in forecasting both the future continuous and jump compo-
nents. The monthly continuous component that got a significantly negative coefficient in
the HAR-J-CJIV model (Table 5, Panel A) turns insignificant upon VecHAR simultaneity
correction (¢-statistic of 1.80). In the stock market, we find that the daily continuous com-
ponent is significant in the continuous component forecasting equation, as in the fourth row
of Panel B in Table 4, and in the jump component equation the coefficient on the monthly
jump component remains negative and significant, whereas the other two jump components
now turn insignificant. In the bond market, the monthly and daily jump components are
now significant in the continuous component forecasting equation and the monthly contin-
uous component that was significant in Panel C of Table 4 now drops out, whereas implied
volatility subsumes the information content of both components at all frequencies in the
jump component forecasting equation of the VecHAR system, just as in the HAR-J-CJIV
model.

Turning to the implied volatility forecasting equations in the last row of each panel of
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Table 6, we find that lagged implied volatility is strongly significant and by far the most
important regressor. In the foreign exchange market, the daily continuous component
is also significant, which is natural and accords well with normal trading behavior, i.e.
market participants incorporate recent return-based volatility information in setting option
prices. In the bond market, the daily continuous component is the strongest return-based
predictor, too, but here the t-statistic is lower, at 1.42, and insignificant. In the stock
market, the monthly and daily jump components are both significant, with coeflicients
equal in magnitude and of opposite sign.

Table 7 about here

Table 7 shows results of likelihood ratio (LR) tests of various hypotheses of interest
in the VecHAR model. Most of these hypotheses are tested in the first equation, but
simultaneity implies that testing in the system framework is most appropriate. Overall,
earlier conclusions are confirmed. Firstly, implied volatility subsumes the information in
the weekly measures of the continuous and jump components. Specifically, the hypothesis
Hs : A11w = 0,459, = 0 in (21) is the relevant forecasting efficiency hypotheses in the
continuous component equation with respect to both weekly realized volatility components.
From the VecHAR model we get p-values for the weekly measures (Hz) of 98% in the foreign
exchange market, 14% in the stock market, and 49% in the bond market. Implied volatility
also subsumes the information content of the monthly measures (H; : A11,, = 0, Aj2,, = 0)
in the stock market, and the daily measures (Hs : A114 = 0, A194 = 0) in the bond market.
In the foreign exchange market, implied volatility subsumes the information content of the
continuous and jump measures at all frequencies, with p-values of Hy and H3 of 39% and
27% in this market. On the other hand, the daily measures retain incremental information
in the stock market and the monthly measures in the bond market, where H3 respectively
H; are rejected at the 1% level. Implied volatility is also found to be a biased forecast of
the continuous component of future volatility, but less so in the foreign exchange market
where the p-value of the test of the unbiasedness hypothesis Hy : 3, = 1 is two percent.
Thus, unbiasedness of the implied volatility forecast is rejected at the 5% level in the foreign
exchange market, but not at the 1% level, while it is rejected at the 1% level in the stock and
bond markets. From the point estimates in the first row of each panel of Table 6 the bias in
implied volatility is positive in all three markets in the sense that the estimated coefficient
on implied volatility is below unity in all three panels, showing that implied volatility is
upward biased as a forecast of the future continuous component. Possible reasons for this
phenomenon are that volatility risk is priced (c.f. Bollerslev & Zhou (2006)) or that implied
volatility may reflect information about future jump components as well, which we return
to in Hyp below.

In Hs-H7, the unbiasedness hypothesis Hy is tested jointly with the efficiency hypotheses
Hi-Hs. Consistent with previous results, Hs-H7 are strongly rejected in the stock and bond
markets, whereas Hg-H7 (efficiency with respect to daily and weekly measures along with
unbiasedness) are not rejected at the 5% level in the foreign exchange market (p-values
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between six and eight percent). It is noted that although neither of the hypotheses H; and
Hy are rejected at the 1% level in the foreign exchange market, the joint hypothesis Hy is,
suggesting that the monthly continuous and jump components are more informative about
future volatility than the weekly and daily measures in the foreign exchange market, just
as in the bond market, where Hj is rejected, but He and H3 are not.

Next, using the matrix notation

we examine in Hg : A,, = 0,A,, = 0,A; = 0 the possibility that all the coefficients on
realized components in both the continuous and jump equations are jointly insignificant,
which is a cross-equation restriction and hence requires the system approach. Here, the
forecasting efficiency hypothesis is tested simultaneously for both the continuous and jump
components, and our results from the VecHAR model reject this hypothesis in all three
markets. Particularly in the foreign exchange market, where Hi-Hs are not rejected, and
the significance of the individual coefficients in the two first equations of the VecHAR
system (Panel A of Table 6) suggests that implied volatility subsumes the information
content of all return-based measures in forecasting both components of realized volatility,
the joint test of the cross-equation restrictions in Hg is informative and shows that implied
volatility is nevertheless not a sufficient statistic for all variables in the information set.

