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Abstract

A new approach recently suggested by Hamilton for flexible paramet-
ric inference in nonlinear models is examined through simulation studies.
Hamilton suggests a new test for neglected nonlinearity and we compare
it with the neural network test, Tsay’s test, White’s dynamic misspecifi-
cation test, Ramsey’s Reset test, the so-called V23 test, and the nonpara-
metric BDS test. With respect to size and power properties, the results
on the relative performance of Hamilton’s test are very encouraging. In
particular, we find that against almost all the nonlinear alternatives where
the size and power properties of the popular neural network test are good
the size and power properties of Hamilton’s new test are even better. Sec-
ondly, we examine the convergence properties of Hamilton’s estimator of
the conditional mean function. Our findings suggest that in the case of a
true linear relationship, the costs of using the flexible nonlinear approach
in terms of efficiency and speed of convergence are minor. We also show
that for many nonlinear models the percentage improvement in fit rel-
ative to the linear least squared estimator can be substantial. Finally,
we present evidence showing that in finite samples the flexible regression
approach suggested by Hamilton clearly outperforms the neural network
regression approach in terms of accuracy.

e JEL Classification : C15,C20

e Keywords: Flexible nonlinear inference; Tests for linearity; Power and size
comparison; Convergence in small samples

1 Introduction

Hamilton (1999) suggests a new method of estimating models of the form
y+ = p(xt) + €, where the functional form of u(x:) is unknown. As a by-
product a new Lagrange multiplier test for neglected nonlinearity is suggested.
The aim of the paper is twofold. First, we conduct a Monte Carlo experiment
analyzing the size and power properties of the new Lagrange multiplier test for



neglected nonlinearity suggested by Hamilton (1999). We compare the test with
other popular tests for neglected nonlinearity, tests which - similar to Hamil-
ton’s test - are not based on any knowledge of the functional form under the
alternative. Secondly, we conduct a Monte Carlo experiment examining the
convergence properties of Hamilton’s estimator of the conditional mean func-
tion p(xz;). We report results on the performance of the estimator by applying
it to a wide range of the most common nonlinear models in the literature, and
measures on how big the improvement is relative to the linear estimator are
provided. The measures of accuracy are also compared with those obtained
from the competing flexible neural network approach. Finally, we investigate
the convergence properties of Hamilton’s estimator when the true model is lin-
ear, in order to determine a potential loss in efficiency and convergence speed.
Again a direct comparison to the neural network approach is made. The pa-
per is organized as follows. Section 2 gives a brief introduction to Hamilton’s
approach to nonlinear inference. We show how to obtain a consistent estimate
of the conditional mean function and derive the Lagrange multiplier test statis-
tics for neglected nonlinearity. Section 3 discusses some of the most popular
alternative tests for neglected nonlinearity which are available in the literature.
Section 4 describes the simulation design for the Monte Carlo experiment and in
section 5 the results are reported and discussed. In section 6 the experiment on
the convergence properties of Hamilton’s estimator is examined and compared
with the linear least squared estimator and the estimator based on the neural
network approach. Finally, section 7 contains some concluding remarks.

2 Hamilton’s approach to flexible nonlinear in-
ference

Consider the model

yr = () + € (1)

where ¢, is a sequence of NI(0,0?) error terms and () is a function of a k x 1
vector ;. In most cases a parametric form for u(x;) can be obtained directly
from economic theory. However, in the more troublesome cases where economic
theory does not give any clear guidance on how to specify the functional form
of p(z), or in situations where the complexity of the data requires more than
a simple deterministic model - such as low order polynomials - more general
or flexible approaches to represent u(x;) are needed. Building on the ideas of
Wahba (1978) and Wecker and Ansley (1983), who viewed u(z;) as a realization
of a Brownian motion, Hamilton (1999) suggests representing yu(z;) as'

() = ap + dqxy + Am(g © xy) (2)

IHere g is a k x 1 vector of parameters and ® denotes the Hadamard or elementwise product
of matrices.



where m(z) - for any choice of z - represents a realization from a random field
with the following statistical properties

m(z) ~

N(0,1) (3)
E(m(z)'m(w)) = H,

1
k(h)

and where h is defined as h = 1[(z — w)/(z — w)]z. The realization of m(.)
is viewed as having been settled previous to {z1,..,Zr€1,..,eér} and is there-
fore considered to be independent of {1, .., z7 €1, ..,er}. If we define a variable
Gr(h,r) as

