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Abstract

Recent empirical evidence demonstrates the presence of an important long memory

component in realized asset return volatility. We specify and estimate multivariate models

for the joint dynamics of stock returns and volatility that allow for long memory in volatility

without imposing this property on returns. Asset pricing theory imposes testable cross-

equation restrictions on the system that are not rejected in our preferred specifications,

which include a strong financial leverage effect. We show that the impact of volatility

shocks on stock prices is small and short-lived, in spite of a positive risk-return trade-off

and long memory in volatility.
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1 Introduction

The definition, computation and analysis of realized volatility in financial return series has

attracted considerable interest in recent literature, e.g. French, Schwert & Stambaugh (1987),

Schwert (1989), Andersen & Bollerslev (1998), and Barndorff-Nielsen & Shephard (2002). Es-

sentially, integrated instantaneous variance is estimated consistently by its sample analogue

based on high-frequency return observations. This approach allows gathering much more de-

tailed information on the properties of financial market volatility than previously. A striking

finding in the recent empirical literature is that realized volatility exhibits long memory. This

finding is consistent across a number of studies, and financial theory may accommodate long

memory in volatility as well, see e.g. Robinson (1991), Crato & de Lima (1994), Baillie, Boller-

slev & Mikkelsen (1996), Ding & Granger (1996), Breidt, Crato & de Lima (1998), Comte &

Renault (1998), Robinson (2001), and Andersen, Bollerslev, Diebold & Labys (2003) and the

references therein.1 However, so far no study has related the long memory property of volatility

to the level of asset prices themselves. The time series behavior of volatility may be expected

to matter for asset prices, since volatility enters the risk premium. In this paper, we establish

theoretically and empirically the consequences of long memory in volatility for asset prices.

An important ingredient in the relation between the level of asset prices and the memory

properties of volatility is the fundamental risk-return trade-off, i.e., the contemporaneous re-

lation between the conditional mean and variance of returns, which has been the subject of

extensive research. Early theoretical and empirical contributions on the functional form of

this relation were due to Merton (1973, 1980). The risk-return trade-off has been studied in

the time-varying volatility case using GARCH-type models by Engle, Lilien & Robins (1987),

Bollerslev, Engle & Wooldridge (1988), Chou (1988), Campbell & Hentschel (1992), Chou,

Engle & Kane (1992), Backus & Gregory (1993), and others. A two-factor model including a

hedging component was considered by Scruggs (1998), who found that the risk-return compo-

nent indicated a positive trade-off. Recent work in asset pricing has examined cross-sectional

risk premia induced by covariance between innovations in volatility and stock returns. This

literature finds negative premia, e.g. Ang, Hodrick, Xing & Zhang (2005). The idea is that

1Alternative models have been proposed to capture the persistence properties of volatilty, e.g. nonlinear

models as in Granger & Ding (1996) and Diebold & Inoue (2001), but the long memory model remains the most

popular both in theoretical and empirical studies.
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since innovations in volatility are higher during recessions, stocks which co-vary with volatility

are stocks that pay off in bad states, and these stocks should require a smaller risk premium.

Thus, there is mixed evidence on the sign of the risk-return relation in the literature. A neg-

ative relation is also found in some GARCH-type models, but Harrison & Zhang (1999) use a

seminonparametric density approach and show that GARCH models may be misspecified and

lead to an erroneous indication of a negative risk-return relation, and they conclude that the

true relation is positive. Recently, a positive risk-return trade-off has been indicated by several

studies using efficient high-frequency data volatility measurement, e.g. Ghysels, Santa-Clara

& Valkanov (2005), who use weighted rolling sample windows in the variance measurements.

Similar conclusions are reached by Brandt & Kang (2004) using a latent VAR methodology.

For a survey of these and related studies, see Lettau & Ludvigson (2004).

Common to the risk-return trade-off studies is that they do not incorporate the long memory

characteristic of volatility, which has been established in the realized volatility literature. In

the latter, realized volatility is shown to be well described by a fractionally integrated or I(d)

process, with long memory parameter d in the vicinity of 0.3− 0.4, e.g. Andersen, Bollerslev,
Diebold & Ebens (2001) and Andersen et al. (2003), whereas the risk-return literature takes

volatility to be I(0), as in standard GARCH models.

Among the most important uses of models for expected returns is the discounting of streams

of expected future cash flows, and thus the calculation of asset prices. While an important

ingredient, the risk-return trade-off is not the only determinant of asset values. Poterba &

Summers (1986) elaborate on the asset valuation aspect and derive the way in which both the

risk-return trade-off and serial correlation in volatility jointly determine the level of stock prices.

Their results show that a stronger positive risk-return relation and higher serial correlation in

volatility both contribute towards numerically higher (namely, more negative) elasticity of stock

prices with respect to volatility. They argue that effects of shocks to volatility decay rapidly

and hence only affect required returns and thereby asset prices over short intervals. Thus, it is

difficult to ascribe long term movements in the stock market to volatility changes.

Obviously, this argument was made before the advent of long memory models in financial

economics, and is called into question in view of the amassing recent literature on long memory

in financial volatility series. The new evidence calls for a reassessment of the relation between

the risk-return trade-off, serial dependence in volatility, and the level of asset prices. The
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received evidence on the positive risk-return trade-off and manifest long memory in volatility

seem to suggest possible long-lasting effects of volatility shocks on required returns, and hence

on the level of the stock market. A high elasticity (in absolute terms) of stock prices with

respect to volatility would be expected. In the present paper, we examine this possibility. We

establish the relation between the risk-return trade-off, serial dependence in volatility and the

elasticity of asset values with respect to volatility in the presence of long memory in volatility,

and we estimate all three empirically. Our volatility measurements are efficient high-frequency

realized return volatilities as well as model free implied volatilities from option prices. Our

results confirm those from recent literature on both the positive risk-return trade-off and the

long memory property of volatility. On the other hand, we show that the consequences for

asset values are not as anticipated, based on the foregoing interpretation. Thus, the effect of

volatility shocks on stock prices is modest and short-lived, in our empirically supported model,

in spite of the positive risk-return trade-off and long memory in volatility.

For the joint analysis of asset returns and realized volatility, we introduce a general simul-

taneous bivariate system of the form

A(L)Xt = B(L)ut, (1)

where Xt is a vector containing the data on return and volatility in period t, A(L) and B(L)

are lag polynomials, and ut are the system errors. We derive and test parametric restrictions on

the general vector autoregressive moving average (VARMA) system (1) implied by asset pricing

theory. The restrictions are derived under alternative specifications for both the short and long

memory properties of the volatility process and the functional form of the central risk-return

trade-off. An additional important and well documented empirical feature in financial time

series is the financial leverage effect, see e.g. Black (1976), Engle & Ng (1993), and Yu (2005).

The standard argument from Black (1976) is that bad news decreases the stock price and

hence increases the debt-to-equity ratio (i.e. financial leverage), making the stock riskier and

increasing future expected volatility. This generates a negative relationship between volatility

and past returns, and our framework accommodates this as well. Our empirical application

to Standard & Poor’s 500 stock market index returns and high-frequency realized volatilities

as well as VIX implied volatilities over a 15 year period confirms that volatility exhibits long

memory, but equity returns do not, and the risk-return trade-off is significantly positive. Fur-
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thermore, the cross-equation restrictions implied by asset pricing theory on the joint model

of returns and volatility in (1) are not rejected by the data in some of our specifications, and

point to an important leverage effect.

We generalize the Poterba & Summers (1986) analysis of the elasticity of asset values with

respect to volatility shocks to allow for both short and long memory in volatility. Briefly review-

ing their treatment of the short memory case, the starting point is the standard requirement

that stock prices Pt satisfy
Et(Pt+1)− Pt

Pt
+

Dt

Pt
= rf + αt, (2)

where rf is the riskless rate of interest, assumed constant, αt the equity risk premium, and Dt

the dividend paid at time t. The Merton (1973, 1980) linear relation between the equity risk

premium and volatility2 σ2t of equity returns is employed, viz.

αt = γσ2t . (3)

Thus, the sign and magnitude of the risk-return trade-off is given by the parameter γ. The

specific short memory model used is a stationary AR(1) specification for monthly stock market

variances,

σ2t+1 = ρ0 + ρ1σ
2
t + µt+1. (4)

Under these assumptions, the elasticity of the stock market level with respect to volatility is

given by
d logPt
d log σ2t

=
−ᾱ

1 + rf + ᾱ− ρ1(1 + g)
, (5)

where ᾱ is the mean value of αt and g is the constant growth rate of expected dividends, so

that Et(Dt+j) = (1+g)jDt. Expression (5) is evaluated at the mean values of the risk premium

and the dividend yield. For plausible values of the parameters the elasticity varies wildly with

ρ1, the short memory parameter of the volatility process. For example, a doubling of volatility

from its average level reduces the value of the market by only 0.6% if ρ1 = 0, but by 38.7%

if ρ1 = .99. For the empirical estimates of ρ1, the drop is of the order 1.4% − 2.2%, and in
alternative AR(12) and IMA(1,3) models up to 22.5%.

