
DEPARTMENT OF MANAGEMENT

AFDELING FOR VIRKSOMHEDSLEDELSE

UNIVERSITY OF AARHUS C DENMARK

ISSN 1398-6228

Working Paper 2005-6

INVESTMENT IN ADVERTISING CAMPAIGNS AND
SEARCH: IDENTIFICATION AND INFERENCE IN

MARKETING AND DYNAMIC PROGRAMMING MODELS

 

Bent J. Christensen and Nicholas M. Kiefer



Investment in Advertising Campaigns and
Search: Identi�cation and Inference in

Marketing and Dynamic Programming Models�

Bent J. Christensen
School of Economics and Management, University of Aarhus,

Building 322, DK-8000 Aarhus C, Denmark

Nicholas M. Kiefer
Department of Economics, Cornell University

December 6, 2005

Abstract

We treat identi�cation and inference in dynamic programming models
of investment in advertising campaigns, search, and marketing. Many
insights relevant for general dynamic programming models are motivated
by earlier work on the econometrics of the search model. Issues considered
include interval identi�cation, the curses of determinacy and degeneracy,
the precise role of Bellman�s equation in identi�cation, and the dependence
of parameter estimates on distributional assumptions in the random utility
case.

Keywords: Search, marketing, advertising campaign, likelihood, in-
terval identi�cation, curse of determinacy, curse of degeneracy, random
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1 Introduction

In this paper, we consider econometric analysis of dynamic programming models
with applications to investment in advertising campaigns, search, and market-
ing. Econometrics done as a productive enterprise deals with the interaction
between economic theory and statistical analysis. Theory provides an organiz-
ing framework for looking at the world and in particular for assembling and
interpreting economic data. Statistical methods provide the means of extract-
ing interesting economic information from data. Without economic theory or
statistics all that is left is an overwhelming �ow of disorganized information.
Thus, both theory and statistics provide methods of data reduction. The goal

�We are grateful to the Danish Social Science Research Council for research funding.
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is to reduce the mass of disorganized information to a manageable size while
retaining as much of the information relevant to the question being considered
as possible. In economic theory, much of the reduction is done by reliance on
models of optimizing agents. Another level of reduction can be achieved by
considering equilibrium. Thus, many �explanations� of behavior can be ruled
out and need not be analyzed explicitly if it can be shown that economic agents
in the same setting can do better for themselves. In statistical analysis, the
reduction is through su¢ ciency - if the mass of data can be decomposed so that
only a portion of it contains all the relevant information, the inference problem
can be reduced to analysis only of the relevant data.
Stochastic models are important in settings in which agents make choices un-

der uncertainty, or, from a completely di¤erent point of view, in models which do
not try to capture all features of agents�behavior. Stochastic models are also
important for models involving measurement error or approximations. These
models provide a strong link between theoretical modelling and estimation. Es-
sentially, a stochastic model delivers a probability distribution for observables.
This distribution can serve as a natural basis for inference. In static models,
the assumption of optimization, in particular of expected utility maximization,
has essentially become universal. Methods for studying expected utility maxi-
mization in dynamic models are more di¢ cult, but conceptually identical, and
modelling and inference methods for these models are developing rapidly. The
main work horses here are the fundamental dynamic programming model and
likelihood analysis.
The classic dynamic programming reference is Bellman (1957) who coined

the term. This was followed by Bellman and Dreyfus (1962). Blackwell (1962,
1965) and Maitra (1968) provide the foundations for the modern approach to
dynamic programming. Ross (1983) gives an accessible and brief introduction.
Computational complexity increases rapidly with the dimension of the state
space, leading Bellman (1957) to introduce the term �curse of dimensionality�.
Treatment of identi�cation and inference is a relatively new area. Key contribu-
tions are made by Rust (1987). A recent discussion of the curse of dimensionality
with approaches to breaking the curse is Rust (1997).
An early application of dynamic programming in economics is the sequential

job search model, which is due to Mortensen (1970) and McCall (1970). See also
Lippman and McCall (1976a, 1976b) and Mortensen (1986). Mortensen�s work
has extended the range of applications of the search model from unemployment
to labor turnover, research and development, personal relationships, and labor
reallocation. His insight, that friction is equivalent to the random arrival of
trading partners, generates immediately a stochastic model that lends itself to
structural likelihood analysis. This is a key instance of fruitful data reduction
through the marriage of statistical analysis and theory of optimizing agents.
Kiefer and Neumann (1979) and Christensen and Kiefer (1991) are contribu-
tions in this direction. Mortensen (1990) and Burdett and Mortensen (1998)
initiated the development of equilibrium dynamic models designed to account
for wage dispersion and the time series behaviour of job and worker �ows. This
leads to the second level of data reduction, obtained by imposing equilibrium
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conditions on the statistical framework for optimizing agents. Empirical analy-
sis and inference issues are studied by Kiefer and Neumann (1993), van den Berg
and Ridder (1993, 1998), Christensen and Kiefer (1997), Bunzel et al. (2001),
Christensen et al. (2005) and many others.
In this paper, we treat identi�cation and inference issues in dynamic pro-

gramming models. To see the issues simply and clearly, we present them in
simple discrete state/control settings. A main example running through the
sections is a simple marketing model. The study of optimal advertising policy
in dynamic models where current investment in advertising a¤ects future de-
mand was pioneered by Nerlove and Arrow (1962). An empirical investigation
in the dynamic duopoly case is presented by Chintagunta and Vilcassim (1992).
We draw attention to several issues that apply in wide generality in dynamic
programming models but have received little or no notice previously, such as
identi�cation of parameters only up to intervals, rapid information accumula-
tion, the additional curses of determinacy and degeneracy stemming from the
fact that the model predicts a deterministic relation between the state and con-
trol, the subtle di¤erences between measurement error, imperfect control and
random utility approaches, and the dependence of the parameter estimates on
the assumed shock distribution in the random utility case. Many insights derive
from earlier work on the econometrics of the search model, and we review some
of the relations between the motivating studies of the search model and the
implications for general dynamic programming models. That relations exist is
natural, of course, since components in one model frequently have equivalents in
other models, e.g., unemployment in the search model corresponds to inventory
in the marketing model, etc. A fuller account of all these and further general
economic modelling and inference issues is provided by Christensen and Kiefer
(2005).
The rest of the paper is laid out as follows. In Section 2, we introduce the

fundamental dynamic programming model and our marketing example. Section
3 considers discrete states and controls and provides illustrative computations.
Section 4 is a preview of important identi�cation issues. Likelihood functions
are introduced in Section 5, and identi�cation and inference treated in detail.
Measurement error is introduced in Section 6. Section 7 considers the case of
imperfect control. Section 8 introduces random utility models, and the case of
continuously distributed shocks is treated in Section 9. The connections between
the results for general dynamic programming models and the motivating work
on the econometrics of the job search model are reviewed in Section 10, and
Section 11 concludes.

2 Dynamic Programming: The Marketing Ex-
ample

The basic components of a dynamic optimization model are the objective func-
tion, the state variables, the control variables with any associated constraints,
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and the transition distribution giving the evolution of states as a stochastic func-
tion of the sequence of states and controls. These components are illustrated
here in a simple marketing example.
Consider a �rm deciding whether to invest in a marketing campaign. Sup-

pose that there are two states of demand, high and low. The marketing decision
is to run the campaign or not. Pro�t in any period is given by demand less costs
including marketing costs. Since there are only four con�gurations of states
(demand) and controls (the marketing decision) the pro�t function is given by
four numbers, u(x; c); (x; c) 2 f0; 1g2: Low demand is indicated by x = 0 and
marketing by c = 1: While simple, our discrete model relates naturally to con-
tinuous state/control dynamic models of investment in advertising campaigns,
e.g. Chintagunta end Jain (1992). A plausible pro�t function might be the one
in Table 1.

Table 1. Pro�t Function

u (x; c)
c = 0 c = 1

x = 0 7 4
x = 1 11 7

Here, the low demand state with no marketing generates the same pro�t as
the high demand state with marketing. The objective function of the �rm is
to maximize the expected present discounted value of pro�ts E�Tt=0�

tu(xt; ct)
where T is a �horizon�which may be in�nite and � 2 [0; 1) is a discount factor.
Dynamics are incorporated in the model by letting the probability distribution
of demand next period depend on the marketing decision this period. If the
advertising campaign is e¤ective, then the probability that xt+1 = 1 is greater
when ct = 1 than when ct = 0.
A simple case has the distribution of xt+1 depending only on ct and not on

the current state. For example, consider the particularly simple case p(xt+1 =
1jct = 1) = 1 and p(xt+1 = 1jct = 0) = 0. Thus the state of demand in period
t + 1 is determined exactly by the marketing e¤ort in period t. The logic of
dynamic programming can be illustrated by considering the 2-period problem.
In the last period, clearly there is no bene�t from marketing and c = 0 is optimal
no matter what the level of demand. Now consider the �rst period. Here there
is a tradeo¤ between current period pro�ts (maximized by c = 0) and future
pro�ts (maximized by c = 1). If the current state of demand is low (x = 0) then
the current cost of marketing is 3 and the current period value of the gain next
period as a result of marketing is 4�. Thus for � > 3=4 it is optimal to invest
in marketing in the �rst period when the state of demand is low. Suppose the
state of demand in the �rst period is high. Then the marketing e¤ort costs 4 in
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current pro�t, and gains only 4� in current value of future pro�ts. Since � < 1;
this e¤ort is not worthwhile. We have found the optimal policy. The logic of
beginning in the last period in �nite horizon models and working backwards in
time is known as �backward recursion�and is generally the way these problems
are solved.
A more general and plausible speci�cation would have the distribution of

next period�s demand depend on both the marketing decision and the current
state of demand. As a matter of interpretation, this allows for marketing to
have lasting e¤ects (though tapering o¤ over time). This possibility is pursued
further below.