In Hg : 85 = 0, we examine the hypothesis that implied volatility carries no incre-
mental information about the future jump component of realized volatility, relative to the
return-based measures. This restriction leads to strong rejection in all three markets, thus
providing evidence that option prices do contain incremental information about future
jumps. Finally, in Hyg : 5; + 85 = 1, again a cross-equation restriction, we test the hy-
pothesis that implied volatility IV; is an unbiased forecast of the sum of the continuous
and jump components, i.e., of total realized volatility, RV ;400 = City22 + Jii420. Al-
though unbiasedness of implied volatility as a forecast of the future continuous component,
Hy : B, = 1, is rejected at the 5% level or better in all markets, Hig : 8; + 85 = 1 is
not rejected in the foreign exchange and stock markets. This reinforces earlier conclusions
that implied volatility does forecast more than just the continuous component of realized
volatility, that jumps are, to some extent, predictable, and, indeed, that option prices are
calibrated to incorporate information about future jumps.

6 Concluding Remarks

This paper examines the role of implied volatility in forecasting future realized volatility and
jumps in the foreign exchange, stock, and bond markets. We consider realized volatility
constructed from high-frequency (5-minute) returns on $/DM exchange rates, S&P 500
index futures, and 30 year Treasury bond futures, as well as implied volatility backed
out from prices of associated currency, stock, and bond futures option contracts. Recent
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nonparametric statistical techniques of Barndorff-Nielsen & Shephard (2004, 2006) are
used to separate realized volatility into its continuous sample path and jump components,
since Andersen et al. (2005) show that this leads to improved forecasting performance.
We assess the incremental forecasting power of implied volatility relative to the improved
realized volatility forecasting obtained by Andersen et al. (2005).

On the methodological side, we generalize the heterogeneous autoregressive (HAR)
model proposed by Corsi (2004) and applied by Andersen et al. (2005) to include implied
volatility from option prices as an additional regressor, and to the forecasting of the separate
continuous and jump components of realized volatility. Furthermore, we introduce a new
vector HAR (VecHAR) model for the simultaneous modeling of implied volatility and
the separate components of realized volatility, controlling for possible endogeneity issues
including, e.g., measurement error in implied volatility, the new variable added in the
forecasting equations relative to Andersen et al. (2005).

On the substantive side, our empirical results show that in all three markets, option
implied volatility contains incremental information about future return volatility relative to
both the continuous and jump components of realized volatility. Indeed, implied volatility
subsumes the information content of the weekly return-based measures in all three markets.
The optimal forecasts combining information from both returns and option prices are based
on implied volatility together with the most recent one-day realized volatility measures in
case of the stock market, and implied volatility together with monthly realized measures in
the bond market. In the foreign exchange market, implied volatility completely subsumes
the information content of the return-based measures at all frequencies, when forecasting
future realized volatility or its continuous component. In addition, implied volatility is an
unbiased forecast of the sum of the continuous and jump components, i.e., of total realized
volatility, in the foreign exchange and stock markets. Finally, our results show that even
the jump component of realized return volatility is, to some extent, predictable, and that
option implied volatility enters significantly in the relevant forecasting equation for all
three markets. This suggests that option market participants in part base their trading
strategies on information about future jumps in foreign exchange rates as well as in stock
and bond prices, and hence interest rates.

Acknowledgements

We are grateful to Per Frederiksen, Neil Shephard, participants at the Nordic Economet-
ric Meeting 2005 in Helsinki, the Econometric Society World Congress 2005 in London,
the American Finance Association Annual Meeting 2006 in Boston, the Duke Financial
Econometrics Lunch Group Seminar, the CIREQ 2006 Conference on Realized Volatil-
ity in Montreal, and the 2006 Conference on Multivariate Modelling in Finance and Risk
Management in Sandbjerg for comments, and especially to Tim Bollerslev for extensive
comments and for providing the realized volatility, bipower variation, and tripower quar-
ticity data used in this study. We are also grateful to Rolf Karlsen, Christian Kristensen,

26



and Christian Sgnderup for research assistance and the Center for Analytical Economics
(CAE) at Cornell, the Center for Analytical Finance (CAF) at Aarhus, and the Danish
Social Science Research Council (SSF/FSE) for research support. Part of this research was
carried out during Morten Nielsen’s research visits at the School of Economics and Man-
agement, University of Aarhus, in connection with FSE grant no. 275-05-0220. This paper
combines and further develops the material in our previous three papers “The implied-
realized volatility relation with jumps in underlying asset prices,” “Forecasting exchange
rate volatility in the presence of jumps,” and “The information content of Treasury bond
options concerning future volatility and price jumps.”