Expression (5) is a convenient representation of the fact that the risk-return trade-off and

serial dependence in volatility have separate impacts on asset prices. An increase in either

2Henceforth, we use the terms volatility and variance synonymously.
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γ (and hence ᾱ, through (3)) or ρ1 increases the magnitude of the (negative) elasticity. The

recent empirical findings of a significantly positive risk-return trade-off (γ > 0 in the present

context) and long memory in volatility might now be expected to translate into an asset price

elasticity of great magnitude. However, the derivation of (5) was based on AR(1) volatility.

Hence, motivated by the recent empirical literature, we generalize the framework to allow for

both short and long memory in volatility. In particular, we allow for long memory of the

fractional integration or I(d) type. As the IMA(1,3) model implies nonstationarity of the

standard I(1) unit root type, while the AR(1) model (of class I(0)) approaches the unit root

model as ρ1 tends to one, it might be expected that fractional integration of volatility would

lead to elasticity estimates in the same range as the empirical estimates quoted above, between

1.4% and 22%. However, perhaps surprisingly, our theoretical and empirical results point

towards a true elasticity in the presence of long memory in volatility probably not exceeding

1%.

It is important to note the structure of the model, in particular that σ2t is the conditional

variance process, as is common in long memory stochastic volatility models (see e.g. Breidt

et al. (1998) and Robinson (2001)), even though it enters the mean specification (2) explicitly.

Thus, writing rt for the return over period t,

rt =
Pt+1 +Dt − Pt

Pt
,

returns are conditionally heteroskedastic with a time-varying risk premium,

rt = rf + αt + σtet, (6)

where et is an Ft-martingale difference in the mean and the variance, i.e., E(et|Ft−1) = 0 and

E(e2t |Ft−1) = 1, and it is assumed that σt is measurable with respect to Ft−1, the information
set at time t− 1. Throughout the paper, we consider risk premium specifications of the type

αt = g
¡
σ2t , σ

2
t−1, ...

¢
, (7)

where g(·) is a well-behaved function, and since σ2t is measurable with respect to Ft−1, so is

the risk premium αt. It follows that

E (rt| Ft−1) = αt + σtE (et| Ft−1) = αt,

E
¡
r2t
¯̄Ft−1

¢
= α2t + σ2tE

¡
e2t
¯̄Ft−1

¢
= α2t + σ2t ,
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and the conditional variance of returns is

V ar (rt| Ft−1) = E
¡
r2t
¯̄Ft−1

¢− (E (rt| Ft−1))2 = σ2t .

Hence, σ2t is indeed the conditional variance of the returns. This is a conditional heteroskedasticity-

in-mean type specification similar to Engle et al. (1987) and Bollerslev et al. (1988).

In Section 2 below, we derive the relevant elasticity of the market level with respect to

volatility under long memory in σ2t . We show that the elasticity is smaller in magnitude than

earlier estimates, and much more stable under variations in the long memory parameter than

in the short memory case. We also consider a new specification of the equity risk premium

consistent with the stylized fact that equity returns do not exhibit long memory, as the simple

specification (3) would require under long memory in σ2t , and the relevant elasticity remains

small with this specification. In Section 3, we introduce our new bivariate modelling strategy,

where volatility and equity returns are modelled jointly in the VARMA system (1). We derive

testable cross-equation restrictions on the system from asset pricing theory. Section 4 presents

our empirical analysis, using monthly stock market returns along with high-frequency realized

volatilities and model free VIX implied volatilities. We find evidence in favor of our VARMA

specification for volatilities and returns, with a positive risk-return relation and long memory

in volatility as well as a strong leverage effect, consistent with recent literature. However, in

spite of the latter characteristics, our theoretical and empirical results show that the impact

of volatility shocks on stock prices is small, with an elasticity probably not exceeding 1%, and

short-lived, dying out after about six months. Section 5 concludes.

2 Consequences of Long Memory in Volatility

To model the long memory in volatility, we consider the class of autoregressive fractionally

integrated moving average (ARFIMA) processes introduced by Granger & Joyeux (1980) and

Hosking (1981). For excellent surveys on long memory processes and fractional models, see

Robinson (1994, 2003) and Baillie (1996), and for a textbook treatment, see e.g. Beran (1994).

A process is labelled an ARFIMA(p, d, q) process if its d’th difference is a stationary and

invertible ARMA(p, q) process. Here, d may be any real number and if −1/2 < d < 1/2 the

process is stationary and invertible which we assume throughout. For a precise statement, xt
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is an ARFIMA(p, d, q) process if

φ (L)∆dxt = θ (L)µt, (8)

where φ (L) = 1 −Pp
i=1 φiL

i and θ (L) = 1 +
Pq

i=1 θiL
i are polynomials of order p and q in

the lag operator L (Lxt = xt−1), with roots strictly outside the unit circle, µt is a martingale

difference sequence with conditional variance ω2µ, and the fractional filter ∆
d = (1− L)d is

defined by its binomial expansion

(1− L)d =
∞X
j=0

Γ (j − d)

Γ (−d)Γ (j + 1)L
j , Γ (z) =

Z ∞

0
tz−1e−tdt. (9)

The parameter d determines the (long) memory of the process. If d > −1/2 the process
is invertible and possesses a linear (Wold) representation, and if d < 1/2 it is covariance

stationary. If d = 0 the spectral density is bounded at the origin and the process has only weak

dependence (short memory). Furthermore, if d < 0 the process is said to be anti-persistent,

and has mostly negative autocorrelations, but if d > 0 the process is said to have long memory,

since the autocorrelations die out at a hyperbolic rate (and are not summable), in contrast to

the much faster exponential rate of decline of the autocorrelations in the short memory case.

Throughout this paper, we shall be concerned mainly with the stationary long memory case

0 ≤ d < 1/2. This interval is relevant for many applications in finance, e.g. Lobato & Velasco

(2000), Andersen et al. (2001), and Andersen et al. (2003). In particular, it is the empirically

relevant region for the volatility processes that we study.

To estimate the parameters of the model (8) we use the maximum likelihood procedure of

Sowell (1992). The maximum likelihood estimator is
√
T -consistent and asymptotically normal.

For details on the asymptotic normal distribution and the associated regularity conditions, we

refer the reader to Sowell (1992). The estimator is asymptotically efficient in the classical sense

when the model is correctly specified and Gaussian.

The well documented long memory property of volatility suggests replacing the Poterba &

Summers (1986) short memory volatility process (4) by

φ (L)∆d(σ2t − σ̄2) = θ (L)µt, (10)

where σ̄2 denotes the unconditional mean of σ2t , but retaining their other assumptions. In

particular, we maintain relations (2) and (3). This allows isolating the effect of long memory

in volatility on the level of stock prices. We have the following.
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Proposition 1 If stock return volatility is governed by the general ARFIMA(p, d, q) process

(10), then the elasticity of the stock market level with respect to volatility, at the mean values

of the risk premium and the dividend yield, is given by

d logPt
d log σ2t

=
∞X
j=0

ψj
−ᾱ(1 + g)j

(1 + rf + ᾱ)j+1
, (11)

where ψj is the j’th impulse-response of σ
2
t .

This proposition shows that the simple form (5) of the elasticity is special and a consequence

of imposing the short memory AR(1) process (4) on volatility. The general form of the elasticity

from Proposition 1 is an infinite weighted sum of terms similar to the elasticity (5), with weights

given by the impulse-responses ψj , which are simply the coefficients in the infinite-order moving

average representation of volatility,

σ2t − σ̄2 =
∞X
j=0

ψjµt−j . (12)

Square summability of the impulse-responses follows from stationarity of the AR polynomial

φ(·) and since d < 1/2.
Of course, higher order short memory ARMA(p, q) models for volatility, instead of the

simple AR(1), do not in general reproduce the summable geometric series and hence closed

form solution for the elasticity (5). Nonetheless, we include long memory from the outset, due

to the recent empirical evidence favoring this property.

Within the long memory class there are simplifications in relevant special cases. In partic-

ular, when p = q = 0, the impulse-responses are given by ψj = Γ(j + d)/(Γ(d)Γ(j + 1)), and

we have the following.

Corollary 2 In the situation from Proposition 1, the special case of an ARFIMA(0, d, 0) or

fractionally integrated noise process for volatility yields the elasticity

d logPt
d log σ2t

=
∞X
j=0

−ᾱ(1 + g)jΓ(j + d)

(1 + rf + ᾱ)j+1Γ(d)Γ(j + 1)
.

It is worth investigating the quantitative economic consequences of these changes in asset

price elasticities. Poterba & Summers (1986) evaluate the short memory elasticity (5) for the
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representative (monthly) parameter values rf = .035, ᾱ = .006, and g = .00087. They find

that the elasticity varies from −.006 to −.387 as ρ1 varies from 0 to .99. In comparison, for

the ARFIMA(0, d, 0) volatility specification from Corollary 2 and using the same values for rf ,

ᾱ, and g, we get the long memory elasticities shown in Table 1. Clearly, these are less variable

than the short memory elasticities. Even as the memory parameter d approaches 1/2, the

boundary for stationarity, the elasticity is only about −.03, an order of magnitude less than
the short memory elasticities near the boundary for stationarity of the AR(1) given by ρ1 = 1.