3 Discrete states and controls

The discrete state/control dynamic programming model has many applications,
can be treated with fairly elementary methods, and allows illustration of most
of the important issues of identi�cation and estimation that appear in more
general settings. The simple case allows focus on issues of substance rather
than details. The latter are important, but can be better handled once the sub-
stantive issues are identi�ed. Note that the discrete case is in many ways quite
general. For practical purposes machine calculations are discrete, as are data,
and indeed applications of continuous models often (but not always) require
explicit discretization.
In the �nite horizon case it is conventional to index value functions by the

number of periods left, rather than distance from the current period (0). Thus,
in a T -period optimization, the value function at the outset is

VT�1(x) = max
�
ET�1;��

T�1
t=0 �

tu(xt; ct) (1)

where � = (�T�1; �T�2; :::; �0) is a sequence of policy functions. A policy
function at period t maps the current state xt and all previous states into the
current policy ct. Thus, we are maximizing over a sequence of functions. The
expectation operator is a little more subtle - it is a conditional expectation
conditioning on the current value of the state variable (hence the T�1 subscript)
and on the policy �. Since the transition distribution typically depends on
controls, the expectation clearly depends on the policy. The value function in
the �nal period is V0(x). With u(x; c) the immediate reward from using control
value c with state x, and C the set of admissible controls, the �nal period value
function is clearly V0(x) = maxc2C u(x; c). The value function with one period
left V1(x) is just the maximized value of the current reward and the discounted
expected value of future rewards. But the future reward is V0(x), so the function
V1(x) is given by

V1(x) = max
c2C

fu(x; c) + �E1V0(x0)g : (2)

Here, x0 is the next period state - a random variable whose distribution is
determined by c and x, current controls and state. Iterating, we obtain the
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whole sequence of value functions V0; :::; VT�1 with

Vt(x) = max
c2C

fu(x; c) + �EtVt�1(x0)g : (3)

This recursion is known as the optimality principle, or Bellman�s equation.
The calculations above are simple and can be done straightforwardly using,

for example, a spreadsheet program. We illustrate using the marketing model
of Section 2. Here, the state variable is a state of demand, x 2 f0; 1g; and the
control variable is an advertising decision c 2 f0; 1g. The pro�t function is given
in Table 1.
A heuristic backward recursion argument together with a trivial transition

distribution was used to obtain the solution for the 2-period problem in Section
2. Here, we make the problem a little more interesting and realistic by specifying
the transition distribution in Table 2.

Table 2
Transition Probabilities

p (xt+1 = 1jxt; ct)
c = 0 c = 1

xt = 0 0.1 0.85
xt = 1 0.5 0.85

Thus, when demand is low it is unlikely that demand will increase without
the marketing e¤ort; when demand is high and marketing e¤orts are 0 the next
period�s demand states are equiprobable; in either case marketing improves the
probability of next period�s demand being high to 0.85. Discounting the future
at � = 0.75 we calculate the value functions and optimal policies by backward
recursion for the 1 through 10-period problems and report results in Table 3.

Table 3. Value Functions and Optimal Policies

t Vt (0) Vt (1) ct (0) ct (1)
0 7.00000 11.00000 0 0
1 12.55000 17.75000 0 0
2 16.80250 22.36250 0 0
3 20.14638 25.68687 1 0
4 22.64185 28.18746 1 0
5 24.51672 30.06099 1 0
6 25.92201 31.46664 1 0
7 26.97621 32.52074 1 0
8 27.76680 33.31135 1 0
9 28.35976 33.90430 1 0
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In the one, two and three period problems it is never optimal to run the
marketing campaign. In the 4 period problem, it is optimal to run the marketing
program in the initial period if the state of demand is low. This makes sense; it is
optimal to try to shock the system into the fairly persistent high-demand state,
then abandon the marketing investment. In the longer problems, it is optimal
to run the marketing program if demand is low and the remaining horizon is
greater than 3 periods. It is never optimal to run the marketing program during
the high-demand periods.
De�ne the operator T by

T f = max
c2C

fu (c; x) + �Ef (x0)g (4)

in the in�nite horizon stationary case and note that T is not subscripted with
t: Then the optimality equation can be written V = T V and V is the unique
bounded solution to this functional equation. The value function, V solving
the optimality equation can be computed as the limit of T -period �nite-horizon
value functions as T ! 1: Let V0(x) = maxc2C u(x; c), the value in the one-
period problem. Note that V1 = max fu (x; c) + �EV0g = T V0 is the value
function for the 2 period problem, where T is the operator de�ned in (4). Then

VT (x) = max
c2C

fu(x; c) + �EVT�1(x)g

= T VT�1 = T T�1V0 (5)

has the interpretation of the value of the T +1 period problem with �nal period
state-dependent reward V0(x). We have

VT (x)� V (x)! 0 as T !1; (6)

since T (�) satis�es Blackwell�s (1965) conditions of monotonicity and discount-
ing and hence is a contraction (see also Stokey and Lucas (1989)).
To illustrate we consider Table 3 giving the value function in the marketing

model for the T = 1; :::; 10 period problems and add results in Table 4 for the
45 through 50 period problem.

Table 4. Value Function Iterations
t V (0) V (1) c (0) c (1)
45 30.13856 35.68311 1 0
46 30.13857 35.68313 1 0
47 30.13858 35.68314 1 0
48 30.13859 35.68314 1 0
49 30.13860 35.68315 1 0

Here, the value function iterations are identical to 6 digits - the improvements
in the calculations are only relative changes of order 10�7. Note, however,
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that the policy function appears to have converged much more rapidly. This
is frequently the case in discrete state/control models. It is much easier to
determine a map from one �nite set to another than it is to determine the exact
value of a real vector. Notice, on a computer the value can only be determined
to a certain level of precision.

4 Identi�cation: A Preview

A central identi�cation issue can be easily illustrated in the context of the mar-
keting model of Sections 2 and 3. The issue will be pursued in detail in Section
5. Parameters are split into two groups: those that relate to the transition dis-
tribution at the optimal policy, and those composed of utility, discount factor,
and transition probabilities for non-observed transitions. The basic result is that
a discrete state/ discrete control model can only determine parameters within
certain ranges. More information is required in order to determine some of the
economically interesting parameters. The information is sometimes introduced
in speci�cation, and we will consider this possibility, too.
Consider the data sequence fxt; ctgTt=0 generated by the optimal policy in

the marketing model. The data can be summarized in two tables re�ecting the
within-period information on the control rule and the intertemporal information
on the transitions (see Table 5). Here, n (x = j) is the number of time periods t
the state variable xt is observed in state j; and nx (jk) is the number of observed
transitions from state j to k:

Table 5. Data Con�guration

Policy Information
c = 0 c = 1

x = 0 0 n (x = 0)
x = 1 n (x = 1) 0

Transition Information
xt+1 = 0 xt+1 = 1

xt = 0 nx (00) nx (01)
xt = 1 nx (10) nx (11)