References

Ait-Sahalia, Y. (2004), ‘Disentangling diffusion from jumps’, Journal of Financial Eco-
nomics 74, 487-528.

Amin, K. I. & Morton, A. J. (1994), ‘Implied volatility functions in arbitrage-free term
structure models’, Journal of Financial Economics 35, 141-180.

Amin, K. I. & Ng, V. K. (1997), ‘Inferring future volatility from the information in im-
plied volatility in Eurodollar options: A new approach’, Review of Financial Studies
10, 333-367.

Andersen, T. G., Benzoni, L. & Lund, J. (2002), ‘An empirical investigation of continuous-
time equity return models’, Journal of Finance 57, 1239-1284.

Andersen, T. G. & Bollerslev, T. (1998a), ‘Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts’, International Economic Review 39, 885-905.

Andersen, T. G. & Bollerslev, T. (1998b), ‘Deutchemark-dollar volatility: Intraday activity
patterns, macroeconomic announcements, and longer run dependencies’, Journal of
Finance 53, 219-265.

Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2004), Parametric and nonparametric
volatility measurement, in L. P. Hansen & Y. Ait-Sahalia, eds, ‘Handbook of Financial
Econometrics (Forthcoming)’, North-Holland, Amsterdam.

Andersen, T. G., Bollerslev, T. & Diebold, F. X. (2005), ‘Roughing it up: Including
jump components in the measurement, modeling and forecasting of return volatility’,
Working Paper, Universiy of Pennsylvania .

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Ebens, H. (2001), ‘The distribution of
realized stock return volatility’, Journal of Financial Economics 61, 43-76.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2001), ‘The distribution of
exchange rate volatility’, Journal of the American Statistical Association 96, 42-55.

27



Andersen, T. G., Bollerslev, T., Diebold, F. X. & Labys, P. (2003), ‘Modeling and fore-
casting realized volatility’, Fconometrica 71, 579-625.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Vega, C. (2003), ‘Micro effects of macro
announcements: Real-time price discovery in foreign exchange’, American Economic
Review 93, 38-62.

Andersen, T. G., Bollerslev, T., Diebold, F. X. & Vega, C. (2004), ‘Real-time price dis-
covery in stock, bond and foreign exchange markets’, Working Paper, University of
Pennsylvania .

Andersen, T. G., Bollerslev, T. & Meddahi, N. (2004), ‘Analytical evaluation of volatility
forecasts’, International Economic Review 45, 1079-1110.

Bakshi, G., Cao, C. & Chen, Z. (1997), ‘Empirical performance of alternative option pricing
models’, Journal of Finance 52, 2003-2049.

Barndorff-Nielsen, O. E. & Shephard, N. (2001), ‘Non-Gaussian Ornstein-Uhlenbeck-based
models and some of their uses in financial economics (with discussion)’, Journal of the
Royal Statistical Society Series B 63, 167-241.

Barndorff-Nielsen, O. E. & Shephard, N. (2002a), ‘Econometric analysis of realized volatil-
ity and its use in estimating stochastic volatility models’, Journal of the Royal Statis-
tical Society Series B 64, 253—-280.

Barndorff-Nielsen, O. E. & Shephard, N. (2002b), ‘Estimating quadratic variation using
realized variance’, Journal of Applied Econometrics 17, 457—-477.

Barndorff-Nielsen, O. E. & Shephard, N. (2004), ‘Power and bipower variation with sto-
chastic volatility and jumps (with discussion)’, Journal of Financial Econometrics
2, 1-57.

Barndorff-Nielsen, O. E. & Shephard, N. (2006), ‘Econometrics of testing for jumps in
financial economics using bipower variation’, Journal of Financial Econometrics 4, 1—
30.

Barndorff-Nielsen, O. E. & Shephard, N. (2007), Variation, jumps, market frictions, and
high frequency data in financial econometrics, in R. Blundell, T. Persson & W. K.
Newey, eds, ‘Advances in Economics and Econometrics: Theory and Applications,
Ninth World Congress’, Cambridge University Press, Cambridge, UK.

Bates, D. S. (1991), ‘The crash of '87: Was it expected? The evidence from options
markets’, Journal of Finance 46, 1009-1044.

Bates, D. S. (19964), ‘Dollar jump fears, 1984-1992: distributional abnormalities implicit
in currency futures options’, Journal of International Money and Finance 15, 65-93.

28



Bates, D. S. (19960), ‘Jumps and stochastic volatility: exchange rate processes implicit in
Deutsche Mark options’, Review of Financial Studies 9, 69-107.

Black, F. (1976), ‘The pricing of commodity contracts’, Journal of Financial Economics

3, 167-179.