T

Gr(h,r) = / (r? — zz)gdz 4)
h
it is possible to write Hy(h) as

Gr—1(h,1)/Gr-1(0,1) ifh<1
H“m:{ . % 0D if b > 1 (5)

Closed form expressions for Hy(h) for k = {1,..,5} are provided by Hamilton
(1999) and are reprinted in the appendix of this paper. Since we cannot observe
m(z) directly - for any choice of z - we are not able to observe the functional
form of p(z:). The objective is to draw inference about the unknown parameters
of the model summarized by ¢ = {ag, a1, A, g,0} by observing the realizations
of y; and x; only. Using some basic conditioning rules for multivariate normals
and treating u(z;) as unobservable, Hamilton (1999) shows how to obtain a
maximum likelihood estimate of ¢ based on a recursive algorithm very similar
to the recursive algorithm of the Kalman filter used to obtain the maximum
likelihood estimates of state space models. However, in order to cut down the
amount of computations Hamilton introduces an equivalent method of calculat-
ing the maximum likelihood estimates. He reformulates the model in a more
compact form and applies GLS. In particular, he defines

y = (y1,y2,-9r) (6)
1 x:1
1 x5
X =
1 af
6 = (a()aal)
€ = (61,62,..,67*)

and shows that the parameters of the linear part of the model consisting of 8 and

o? can be concentrated out of the likelihood function. By defining ¢ = %and

W(X;g,¢) = C?H + Ir the concentrated log likelihood function can be written



as

W Xi9.0) = —5n(m) — £eHe,0) — 3 IW (0.0l -5 ()
Br(9,0) = [X'W(X:9,0) 7 X [X'W(X39,0) "] (8)
0.0 = Zly— XBrlo. VW (0,07 s~ XBr(0.0l )

where I7 is the identity matrix of dimension (7' x T') and the {¢, s} entry of the
matrix H - denoted H(t,s) - is equal to

B Hy(hys)  if hys <1
Ht.s) = { 0 if hys > 1 (10)
1 ~ i~ o~ gl
his = 5[(% - $s)l(l’t - l’s)] 2
Ty = gOxy

The concentrated likelihood function is maximized with respect to (g, () using
standard maximization algorithms®. Once the estimates of (g,() have been
obtained, BT and ?f\% is given. In the case of continuous valued variables and
deterministic regressors Hamilton (1999) shows that if the true relation given
by (2) is indeed linear then under some regularity conditions the estimator of
w(xy) defined as ET(CEt) and given by the t'th row of

ET :XBT+ﬁ0(ﬁ0+a%IT)71[y_XBT] (11)

is still a consistent estimator of the conditional mean, implying that BT is a
consistent estimator. Here the {¢, s} entry of the matrix Py - denoted Py(t, s) -
is defined as

N Hyp(hs)  hs <1

Pot,s) = { ’5( ) e S 1 (12)
1. - <1

his = 5[(%—1’5)/(%—%)]2 (13)

ft = g@$t (14)

Furthermore, Hamilton (1999) proves that his algorithm will provide a consistent
estimator of the conditional mean p(z;), for a very general class of nonlinear
models, that is

T

TS {ula) = Ep(a)}” =0 (15)

t=1

Since we are going to evaluate the forecast accuracy of the model out-of-sample
and equation (11) only works for cases where the conditional mean function is

2The BFGS and Newton — Raphson algorithms included in the CML-routine in GAUSS
turned out to work well.



evaluated at points observed in the sample, we have to do some small modifica-
tions. To be more specific we seek to calculate an estimate of p(z*) where
x* = {xf,25,..,2;} do not belong to the sample used to obtain the maxi-
mum likelihood estimate of p(x;). If we let Py (t) denote the covariance between

w(xy) and p(x*) we can obtain an estimate of p(z*) - denoted Z*T(x;‘) - as

Er(x) = XPBr + B (Po+671r) " [y — XBy] (16)
where

P = {Pi(t),t=1,2..T} (17)

. B A2 Hp(hy)  if hys <1
Fo®) = { 0 if hyy > 1 (18)

]' ~ ~k ~ ~k 1

hi = 5[(% —T)(T, —7)]2 (19)
= goz* (21)

for t = 1,..,T. In equation (16) P, and ]33 denote Py and P evaluated at the
maximum likelihood estimates of Aand ¢°.