The transition distribution can clearly be estimated at the optimal policy.
Note that the components of the transition distribution at other values of the
policy contribute to determination of the optimal policy. Information on these
transition probabilities is available only through observation of the optimal pol-
icy and any restrictions implied by the functional equation, which depends on
alternative transition probabilities and characterizes the optimal policy. This
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relationship is subtle and we will set it aside for purposes of this example by
simply assuming that the transition distribution is known.
Returns u (x; c) may also be observed, in which case the components of the

return function corresponding to the optimal policy can be estimated. The
other components of the return function, corresponding to state/control con�g-
urations never observed, can be identi�ed only through restrictions implied by
the optimality equation. Again, the functional equation (4) (or (3), in the �-
nite horizon case) depends on alternative rewards and characterizes the optimal
policy. We will set this aside as well by assuming that the reward function is
known.
The only remaining unknown parameter is the discount factor �. Suppose

we observe the entire in�nite sequence fxt; ctg1t=0 so that any parameter that
can be estimated consistently is known. What can be said about �? Not much.
We have seen that the policy c(0) = 1; c(1) = 0 is optimal for � = 0:75. It is
obviously optimal for any larger value of �. What about smaller values? It turns
out that this policy is optimal for ��0:7143 (approximately) and the policy of
c(0) = c(1) = 0 is optimal for smaller values of the discount factor. Thus, the
most we can expect the data to tell us is whether ��0:7143 or not. Of course,
� is a continuous parameter with parameter space [0,1), but all we will be able
to tell from the data is which of the sets {[0,0.7143),[0.7143,1)} the parameter
� is in.
This feature of �nite state/�nite control dynamic programming models, that

continuous parameters are identi�ed only up to ranges in the parameter space,
is ubiquitous and it is not speci�c to our example. The situation is not com-
pletely hopeless. Of course, continuous parameters corresponding to transition
probabilities at the observed policy are typically identi�ed. Similarly, if re-
wards are observed, rewards corresponding to state/control combinations given
by the optimal policy are typically identi�ed. It is the parameters which must
be identi�ed through the restriction imposed by the functional equation that
are typically underidenti�ed.
Note that the above analysis applies to observations generated by a single

decision maker over time, or to panel data on many decision makers following
the optimal policy. Panel data do not help.
Observations on the �nite horizon control policy are more informative. Here,

the policy is not stationary and information on how the horizon changes the
policy is informative. However, identi�cation is not possible - instead we increase
the number of intervals to which we can assign �. With � = 0:75, we saw that
the policy c(0) = 1 and c(1) = 0 is optimal if the horizon is 4 periods or
longer. At � = 0:72 that policy is optimal if the horizon is 5 periods or longer.
At � = 0:715, optimality requires 7 periods or longer, at 0.7145 it requires 8
periods or longer, etc. Thus, if we observe panel data on decision makers and
we know their horizons we can isolate the horizon at which the policy shifts.
In this case it is possible to use the optimality equation to narrow the range of
possible � consistent with the policy. But it remains impossible to identify �
more closely than an interval.
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5 Likelihood Functions

We begin with the likelihood function in the simplest dynamic programming
case: A single binary state and a single binary control variable in a stationary
in�nite horizon problem. This case, while simple, illustrates properties which
are general. In the case of accurate observations, the control is a deterministic
function of the state, and hence the control policy can be taken as known after
a small sample is realized (speci�cally, after both possible values of the state
are realized). Of course, in many applications this setup would be unrealistic,
in part because the model is just a model and is not purporting to be an exact
description of the world, but it is a useful starting point for considering iden-
ti�cation issues. In a sense, this is a situation of maximal information. If a
parameter is not identi�ed in this setting, it is hard to argue that additional
data information somehow appears when the setting is generalized.
After treating the simple case, we show that the notation and techniques

extend to the general discrete model. Then, we consider extensions allowing
measurement error, imperfect control and random utility. Identi�cation issues
are treated in detail. Parameters are split into two groups: those that relate
to the transition distribution at the optimal policy, and those composed of
utility, discount factor, and transition probabilities for non-observed transitions.
Continuous parameters apart from the transition distribution parameters are
typically unidenti�ed. They are only restricted to lie in certain ranges in the
parameter space, even asymptotically. The results from our marketing model
in Sections 2 to 4 are general.
We focus on the in�nite horizon problem

V (x) = max
�
E�1t=0�

tu(xt; ct) (7)

where the expectation is over a Markov transition distribution p(xtjxt�1; ct�1)
and hence the optimal policy (c(x); c(x); :::) is stationary, or equivalently

V (x) = max
c2C

fu(x; c) + �EV (x0)g : (8)

The observables are the state sequence fxrgTr=0 and the control sequence
fcrgTr=0, with xr and cr in {0,1}. We assume that the reward sequence is not
observed (this will be treated later). The state transition probabilities are state
and control dependent. Thus, we have Table 6.

Table 6. Transition Probabilities
ct = 0 ct = 1

xt = 0 p00 (0) p01 (0) p00 (1) p01 (1)
xt = 1 p10 (0) p11 (0) p10 (1) p11 (1)

In Table 6, pab(c) is the probability of a transition from a to b when the
period t control is c. Given the adding up constraints pa0(c)+ pa1(c) = 1, there
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are four transition probabilities in the model. The policy function is a pair
(c(0); c(1)) 2 f0; 1g � f0; 1g = f00; 01; 10; 11g. There are four possible policy
functions, of which only two are interesting since in the other cases the policy
does not depend on the states.
Given the period 0 values of the state and control, the period 1 distribution of

the observables conditional on parameter vector � is p(x1; c1jx0; c0; �). Now, this
is a singular distribution, in that ct is a deterministic function of xt for any t and
in particular for t = 0 and 1. This important point has several implications.
First, it su¢ ces to condition on one of x or c; we choose to condition on x.
Second, the distribution of x and c given parameters is completely described by
the distribution of x alone. Nevertheless, the information given by c in addition
to x in the likelihood function is enormous. In fact, the deterministic relation
between c and x is learned with certainty as soon as the di¤erent values of x are
seen in the data. Thus, parameters that enter only through the deterministic
relation between c and x are learned, if they are identi�ed, rapidly.
We proceed by conditioning. Let x; x0 and c; c0 refer to current and one-

period ahead values of the state and control, respectively. For the present, we
suppress dependence on the parameter vector �. Then

p(x0; c0jx; c) = p(x0jx; c)p(c0jx0; x; c)
= p(x0jx)p(c0jx0; x)
= p(x0jx)p(c0jx0); (9)

since there is no point in conditioning on c as well as x, and since c0 is a
deterministic function of x0 and hence x is irrelevant for c0 given x0. The second
factor is just I (c0 = c(x0; �)) where I is the indicator function and � has been
reinserted here for emphasis: Given �, the policy function can be calculated and
this factor of the distribution easily evaluated. The likelihood is

L(�; xr; cr; r = 1; :::; T ) = �Tr=1 p(xrjxr�1; �)p(crjxr; �)
= �Tr=1p(xrjxr�1; �)�Tr=1p(crjxr; �): (10)

Since the second factor is zero for values of � inconsistent with the data
and the �rst term is positive, only values consistent with the data have positive
likelihood. As a practical matter, it is useful to check early on whether there
exists any parameter value consistent with the data. In many cases, using this
simple speci�cation, there will not be, and hence the model is rejected and must
be modi�ed. However, this is a good place to begin the study of identi�cation.
Suppose we have a sample of size T , indexed by subscripts r; s; t 2 f0; :::; T �

1g. Consider the state sequence fxtgT�1t=0 . There are 2
T such sequences. Arrange

these sequences in lexicographic order and index these by i; j; k 2 f0; :::; 2T �1g.
Then the ith sequence is the binary expansion of i. This is a convenient way of
thinking about the problem. Our random variable is now i, the position of the
realized sequence. Table 7 illustrates for the case T = 3.

Table 7. State transitions
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i sequence
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Elements of the sequences are indexed by r; s; t: Let �(i; s) be the sth digit
in the binary expansion of i. Let �(i; r) = �(i; r)jj�(i; r + 1) be the rth pair of
digits in the binary expansion of i.
The parameters entering p(x0jx) are the transition probabilities correspond-

ing to the optimal policy. We write these pab; a; b 2 f0; 1g without an argument
to select the appropriate pieces from Table 6. Thus, there are two probabilities
to be estimated. Of course, there could be restrictions relating these probabili-
ties. Further, knowledge of the optimal policy could restrict the values of these
probabilities (for example if these were the only parameters and the optimal
policy was known). However, the restricted estimators can usually be written
as functions of the unrestricted, and the unrestricted maximum likelihood es-
timators (MLEs) are easy to obtain. We will set aside consideration of these
issues for the moment. The likelihood function corresponding to the �rst factor
in (10) is

p(ijx0) = �T�1r=1 p�(i;r): (11)

Introducing the notation N�(i; ab) = �T�1r=1 I(�(i; r) = ab), the number of ab
pairs in the ith sequence, we have

p(ijx0) = �a;bpN�(i;ab)ab ; a; b 2 f0; 1g: (12)

Taking logarithms and writing pa1 = 1� pa0 yields

l(p00; p10ji; x0) = N�(i; 00)lnp00 +N�(i; 01)ln(1� p00)
+N�(i; 10)lnp10 +N�(i; 11)ln(1� p10) (13)

and the maximum likelihood estimators

bpa0 = N�(i; a0 )=(N�(i; a0) +N�(i; a1)); a 2 f0; 1g: (14)

The step of taking logarithms is justi�ed only where the probability is pos-
itive, that is for values of pa0 consistent with the control rule. This important
point is illustrated below.
Consider the marketing model of Sections 2 through 4. This is a 2-state,

2-control problem. In Sections 2 and 3 the focus was on solving the dynamic
program; here we consider estimation. First, suppose the only unknown para-
meter is the transition probability p00. Suppose we have a sample of length T ,
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and suppose in this sample each value of x is observed at least once. Then the
control rule c(x) = (c(0); c(1)) is known. In evaluating the likelihood, only val-
ues of the parameter p00 consistent with the observed state-control sequence and
the hypothesis of optimization are considered (the likelihood is zero for other
values of the parameter). How does knowledge of the control rule constrain
the value of p00? With the utility function and transition distributions given in
Table 8