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’, Journal
of Political Economy 81, 637—-654.

Blair, B. J., Poon, S. & Taylor, S. J. (2001), ‘Forecasting S&P 100 volatility: The incre-
mental information content of implied volatilities and high-frequency index returns’,
Journal of Econometrics 105, 5-26.

Bliss, R. R. & Ronn, E. R. (1998), ‘Callable U.S. Treasury bonds: Optimal calls, anomalies
and implied volatilities’, Journal of Business 71, 211-252.

Bollerslev, T. & Zhou, H. (2006), ‘Volatility puzzles: a simple framework for gauging
return-volatility regressions’, Journal of Econometrics 131, 123—-150.

Breusch, T. S. (1978), ‘Testing for autocorrelation in dynamic linear models’, Australian
Economic Papers 17, 334-355.

Canina, L. & Figlewski, S. (1993), ‘The informational content of implied volatility’, Review
of Financial Studies 6, 659—681.

Chernov, M., Gallant, A. R., Ghysels, E. & Tauchen, G. (2003), ‘Alternative models of
stock price dynamics’, Journal of Econometrics 116, 225-257.

Christensen, B. J. & Prabhala, N. R. (1998), ‘The relation between implied and realized
volatility’, Journal of Financial Economics 50, 125-150.

Corsi, F. (2004), ‘A simple long memory model of realized volatility’, Working Paper,
Universiy of Lugano .

Covrig, V. & Low, B. S. (2003), ‘The quality of volatility traded on the over-the-counter
market: A multiple horizons study’, Journal of Futures Markets 23, 261-285.

Cox, J. C., Ingersoll, J. E. & Ross, S. A. (1981), ‘The relationship between forward prices
and futures prices’, Journal of Financial Economics 9, 321-346.

Dacorogna, M. M., Miiller, U. A., Nagler, R. J., Olsen, R. B. & Pictet, O. V. (1993), ‘A
geographical model for the daily and weekly seasonal volatility in the foreign exchange
market’, Journal of International Money and Finance 12, 413-438.

Day, T. E. & Lewis, C. M. (1992), ‘Stock market volatility and the information content of
stock index options’, Journal of Econometrics 52, 267-287.

29



Eraker, B. (2004), ‘Do stock prices and volatility jump? Reconciling evidence from spot
and option prices’, Journal of Finance 59, 1367-1403.

Eraker, B., Johannes, M. & Polson, N. (2003), ‘The impact of jumps in volatility and
returns’, Journal of Finance 58, 1269-1300.

Fleming, J. (1998), ‘The quality of market volatility forecasts implied by S&P 100 index
option prices’, Journal of Empirical Finance 5, 317-345.

French, D. W. (1984), ‘The weekend effect on the distribution of stock prices: Implications
for option pricing’, Journal of Financial Economics 13, 547-559.

French, K. R., Schwert, G. W. & Stambaugh, R. F. (1987), ‘Expected stock returns and
volatility’, Journal of Financial Economics 19, 3-30.

Garman, M. B. & Kohlhagen, S. (1983), ‘Foreign currency option values’, Journal of In-
ternational Money and Finance 2, 231-237.

Godfrey, L. G. (1978), ‘Testing against general autoregressive and moving average er-
ror models when the regressors include lagged dependent variables’, Econometrica
46, 1293-1302.

Hansen, P. R. & Lunde, A. (2006), ‘Realized variance and market microstructure noise
(with discussion)’, Journal of Business and Economic Statistics 24, 127-161.

Heath, D., Jarrrow, R. & Morton, A. (1992), ‘Bond pricing and the term structure of
interest rates: A new methodology’, Econometrica 60, 77-105.

Huang, X. & Tauchen, G. (2005), ‘The relative contribution of jumps to total price vari-
ance’, Journal of Financial Econometrics 3, 456—499.

Hull, J. C. (2002), Options, Futures, and Other Derivatives, 5th edn, Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Hull, J. C. & White, A. (1987), ‘The pricing of options on assets with stochastic volatilities’,
Journal of Finance 42, 281-300.

Jarque, C. M. & Bera, A. K. (1980), ‘Efficient tests for normality, homoskedasicity and
serial independence of regression residuals’, Fconomics Letters 6, 255-259.

Johannes, M. (2004), ‘The statistical and economic role of jumps in interest rates’, Journal
of Finance 59, 227-260.

Jorion, P. (1995), ‘Predicting volatility in the foreign exchange market’, Journal of Finance
50, 507-528.

30



Lamoureux, C. G. & Lastrapes, W. D. (1993), ‘Forecasting stock-return variance: To-
ward an understanding of stochastic implied volatilities’, Review of Financial Studies
6, 293-326.

Merton, R. C. (1973), ‘Theory of rational option pricing’, Bell Journal of Economics and
Management Science 4, 141-183.