Testing for neglected nonlinearity in this setup amounts to testing the null
Hy : A = 0. When )\ equals zero, g is not identified by the model under the null.
Hamilton (1999) suggests solving the nuisance parameter problem by fixing g;
to be proportional to the standard deviation of the i’th row in x; when com-
puting the statistics. Under this assumption the Lagrange multiplier statistics
for neglected nonlinearity becomes

. [€ He — &% tr(MHM))? (22)
G 2tr{[MHM — (T — k)~*Mtr(MHM)]?}]
where
S (23)
2

o = (T—-k)y'ee
M = Ip—X(X'X)'Xx'

and the (¢, s) element of the matrix H with dimension (7' x T') is given by

=~ 2
3The maximum likelihood estimate of A is obtained as A = \/ (762, whereas the maxi-
mum likelihood estimate of g is obtained directly from the maximization of n(y, X; g, ¢).



— Hk:(hts) if hts < 1
Hts) = { 0 if hys > 1 (24)
k
Lo - (‘Ti,t — mi,s)Q 1
his = §[k 125—2]2
i=1 i
T T
s2 = 17! Z(x” _ -1 me)z
t=1 t=1

fort=1,..,T and s =1,..,T. As mentioned earlier the closed form expressions
for Hy, are fairly easy to compute. Hy, for k = {1, ..,5} is given in the appendix.
The Lagrange multiplier statistics v? is asymptotically x?(1) distributed. We
will evaluate this new test by comparing it to some of the most powerful tests for
neglected nonlinearity reported in the literature. These tests will be introduced
in the following section.

3 Alternative tests for neglected nonlinearity

In this section we briefly discuss some of the most popular tests for neglected
nonlinearity. The tests presented are all selected because of their relatively good
performance with respect to size and power properties already reported in the
literature. This collection of test statistics will include the Regression Error
Specification Test called the Reset2 due to Ramsey (1969) , two tests based
on the "duals” of Volterra expansions e.g Priestley (1980), denoted the Tsayl
test according to Tsay (1986) and the V23 test suggested by Terasvirta et al.
(1993) respectively, the neural network test denoted Neurall as in Lee et al.
(1993), and a particular version of White’s (1987,1992) information matrix test
- for short White3 - aimed at detecting dynamic misspecification. Finally we
consider a nonparametric test for serial dependence suggested by Brock, Dechert
and Scheinkman (1987) denoted the BDS that has been used rather often as a
test for neglected nonlinearity, particularly in the financial literature.

3.1 The Reset, Tsay and V23 tests

The Reset test, Tsay’s test and the V23 test can all be conducted within the
following framework. Consider the linear model

Y = 1,0+ wy (25)

where y, is the series of interest and where we consider z;, = {1, vy, .., y1—p} to
be the relevant variables used to explain y;. The first step consists of regressing
y¢ on x; in order to obtain an estimate of 3 and to calculate the residuals
us = y: — frand sum of squared residuals SSRy = Zthl u?, where f, = x}f.
In the second step regress u; on x; and on m auxiliary regressors given by the
vector M (to be defined later) and compute the residuals from this regression



Uy = Uy —xﬂl - Mt’az and the residual sum of squares SSR = Zthl 07. Finally,
in the third step compute the F-statistics given by

(SSRy — SSR)/m

F:SSR/(T—p—l—m)

~FmT—-p—1—m) (26)

Under the linearity hypothesis the F'—statistics above is approximately F-
distributed with m and T'— p — 1 — m degrees of freedom. The Reset2 test
defines My = {f2,.., f/} and m = [ — 1. Because f}, i = 1,..,1 tends to be highly
correlated with z; and with themselves the test is conducted using the p* < 1—1
largest principal components of f2, .., f! not collinear with z;. Tsay (1986) sug-
gests using M, = vech(z,x;) for Ty = {14, ..,Zp:} in forming the Tsayl test,
while Terasvirta et al. (1993) suggests M = vec(S * (vech(z,x}) © x})) (where
S is a selection matrix removing the identical entries in vech(Z;Z}) ® x; and
©® denotes element-by-element multiplication) when forming the V23 statistics.