Table 8. Marketing Model

Pro�t
c = 0 c = 1

x = 0 7 4
x = 1 11 7

p (xt+1 = 1jxt; ct)
ct = 0 ct = 1

xt = 0 0.1 0.85
xt = 1 0.5 0.85

and with discount factor .75 we found that the optimal policy in the in�nite
horizon problem is c(x) = (c(0); c(1)) = (1; 0). Here, the value of p00, the 0� 0
transition probability corresponding to c = 1, is 1-0.85 = 0.15. Clearly, there
are other values of this transition probability for which c = (1; 0) is also optimal.
For example, any smaller value would leave the optimal policy unchanged - the
purpose of the marketing campaign is to shock the system into the high demand
state, so if this becomes easier, it must still be optimal. In other words, the
value associated with running the campaign is increased for higher 0-1 transition
probability (and hence lower 0-0, our parameter). Hence if it is optimal to run
the campaign for p00 = 0:15, it must also be optimal for any smaller value. In
fact, c = (1; 0) is optimal for p00 � 0:20 = r.
Thus, once the control rule is known to be c = (1; 0) (i.e., after each value

of the state variable has been seen), the information contained in the likelihood
factor corresponding to �tp(ctjxt) is exactly that p00 2 [0; r]. This information
is in one sense extremely precise. It is accumulated quickly (this is not a T !1
result) and it completely rules out a portion of the natural parameter space [0,1].
It is in another sense extremely imprecise. The exact value of the parameter
p00 cannot be estimated on the basis of the information in the control rule -
only bounded into an interval. There is no more information in the relevant
likelihood factor, even as T !1. The situation is identical to that discussed in
Section 4 relative to estimation of the discount factor �. The di¤erence here is
that there is additional information on p00 available through the �rst factor in
the likelihood function, corresponding to transition information. We turn now
to this factor,

L(p00ji; x0) = N�(i; 00)lnp00 +N�(i; 01)ln(1� p00); (15)
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which can be maximized subject to the constraint p00 � r. The Lagrangian is

L(p00ji; x0) = N�(i; 00)lnp00 +N�(i; 01)ln(1� p00) + �(r � p00); (16)

where � is a Lagrange multiplier. The Kuhn-Tucker conditions require

N�(i; 00)=p00 �N�(i; 01)=(1� p00)� � = 0
r � p00 �0
�(r � p00) = 0 (17)

and the solution possibilities are clearly either b� = 0 and bpcmle = bpml orbpcmle = r and b� = N�(i; 00)=r � N�(i; 01)=(1 � r). A signi�cant nonzero
value for b� indicates that the transition information is inconsistent with the
control information, and that the model is therefore likely misspeci�ed. This
point is pursued later. For the present, assume that the unconstrained MLE
satis�es the constraint.
In Section 4 we saw informally that the discount factor was not identi�ed

by knowledge of the control rule even when all other parameters including the
transition probabilities were known. The parameter was bounded to an inter-
val. In fact, the transition information is informative on the discount factor �,
in that the boundary of the interval containing feasible estimates of � depends
on the transition probabilities. We consider the case � = (p00; �); unknown
discount factor and transition probability. Here the natural parameter space is
� = [0; 1]� [0; 1). As soon as the control rule is observed, this can be narrowed.
Speci�cally, in our example with the observed control rule c = (1; 0), the para-
meter space consistent with the observed control rule is A � �, illustrated in
Figure 1.
This is all of the parameter information contained in the control rule.
Turning now to the transition information on the two parameters, the log-

likelihood is

L(p00; �ji; x0) = N�(i; 00)lnp00 +N�(i; 01)ln(1� p00); (18)

to be maximized subject to the constraint that � 2 A. Note that this portion
of the loglikelihood does not depend on the discount factor � at all. Conse-
quently the constraint is once again in the form p00 � r and can be imposed
as above. Once again, the estimator will satisfy the constraint asymptotically if
the model is well-speci�ed, and if the unconstrained estimator does not satisfy
the constraint, the signi�cance of the estimate of the Lagrange multiplier can be
used as the basis of a speci�cation test. Turning to the unconstrained estimatorbp00, we note that the transition information is informative on the discount factor
� in that the interval in which � can lie and still be consistent with the known
control rule depends on the value of bp00:
Can a general result be obtained in the simple case with the control rule

known? Suppose there areK state variables, the ith taking values in the discrete
set Hi with cardinality jHij = Hi and C control variables, the jth taking values
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in the discrete set Jj with cardinality jJj j = Jj . The problem can be rewritten
as a single discrete state/discrete control model with the single state variable x
taking H = �iHi values from the set H and the single control taking J = �jJj
values from the set J. The control rule is a map c : H ! J, a point in L
= JH , a �nite set. Now write the control rule c as a function of the parameter
�; c(x; �), where � 2 � � Rk . Regarded as a function of � we have c : �! L.
The identi�cation question is whether we can map backwards from knowledge
of the control rule to the parameter �, i.e., whether the map c is invertible. The
general answer is no. Brouwer�s Theorem on Invariance of Domain states that
there is no homeomorphism between spaces of di¤erent dimensions. Thus, if the
parameter space is even just an interval in R1, there is no way to identify the
unknown (in this case scalar) parameter from knowledge of the control rule (a
point in a �nite set). As we have seen, the parameter values can be bounded,
but the parameter cannot be estimated without further information.
Further information comes from the transition distribution. There are H

origin states and H destination states, hence H2 transition probabilities less H
from the adding-up constraint for a given value of the control rule. Since tran-
sitions are only seen under the optimal control, these are the only transition
probabilities that can be estimated using transition data. Of course, the other
transition probabilities enter the problem in determining the control rule. These
can be estimated only from the control rule, and hence can at best be bounded
into an interval. The notation developed above generalizes easily. There are
HT possible sequences of states of length T . Arrange these sequences in lexico-
graphic order and index these by i; j; k 2 f0; :::;HT �1g. Then the ith sequence
is the H-ary expansion of i. Let �(i; s) be the sth digit in the H-ary expansion of
i. Let �(i; r) = �(i; r)jj�(i; r+1) be the rth pair of digits in the H-ary expansion
of i. Finally, let N�(i; ab) = �T�1r=1 I(�(i; r) = ab), the number of ab pairs in the
ith sequence (here a; b take on H distinct values). The log likelihood factors
according to the origin state, so we have for example for origin state 0

l(p0a; a = 0; ::;H � 1ji; x0) = �H�1a=0 N�(i; 0a)lnp0a; (19)

de�ned with the constraint �H�1a=0 p0a = 1. The model is clearly in the exponen-
tial family. The MLE�s are

bp0a = N�(i; 0a)=�H�1a=0 N�(i; 0a); (20)

if these values are consistent with the observed control rule. Thus, H(H � 1)
transition probabilities can be estimated from the transition data. Note however
that a constraint here (eg, some transitions are impossible, others are necessary,
etc.) does not imply that there are degrees of freedom available for estimating
utility function parameters. At most, these estimates can be used to re�ne the
bounds on parameters imposed by knowledge of the control rule.
Although the model predicts that a given state should always be associated

with the same control, and therefore the control rule is learned rapidly (as
soon as each possible state has been observed once), the data will rarely satisfy
such a strong requirement. This is the �curse of determinacy.� The model,
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although stochastic, predicts a deterministic relationship between the state and
control. This is one of the major di¢ culties in applying dynamic programming
models empirically. There is a number of approaches to modifying the model
to be consistent with data not satisfying this deterministic constraint. The
approaches are not equally successful.

6 Measurement Error

One natural approach to breaking the curse of determinacy is to allow for mea-
surement error. The idea here is that the model is an accurate description of
behavior, but that we are not measuring exactly the quantities entering the
optimization problem. We �rst develop the appropriate notion of measurement
for discrete models, working �rst with the binary situation as above. Then we
consider in turn measurement error in the state and in the control. Finally,
we consider the case of measurement error in both state and control. We �nd
sensible speci�cations which do break the curse.
A simple speci�cation for measurement error in a binary model is to allow

a constant misclassi�cation probability (crossover probability) ". Letting x be
the true state and x� the observed, the model for the measurement process is
illustrated in Figure 2.