Miiller, U. A., Dacorogna, M. M., Olsen, R. B., Pictet, O. V., Schwarz, M. & Morgenegg,
C. (1990), ‘Statistical study of foreign exchange rates, empirical evidence of a price
scaling law, and intraday analysis’, Journal of Banking and Finance 14, 1189-1208.

Pong, S., Shackleton, M. B., Taylor, S. J. & Xu, X. (2004), ‘Forecasting currency volatility:
A comparison of implied volatilities and AR(FI)MA models’, Journal of Banking and
Finance 28, 2541-2563.

Poteshman, A. M. (2000), ‘Forecasting future volatility from option prices’, Working Paper,
University of Illinois at Urbana-Champaign .

Protter, P. (2004), Stochastic Integration and Differential Equations, 2nd edn, Springer-
Verlag, New York.

Schwert, G. W. (1989), ‘Why does stock market volatility change over time?’, Journal of
Finance 44, 1115-1153.

31



Table 1: Summary statistics

Panel A: Foreign exchange data

Statistic th Ct Jt IVt
Mean 0.0128 0.0114 0.0015 0.0119
Std. dev. 0.0070  0.0062 0.0011  0.0050
Skewness 2.3511 2.2478  2.5018 1.0356
Kurtosis ~ 12.070  11.275  11.415  4.4502
JB 643.66 546.89 591.02° 39.425"
Panel B: S&P 500 data

Statistic th Ct Jt IVt
Mean 0.0290 0.0253 0.0037 0.0322
Std. dev. 0.0320  0.0274  0.0089  0.0239
Skewness 3.1905 3.2100  6.6904 2.2781
Kurtosis  15.598  16.155 56.179  11.886
JB 1,287.9 1,383.9"7 19,420 644.06"
Panel C: Treasury bond data

Statistic R,Vt Ct Jt IVt

Mean 0.0073  0.0062 0.0011 0.0089
Std. dev. 0.0027  0.0025 0.0007  0.0028
Skewness 1.3274  1.5243  1.7522  1.3448
Kurtosis  6.1635  6.7023  9.2871  5.0721
JB 103.75 139.92"° 31517 70.127 "

Note: The annualized monthly realized volatility, RV, and its continuous and jump com-
ponents, C; and J;, are constructed from about 6,336 5-minute $/DM spot exchange rate
returns (Panel A) with a total of 149 monthly observations, from about 2,134 5-minute
S&P 500 index futures returns (Panel B) with a total of 155 monthly observations, and
from about 1,738 5-minute 30 year US Treasury bond futures returns (Panel C) with a
total of 146 monthly observations. The monthly implied volatility, IV, is backed out from
the option pricing formula (15) applied to at-the-money call options on $/DM futures,
S&P 500 futures, and 30 year US Treasury bond futures. In all panels, each of the four
volatility measures cover the same one-month interval between two consecutive expiration
dates. One and two asterisks denote rejection of the null of normality for the Jarque &
Bera (1980) test (JB) at the 5% and 1% significance levels, respectively.
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Table 2: Realized volatility regression models

Panel A: Foreign exchange data

Const. RVt Ct Jt IVt AdJ R2 BG
0.0069  0.4586 — — —  21.0% 9.35
(0.0011) (0.0723)

0.0068 — 0.5392 —0.1560 —  21.0% 9.28
(0.0011) (0.1117)  (0.6530)

0.0022 - - - 0.8948 38.7% 11.33
(0.0012) (0.0898)

0.0022 —0.0549  — — 0.9506 40.4% 23.67
(0.0011) (0.0970) (0.1367)

0.0021 — 0.0313 —0.7217 0.9527 40.6% 25.77
(0.0011) (0.1212)  (0.5721) (0.1365)

Panel B: S&P 500 data

Const. RVt Ct Jt IVf AdJ R2 BG
0.0107  0.6345 — — —  39.7% 33.16
(0.0027)  (0.0630)

0.0108 - 0.6242  0.6833 - 39.3% 31.90"
(0.0027) (0.0809)  (0.2488)

—0.0050 - — - 1.0557 62.2% 17.25
(0.0027) (0.0665)

—0.0057 —0.1010  — — 1.1718 62.2% 19.51
(0.0027)  (0.0916) (0.1225)

—0.0071 — —0.0557 —0.5187 1.2277 62.9% 26.62"
(0.0028) (0.0936) (0.2296) (0.1246)

Panel C: Treasury bond data

Const. RVt Ct Jt IVt AdJ R2 BG
0.0033  0.5507 — — —  29.7% 18.40
(0.0005)  (0.0700)

0.0038 — 0.6279 —0.3085 —  35.1% 19.34
(0.0005) (0.0707)  (0.2487)