Given the mounting empirical evidence favoring long memory in volatility, this suggests that

the high elasticities reported earlier should be interpreted with considerable caution. More

generally, the results indicate that the way in which volatility is entered in the model is crucial

and should be considered carefully.

Table 1 about here

Inspection of relation (3) shows that in fact the memory properties of the volatility process

carry over to the stock return process through the risk premium link. This is cause of concern

since it implies that if volatility is stationary fractionally integrated, as empirical literature

demonstrates, then so are stock returns, and indeed, the two are stationary fractionally coin-

tegrated (see Christensen & Nielsen (2005)). Such strong serial dependence in stock returns

seems empirically highly implausible, thus calling specification (3) into question. Of course,

as finance theory suggests, a link between risk and return should be allowed. The problem

with the tight link (3) is that the entire movement in the deviation from the mean σ2t − σ̄2 in

volatility spills over fully into risk premium deviations, αt − ᾱ = γ(σ2t − σ̄2), including long

memory components, which is not empirically warranted. Hence, an alternative form of the

general link (7) is needed, and we consider the specification

αt − ᾱ = γ∆d(σ2t − σ̄2), (13)

where the fractional filter ∆d = (1− L)d removes spill-over of the long memory components

into the risk premium, while still permitting a risk-return trade-off. This specification is in

the spirit of Ang et al. (2005), i.e. only the short memory component of volatility impacts

expected returns. If increases in this component primarily occur in bad states and returns

co-vary with volatility, then potentially the required premium is negative in bad states, and
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this is accommodated through the possibility of a negative value of γ. Lacking a model for the

conditional mean of volatility, Ang et al. (2005) regress changes in VIX on stock returns to con-

struct a factor mimicking innovations in market volatility, and similarly insert the innovations

in a linear risk-return specification. Our long memory model (10) in effect provides the model

for the conditional mean of volatility and hence allows directly identifying the short memory

component of volatility, for use in (13).

With the new specification (13), the elasticity of the stock market level with respect to

volatility is again given by (11), but now with the terms ψj given by the impulse-responses of

∆d(σ2t − σ̄2), i.e. an ARMA(p, q) process. For example, if volatility exhibits long memory of

the ARFIMA(1, d, 0) type, then the resulting elasticity is again of the original form (5). Thus,

what is important in assessing the relevance of the latter form of the stock price-volatility

elasticity is not only the memory properties of volatility, but the combination of these with the

risk premium link.

The specification of the risk premium link (13) still imposes ARMA properties on αt if

volatility is governed by the ARFIMA process (10) with p or q positive. The same problem

arises in the original setup, with specifications (3) and (4), since αt is restricted to follow an

AR(1) process in that case, and with the same memory parameter ρ1 as volatility. Even ARMA

memory may be too much to force upon returns, and a martingale difference scheme for returns

would seem a competitive alternative, based on casual empiricism. Hence, in the following we

also consider the specification

αt − ᾱ = γµt, (14)

that is, it is exactly the innovation to volatility from (10) that impacts the current risk premium

and generates the risk-return relation, c.f. Ang et al. (2005). By the fundamental structure

of the stock return equation (2), the risk premium in (14) guarantees that the stock return

(dividend included) is a martingale difference sequence. Whether this specification is preferred

now becomes an empirical question. Under (14), the elasticity of the stock market level with

respect to volatility is simply the constant −ᾱ, i.e. minus the average risk premium. Using the
same parameter value as in Table 1, this is −.006, again much smaller in magnitude than the
elasticities from the short memory model for positive ρ1.

Of course, testable cross-restrictions are implied by the risk premium links (3), (13), and

(14), since volatility and risk premia share the same innovation sequence. This is explored
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below.

3 Bivariate Modelling Strategy

In this section, we consider explicitly the bivariate time series model for returns and volatility.

Rewriting (2) explicitly in terms of the expectation error εt = σtet, we have

rt = rf + αt + εt. (15)

We write ω2ε for var(εt) and ωεµ for cov(εt, µt), with µt the innovation in the volatility equation

(4). The model based on (3) and (4) then in fact implies the bivariate structure⎡⎣ rt − r̄

σ2t − σ̄2

⎤⎦ =
⎡⎣ 0 γρ1

0 ρ1

⎤⎦⎡⎣ rt−1 − r̄

σ2t−1 − σ̄2

⎤⎦+ ut, (16)

where r̄ = rf + γσ̄2 and σ̄2 = ρ0/(1 − ρ1) are the unconditional means of the return and

volatility processes, respectively, and the vector ut = (u1t, u2t)0 of system errors is given by

ut =

⎡⎣ 1 γ

0 1

⎤⎦⎡⎣ εt

µt

⎤⎦ , var(ut) = Ωu =

⎡⎣ ω2ε + 2γωεµ + γ2ω2µ γω2µ + ωεµ

γω2µ + ωεµ ω2µ

⎤⎦ . (17)

Note that (16) is a first order vector autoregressive (VAR(1)) model with two testable zero

restrictions. Furthermore, from (17) the errors u1t and u2t are correlated (through the risk

premium parameter γ) even when εt and µt are not. Indeed, imposing ωεµ = 0 generates a

testable cross-equation restriction linking mean and variance parameters (the ratio of the non-

zero elements in the autoregressive coefficient matrix from (16) equals the ratio of cov (u1t, u2t)

to var (u2t) from (17)). Whether or not ωεµ = 0, efficient estimation of this model would require

simultaneous estimation of both equations, since the system errors in ut are contemporaneously

correlated in any case.

It is important to note that even though the unconditional variance of returns var(rt) =¡
1− γ2ρ21

¢−1
(ω2ε + 2γωεµ + γ2ω2µ) is constant in the model, it is the time-varying σ2t =

var(rt|Ft−1) which is modelled in the second equation of the system (16). In our empirical

work below, we use either the VIX model free implied volatility for σ2t , or realized volatility

estimated by a sum of squared intra-period returns (see Section 4). Our estimation procedure

uses the constant unconditional variance Ωu from (17) for the VAR system errors, which entails
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a potential efficiency loss relative to explicitly allowing for time-varying conditional variance

of u1t in the estimation, but retains consistency and asymptotic normality of the parameter

estimates and is much simpler to implement and interpret, e.g. in terms of the above parameter

restrictions.

The VAR(1) model (16) is not empirically realistic, since it imposes short memory on volatil-

ity, contradicting findings of long memory in volatility from the literature. Long memory in

volatility may be entered through the ARFIMA(p, d, q) process (10). This yields the alternative

triangular fractionally cointegrated system

rt − r̄ = γ(σ2t − σ̄2) + εt (18)

∆d(σ2t − σ̄2) = φ−1(L)θ(L)µt (19)

where r̄ and σ̄2 continue to denote the unconditional means, although these may now be

different from before. The problem with this model is that it imposes long memory in the

return equation (18), which is unwarranted empirically.

As a consequence of the empirical problems arising in the models (16) and (18)-(19) (short

memory in volatility resp. long memory in returns), we turn to alternative specifications, where

(13) or (14) is substituted for (3) to produce a better empirically founded return equation. An

additional important and well documented empirical feature in financial time series is the

financial leverage effect, see Black (1976), Engle & Ng (1993), and Yu (2005). The standard

argument from Black (1976) is that bad news decreases the stock price and hence increases

the debt-to-equity ratio (i.e. financial leverage), making the stock riskier and increasing future

expected volatility. This generates a negative relationship between volatility and the lagged

return. Thus, we consider either (10) for the volatility process or the specification

φ (L)∆d(σ2t − σ̄2) = λrt−1 + θ (L)µt, (20)

where λrt−1 accommodates the financial leverage effect. The implications for the resulting

bivariate systems are explored in the following propositions.

Proposition 3 Let Xt = (rt − r̄,∆d(σ2t − σ̄2))0. Then the bivariate system for returns and

volatilities is given by the vector ARMA (VARMA) model

A(L)Xt = B(L)ut, (21)
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where ut is given by (17), and the risk premium is given by (13).

A) No leverage effect: Assume stock return volatility is governed by the ARFIMA(p, d, q)

process (10). Then the lag polynomials A(L) = I2 −
Pp

i=1AiL
i and B(L) = I2 +

Pq
i=1BiL

i

satisfy the restrictions

Ai =

⎡⎣ 0 γφi

0 φi

⎤⎦ , i = 1, ..., p,

Bi =

⎡⎣ 0 γθi

0 θi

⎤⎦ , i = 1, ..., q,

where φi and θi are defined as in (20). In particular, there are 2 (p+ q) zero restrictions and

max (p+ q − 1, 0) cross-equation restrictions. If, in addition, we assume ωεµ = 0, then there is
one additional cross-equation restriction when p+ q ≥ 1. Finally, γ is not identified if ωεµ 6= 0
and p = q = 0.