Suppose x is a realization of a sequence from a Markov chain with transition
probabilities p00; p01 = 1� p00; p11, and p10 = 1� p11. Thus, trivially, P (x2 =
0jx1 = 0; x0 = a) = p00 = P (x2 = 0jx1 = 0). To check, note that P (x1 =
0jx0 = a) = pa0 and P (x2 = 0; x1 = 0jx0 = a) = pa0p00 and dividing gives the
result. Suppose x� is the sequence with measurement error, so that x�t = xt
with probability 1 � " and x�t = 1 � xt with probability ". Let us calculate
P (x�2 = 0jx�1 = 0; x�0 = a). We begin by calculating P (x�1 = 0jx�0 = a). Note
�rst that all 2 � 2 = 4 sequences of length 2 for the true state variables are
consistent with observing the sequence a0. Thus ,

P (x�1 = 0jx�0 = a) = pa0(1� ")2 + pa1(1� ")"+ pc0"(1� ") + pc1"2 (21)

where the index c = 1 � a. Next, calculate P (x�2 = 0; x�1 = 0jx�0 = a). All 23

sequences are consistent with the observed pattern a00. The probability is thus
the sum of 8 terms. The term corresponding for example to the true sequence
a01 is pa0p01(1� ")2", the probability that a process beginning in a is observed
to be in a; (1�"), times the probability of moving from a to 0; pa0 multiplied by
the probability of being observed correctly in the second period, (1� "), times
the probability of moving from 0 to 1 and being incorrectly observed in the �nal
period (p01"). Upon adding these terms and dividing we see that

P (x�2 = 0jx�1 = 0; x�0 = a) = P (x�2 = 0; x�1 = 0jx�0 = a)=P (x�1 = 0jx�0 = a)
6= P (x�2 = 0jx�1 = 0): (22)
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Thus, the x� process is not Markovian. This suggests a simple diagnos-
tic before calculating estimates for a complex dynamic programming model.
Namely, examine the state sequence to see whether it looks Markovian. If not,
either reformulate the state variable speci�cation (sometimes the model can be
made Markovian by appropriate choice of the state variables) or consider the
possibility of measurement error in the state variable.
To formulate the likelihood for the observed sequence x�, we �rst calculate

the probability of seeing x� conditional on the actual underlying sequence x,
then essentially marginalize with respect to x. This strategy is attractive since
it is easy to calculate the probability of observing the x sequences - realizations
from Markov processes. We have

p(x�ji) = �Tt=1"jx
�
t��(i;t)j(1� ")1�jx

�
t��(i;t)j; (23)

the probability of observing the sequence x� when the ith x sequence was actu-
ally realized (recall our convention on ordering the sequences). The probability
of realizing the ith x sequence of length T is

p(i) = �T�1r=1 p�(i;r) (24)

where �(i; r) is the rth pair of digits in the binary representation of i. Hence,
the marginal probability of observing the measured sequence x� is

p(x�) = �2
T�1
i=0 �Tt=1"

jx�t��(i;t)j(1� ")1�jx
�
t��(i;t)j�T�1r=1 p�(i;r); (25)

and in the absence of additional information this would serve as the likelihood
function for the unknown parameters � = (p00; p11; ").
There is however additional information in both the known control rule

(given parameters) and the observed control sequence. Knowledge of the con-
trol rule as we have seen restricts the range of possible parameter estimators.
Observation of the control sequence, however, is equivalent to observation of
the true state sequence, given the parameters. The data series consists of the
sequence c and the sequence x�, with joint probability distribution

p(c; x�) = �xp(c; x; x
�)

= �xp (cjx; x�) p (x�jx) p (x) ; (26)

conditioning on a value of the true sequence x and then marginalizing. This
formulation is useful since p(cjx) = p(cjx; x�) is degenerate at c = c (x) ; with
c (x) from the control rule (note that this function does depend on parameters).
We treat here for simplicity the 2 � 2 case with c(x) invertible, noting that
the results apply immediately to K � K models, and treat the noninvertible
case below (this is the case with more state than control variables). Thus, the
probability p(cjx) is zero except for the ith sequence x, where the ith sequence
satis�es ct = c(�(i; t)). Hence

p(c; x�) = �Tt=1"
jx�t��(i;t)j(1� ")1�jx

�
t��(i;t)j�T�1r=1 p�(i;r); (27)
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yielding the MLEs b� = (bp00; bp11;b") with bpab = N�(i(b�); ab)=�abN�(i(b�); ab)
and b" = T�1�tjx�t � �(i(b�); t)j with i(b�) the index of the x sequence satisfying
c = c

�
x;b��, where the presence of parameters in this condition is now explicit

for emphasis. This is important: When the likelihood is evaluated at a di¤erent
parameter value �, it may require di¤erent i; as well. The likelihood is thus only
piecewise continuous in parameters, so some care must be taken in ensuring that
the estimators satisfy the constraint that x = c�1(c;b�) where b� is the estimator,
and that the estimators in fact correspond to a global likelihood maximum. In
fact, the control rule and thus i(b�) typically do not depend on the unknown
parameter ", which a¤ects only observation of the data and does not enter
the agent�s optimization problem. Thus, we have an explicit solution for the
maximizing value of " given the other parameters. This can be substituted back
into the loglikelihood

l(p00; p11; ") = �Tt=1 fjx�t � �(i; t)jln(b") + (1� jx�t � �(i; t)j)ln(1� b")g
+�T�1r=1 ln(p�(i;r)) (28)

to yield the pro�le loglikelihood function

l(p00; p11jc; x�) = �Tt=1
�
jx�t � �(i; t)jln(T�1�sjx�s � �(i; s)j)+

(1� jx�t � �(i; t)j)ln(1� T�1�sjx�s � �(i; s)j)
	

+�T�1r=1 ln(p�(i;r))

= T (b"ln(b") + (1� b")ln(1� b")) + �T�1r=1 ln(p�(i;r)); (29)

in which it must be emphasized that both b" and i depend on the parameters
p00; p11.
Note that the curse of determinacy has been broken, in that the observed

c; x� pairs need not satisfy c = c(x�) for every observation. Thus, the data table
does not have to be in the form of Table 5 above. The extent to which this form
is not satis�ed is used to estimate the crossover probability ". Note also that
" does not enter the optimization problem and is not restricted by knowledge
of the optimal control policy. The control rule is not learned quickly and with
certainty as in the completely observed case.
Turning now to the case of measurement error in observation of the control,

we allow misclassi�cation with probability "c. With the state observed without
error the argument is completely analogous to the case of observed controls
and states with measurement error. That is, observation of the states gives the
controls deterministically as a function of parameters. We repeat details brie�y.
The conditional distribution of the observed controls, given the state sequence
is the ith, is

p(c�ji) = �s"jc(�(i;s))�c
�
s j

c (1� "c)1�jc(�(i;s))�c
�
s j; (30)

hence the joint distribution is

p(c�; i) = �s"
jc(�(i;s)�c�s j
c (1� "c)1�jc(�(i;s)�c

�
s j�T�1r=1 p�(i;r); (31)
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yielding the MLEs b� = (bp00; bp11;b"c) with bpab = N�(i(b�); ab)=�abN�(i(b�); ab)
and b"c = T�1�sjc(�(i(b�); s) � c�sj. Note that the function c(x) depends on
unknown parameters through the optimization problem. The constraints men-
tioned above in the discussion of measurement error in states must be satis�ed
at the MLEs. Once again, the pro�le loglikelihood is easily obtained. It is

l(p00; p11jc�; i) = �s
�
jc(�(i; s))� c�sj(ln(T�1�sjc(�(i; s))� c�sj)+

(1� jc(�(i; s))� c�sjln(1� T�1�sjc(�(i; s))� c�sj)
	

+�r ln(p�(i;r))

= T (b"cln(b"c) + (1� b"c)ln(1� b"c)) + �r ln(p�(i;r)): (32)

Again, the dependence of b"c and i on parameters is emphasized.
The curse of determinacy is broken, in that the observed state/control se-

quence does not have to be degenerate. That is, the same state value can be
associated with di¤erent observed controls without implying a breakdown of
the statistical model. Further, it is not the case that the control rule is learned
immediately after each state value has been realized - instead, information is
accumulated over time.
Both speci�cations, measurement error in states and measurement error in

controls, break the curse of determinacy. The curse of degeneracy is still present,
in that p (cjx) 2 f0; 1g; imperfect observations of c or x simply makes it a little
more di¢ cult to learn which. Thus, for data in which the summary statistics
do not have the structure of Table 5, i.e. for data in which the same state is
associated at di¤erent time periods with di¤erent controls, one of these measure-
ment error models might be appropriate. But they have di¤erent implications
for observables, in that the observed sequence x is Markov, while x� is not.
Thus, as a practical matter, introducing measurement error in controls might
be appropriate if the observed state sequence appears Markovian, measurement
error in states if not.
Finally, we turn to a speci�cation with measurement error in both states

and controls. Assume that the measurement error in the states and controls are
independent, conditionally on the underlying realization of the process. Then

p(x�; c�ji) = p(x�ji)p(c�ji)
= (�Tt=1"

jx�t��(i;t)j(1� ")1�jx
�
t��(i;t)j)�

(�s"
jc(�(i;s))�c�s j
c (1� "c)1�jc(�(i;s))�c

�
s j) (33)

= �T�1t=1 "
jx�t��(i;t)j(1� ")1�jx

�
t��(i;t)j"

jc(�(i;t))�c�t j
c (1� "c)1�jc(�(i;t))�c

�
t j:

The marginal probability p(i) = �T�1r=1 p�(i;r); multiplying and marginalizing
gives

p(x�; c�) = �2
T�1
i=0 �Tt=1"

jx�t��(i;t)j(1�")1�jx
�
t��(i;t)j"

jc(�(i;t)�c�t )j
c (1�"c)1�jc(�(i;t)�c

�
t jp�(i;t);

(34)
leading to a likelihood function which is substantially more complicated in that
it has 2T terms and no simple closed forms for the estimators. Essentially, when
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either the state or control is observed without error, then the other is �known�
in the sense that it is a deterministic function of parameters. This is not the
case when both are measured with error. Nevertheless the likelihood function
is not continuous in parameters. This is general, since the controls make up a
discrete set.