0.0024 — - — 0.5571 34.3% 32.22""
(0.0006) (0.0641)

0.0019 0.2578 — - 0.3956 38.0% 25.49
(0.0006)  (0.0928) (0.0883)

0.0024 — 0.3158 —0.7623 0.4374 45.3% 23.63"
(0.0006) (0.0881)  (0.2442) (0.0835)

Note: The table shows ordinary least squares results for the regression specification (17)
with asymptotic standard errors in parentheses. Adj R? denotes the adjusted R? for the
regression and BG is the Breusch-Godfrey test statistic (with 12 lags) for the null of no
serial correlation in the residuals. One and two asterisks denote rejection at the 5% and

1% significance levels, respectively.
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Table 3: Realized volatility HAR models

Panel A: Foreign exchange data

Const. RVy_20; RVi_5; RVy Ci_oa; Cisy C; Jy_ooyr  Ji_sy Ji IV, AdjR?* BG

0.0061 0.2186 0.0981 0.1706 — — — — — — — 26.0% 10.89

(0.0011)  (0.1138)  (0.1438) (0.0828)

0.0061 — — — 0.2355 0.0871 0.2407 0.1922 —0.8014 0.0897 — 26.9% 13.55

(0.0011) (0.1597)  (0.1623) (0.0930) (0.6783)  (0.5640)  (0.2192)

0.0022 — — — — — — — — — 0.8948 38.7% 11.33

(0.0012) (0.0898)

0.0021 —0.1483 0.0769 0.0765 — — — — — — 0.8733 41.1% 21.34
(0.0011)  (0.1178)  (0.1284) (0.0754) (0.1419)

0.0022 — — — —0.0517 0.0097 0.1114 —0.7076 0.0996 —0.0474 0.8715 40.4% 22.72"
(0.0012) (0.1526)  (0.1471) (0.0869) (0.6319)  (0.5326)  (0.1993) (0.1515)

Panel B: S&P 500 data

Const. th_gg,t RVt_57t RVf Ct—22,t Ct—s,t Ct Jt—22,t Jt—5,t Jt IVt Adj R2 BG

0.0053 0.6240 —0.3340 0.6765 — — — — — — — 53.0% 43.02

(0.0025)  (0.1132)  (0.1039) (0.1007)

0.0037 — — — 0.1568 0.0407 0.9646 0.2726 —0.1427 —0.7903 — 61.9% 25.44"
(0.0023) (0.1327) (0.1353) (0.1088) (0.2720)  (0.1812)  (0.3873)

—0.0050 — — — — — — — — — 1.0557 62.2% 17.25

(0.0027) (0.0665)

—0.0052 0.0378 —0.1617 0.3177 — — — — — — 0.9513 64.0% 25.14°
(0.0027) (0.1311) (0.0943) (0.1026) (0.1391)

—0.0051 — — - —0.1511 0.0633 0.6016 —0.4486 0.0454 —0.7019 0.7952 68.2% 22.89
(0.0027) (0.1336) (0.1237) (0.1194) (0.2809) (0.1690) (0.3541)  (0.1447)

Panel C: Treasury bond data

Const. RVi 92+ RVi5;: RVy Cioa: Cis: Cp  Jioop  Jiosy Ji IV, AdjR? BG

0.0031  0.3600 0.1112 0.1389 — — — — — — — 32.5% 16.80

(0.0005)  (0.1106)  (0.1143) (0.0744)

0.0037 — — — 0.4203 0.1436 0.0826 —0.1502 —0.3378 0.3660 — 37.0% 16.19

(0.0005) (0.1347)  (0.1363) (0.0776) (0.2792)  (0.2567)  (0.1764)

0.0024 - - - - - — - — — 0.5571 34.3% 32.227
(0.0006) (0.0641)

0.0018 0.0462 0.1835 0.0817 — — — — — — 0.3933 40.4% 21.66°
(0.0006)  (0.1254)  (0.1086) (0.0710) (0.0882)

0.0023 — — — 0.1736 0.1424 0.0318 —0.7018 —0.0605 0.2812 0.4129 45.5% 20.40

(0.0006) (0.1355) (0.1267) (0.0729) (0.2842)  (0.2457)  (0.1649) (0.0867)

Note: The table shows HAR-RV-CJIV results for the specification (18) with asymptotic
standard errors in parentheses. Adj R? denotes the adjusted R? for the regression and BG
is the Breusch-Godfrey test statistic (with 12 lags) for the null of no serial correlation in
the residuals. One and two asterisks denote rejection at the 5% and 1% significance levels,

respectively.
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Table 4: Continuous component HAR models

Panel A: Foreign exchange data
COHSt. Ct722,t Ct75,t Ct Jt722,t Jt75,t Jt IVt AdJ R2 BG