B) Leverage effect included: Assume stock return volatility is governed by the levered ARFIMA(p, d, q)

process (20). Then the lag polynomials A(L) = I2−
Pmax{1,p}

i=1 AiL
i and B(L) = I2+

Pq
i=1BiL

i

satisfy the restrictions

Ai =

⎡⎣ γλ1 (i = 1) γφi1 (p 6= 0)
λ1 (i = 1) φi1 (p 6= 0)

⎤⎦ , i = 1, ...,max {1, p} ,

Bi =

⎡⎣ 0 γθi

0 θi

⎤⎦ , i = 1, ..., q,

with 1(·) the usual indicator function. There are 2 (1 (p = 0) +max {0, p− 1}+ q) zero restric-

tions and p+ q cross-equation restrictions. If we assume ωεµ = 0, then there is one additional

cross-equation restriction.

The simultaneous system approach for asset returns and volatility behind this proposition

is novel and the main contribution of this paper. Far more information can be obtained from

the system than from analysis of each equation in isolation. Efficient estimation and infer-

ence requires a system approach such as full information maximum likelihood. Note that by

construction Xt has zero mean. The number of empirically testable restrictions from asset

pricing theory is considerable. In part A with no leverage, the total number of parameters

in the conditional mean equations of the corresponding unrestricted VARMA(p, q) model is
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4(p + q). When leverage is included in part B, the total number of parameters in the unre-

stricted VARMA(max {1, p} , q) model is 4 (max {1, p}+ q). To illustrate the restrictions in this

case, consider the special case where stock return volatility is governed by an ARFIMA(0,d,1)

and the financial leverage effect is included. The bivariate process for returns and volatility is

given by the VARMA(1,1) model

rt − r̄ = γλ(rt−1 − r̄) + εt + γµt + γθµt−1,

∆d(σ2t − σ̄2) = λ(rt−1 − r̄) + µt + θµt−1.

In the associated unrestricted VARMA(1,1) model there are two 2 × 2 matrices in the mean
equations, for a total of eight parameters. Only the first order moving average coefficient θ

(corresponding to θ1 in (20)) and the parameters γ and λ appear in the restricted system above,

i.e., there are five constraints. Thus, this count matches the general number of restrictions from

Proposition 3B for the case (p, q) = (0, 1).

Although the autoregressive polynomial in the ARFIMA model for volatility is of order

p = 0 in this example, the autoregressive order of the resulting simultaneous VARMA system

is one. This corresponds to the more general result in Proposition 3B, that an autoregression

of order p for volatility translates into an autoregressive component in the full system of order

max{1, p}. All these restrictions are of course empirically testable. Finally, in the specific
example considered here, if the additional assumption ωεµ = 0 is invoked, i.e. the expectation

revisions in returns are uncorrelated with the innovations to volatility, then the risk premium

parameter, γ, may be recovered from the estimated covariance matrix for the (still correlated)

system errors ut defined in (17) as γ = cov(u1t, u2t)/var(u2t), and this generates one additional

restriction, for a total of six constraints.

Both the Ai and Bi coefficient matrices (i ≥ 1) exhibit non-zero terms in the first row (the
return equation), even in the restricted form of the model in Proposition 3. This degree of

serial dependence in asset returns is potentially in conflict with empirical evidence, as well as

efficient markets theory. Hence, for the empirical analysis, it is worthwhile to compare with a

version based on the alternative risk premium specification (14).

Proposition 4 Let the risk premium be given by (14). Then the bivariate system for returns

and volatilities is given by the VARMA model (21).
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A) No leverage effect: Assume stock return volatility is governed by the ARFIMA(p, d, q)

process (10). Then the lag polynomials A(L) = I2 −
Pp

i=1AiL
i and B(L) = I2 +

Pq
i=1BiL

i

satisfy the restrictions

Ai =

⎡⎣ 0 0

0 φi

⎤⎦ , i = 1, ..., p,

Bi =

⎡⎣ 0 0

0 θi

⎤⎦ , i = 1, ..., q,

with φi, θi defined as in (10). In particular, there are 3(p+ q) zero restrictions.

B) Leverage effect included: Assume stock return volatility is governed by the levered ARFIMA(p, d, q)

process (20). Then the lag polynomials A(L) = I2−
Pmax{1,p}

i=1 AiL
i and B(L) = I2+

Pq
i=1BiL

i

satisfy the restrictions

Ai =

⎡⎣ 0 0

λ1 (i = 1) φi1 (p 6= 0)

⎤⎦ , i = 1, ...,max {1, p} ,

Bi =

⎡⎣ 0 0

0 θi

⎤⎦ , i = 1, ..., q,

with 1(·) the usual indicator function and φi, θi defined as in (20). Thus, there are 3 (max {1, p}+ q)+

1 (p = 0)− 1 zero restrictions.
Finally, in both parts A and B, if ωεµ 6= 0 the parameter γ is not identified, and if ωεµ = 0

then γ = cov(u1t, u2t)/var(u2t).

With this specification, there are 4 (p+ q) VARMA parameters in the unrestricted model

in part A and 4 (max {1, p}+ q) in part B. The restricted coefficient matrices Ai and Bi have

zeros in the first row (the return equation) for i ≥ 1. Hence, the process for asset returns is
a martingale difference sequence in the restricted model. This potentially accords better with

data than the model from Proposition 3, a possibility explored in the empirical work below.

Before turning to the empirical analysis, we briefly return to the simple example from above,

where volatility is governed by an ARFIMA(0,d,1) model and financial leverage is included.

In this case, with q = 1, the restricted simultaneous VARMA(1,1) system from part B of
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Proposition 4 is given by

rt − r̄ = εt + γµt,

∆d(σ2t − σ̄2) = λ (rt−1 − r̄) + µt + θµt−1.

Even though returns form a martingale difference sequence, the system errors remain contem-

poraneously correlated, and simultaneous estimation is called for. This is so even if ωεµ = 0, i.e.

if expectation revisions in returns are uncorrelated with innovations to volatility. In this case γ

may be recovered as stated in Proposition 4. Note that there are six testable zero restrictions

on the VARMA parameters in this example.

The various models above are explored empirically in the following section.

4 Empirical Analysis

We use 5-minute returns on the S&P 500 stock market index using linear interpolation following

Müller, Dacorogna, Olsen, Pictet, Schwarz & Morgenegg (1990), Dacorogna, Müller, Nagler,

Olsen & Pictet (1993), and Barucci & Reno (2002), among others, to form monthly realized

volatilities (annualized sample sum-of-squares), resulting in roughly 2,000 intra-monthly return

observations for each realized volatility (97 per day and approximately 20 trading days per

month). The returns data cover the period January 1, 1988, to December 31, 2002. For

more details on the construction of the realized volatility data, see Andersen, Bollerslev &

Diebold (2005) or Andersen, Bollerslev, Diebold & Vega (2004). The use of 5-minute returns

can be justified on the basis of bias considerations when dealing with market microstructure

noise induced effects which are expected to be small at the 5-minute frequency, see e.g. the

simulations by Nielsen & Frederiksen (2004). Indeed, much recent work has been devoted to

integrated variance estimation in the presence of noise, e.g. Bandi & Russell (2005a, 2005b),

Hansen & Lunde (2004), Oomen (2005a, 2005b), Zhang, Mykland & Ait-Sahalia (2003) — Bandi

& Russell (2005c) and Barndorff-Nielsen & Shephard (2005) review this literature. There is

some evidence that the optimal (in a mean squared error sense) sampling frequency is higher

than 5 minutes when estimating daily realized volatilities. However, we consider monthly

observations on realized volatility, hence employing roughly 2,000 return observations for each

realized volatility. Consequently, we expect our monthly realized volatility measures to be very

precise and not contaminated by market microstructure induced bias.
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In addition, we use the monthly nominal dividend series for the index to form monthly

growth rates gnomt . For the riskfree rate (rnomft ), we use monthly data on the 3-month Treasury

bill rate (secondary market, middle rate), and we use the growth rate in the consumer price

index (nondurables) for the inflation series (πt). These data and the one-month nominal returns

(rnomt ) are obtained from Datastream. As Poterba & Summers (1986), we also compare with

results where the monthly volatility series is based on implied volatilities from option prices.

We use the model free (new) VIX implied volatility series from the Chicago Board of Options

Exchange (CBOE). The new VIX is based on Britten-Jones & Neuberger (2000) and measures

expected volatility over a 30-day period by averaging the weighted prices of out-of-the money

puts and calls. Unlike the old VIX (now VXO), the new VIX is based on the S&P 500 index

and is available from January 1990.3 Our sample covers the period January 1990 to February

2005, and all variables are stated on a monthly basis.