7 Imperfect Control

Here we study a second approach to breaking the curse of determinacy. That
is, we model a decision maker with imperfect control over the action he takes.
Thus, the agent may know that c = 0 is optimal for x = 0, but may only be
able to achieve c = 0 with high probability, not with certainty. This kind of
imperfect control has been used e.g. by Chow (1981).
The extension �ts easily into our simple framework. The c variables, which

the agent would like to control exactly but cannot, are c 2 f0; 1g. De�ne the
variables a 2 A = f0; 1g as the variables the agent actually can control; if a = 0
is chosen then c = 0 with probability p0; if a = 1 then c = 0 with probability
p1. Specify without loss of generality that p0 > p1, so that a = 0 is the natural
choice if the agent would prefer c = 0, etc. By choosing a, the agent chooses
a probability distribution over the controls. Let pa be the probability that
c = 0 when action a is chosen. We can now apply the dynamic programming
framework.
De�ne the new utility function

u�(x; a) = Eau(x; c) = pau(x; 0) + (1� pa)u(x; 1) (35)

and the new transition distribution

p(x0jx; a) = p(x0jx; c = 0)pa + p(x0jx; c = 1)(1� pa): (36)

Then we can simply do dynamic programming using a as the control instead
of c. The value function satis�es Bellman�s equation

Vi(x) = max
a2A

fu�(x; a) + �EiVi�1(x0)g (37)

in the �nite horizon case, and

V (x) = max
a2A

fu�(x; a) + �EV (x0)g (38)

in the in�nite horizon case. In our simple marketing model from the previous
sections, the new utility and transition functions using p0 = :8 and p1 = :2 are
given in Table 9 (compare Tables 1 and 2).

Table 9. Imperfect Control
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Pro�t
a = 0 a = 1

x = 0 6.4 4.6
x = 1 10.2 7.8

p (xt+1 = 1jxt; at)
a = 0 a = 1

x = 0 0.178 0.700
x = 1 0.570 0.780

The �rst 10 value function iterations are given in Table 10 (compare Table
3).

Table 10. Value Functions and Optimal Policies

t Vt (0) Vt (1) at (0) at (1)
0 6.40000 10.20000 0 0
1 11.70730 16.62450 0 0
2 15.96201 21.08258 1 0
3 19.25980 24.36055 1 0
4 21.72274 26.82542 1 0
5 23.57096 28.67345 1 0
6 24.95703 30.05954 1 0
7 25.99659 31.09909 1 0
8 26.77626 31.87876 1 0
9 27.36101 32.46351 1 0

Here, we see that it is optimal to try to run the advertising policy in the
low demand period if the horizon is 3 or more periods (the exact control case
required 4 or more). The policy has converged, though the value functions
have not, and this is indeed the optimal policy in the in�nite horizon prob-
lem. The value function converges to (approximately) V (0) = 29:11526 and
V (1) = 34:21777. Comparing the analysis of the information on � in learning
the optimal policy, we see here that this policy, (a(0); a(1)) = (1; 0); is optimal
for � > 0:6694; in the perfect control case we found that (c(0); c(1)) = (1; 0)
was optimal for � > 0:7143. In contrast to the case with pure measurement
error, introducing imperfect control changes the solution to the optimization
problem. The lesson here is that observation error and imperfect control are
quite di¤erent speci�cations.
The observables remain the fx; cgt sequence, for t = 0; :::; T . Now, the

state sequence xt is observed without error, so we can concentrate on a single
sequence (without marginalizing with respect to all possible sequences as in the
case of measurement error in both states and controls). The sequence ct is also
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observed without error, but it is no longer the control. The controls are the
unobserved at. However, the observed ct can be regarded as noisy observations
on the actual controls at. Thus, an approach very similar to the approach
in the case of measurement error can be used in developing this factor of the
likelihood. Finally, note that there is more reduced form information on the
transition distribution in the case of imperfect control. That is, in the case of
perfect control, even with measurement error, the only transitions observed are
those corresponding to x; c pairs (the conditioning variables in the transition
distribution) which are optimal. The other transition probabilities enter the
likelihood only through their e¤ect on the optimal policy. Without perfect
control, transitions corresponding to all x; c pairs are observed without error
and can be used to estimate the transition probabilities directly. Let us develop
the likelihood:

p(x0; c0jx; c) = p(c0jx; x0; c)p(x0jx; c)
= p(c0jx0)p(x0jx; c); (39)

since the relation between the state and the control does not depend on lagged
values, and neither does the measurement error. The �rst factor can be simpli-
�ed to

p(c0jx0) = �a0p(c0ja0; x0)p(a0jx0); (40)

where the sum is over all possible fagt sequences. Note however that the term
p(a0jx0) is degenerate, in that for given parameters, there is only one a sequence
corresponding to the realized states. Thus, all but one of these terms are 0 and
hence

p(c0jx0) = p(c0ja0; x0)
= p(c0ja0) (41)

for that value of a0 consistent with x0 (and parameters). Let i be the index of
the observed x sequence. Then

p(cji) = �s2fa(�(i;s))=0gp1�cs0 (1� p0)cs�s2fa(�(i;s))=1gp
cs
1 (1� p1)1�cs ; (42)

and in the case p0 = 1� p1, as in our example, there is further simpli�cation to

p(cji) = �sp(1�ja(�(i;s))�csj)0 (1� p0)ja(�(i;s))�csj; (43)

very like the likelihood in the measurement error case, but with one important
di¤erence. That is, here the function a(�(i; s)) depends on all parameters, in-
cluding p0: We can �nd an illustrative expression for the MLE for p0, namelybp0 = 1� T�1�sja(�(i(b�)); s)� csj, but here this is only one of many equations
that must be solved simultaneously, since p0 enters the function a, unlike the
parameter " in the measurement error case, where a similar expression can be
used to obtain the pro�le likelihood.
Summing up so far, we have developed the likelihood function in a compact

notation for the discrete state - discrete control setup. The curses of degeneracy
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(a property of the distribution of the control given the state) and of determinacy
(a requirement of the data con�guration) are easily illustrated here. The control
rule becomes known after a few observations (that is, there is no sampling error
- as soon as all of the states have been realized, the control rule is known). In
general, knowledge of the control rule is not su¢ cient to identify underlying real
parameters. Two approaches to breaking the curses were examined. The �rst
was measurement error. Here there are two possibilities, measurement error in
states or in controls (or, of course, both). Measurement error in states implies
that the state-to-state transitions are not Markovian. Thus, this speci�cation
might be useful when the transitions are not Markovian. Here, the data do not
have to satisfy the unlikely restrictions imposed by the perfect observation case
(the curse of determinacy). However, the curse of degeneracy is not broken,
essentially because the perfect observation of the controls identi�es the states,
given the parameters. Measurement error in controls is essentially the same.
Observing the states without error identi�es the controls, given parameters.
Here, however, the state-to-state transitions remain Markovian. Combining
both types of measurement error leads to a more complicated likelihood, as it is
no longer possible to recover the true states and controls given the parameters.
The curse of determinacy is broken in all cases, although the curse of degeneracy
remains. Real parameters are typically not identi�ed, although their ranges
may be restricted. Imperfect control is an alternative approach. The results are
somewhat di¤erent from the measurement error case, in that the optimal policies
may di¤er from those in the perfect control setting, although the implications
are the same in that the curse of determinacy is broken but that of degeneracy
is not.
Neither measurement error nor imperfect control is particularly appealing

from an economic modelling point of view, and neither actually solves the prob-
lem we wish to solve. Economists have been led almost invariably to a random
utility speci�cation, which does solve the curse of degeneracy and allows identi-
�cation of real parameters, but which does so by introducing �information� in
the form of highly speci�c assumptions. That is, the random utility speci�cation
allows estimation of parameters that are not identi�ed if utility is deterministic
in a model that is otherwise the same. This is the topic of Section 8.