3.2 The Neural network test

The neural network test for neglected nonlinearity as suggested by White (1989)
and Lee et al. (1993) is based on a single hidden layer feedforward network
model. In this type of network k input units send signals x;; to so-called ”hid-
den” units across weighted connections v;; for i =1,..,k and j =1, ..,q. There
are in total ¢ hidden units each observing the weighted sum of the %k input
signals, that is, hidden unit j observes z}vy; where z; = {1,z1,.., 2} and
v; = {10j:71js --» Vkj}- The hidden unit j then outputs a signal 1;(x}7;) where
1; denotes the "activation” or ”squashing” function commonly assumed to be
bounded and monotonically increasing. White (1989) and Lee et al. (1993) take
the activation function to be of the logistic distribution and to be identical for
all hidden units, i.e. ¥;(x}v;) = ¥(z}vj) = (1 + exp(—a}y;)) ! for j = 1,..,q.
Augmenting the single hidden layer network by direct links from the input units
to a single output with weights 3 and assuming that the output also contains
white noise, the total network output can be written as

yr = p(e, 70) + & (27)
where
q
p(ri,2) = B+ 0;(1+exp(—}y;) " (28)
i=1

R = {ﬂ7017"70(17717"77(1}

The hidden-units-to-output weights are given by 6y,..,6, and the noise term
distributed according to ¢; ~ nid(0,0?). When the null hypothesis of linearity
is true, i.e. Hy : Pr[E(y|X:) = z,8*] = 1 for some choices of §* and X; =
{a), x5, ..,x}}, the optimal network weights 60; are zero for j = 1,..,q. The
neural network test for neglected nonlinearity can therefore be interpreted as
testing the hypothesis Hp : 61 = 0 = .. = 6, = 0 for particular choices of ¢ and



7v;. As in Lee et al.(1993) we set ¢ equal to 10 and draw the direction vectors
7; independently from a uniform distribution on the interval [-2:2]. The test is
then carried out by regressing €rx1) = yr — Xo (X7 X7) N Xpyr) on Lipyy
and Viryg) = {U(X771)(1x1), - V(X17,)(rx1)} Where yr = {y1,92,..,yr}
and calculate the uncentered squared multiple correlation coefficient R%. The
LM-test statistics and its asymptotic distribution are given by

T+ R? — x%(q) (29)

Because the observed components of W, typically are highly correlated Lee et
al. (1993) recommend using a small number of principal components instead of
the ¢ original variables. Using the ¢* < ¢ principal components of ¥, - denoted
Py - not collinear with x; an equivalent test statistics is given by

TR, — x*(q%) (30)

where R}%C is the uncentered squared multiple correlation coefficient from a linear

regression of E(Txl) on 1¢ryq) and \I/?Txrz*)'

3.3 White’s dynamic information matrix test

White’s dynamic misspecification tests are based on the idea that if a model is
correctly specified then there usually exists a number of consistent estimators
for the parameters of interest. In particular, if a model is well specified then the
information matrix equality will hold under very general conditions. In other
words, a test based on the information matrix equality will have power because
of the failure of the equality in the case of a misspecified model. The version of
White’s dynamic misspecification test considered in this paper will be based on
the covariance of the conditional score functions. For a Gaussian linear model
the log likelihood function can be written as

1 1
le(x4,0,0) = —3 log(2m) — log(o) — iuf (31)
where u; = 0~ 1(y; — 2}/3). The conditional score function is then given by
sy (x4, 3,0) = 0 H(ug, wxh, u? — 1) (32)

Evaluating the conditional score at the quasi maximum likelihood estimators of
the correctly specified model under Hy gives 3y = s (x4, 3,7). The information
matrix test is based on forming the indicator my = SV * vec(sYsy') where
SV is a selection matrix. In particular we obtain the test statistics denoted
White3 in Lee et al.(1993) by regressing @y = & '(y; — x}3) on x; and ¢ -
where ¢; is defined to satisfy m,’ = ¢} - and calculate the uncentered squared
multiple correlation coefficient R? from this regression. The test statistics and
its asymptotic distribution are then given by

T* R* — x*(q) (33)

where ¢ denotes the dimension of my .



3.4 The Brock-Dechert-Scheinkman test

Finally, we consider a nonparametric test for neglected nonlinearity suggested
by Brock, Dechert and Scheinkman (1987) denoted the BDS test. The test is rel-
evant to include because it has become very popular, particularly in the finance
literature. The BDS test is essentially a test for serial dependence based on the
correlation integral of the scalar series u;. The approach begins by organizing
the data u, into a sequence of n-histories denoted u;® defined by

’U,? = {ut7n+1; ey ut} (34)

where the parameter n is known as the embedding dimension. Next, define the
correlation integral C1,, r of u; as

25 Yy Sy Is(ult ul)
Chr®) = == Gy )
N n _ 1 Zf mawi:O,..,nfﬂutfi - u57i| <6
Is(ur,ug) = { 0 otherwise
T, = T—(n—1)

Hereafter the BDS statistics can be calculated as

_172CLnr(8) — CLir(6)"
n1(0)
where 7, () is an estimator of the asymptotic standard deviation of CI,, 1(8)—

CI; 7(6)". The BDS statistics is asymptotically standard normal distributed
under the null where u; is IID, that is

Tn(6)* ~ x*(1) (37)

Jnr(8) =T (36)

Notice that when applying the BDS test as a test for neglected nonlinearity, wu;
will be the residuals estimated from the linear model.