Table 2 about here

Summary statistics are in Table 2. Panel A shows statistics for the data set covering the

period 1988:1-2002:12 (180 observations), for which we have high-frequency realized volatility

data for σ2t . Panel B shows statistics for the data set covering the period 1990:1-2005:2 (182

observations), for which we use VIX implied volatilities for σ2t . As the standard deviations

of returns (first column) are about equal in the two panels, the higher average volatility (last

column) in Panel B is due to the use of implied instead of realized volatility, perhaps reflecting

a negative volatility risk premium in option prices. Furthermore, the standard deviation of

volatility is considerably lower in Panel B (.17 versus .25), consistent with the notion that

implied volatility measures expected future volatility which should be less volatile than actual

realized volatility. In both data sets, average returns are considerably higher than interest rates,

which in turn exceed inflation. As expected, the standard deviations of returns far exceed those

of the riskfree rates.

Table 3 about here

Before proceeding to the empirical analysis of the bivariate systems of Section 3, we examine

the univariate time series properties of the two individual volatility series (realized and implied),
3Ang et al. (2005) use the old VIX which is based on the S&P 100 index, but our high-frequency realized

volatilities are for the S&P 500 index, so we restrict attention to the new VIX.
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using the ARFIMA(p, d, q) model (10). Table 3 shows the results of the univariate analysis.

The results for the realized variance data set, from 1988-2002, are in Panel A, and results for the

VIX implied variance data set, from 1990-2005, are in Panel B. The reported estimates of the

long memory parameter d and the autoregressive and moving average parameters φ and θ are

found by application of the Sowell (1992) maximum likelihood method to deviations from the

sample mean, using the arfima package v1.01 for PcGive 10.1, see Doornik (2001) and Doornik

& Ooms (2001). Asymptotic standard errors are in parentheses. Also reported are log-lik,

the value of the maximized log-likelihood function, AIC and BIC, the Akaike and Schwarz

information criteria, and Q(12), the Ljung-Box statistic for 12 lags which is asymptotically

χ2 distributed with 12 − 1 − p − q degrees of freedom. For the Ljung-Box test, one and two

asterisks denote rejection at 5% and 1% significance level, respectively. Across both panels,

the long memory parameter d is very strongly significant and estimated to values between .3

and .5, except a single case in Panel A where a negative d is accompanied by a near unit root

in the autoregressive polynomial.

In Panel A, the realized variance data set, the (0, d, 3) model gets the best (lowest) AIC

criterion and the highest likelihood value, the third-order MA parameter θ3 gets a t-statistic of

2.78, and the Ljung-Box statistic is by far the lowest in the panel. In principle, the likelihood

ratio test does not reject reduction in the model, and the residuals actually appear serially

uncorrelated in some of the other models estimated, but we hesitate to discard a statistically

significant parameter (θ3). This is even more so because estimators in oversimplified models are

inconsistent, whereas the only cost of overparametrization is inefficiency, but not inconsistency.

We thus prefer the ARFIMA(0,d,3) model for realized volatilities. We also estimated higher

order models (results not reported), but they were clearly inferior to the chosen model.

In Panel B, the implied variance data, model selection is less obvious. The (1,d,0) model

gets the best (lowest) SIC criterion and the second best AIC in the panel. The estimated first-

order AR coefficient φ1 is estimated to .45, with a t-ratio of 3.27, and the Ljung-Box statistic

shows no sign of misspecification. From the table, adding parameters such as φ2 or θ1 yields

t-tests below one. Based on these observations we select the ARFIMA(1,d,0) model for VIX

implied volatilities.

In the chosen (0,d,3) and (1,d,0) models, the long memory parameter d takes the values

.30 and .31 and is strongly significant. Hence, the results in Table 3 confirm the long memory
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property of volatility found in the literature, and our estimates of the long memory parameter

are in line with those in e.g. Andersen et al. (2001) and Andersen et al. (2003).4 In particular,

they are well within the stationary long memory region 0 < d < 1/2.

Table 4 about here

The long memory property of volatility changes the implications for the level of the stock

market. We have seen the first indication of this in Table 1, for the simple case of a (0,d,0)

model for volatility. We now examine this issue in more detail for the empirically relevant

volatility models from Table 3. Table 4 shows the parameters needed for the comparison. The

first row of the table gives the Poterba & Summers (1986) values for the real risk premium,

riskfree rate and dividend growth rate. The subsequent rows show the corresponding values

for our two data sets, estimated from the averages in Table 2.

Figure 1 about here

The parameters from Table 4 may now be used with Proposition 1 to assess the stock

market elasticity with respect to volatility changes. To this end, we also need the impulse-

responses ψj for the volatility process. These are exhibited in Figure 1, for each of our two

data sets. Initially, we use the impulse-response functions for the estimated ARFIMA models

for σ2t (using realized resp. implied volatility and shown as solid lines), but the figure also

shows the impulse-responses for the corresponding ARMA models, i.e. for ∆dσ2t (shown as

dotted lines), which we will need below.

Table 5 about here

Table 5 shows the resulting elasticities based on Proposition 1. Panel A shows elasticities

using the parameter values from the first row of Table 4, and Panel B shows elasticities using

the parameter estimates from our data (last two rows of Table 4). In each panel of Table 5,

4We also estimated the same models for realized and implied standard deviations, as opposed to variances,

following Andersen et al. (2001) and Andersen et al. (2003), and got slightly higher d-values, much in line with

results in these studies. Applying the alternative semiparametric d estimator of Geweke & Porter-Hudak (1983)

using bandwidth m = 20 to the variance measurements yields d̂ = 0.40 for VIX and d̂ = 0.29 for realized, both

with a standard error of .18.
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elasticities are shown for the preferred model for each of our two data sets. The first column

of elasticities is based on the ARFIMA impulse-responses from Figure 1 and the risk premium

link (3). All four estimated elasticities are of the same order of magnitude as those reported for

short memory autoregressive models by Poterba & Summers (1986, Table 2) in their empirical

section ranging from −.014 to −.048, whereas their reported elasticities for integrated moving
average models are an order of magnitude larger, at −.175 to−.225. The largest of our elasticity
estimates, at −.047, is obtained using implied volatility.

As discussed in Section 2, use of the risk premium link (3) imposes long memory on returns,

which is not empirically warranted. Thus, the next column of elasticities in Table 5 is based

on the alternative risk premium link (13). Calculation of elasticities in this case amounts to

substituting the impulse-responses for the corresponding ARMA models (i.e. the models for

∆dσ2t ) into (11). These impulse-response functions are also exhibited in Figure 1 (dotted lines).

In all cases, the resulting elasticities are even lower than in the previous column, although the

parameters from Table 4 are unchanged within each row of Table 5. A glance at Figure 1 shows

that, as expected, the impulse-responses for each of the ARMA models are much lower than

for the associated ARFIMA model for the same volatility series. It is these lower values for ψj

that feed into (11) and yield lower elasticities.

If we turn to risk premium link (14), thus allowing for martingale difference returns, the

elasticity is given simply as −ᾱ, shown in the last column of Table 5. This produces estimates
that are slightly lower but of the same order of magnitude as in the second to last column.

Thus, both risk premium links that do not force long memory upon returns yield elasticity

estimates of −.01 or less, i.e., smaller than in the first column of elasticities and smaller than
the estimates in Panel A. All in all, our results suggest that when allowing for long memory in

volatility, the stock market elasticity with respect to volatility is small, probably no larger than

about −.01, and smaller than the estimates reported in Poterba & Summers (1986), which in
light of the evidence on long memory appear to have been exaggerated.

The elasticities considered so far reveal something, but not everything about the relation

between volatility and the level of the stock market. To gain further insight into the dynamics

of this relation, we next consider the explicit simultaneous system of changes in both, i.e., the

multivariate model for stock market returns and volatility changes. This development is unique

to the present paper. As volatility is governed by a fractionally integrated process, the volatility
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changes considered in the multivariate system are fractional differences. Thus, we implement

in turn the various system specifications of Section 3 for the bivariate process Xt. Here, the

components of Xt are the deviations from the unconditional means of the returns rt and the

volatility changes ∆dσ2t . The unconditional means are .0090 and .0006, respectively, for the

realized volatility data set, and .0085 resp. .0005 for the data set with implied volatilities.

Table 6 about here

We first apply the general unrestricted VARMA model (1) to the data set with realized

volatilities. Based on the univariate analysis, the orders of the vector AR and MA polynomials

are set at 1 and 3, respectively, i.e., we implement an unrestricted VARMA(1,3) model for

Xt = (rt − r̄,∆d(σ2t − σ̄2))0. The autoregressive term accommodates the leverage effect from

Part B of Propositions 3 and 4. In Part A, the presence of this autoregressive term generates

an additional 4 zero restrictions, since p = 0 in the preferred univariate model for realized

volatility. Estimation results appear in Table 6, Panel A. From Proposition 3, Part A, asset

pricing theory implies 8 restrictions on the 16 coefficients in the AR and MA polynomials. In

particular, with (p, q) = (0, 3), there are 2(0+3) = 6 zero restrictions and max{0+3−1, 0} = 2
cross-equation restrictions. Adding the 4 zero restrictions on the vector AR matrix yields a total

of 12 restrictions. For Part B of Proposition 3, there is one less restriction, due to the inclusion

of the additional leverage effect. We also estimate the model as restricted under Part A and

Part B, separately, and the results are shown in Panels B and C. In each panel, the first two

columns of estimates correspond to the first order AR matrix A1, with coefficients for the

return equation in the first row, and coefficients for the volatility equation in the second row.