8 Random Utility Models

A useful and popular approach to breaking the curse of degeneracy is to in-
troduce a random utility speci�cation. Here, the period utility is subject to a
control-speci�c shock. The agent sees this shock before the control choice must
be made, but it is not seen in the data. Thus, the choice of the agent may
depend on the realization of the shock, and hence the observed optimal control
may correspond to di¤erent observed states depending on the value of the unob-
served shock. Of course, the random utility shock cannot simply be �tacked on�
to a dynamic programming problem; it changes the problem, the value and the
optimal policy function. The approach of specifying the random utility shock as
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an unobserved state variable was introduced in empirical dynamic programming
by Rust (1987), following McFadden (1973, 1981) on static discrete choice.
Suppose now that the utility is subject to a random shock, so that

u�(x; c; ") = u(x; c) + "(c); (44)

where "(c) is a random shock. The idea here is that, at time t when the state
xt = k has been realized, a vector of random variables " is added to the kth
row in the utility table, then the choice of control c is made. Thus c = c(x; ")
is a deterministic function, but given only x, c is a random variable whose
distribution depends on x. If " has a nonzero mean, the mean can simply be
absorbed into the utility speci�cation, so it is a harmless normalization to set
E" = 0.
Consider the 2�2 model and suppose the utility shock is ("; 0) where " is

a scalar random variable taking the value �a with probability 1
2 and a with

probability 1
2 . Consider for simplicity the case x = 0 alone, so we can focus

attention on the distribution p(cjx = 0). Let p1 = p(c = 1jx = 0); of course, p1
is a function of the parameter � characterizing preferences, etc. We have

p(cjx = 0) = pc1(1� p1)1�c; (45)

and with n independent observations

�tp(ctjxt = 0) = p�c1 (1� p1)n��c; (46)

and �c=n is a su¢ cient statistic for p1. Here, n is the number of observations
with x = 0: The natural parameter space for the reduced-form parameter p1
is [0; 1] : But what values of p1 are consistent with the dynamic programming
model with random utility shocks?
In the model, the probability that c = 1 is chosen is given by

Pr(argmax
c
fu(0; c) + �E0cV (x0; "0) + "(c)g = 1): (47)

This probability can be written

Pr(" < h(�)); (48)

where h = u(0; 1) + �E01V � u(0; 0)� �E00V and the generic parameter � has
been introduced as an argument in h for emphasis. Now, we have speci�ed
a binary distribution for ", so this probability can take values in f0; 1=2; 1g;
the precise value depending on h(�). Speci�cally, c = 0 could be optimal for
both values of " (0) ; and c = 1 could be optimal for " (0) = �a and c = 0 for
" (0) = a; and �nally c = 1 could be optimal for both values of " (0:) Thus,
the likelihood function is �at for generic continuous parameters �, except where
the value of � is such that the probability shifts between 2 of its 3 possible
values. The most that can be obtained is that possible values of � are restricted
to intervals, corresponding to values so that the implied choice probability is
as close as possible to the sample fraction. Note that this does represent some
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improvement over the model without shocks - if h is monotonic in the parameter
�, then without shocks, so p(cjx) 2 f0; 1g, � is restricted to one of two intervals
(recall estimating � in our marketing model), now with p(cjx) 2 f0; 1=2; 1g, �
is restricted to one of 3 intervals.
The curse of degeneracy has been broken in that p(cjx) is not necessarily in

f0; 1g. However, only one new point has been added to that set of possibilities,
so it might be better to think of the curse as weakened, not broken. The main
point, however, is that merely adding a random utility shock with a completely
known distribution appears to add information about a structural parameter,
but does not serve to identify fully otherwise unidenti�ed parameters.
Let us generalize the shock distribution slightly and introduce a new para-

meter. Suppose the distribution of " is �a with probability (1� �) and a with
probability �. For � not equal to 1

2 and a not equal to 0, this distribution
has a nonzero mean. That does not really present a problem, as the mean can
be absorbed into u(0; 0), as we have seen. For a �xed value of �, we have that
Pr(" < h(�; �)) 2 f0; �; 1g, so again � can at best be bounded in an interval. By
varying �, however, it may be possible to match the sample fraction (it may not
be possible, if the probability is zero or one for all � but this is not an interesting
case). Here, the curse of degeneracy is unambiguously broken, in the sense that
the sample fraction can be matched by choice of the parameter �: However, this
amounts to no more than a reduced-form approach; no identifying information
on � is available and it is at best restricted to an interval.

9 A Continuously Distributed Utility Shock

Since adding a utility shock with a known 2-point distribution adds one point
to the model-consistent parameter space for p1 (and hence possibly restricts
the range of the generic parameter �), it is natural to ask whether a known
distribution with support on an interval might tighten things up even more. In
fact, the assumption of a continuously distributed utility shock is much more
common in applications, for reasons which will become clear. Let us begin the
analysis by supposing that, instead of a 2-point distribution on f�a; ag, " has
a continuous distribution with support [�a; a]. Note that we are not making
innocuous assumptions by changing the shock distribution - changes here, even
with the mean held constant, will a¤ect both the value of the problem and
the optimal policy function. To start with, assume f(") = 1=(2a), the uniform
distribution. Then

p(c = 1jx = 0) = Pr(" < h(�)) = h(�)=(2a) + 1=2: (49)

Recall that h (�) = u (0; 1)+�E01V �u (0; 0)��E00V: This probability now
does depend on �, continuously if h is continuous in �, so � can be estimated
by setting h(�)=(2a) + 1=2 equal to the sample fraction and solving for b�, as
long as this is a feasible value (again, it could be that h(�) is such that jhj > a
for all values of �, and therefore the probability is always zero or one; not an
interesting case).
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By introducing randomness into the utility speci�cation, we have managed
to achieve identi�cation of a parameter not identi�ed without randomness. How
can �introducing noise� serve to identify a preference parameter? What is in
fact happening is that the assumption that the shock is continuously distributed
with a known distribution is crucial. Our speci�cation inserts �information�into
the model - information on preferences. This is not necessarily inappropriate,
but it is important to realize that � is being identi�ed completely on the basis
of the assumed shock distribution. Indeed, this point can be emphasized with
a little further analysis.
Let F be the distribution function for the utility shock. For simplicity,

suppose F is a member of a one-parameter family of distributions indexed by
. Then

p (c = 1jx = 0) = Pr (" < h (�; )) =

Z h(�;)

�a
dF (50)

= H (�; ) :

In practice,  is assumed known (the distribution of the utility shock is fully
speci�ed), and H(�; ) = t (the sample fraction) is solved for b�(). Here, the
dependence on the assumed distribution is indicated by the explicit dependence
on . Assume F is continuously di¤erentiable in  and h in � and . This
assumption rules out sudden shifts of the probability to zero or one (e.g. when
h passes the value a); but rather than get involved in details we note that we
are really concerned only with properties in the neighborhood of the solution to
H(�; ) = t. Alternatively, we can simply set a =1 so the distribution function
has full support on the real line (indeed this is the most common practice). Using
the implicit function theorem,

db�=d = �H=H� (51)

with H = f(h(�; )h + F(h(�; )) and H� = f(h(�; ))h� where f is the
density function dF (x)=dx. Writing this out gives

db�=d = �h=h� � F=fh�; (52)

the �rst term giving the tradeo¤between  and � holding h (the utility di¤erence
between using the two controls) constant and the second giving the e¤ect of 
on h through the change in the probability.
This analysis indicates that the solution for the parameter � is a function of

the assumed distribution, here indexed by . Further, this derivative is typically
nonzero, so the assumption matters. To push this analysis a little further, we
concentrate on the parameter �, the discount factor. Then,

h(�; ) = ((u(0; 1)� u(0; 0)) + �(E01V � E00V ); (53)

hence h� = (E01V �E00V )+�(E01V��E00V�)) and h = �d(E01V �E00V )=d.
Let us evaluate these expressions at � = 0, in order to get a local tradeo¤
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between the assumed distribution and the estimated discount factor at � = 0:
Here

h�j�=0 = E01 (maxfu(x; c) + "(c)g)� E00(maxfu(x; c) + "(c)g); (54)

a function of , and
hj�=0 = 0; (55)

so there is no direct e¤ect of the assumed distribution  on h, the utility dif-
ference, when � = 0. Hence, all of the e¤ect is through the change in the
probability, and this is given by

db�=dj�=0 = �(F=f)=[(E01(maxfu(x; c) + "(c)g � E00(maxfu(x; c) + "(c)g)];
(56)

all terms in this expression depend on , so we have illustrated now in a simple
case the correspondence between the speci�cation of the utility shock distribu-
tion and the estimated discount factor. Note that this formula gives the e¤ect on
the estimate of � of a change in the distributional assumption, holding the data
constant. The numerator is the change in the choice probability; the denom-
inator is the density multiplied by the expected utility di¤erence. While this
expression clearly depends crucially on F (this is the point, after all), a little
more may be said. In particular, if the expected utility di¤erence between the
two controls is smaller, then the role of the assumption on F is more important,
in that this derivative is larger.
It is sometimes thought that by �freeing up�the random utility distribution

F through addition of unknown parameters, one can mitigate the e¤ects of
directly and completely specifying an unknown distribution. Let us consider
this. First, in the stylized case studied above, with only one choice probability
to estimate (i.e., the probability associated with one value of the discrete state
variable and a binary control), this proposition is easily rejected. Our analysis
shows there is a 1�1 relationship between values of the parameter  of the now
unknown distribution and the preference parameter �. Clearly, these are not
both identi�ed. Speci�cally, there is a curve in the (; �) space corresponding to
a given value of h, and thus a set of parameter values which serve to match the
�tted value h to the sample fraction. Identi�cation requires that the functional
form of the utility shock be completely speci�ed.