0.0053 0.2273 0.0634 0.1892 — — — — 28.6% 10.18
(0.0009)  (0.1128)  (0.1370) (0.0779)

0.0053 0.2651 0.0487 0.2176 —0.1025 —0.5571 0.0826 - 27.9% 11.66
(0.0009)  (0.1410)  (0.1433) (0.0821) (0.5989)  (0.4980)  (0.1936)

0.0020 — — — — — — 0.7885 37.9% 13.85
(0.0010) (0.0804)

0.0020  0.0209 —0.0171 0.1077 —0.8674 0.2088 —0.0340 0.7409 40.2% 23.86
(0.0010)  (0.1359)  (0.1310) (0.0774) (0.5627) (0.4743)  (0.1775) (0.1349)

Panel B: S&P 500 data
Const. Ct722,t thf),t Ct Jt722,t Jt75,t Jt IVt AdJ R2 BG

0.0031 0.1556 0.0959 0.7356 — — — —  67.2% 26.49
(0.0018)  (0.0989)  (0.0967) (0.0783)

0.0023 0.1246 0.0853 0.8636 0.3412 —0.3477 —0.4236 —  73.7% 13.19
(0.0017)  (0.0944)  (0.0962) (0.0774) (0.1934)  (0.1288)  (0.2753)

—0.0052  — - - - - - 0.9480 68.6% 24.35
(0.0021) (0.0519)

—0.0040 —0.0945 0.1014 0.6053 —0.1721 —0.2138 —0.3606 0.5659 78.1% 17.07
(0.0019)  (0.0949)  (0.0879) (0.0848) (0.1997)  (0.1201)  (0.2517) (0.1028)

Panel C: Treasury bond data
Const. Ct—22,t Ct—5,t Ct Jt—22,t Jt—5,t Jt IVt ACL] R2 BG

0.0023 0.4028 0.1480 0.0959  — — — —  394% 26.37
(0.0004)  (0.1216)  (0.1236) (0.0722)

0.0030  0.4220 0.1082 0.1171 —0.4624 —0.3924 0.2856 —  431% 22.35
(0.0005) (0.1221) (0.1236)  (0.0703)  (0.2531) (0.2327) (0.1599)

0.0018 — — — — — — 0.4885 29.1% 50.97"
(0.0006) (0.0635)

0.0019 0.2353 0.1073 0.0786 —0.8798 —0.1826 0.2214 0.3124 48.3% 21.46
(0.0005)  (0.1259)  (0.1177) (0.0678) (0.2641)  (0.2282)  (0.1532) (0.0806)

Note: The table shows HAR-C-CJIV results for the specification (19) with asymptotic
standard errors in parentheses. Adj R? denotes the adjusted R? for the regression and BG
is the Breusch-Godfrey test statistic (with 12 lags) for the null of no serial correlation in
the residuals. One and two asterisks denote rejection at the 5% and 1% significance levels,
respectively.
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Table 5: Jump component HAR models
Panel A: Foreign exchange data
Const. Ct_gg,t Ct—s,t Ct Jt—22,t Jt—5,t Jt IVt Adj R2 BG

0.0011 — - — 0.3272 —-0.1192 —-0.0167 — 7.3% 10.68
(0.0001) (0.0908)  (0.0910)  (0.0372)

0.0009 —0.0295 0.0384 0.0231 0.2947 —0.2443 0.0071 — 14.4% 14.27
(0.0002)  (0.0265) (0.0270)  (0.0155)  (0.1127)  (0.0937)  (0.0364)

0.0002 — - — — — — 0.1063 23.8% 7.72
(0.0002) (0.0154)

0.0003 —0.0726 0.0268 0.0038 0.1598 —0.1092 —0.0134 0.1307 27.2% 8.71
(0.0002) (0.0259) (0.0250) (0.0148) (0.1073) (0.0904) (0.0338)  (0.0257)

Panel B: S&P 500 data
Const. Ct_gg,t Ct—s,t Ct Jt—22,t Jt—5,t Jt IVt Adj R2 BG

0.0031 — — 0.0041 0.2036 —0.3052 — 4.0% 63.60°
(0.0008) (0.0992)  (0.0770)  (0.1571)

0.0015 0.0321 —0.0446 0.1010 —0.0685 0.2049 —0.3668 — 6.2% 57.71°
(0.0010)  (0.0577)  (0.0588)  (0.0473)  (0.1182)  (0.0788)  (0.1684)

0.0002 — - — — - - 0.1078 8.3% 55.96
(0.0011) (0.0287)

—0.0011 —0.0567 —0.0381 —0.0037 —0.2765 0.2592 —0.3413 0.2293 12.7% 48.37
(0.0012)  (0.0613)  (0.0568)  (0.0548)  (0.1290)  (0.0776)  (0.1626) (0.0664)