The following columns correspond to the MA matrices. The last two columns show the 2× 2
variance-covariance matrix (times 1,000) of the VARMA residuals ut. The estimation method

is Gaussian maximum likelihood, and standard errors based on the sum of outer products of

the score contributions are in parentheses. Strictly, Gaussianity is not needed for consistency

and asymptotic normality of the parameter estimates in stationary VARMA models (Lütkepohl

(1991)), and we get similar inferences from using robust (sandwich-type) standard errors.

The unrestricted estimates in Panel A are all insignificant, suggesting that the model is

overfitted, but three of the six estimates in the restricted model in Panel B (corresponding to

Proposition 3A) are significant. Note that in Panel B, 6 estimates are reported in the 8 columns
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of VARMA coefficients, but these correspond to only 4 distinct parameters, due to the 2 cross-

equation restrictions. Proposition 3A shows how the restricted parameter estimates relate to

the parameters from the univariate analysis in Table 3. For example, the lower right corner

of Bi corresponds to θi. In particular, the parameter θ3 that was significant at the 5% level

in the univariate analysis remains significant in the multivariate analysis, although the point

estimate is somewhat lower than the univariate estimate. In Panel C (restricted model based

on Proposition 3B), the lower left corner of A1 estimates the additional leverage parameter λ,

which is negative as expected, at −.013, and strongly significant, with a t-statistic of about −4.
This clearly shows the empirical relevance of the leverage effect, inducing an inverse relation

between returns and future volatility.

The theory restrictions from Proposition 3 are based on the risk premium link (13). Work-

ing within the VARMA framework, we have already abandoned the link (3), which has the

empirically unrealistic triangular fractional cointegration implication, see (18)-(19). The possi-

bility remains that returns should be modelled as martingale differences. This is allowed under

the alternative risk premium link (14). From Proposition 4A, there are 9 asset pricing theory

restrictions on the VARMA coefficients in this case, in addition to the 4 zero restrictions on

A1. The estimated model thus restricted appears in Panel D of Table 6. Here, 2 of the 3

restricted coefficient estimates are significant. Panel E shows estimates for the restricted model

corresponding to Proposition 4B, including the leverage effect, so a total of 12 restrictions are

imposed. The estimated leverage effect λ is very similar to that in Panel C, at −.015, with a
t-statistic in excess of 5 in magnitude. Finally, the estimated residual covariance matrices are

nearly identical in all five panels, indicating that not much information is lost by imposing the

restrictions.

Table 7 about here

We also carry out the similar analysis using the data set with VIX implied volatilities. Table

7 shows the results. Based on the univariate results, we estimate a VARMA(1,0) model. Unlike

in the realized volatility data set, 3 of the 4 coefficients in the unrestricted model (Panel A) are

now significant, and the residual covariance matrices for the restricted models without leverage

(Panels B and D) are quite different from those of the unrestricted model (Panel A) and the

restricted models including the leverage effect (Panels C and E). Proposition 3A imposes 2 zero
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restrictions on the model, and Proposition 3B imposes a single cross-equation restriction, so the

4 coefficient estimates in Panel C correspond to only 3 parameters. Proposition 4A imposes 3

zero restrictions, and Proposition 4B imposes 2. Throughout the table, all VARMA coefficients

in the restricted models are significant. The point estimates of the leverage coefficient λ are

similar to those in Table 6, and the t-statistics now exceed 10 in magnitude.

Table 8 about here

Table 8 shows the results of formal hypothesis testing within the VARMA framework.

Panel A shows results for the data set with realized volatilities, and Panel B for the data set

with implied volatilities. The first column shows the maximized log likelihood values. The

second column shows the likelihood ratio tests of the restrictions from Propositions 3 and 4,

respectively, against the appropriate unrestricted model. The degrees of freedom and p-values

based on the asymptotic χ2-distribution are given in the next two columns. The following three

columns show the estimated standard deviations of the expectations revisions and volatility

innovations and their correlation. The final two columns show the estimates of the risk-return

trade-off γ and the leverage effect λ (asymptotic standard errors in parentheses). Note that γ

and the structural parameters related to the expectations revisions and volatility innovations are

only reported for the model corresponding to the Proposition 3 restrictions, which is where they

are identified without imposing ωεµ = 0 (the estimated correlation between εt and µt ranges

between −.24 and −.82 in the table). Thus, using Proposition 3, the reported γ-estimate is

calculated off the entries in the leading MA coefficient matrix, B1, as γ = B1,12/B1,22 in the

data set with realized volatilities. In the data set with implied volatilities, γ is calculated off the

entries in the leading AR coefficient matrix, A1, as γ = A1,12/A1,22. From these expressions,

asymptotic standard errors are calculated by the delta method.

In the data set with realized volatilities (Panel A), we reject the restrictions from Propo-

sitions 3A and 4A at the 5% level, but not at the 1% level. Strikingly, there is no evidence

against the models including the leverage effect (Propositions 3B and 4B), which get p-values

of 55% and 56%. Consistent with the results in Table 6 (parameter significance and analysis

of error covariance), we prefer the VARMA(1,3) model restricted according to Proposition 4B

for this data set. The pattern is similar but even more striking in the data set with implied

volatilities (Panel B), where the restrictions from Propositions 3A and 4A are overwhelmingly
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rejected, whereas the restrictions from Propositions 3B and 4B are not rejected at the 10%

level. Thus, the results from both data sets confirm the empirical importance of the leverage

effect. We prefer the model corresponding to Proposition 3B for the data set with implied

volatilities, since the two VARMA parameters dropped when moving from Panel C to Panel E

in Table 7 are significant at conventional levels.

The risk-return trade-off parameter γ from (13) is estimated to values between 4.7 and 21.2

in the two data sets, and gets t-values of 2.70 and 1.94 in the data set with implied volatilities.

Based on this evidence, γ appears significantly positive, reflecting a positive risk-return relation.

Volatility increases are compensated through increased risk premia. The leverage parameter

λ is strongly significant, with t-statistics above 4 in magnitude throughout, showing that the

leverage effect is indispensable for the model. This is further reinforced by noting that the point

estimates vary very little across specifications, from −.013 to −.015. Thus, negative return
innovations spur volatility increases. In such bad states, stocks that co-vary with volatility

pay off, and Ang et al. (2005) find evidence of correspondingly lower required premia for these

stocks in the cross-section. Our aggregate time series evidence is that the overall market risk

premium is positive, consistent with e.g. Brandt & Kang (2004) and Ghysels et al. (2005).

We end this section by examining further the preferred model for the data set with VIX

implied volatilities, subject to the restrictions of Proposition 3B including both a risk-return

trade-off and the leverage effect. The VARMA form of this model is expressed in terms of the

system errors ut. Recasting the model in terms of the original return expectation revisions εt

and volatility innovations µt, using (17), we obtain

rt − r̄ = 6.41
(3.30)

∆d(σ2t − σ̄2) + εt, (22)

∆d(σ2t − σ̄2) = 0.48
(0.02)

∆d(σ2t−1 − σ̄2)− 0.01
(0.001)

(rt−1 − r̄) + µt, (23)

with structural error covariance matrix⎡⎣ ω2ε ωεµ

ωεµ ω2µ

⎤⎦ =
⎡⎣ 1668.7 −4.33
−4.33 0.79

⎤⎦× 10−3. (24)

In the estimated version of the restricted model, returns depend positively on volatility

changes which in turn depend positively on lagged volatility changes and negatively on lagged

returns. The variance of the expectation revision εt is more than 1,000 times that of the
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volatility shock µt. The estimated covariance between the two, ωεµ, exceeds the variance of

the volatility shock ω2µ in magnitude. Probably the true covariance is non-zero, implying that

it is not appropriate to impose this zero restriction in order to calculate the risk premium

parameter γ in the unrestricted and Proposition 3A and 4A models in Table 8. Fortunately,

this restriction is not needed for estimation of γ in the preferred Proposition 3B model for the

data set with implied volatility, where the estimate is 6.41 and significant.

The risk-return trade-off is thus positive (p-value of 5.19%), and the leverage hypothesis is

confirmed through the negative values of both λ and the covariance ωεµ between innovations

to returns and volatility in (24). Obviously, the model implies that returns are not martingale

differences. In particular, substituting (23) in (22) shows the dependence of returns on lagged

returns and volatility changes.