4 The design of the Monte Carlo experiments

We examine the size and power properties of the tests for neglected nonlinear-
ity by considering three blocks of linear and nonlinear dynamic models. All the
chosen models have been used in previous studies on the testing of linearity.
The use of ”"benchmark” models makes it much to draw comparisons to earlier
studies and it furthermore prevents the results reported from being to design
specific in the sence that the general design of the Monte Carlo experiment ac-
tually is predetermined. The models included in block-1 and the two bivariate
models shown in table 1 were originally used by Lee et al. (1993). The models
of block-2 have been more extensively studied, in particular by Keenan (1985),
Tsay(1986), Ashley, Pattersen and Hinich (1986), Chan and Tong (1986) , and
Lee et al. (1993). Finally, all of the models in block-3 have been studied by



Terasvirta et al. (1993). The five models contained in block-1 are all charac-
terized by being simple dynamic univariate models, where the dynamic part
is represented by one lag of the endogenous variable only. The models are all
stationary. The models included are the autoregressive model (AR), the bilin-
ear model (BL) of Granger and Anderson (1978), the threshold autoregressive
model (TAR) of Tong (1983), the sign autoregressive model (SGN), and the
nonlinear autoregressive model (NAR). The exact parameterization of the mod-
els is given in table 1. We also consider two bivariate representations. For
simplifying reasons, we do not impose any dynamic structure on the bivariate
models. We consider a squared relation which we denote SQ, and we consider
an exponential relation, denoted EXP. We consider these two bivariate models
for 3 different values of 0. Varying o, keeping the other parameters fixed, alters
the signal-to-noise ratio. We investigate how this affects the size and power
properties of the various test for neglected nonlinearity. The parameterization
of the bivariate models is also shown in table 1.

[Table 1]

The models in block-2 are characterized by having a much richer dynamic struc-
ture compared to the models in block-1. The models are presented in table 2.
model-1 is an MA(2) representation and model-2 is a heteroskedastic MA(2),
due to the last term on the right hand side. These two models together with
model-4 - an AR(2) model - are all linear models. They are included primarily
to evaluate the nominal size of the nonlinearity tests and their ability to distin-
guish between dynamic misspecification and misspecification due to nonlinearity
in the conditional mean. model-3, model-5 and model-6 are the truly nonlinear
models in block-2. model-3 is a nonlinear MA(2) model. model-5 and model-6
belong to the family of bilinear models. model-5 is a bilinear autoregressive
model, while model-6 is a bilinear autoregressive moving average model.

[Table 2]

Terasvirta et al. (1993) argue that the main reason for the neural network test
to perform so very well compared to a wide range of other linearity tests in
the simulation studies by Lee et al. (1993) is because they did not include the
appropriate LM or LM type tests. By the appropriate LM type or LM type
tests Terasvirta et al. (1993) refer to tests particularly designed to test linearity
against a fully specified nonlinear alternative. Now, the simulation design in
Lee et al. (1993) is only concerned with evaluating linearity tests where the
alternative does not have to be fully specified. However the critique raised by
Terasvirta et al. (1993) is still relevant in the sense that the choice of testor-
model-mix may undeliberately favor the neural network test. The models in
block-3 are included in order to reduce this possible source of bias. Still we
will restrict ourselves only to consider the general class of tests for linearity for
which the nonlinear alternatives do not need to be explicitly specified. The
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first model in block-3 is the logistic smooth transition autoregressive model
(LSTAR). Its properties are discussed in details in Terasvirta (1990). The second
model is a special case of the exponential smooth transition autoregressive model
(ESTAR). By the parameterization chosen, the model reduces to the exponential
autoregressive model of Haggan and Ozaki (1981). The NN and BN models
denote univariate and bivariate neural network models, respectively.