Panel C: Treasury bond data
COHSt. Ct,QQ’t Ct75,t Ct Jt722,t Jt75,t Jt IVt AdJ R2 BG

0.0007 - - — 0.3100 0.0438 0.0820 —  12.2% 12.30
(0.0001) (0.0867)  (0.0808)  (0.0553)

0.0007 —0.0017 0.0354 —0.0345 0.3122 0.0546 0.0804 —  11.6% 12.13
(0.0002)  (0.0430)  (0.0436)  (0.0248)  (0.0892)  (0.0821)  (0.0564)

0.0005 - - — — — - 0.0686 6.9% 27.39"
(0.0002) (0.0206)

0.0004 —0.0617 0.0351 —0.0469 0.1780 0.1221 0.0598 0.1005 18.2% 15.71
(0.0002)  (0.0448)  (0.0419)  (0.0241)  (0.0940)  (0.0812)  (0.0545) (0.0287)

Note: The table shows HAR-J-CJIV results for the specification (20) with asymptotic
standard errors in parentheses. Adj R? denotes the adjusted R? for the regression and BG
is the Breusch-Godfrey test statistic (with 12 lags) for the null of no serial correlation in
the residuals. One and two asterisks denote rejection at the 5% and 1% significance levels,
respectively.
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Table 6: VecHAR models

Panel A: Foreign exchange data

Dep. var. Constant Ct—22,t Ct—5,t Ct Jt—22,t Jt—5,t Jt IVt IVt_l BG
Ct 422 0.0024  0.0552 —-0.0078 0.1231 —-0.7601 0.1013 —0.0177 0.6369 — 16.97
(0.0010)  (0.1819)  (0.1457)  (0.0741)  (0.6084)  (0.6201)  (0.1481) (0.1948)
Ji,t422 0.0004 —0.0658 0.0286 0.0068 0.1811 —0.1305 —0.0102 0.1100 — 8.23
(0.0002) (0.0366)  (0.0320)  (0.0144)  (0.1224)  (0.1067)  (0.0265) (0.0400)
IV, 0.0013 —0.0668 —0.0521 0.0788 —0.0431 —0.3046 0.0242 — 0.9028 11.07
(0.0006) (0.0562)  (0.0417)  (0.0376)  (0.1471)  (0.1927)  (0.0448) (0.0685)
Panel B: S&P 500 data
Dep. var. Constant Ct—22,t Ct—5,t Ct Jt—22,t Jt—5,t Jt IVt IVt_l BG
Citr22  —0.0054 —0.1432 0.1050 0.5478 —0.2863 —0.1840 —0.3466 0.6918 — 16.79
(0.0022)  (0.1342)  (0.0906)  (0.1703)  (0.1953)  (0.1691)  (0.3923) (0.1643)
Jit420  —0.0015 —0.0732 —0.0369 —0.0232 —0.3152 0.2693 —0.3365 0.2720 — 33.20"
(0.0012) (0.1007)  (0.0440)  (0.0441)  (0.1514)  (0.1946)  (0.3564) (0.1045)
1V, 0.0009 —0.0144 0.0159 0.0307 0.3800 —0.0158 —0.3868 — 0.9349 29.10"
(0.0008) (0.0629)  (0.0466)  (0.0368)  (0.0562)  (0.0462)  (0.0982) (0.0568)

Panel C: Treasury bond data

Dep. var. Constant Ct722,t Ct75,t Ct Jt,QQ’t Jt75,t Jt IVt IVt,1 BG

Cty22 0.0019  0.2253 0.1073 0.0766 —0.9023 —0.1713 0.2180 0.3292 — 18.67
(0.0005) (0.1244) (0.1120) (0.0664) (0.2673) (0.1866) (0.0627)  (0.0831)
Ji e 400 0.0003 —0.0740 0.0350 —0.0494 0.1506 0.1358 0.0556 0.1210 — 16.30
(0.0003) (0.0492)  (0.0423)  (0.0297)  (0.1174)  (0.0790)  (0.0605) (0.0550)
1V, 0.0001  0.0328 —0.0264 0.0517 0.2547 —0.0344 0.0448 — 09172 8.62
(0.0003) (0.0460)  (0.0386)  (0.0365)  (0.2350)  (0.1120)  (0.0401) (0.0414)

Note: The table shows FIML results for the simultaneous VecHAR system (21) with robust
standard errors (sandwich-formula, H~'V H ! where H is the Hessian and V the outer-
product-gradient matrix) in parentheses. BG is the Breusch-Godfrey test statistic (with
12 lags) for the null of no serial correlation in the residuals. One and two asterisks denote
rejection at the 5% and 1% significance levels, respectively.
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Panel A: Foreign exchange data

Figure 1: Time series plots of monthly volatility measures
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