Figure 2 about here

With the estimated multivariate models in hand, it is possible to give a much more detailed

dynamic picture of the relation between volatility and stock prices than that entailed in the

simple elasticities considered earlier. In particular, we may solve (22) for the impulse-response

function for future returns with respect to a unit shock in current volatility. This is not an

ordinary univariate impulse-response function, but a response function for the variable in the

first equation of the system with respect to a shock in the variable from the second equation,

so our multivariate framework is crucial for this approach. The resulting impulse-response

function is shown as the dotted line in Figure 2. The dynamics inherent in the estimated

system is evident from the shape of the impulse-response function. This is in contrast to the

simpler dynamics in the short memory multivariate system (16) which results from the model

(3)-(4). The j’th impulse-response in the simple system is γρj1, i.e., geometrically declining,

whereas our impulse-response function in Figure 2 is clearly non-monotonic, a result of the

more complicated multivariate model structure.

To better complement the information contained in the elasticities considered earlier, we

may in addition examine the impulse-responses of log-stock prices with respect to volatility

shocks. Expressing log-prices as infinite sums of future returns, logPt+j = −
P∞

k=0 rt+j+k, we

calculate the impulse-response function of log-prices from the corresponding sums of impulse-

responses of returns. The result is shown as the solid line in Figure 2. Note that after the
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initial price drop in reaction to the volatility shock, the market reverts back to the original

level, to finally stabilize at the original level after around six months. The initial drop is slightly

less than the value of γ. These dynamic response patterns reinforce the impression that the

true impact of volatility changes on the stock market level, appropriately accounting for long

memory in volatility, is quite modest and short-lived.

5 Concluding Remarks

Recent empirical literature documents the presence of a long memory component in volatility.

In addition, at least part of the recent literature finds a significantly positive risk-return trade-

off. In conjunction, the two would seem to make for a strong and long-lasting effect on asset

values of shocks to volatility. We find that on the contrary the instantaneous as well as dynamic

impacts of volatility changes on stock prices are modest and short-lived, with an elasticity of

stock price with respect to volatility changes of no more than 1%, and the impulse-response

function dying out after about six months in our empirically supported model. Thus, the effect

is not as first anticipated. We introduce a new VARMA approach which allows for general joint

dynamics of returns and volatility, and there is evidence in favor of the theoretical restrictions

in our preferred model. The results are consistent with earlier findings of both a positive

risk-return trade-off, long memory in volatility, and a strong financial leverage effect, showing

in addition that these interact to yield a perhaps surprisingly low impact of volatility shocks

on asset values. Our work complements the literatures on realized and implied volatility, the

financial leverage effect, and the risk-return relation, and contributes towards an understanding

of the roles they play in determining asset values.

Appendix: Proofs

Proof of Proposition 1. By the chain rule for differentiation

dPt
dσ2t

= Et

⎛⎝ ∞X
j=0

dPt
dαt+j

dαt+j
dαt

dαt
dσ2t

⎞⎠ ,
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where the first term on the right-hand side is the derivative in an infinite order Taylor expansion

of Pt around ᾱ, given by equation (6) of Poterba & Summers (1986) as

dPt
dαt+j

=
−Dt (1 + g)j

(1 + rf + ᾱ)j+1 (rf + ᾱ− g)
,

the second term is given by the impulse-response (12), i.e.

dαt+j
dαt

= ψj ,

and the last term is
dαt
dσ2t

= γ

by (3). Collecting the terms we find that

d logPt
d log σ2t

= γ
σ2t
Pt

∞X
j=0

ψj
−Dt (1 + g)j

(1 + rf + ᾱ)j+1 (rf + ᾱ− g)
.

Applying (3) and setting the risk premium αt and the dividend yield Dt/Pt equal to their mean

values ᾱ and rf + ᾱ− g, we get the desired result.

Proof of Corollary 2. Follows immediately from Proposition 1 and the formula for the

impulse-responses, ψj = Γ(j + d)/(Γ(d)Γ(j + 1)).

Proof of Proposition 3. Rewrite (10) as

X2t = ∆
d(σ2t − σ̄2) = λX1,t−1 +

pX
i=1

φiX2,t−i + θ (L)µt. (25)

Inserting into the definition of the returns (15) and using the risk premium link (13) we find

that X1t = rt − r̄ = γX2t + εt, which implies that

X1t = γλX1,t−1 + γ

pX
i=1

φiX2,t−i + γθ (L)µt + εt. (26)

Combining (25) and (26) and defining ut as in (17) we get the system (21) with the stated

restrictions for part B, and part A follows by setting λ = 0.

In part A, there are 2p zero restrictions and p cross-equation restrictions in A (L) and there

are 2q zero restrictions and q cross-equation restrictions in B (L). However, one of those is used

to identify γ since when ωεµ 6= 0, γ cannot be determined from the elements of Ωu in (17) but
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is determined in either A (L) or B (L) provided p + q ≥ 1, which gives the max (p+ q − 1, 0)
cross-equation restrictions. If, in addition, we assume ωεµ = 0 we find that

Ωu =

⎡⎣ ω2ε + γ2ω2µ γω2µ

γω2µ ω2µ

⎤⎦
and γ is determined in Ωu as γ = cov(u1t, u2t)/var(u2t). Hence, in this case there is one

additional cross-equation restriction, provided p+ q ≥ 1.
In part B, there are 2 (1 (p = 0) +max {0, p− 1}) zero restrictions and p+1 cross-equation

restrictions in A (L) and there are 2q zero restrictions and q cross-equation restrictions in B (L).

Again, one of those is used to identify γ since when ωεµ 6= 0, γ cannot be determined from

the elements of Ωu in (17) but is determined in either A (L) or B (L), which gives the p + q

cross-equation restrictions. If, in addition, we assume ωεµ = 0, γ is determined in Ωu as before,

and there is one additional cross-equation restriction.

Proof of Proposition 4. As in the proof of Proposition 3, the system follows by inserting

X2t from (25) into the definition of the returns (15) but now using the risk premium link (14).

In part A, there are 3p and 3q zero restrictions in A (L) and B (L), respectively. In part B,

there are 3max {1, p}−1 and 3q zero restrictions in A (L) and B (L), respectively. As before, γ
cannot be determined from the elements of Ωu when ωεµ 6= 0, but if ωεµ = 0 then γ is identified
as in the proof of Proposition 3.
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Table 1: Elasticity Estimates
Memory Parameter (d) d logPt

d log σ2t

0.0 −0.006
0.1 −0.007982
0.2 −0.011053
0.3 −0.015307
0.4 −0.021198
0.49 −0.028415

Table 2: Summary Statistics
Data Series: rnomt rnomft gnomt πt variance×100
Panel A: Realized variance 1988:1-2002:12

Mean 0.9006% 0.4229% 0.3108% 0.2183% 0.2260

Std. dev. 4.3389% 0.1521% 2.4481% 0.5904% 0.2457

Panel B: VIX implied variance 1990:1-2005:2

Mean 0.8507% 0.3493% 0.3363% 0.2057% 0.2521

Std. dev. 4.2619% 0.1559% 2.4535% 0.6466% 0.1665
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Table 3: Univariate Analysis
Model d φ1 φ2 φ3 θ1 θ2 θ3 log-lik AIC SIC Q(12)

Panel A: S&P 500 realized variance 1988:1-2002:12

(0,d,0) 0.3978
(0.0517)

− − − − − − 868.70 −1733.40 −1730.21 18.17

(0,d,1) 0.3757
(0.0810)

− − − 0.0446
(0.1252)

− − 868.76 −1731.53 −1725.14 18.33

(0,d,2) 0.4163
(0.0817)

− − − 0.0314
(0.1138)

−0.1087
(0.0998)

− 869.34 −1730.69 −1721.11 18.37∗

(0,d,3) 0.3035
(0.0936)

− − − 0.1376
(0.1138)

0.0092
(0.0951)

0.2046
(0.0736)

872.43 −1734.87 −1722.10 13.76

(1,d,0) 0.3803
(0.0783)

0.0347
(0.1127)

− − − − − 868.75 −1731.50 −1725.11 18.28

(1,d,1) 0.4116
(0.1156)

0.7447
(0.4688)

− − −0.7594
(0.4501)

− − 868.71 −1729.42 −1719.84 18.14∗

(1,d,2) −0.4863
(0.1673)

0.9934
(0.0129)

− − −0.0598
(0.1797)

−0.1517
(0.1247)

− 870.11 −1730.22 −1717.45 18.50∗

(2,d,0) 0.4323
(0.0773)

−0.0209
(0.1115)

−0.0856
(0.0923)

− − − − 869.14 −1730.28 −1720.70 18.25∗

(2,d,1) 0.3842
(0.1296)

0.4688
(1.361)

−0.0178
(0.0790)

− −0.4381
(1.3130)

− − 868.75 −1727.50 −1714.73 18.30∗

(3,d,0) 0.3454
(0.1271)

0.0759
(0.1489)

−0.0482
(0.0939)

0.2034
(0.0850)

− − − 872.03 −1734.07 −1721.30 15.02

Panel B: VIX implied variance 1990:1-2005:2

(0,d,0) 0.4877
(0.0167)

− − − − − − 982.92 −1961.83 −1958.64 35.64∗∗

(0,d,1) 0.4263
(0.0593)

− − − 0.3256
(0.0749)