10 Continuous State and Optimal Stopping: The
Search Model

In the previous sections we have drawn attention to several issues in identi�-
cation and inference in dynamic programming models, such as identi�cation of
utility parameters (including the discount factor �) only up to intervals, rapid
(�nite time) accumulation of information on these, the curses of determinacy
and degeneracy, the role of the functional equation in identifying parameters
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o¤ the optimal path, the subtle di¤erences between measurement error, im-
perfect control and random utility approaches, and the functional dependence
of the parameter estimates on the assumed shock distribution in the random
utility case. These issues or close relatives apply generally (and in various dis-
guises) in dynamic programming models and have been illustrated in the discrete
state/control case. Many of the insights originate from earlier motivating work
on the econometrics of the job search model, although this model di¤ers slightly
from the setup of the previous sections. It is an optimal stopping model, so it
does have a discrete (binary) control, namely, whether or not to stop, but it has
a continuous state variable (the wage). For statistical purposes, information is
in many cases only accumulated until the process is stopped, so for asymptotics,
a panel is considered. In this section, we brie�y review some of the links be-
tween the material in the previous sections (general dynamic programming and
marketing) and the motivating work on the statistical properties of the search
model.
The sequential job search model is due to Mortensen (1970) and McCall

(1970). The search model was an early application of stochastic dynamic pro-
gramming techniques to economic theory. It was among the �rst models to
be estimated with econometric techniques exploiting the dynamic programming
structure. In the simplest setup, a worker is assumed to be unemployed and
searching for employment. Search consists of sampling, once each period, a
wage o¤er w from a known distribution of o¤ers. Once accepted, a job is held
forever. Once declined, an o¤er is no longer available. The state variable is
the outstanding wage o¤er in the current period. The control is the decision to
accept or reject the outstanding o¤er. O¤ers are assumed independently and
identically distributed (iid), so the distribution of next period�s state does not
depend on the current state. The state distribution does depend on the control,
since o¤ers are no longer received once a job has been accepted. The worker
chooses a strategy which maximizes the expected present discounted value of
his income stream E�Tt �

tw where in the simplest models T = 1. This model
has been extended and re�ned and widely applied.
The basic logic of optimal stopping can be illustrated in the in�nite horizon

model. The �value� for an unemployed worker is heuristically the maximized
value of E�Tt �

tw, where the maximum is taken over all possible strategies the
worker might follow in his e¤ort to maximize the present discounted value. This
value V u is a constant not depending either on the current (declined, since we
are assuming the worker is unemployed) wage o¤er or on the particular period.
The value does not depend on the current o¤er since we assume o¤ers are iid;
it does not depend on the period since we have an in�nite horizon problem and
the future looks the same from any point. Now suppose the worker gets the next
o¤er w. The value of accepting the o¤er w is simply �Tt �

tw = w= (1� �). If
this value is greater than the value of continued search, namely V u, the worker
should accept the o¤er; if not he should decline and continue search. Thus we
have found the optimal strategy. The worker should decline wage o¤ers until
he receives one greater than r = (1� �)V u, then he should accept employment
and stop searching. In particular, r is the reservation wage.
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Note that the logic of backward recursion does not apply here. It would if
we considered �nite horizon search, and then V u would depend on the time left
before the horizon.
Let b be the current utility of unemployment bene�ts net of search costs.

Then V u = b + �EV; and with the state variable x = w we have the value
function

V (w) = max

�
w

1� � ; b+ �EV
�
; (57)

the maximum of the value of stopping and accepting the o¤er w and the value
of continuing search. Assume o¤ers arrive at Poisson rate �0 during unem-
ployment, so that the probability of receiving an o¤er any given period is
p = 1� e��0 ; and write f for the density of the o¤er distribution. Then

EV =
p

1� �

Z 1

(1��)(b+�EV )
wfdw

+

 
1� p

Z 1

(1��)(b+EV )
fdw

!
(b+ �EV )

= T (EV ) (58)

with the derivative

T 0 (EV ) = �

�
1� p

Z 1

r

fdw

�
2 [0; �]; (59)

and since � < 1 the operator T is a contraction and may be iterated to
solve for EV and hence the optimal reservation wage strategy given by r =
(1� �) (b+ �EV ) : Note the simpli�cation: We are iterating on the scalar EV
rather than the function V as in Section 3.
Christensen and Kiefer (1991) study the present model from a likelihood per-

spective. Consider panel data of the form fdi; wigNi=1 where wi is the accepted
wage of the i�th initially unemployed worker and di the unemployment duration.
Rapid information accumulation similar to that from the observed control rule
in the marketing model in Section 5 occurs in the search model, too, although
accumulation does not stop at a �nite sample size. Similarly, preference para-
meters may be restricted to intervals, as in the marketing model in Section 4.
For example, if � is the unknown parameter to be estimated in the job search
model, the requirement wi � r; i = 1; :::; N imposes an interval restriction on �:
In the search case, the interval keeps shrinking as N !1; and the estimator

b� = r�1 (wm) (60)

where r = r (�) is inverted with respect to the parameter and wm = mini fwig is
the minimal order statistic converges rapidly (at rate N; as opposed to the usual
N

1
2 ) to the true value of the discount factor. More generally, for k parameters �;
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including also b and parameters of f; Christensen and Kiefer (1991) show that

N
1
2

�b� � �0�! nk (0; B0) ; (61)

rank B0 = k � 1; (62)

a reduced rank limiting normal distribution, with asymptotic variance-covariance
matrix B0 and one parameter being superconsistent. Thus, the rapid informa-
tion accumulation here takes the form of N -asymptotics in one direction of the
parameter space. The control rule is learnt in �nite time in Section 5 (discrete
state/control) and at rate N in the search model.
Superconsistency here is a result of the fact that with complete observability,

data must satisfy wm � r; i.e. controls and states must line up such that no
wage (state) is accepted (the control decision) unless the parameter dependent
inequality is satis�ed. This is a case of the curse of determinacy of Section 5.
The strict requirement on data may be softened up by introducing measurement
error, as in Section 6. This is done by Christensen and Kiefer (1994b) in an
application to the 1986 Survey of Income and Program Participation (SIPP)
data, and it is shown that regular (rank B0 = k) N

1
2 -asymptotics result. More

general theory on information accumulation at di¤erent rates on subparameters
may be found in Christensen and Kiefer (1994a, 2000), who introduce and study
the concept of a local cut (wm is a local cut in the search model).
Mortensen (1990) and Burdett and Mortensen (1998) introduced the equi-

librium version of the search model, showing that in the simplest case it gives
rise to an endogenous wage o¤er distribution with c.d.f.

F (w) =
1 + �1=�

�1=�

 
1�

�
q � w
q � r

�1=2!
; w 2 [r; h]; (63)

where �1 is the o¤er arrival rate during employment (the case of on-the-job
search), � is an exogeneous lay-o¤ rate, q is �rm productivity and h is an upper
bound on the wage distribution. Christensen and Kiefer (1997) determine the
minimum panel data structure su¢ cient for identifying all structural parame-
ters, in particular, fdi; wi; jigNi=1 ; accepted wages along with unemployment and
employment durations, and show that both the minimum and maximum wages
are local cuts, the reduced rank of the N

1
2 -asymptotic normal distribution now

being k � 2: Again, regularity may be restored by allowing for measurement
error, and this is done in an application to Danish data by Bunzel et al. (2001).
Christensen et al. (2005) apply a related model with on-the-job search to a
Danish panel of matched employer-employee data and use movers and stayers
in a �rm between two consecutive periods to estimate �1; � and a cost of search
parameter. The results imply that on-the-job search explains the employment
e¤ect, i.e. the extent of the stochastic dominance of the cross-section wage
distribution of employed workers relative to the wage o¤er distribution.
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11 Conclusion

Both statistics and economic theory provide ways to isolate to relevant portions
of economic problems and data. Stochastic models are important for inference
purposes, and the stochastic dynamic programming model is important when
moving to the dynamic case. The sequential job search model of Mortensen
(1970) and McCall (1970) is an important early application of dynamic pro-
gramming in economics. By representing frictions as the random arrival of
trading partners, the model is naturally stochastic and leads directly to a like-
lihood function. This is a key instance of useful data reduction through the
productive combination of statistical analysis and theory of optimizing agents.
Later theoretical developments starting with Mortensen (1990) allow imposing
equilibrium constraints in the statistical analysis of optimizing agents.
In this paper, we have drawn attention to several issues in identi�cation

and inference in dynamic programming models which have received little or
no prior notice, such as identi�cation only up to intervals, the precise role of
the optimality equation in identi�cation, identi�cation o¤ the optimal path,
rapid information accumulation, the curses of determinacy and degeneracy, and
the dependence of parameter estimates on distributional assumptions in the
random utility case. Along with the search model, a simple marketing model of
investment in advertising campaigns a¤ecting future demand has been used for
illustration. Our discussion shows how earlier work on the econometrics of the
search model has led to insights that apply to general dynamic programming
models.
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