− − 991.61 −1977.22 −1970.83 16.53

(0,d,2) 0.3198
(0.0782)

− − − 0.4808
(0.1020)

0.2194
(0.0986)

− 993.81 −1979.62 −1970.04 15.73

(0,d,3) 0.3469
(0.1111)

− − − 0.4444
(0.1457)

0.1849
(0.1385)

−0.0370
(0.1055)

993.87 −1977.75 −1964.98 15.56∗

(1,d,0) 0.3146
(0.1172)

0.4509
(0.1379)

− − − − − 992.48 −1978.96 −1972.57 18.06

(1,d,1) 0.3253
(0.1130)

0.3474
(0.2039)

− − 0.1172
(0.1416)

− − 992.83 −1977.65 −1968.07 16.30

(1,d,2) 0.3312
(0.0888)

−0.0790
(0.3196)

− − 0.5441
(0.2720)

0.2416
(0.1269)

− 993.84 −1977.68 −1964.91 15.68∗

(2,d,0) 0.3421
(0.1130)

0.4559
(0.1372)

−0.0760
(0.0763)

− − − − 992.97 −1977.95 −1968.37 15.60

(2,d,1) 0.3857
(0.1188)

0.7713
(0.3766)

−0.2303
(0.1563)

− −0.3579
(0.4184)

− − 993.23 −1976.46 −1963.69 14.79

(3,d,0) 0.4171
(0.0899)

0.3712
(0.1179)

−0.0434
(0.0799)

−0.1119
(0.0811)

− − − 993.86 −1977.71 −1964.94 14.02

Note: Log-lik is the value of the maximized log-likelihood function, AIC and BIC are the Akaike and Schwarz

information criteria, and Q(12) is the Ljung-Box statistic for 12 lags which is asymptotically χ2 distributed

with 12− 1− p− q degrees of freedom. For the Ljung-Box test, one and two asterisks denote rejection at 5%

and 1% significance level, respectively. Asymptotic standard errors are in parentheses.
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Table 4: Parameter Estimates
Volatility Series ᾱ rf g

Estimates from Poterba & Summers (1986) 0.6% 0.035% 0.087%

Realized variance 1988:1-2002:12 0.4777%
(4.1867%)

0.2046%
(0.5770%)

0.0926%
(2.5169%)

VIX implied variance 1990:1-2005:2 0.5011%
(4.1060%)

0.1436%
(0.6524%)

0.1306%
(2.5389%)

Note: Standard errors in parentheses.

Table 5: Elasticities Based on Estimated Parameter Values
Volatility Series Specification Elasticity (11) Elasticity using (13) Elasticity using (14)

Panel A: Using parameter estimates from Poterba & Summers (1986)

Realized variance 1988:1-2002:12 (0,d,3) −0.020477 −0.007623 −0.006
VIX implied variance 1990:1-2005:2 (1,d,0) −0.028339 −0.010175 −0.006
Panel B: Using parameter estimates from our datasets

Realized variance 1988:1-2002:12 (0,d,3) −0.030403 −0.006391 −0.004777
VIX implied variance 1990:1-2005:2 (1,d,0) −0.047471 −0.009031 −0.005011

Table 6: Bivariate Estimates Using Realized Volatility 1969:1-2003:5
Equation A1 B1 B2 B3 Cov(ut)× 1, 000

Panel A: Unrestricted estimates

X1t = rt − r̄ −0.0153
(0.9755)

6.6099
(14.1792)

−0.0000
(0.9779)

−4.5319
(13.8687)

0.0054
(0.1761)

−2.5300
(2.4581)

0.1060
(0.1160)

1.5193
(3.6222)

1.7580 −0.0293

X2t = ∆d(σ2t − σ̄2) 0.0098
(0.0622)

−0.1097
(0.6861)

−0.0233
(0.0623)

0.0935
(0.6814)

−0.0057
(0.0108)

−0.0272
(0.2134)

0.0026
(0.0074)

0.2423
(0.2028)

−0.0293 0.0035

Panel B: Restricted (Prop. 3) estimates

X1t = rt − r̄ 0 0 0 2.5306
(1.2982)

0 −1.1701
(0.8574)

0 2.2715
(1.5017)

1.7424 −0.0287

X2t = ∆d(σ2t − σ̄2) 0 0 0 0.1194
(0.0445)

0 −0.0552
(0.0508)

0 0.1072
(0.0314)

−0.0287 0.0037

Panel C: Restricted (Prop. 3 with leverage) estimates

X1t = rt − r̄ −0.0619
(0.0742)

0 0 0.0646
(0.2521)

0 0.0136
(0.3255)

0 0.8744
(0.9198)

1.7767 −0.0283

X2t = ∆d(σ2t − σ̄2) −0.0133
(0.0031)

0 0 0.0139
(0.0469)

0 0.0029
(0.0708)

0 0.1878
(0.0612)

−0.0283 0.0034

Panel D: Restricted (Prop. 4) estimates

X1t = rt − r̄ 0 0 0 0 0 0 0 0 1.7710 −0.0283
X2t = ∆d(σ2t − σ̄2) 0 0 0 0.1539

(0.0348)
0 −0.0277

(0.0788)
0 0.1833

(0.0464)
−0.0283 0.0036

Panel E: Restricted (Prop. 4 with leverage) estimates

X1t = rt − r̄ 0 0 0 0 0 0 0 0 1.7760 −0.0282
X2t = ∆d(σ2t − σ̄2) −0.0149

(0.0027)
0 0 −0.0022

(0.0512)
0 0.0175

(0.0869)
0 0.2052

(0.0418)
−0.0282 0.0034

Note: Asymptotic standard errors in parentheses.
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Table 7: Bivariate Estimates Using Implied Volatility 1986:4-2003:4
Equation A1 Cov(ut)× 1, 000

Panel A: Unrestricted estimates

X1t = rt − r̄ −0.0156
(0.0722)

5.2332
(1.9321)

1.6595 −4.27× 10−3

X2t = ∆d(σ2t − σ̄2) −0.0131
(0.0011)

0.4653
(0.0210)

−4.27× 10−3 7.95x10−4

Panel B: Restricted (Prop. 3) estimates

X1t = rt − r̄ 0 5.2376
(1.9023)

1.6507 −3.90× 10−3

X2t = ∆d(σ2t − σ̄2) 0 0.4691
(0.0256)

−3.90× 10−3 1.08× 10−3

Panel C: Restricted (Prop. 3 with leverage) estimates

X1t = rt − r̄ −0.0819
(0.0426)

3.0607
(1.5761)

1.6687 −4.33× 10−3

X2t = ∆d(σ2t − σ̄2) −0.0128
(0.0011)

0.4774
(0.0211)

−4.33× 10−3 7.93× 10−4

Panel D: Restricted (Prop. 4) estimates

X1t = rt − r̄ 0 0 1.6792 −3.98× 10−3
X2t = ∆d(σ2t − σ̄2) 0 0.4815

(0.0263)
−3.98× 10−3 1.08× 10−3

Panel E: Restricted (Prop. 4 with leverage) estimates

X1t = rt − r̄ 0 0 1.6792 −4.35× 10−3
X2t = ∆d(σ2t − σ̄2) −0.0132

(0.0011)
0.4788
(0.0217)

−4.35× 10−3 7.95× 10−4

Note: Asymptotic standard errors in parentheses.

Table 8: Bivariate Analysis
Model log-lik LR d.f. p-value ωε ωµ ωεµ/ (ωεωµ) γ̂ λ̂

Panel A: Realized variance 1988:1-2002:12

Unrestricted 1213.68 − − − − − − − −
Restricted (Prop. 3) 1201.77 23.82 12 0.0215 0.0677 0.0019 −0.8195 21.1876

(16.9451)
−

Restricted (Prop. 3 w. leverage) 1208.81 9.74 11 0.5539 0.0457 0.0018 −0.5222 4.6559
(6.0366)

−0.0133
(0.0031)

Restricted (Prop. 4) 1199.87 27.63 13 0.0102 − − − − −
Restricted (Prop. 4 w. leverage) 1208.37 10.64 12 0.5600 − − − − −0.0149

(0.0027)

Panel B: VIX implied variance 1990:1-2005:2

Unrestricted 1347.42 − − − − − − − −
Restricted (Prop. 3) 1318.36 58.13 2 0.0000 0.0426 0.0010 −0.3466 11.1657

(4.1309)
−

Restricted (Prop. 3 w. leverage) 1346.65 1.54 1 0.2141 0.0413 0.0009 −0.2393 6.4113
(3.2975)

−0.0128
(0.0011)

Restricted (Prop. 4) 1316.30 62.25 3 0.0000 − − − − −
Restricted (Prop. 4 w. leverage) 1345.34 4.17 2 0.1245 − − − − −0.0132

(0.0011)

Note: Asymptotic standard errors in parentheses.

38



Figure 1: Impulse-response functions for the preferred models for realized and implied variance.
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Figure 2: Impulse-response functions of returns and log-prices to unit shock in volatility inno-

vations.
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