[Table 3]

Throughout ¢, ~ N(0,1) is a white noise series. The information set in the
blockl models and bivariate models contains {y;_1} and {z;}, respectively. The
information set for the models contained in the block-2 and block-3 - except the
BN model - equals {y:—1,y+—2}. For the BN model the information set contains
{yt—1,z+}. The exact parameterization of the Reset2, Tsayl and V23 test is
summarized in table 4. For the neural network test ¢* = 2 for the block-1
models and the bivariate models. When applied to the models in block-2+3,
q* = 3. In constructing the BDS test statistics the embedding dimension equals
n = 2 while the measure of closeness equals § = (0.8)8 for all the models under
consideration?.

[Table 4]

5 Results on size and power properties

In order to make a comparison with previous studies of size and power properties
as straightforward as possible, the setup in this section follows the general design
outlined in Lee et al.(1993). The results from a simulation of the critical values
at a 5% level are shown in table 5. The simulations are based on data being
generated from the AR model in block-1. From inspection of the critical values
generated by Hamilton’s Lagrange multiplier test it appears to have quite good
size properties in the sense that the simulated values based on finite samples
are very close to the critical values based on the asymptotic distribution. In
general, the size properties of the test for neglected nonlinearity in table 5 seem
good (in the sense that the simulated size seems to correspond well with the
nominal/asymptotic size) when simulations are based on the AR model.

[Table 5]

The results on size properties do not change very much, when the simulation
of the critical values at a 5% level is based on model-4 in block-2. Again the
simulated critical values of Hamilton’s test are close to the asymptotic values,

4The simulation results on the BDS test statistics are all based on a light modified version
of Pedro de Lima’s Gauss-code bds.prc. The code can be downloaded directly from Pedro
de Lima’s homepage.
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and in general this result holds for the other test statistics considered as well,
see table 6. Furthermore, one should notice the rather high percentage of rejec-
tions of true linear models by the BDS statistics even at sample size T" = 200.
This result stresses the importance of size correcting the nonparametric BDS
statistics when applied to ”small” samples.

[Table 6]

Next we analyze the sensitivity of the simulated critical values at a 5% sig-
nificance level, when the autoregressive coefficient of the AR model in block-
1 is changing. The reason for this exercise is mainly to examine how sen-
sitive the tests are to increasing persistence in the time series. In particu-
lar, we simulate a set of critical values based on the models y; = py;—1 + €,
p={-0.9,-0.6,-0.3,0,0.3,0.6,0.9}. After simulating these critical values we
generate data from the AR model and count the number of times (in percentage)
the test rejects the null of linearity based on the simulated set of critical values.
As an example notice that based on the simulated 5% critical value generated
from the AR(1) model with p = 0.9, Hamilton’s test rejects the hypothesis of
linearity in 5% of all cases, when the data actually comes from the AR model of
block-1. Ideally the rejection percentages in table 7 should equal 5% in all cases.
The 95% critical value around 5% is Clp g5 = {3.6;6.4}. Regarding Hamilton’s
test, the simulated sizes are all inside the confidence interval except in the case
where p = —0.9. However, Hamilton’s test has a satisfactory, relatively low
spread in size, ranging from 3.3 to 5.0

[Table 7]

Based on the simulated critical values reported in table 5, table 8 shows the
results on power of the tests using the models in block-1 and the bivariate
models with ¢ = 1, and sample size varying from T = 50 over T' = 100 to
T = 200. It becomes evident that Hamilton’s test has very strong power against
the TAR, SGN, SQ and EXP alternatives. For these four nonlinear models the
power of Hamilton’s test is at least as high or even higher than the power of
the Neurall test. Hamilton’s test has low power against the NAR model, but
this is a common feature shared by all of the tests. Hamilton’s test has also low
power against the bilinear alternative. Here only White’s test and the otherwise
disappointing BDS test have good power properties.

[Table 8]

table 9 shows the power properties of the test based on block-2 models and the
simulated critical values reported in table 6. By inspection of table 9 we notice
that for the true nonlinear models, the power of Hamilton’s test is almost as
good as the power of the neural network test in case of model 3 and at least
as good or better in the case of model 5 and model 6. Furthermore, looking
at the rejection frequencies for the linear models it seems evident that the size
properties of Hamilton’s test and the Neurall test are almost identical. This

12



implies that also the size-corrected power properties of Hamilton’s test appear to
be good compared to the Neurall test. Also the Tsayl, the White3 and the V23
tests seem to have a little more power against model-3 relative to Hamilton’s
test. However, their size properties in the case of model-1 and model-2 are not
as good as the size properties of Hamilton’s test. This might indicate that the
size-corrected power for these tests may be somewhat lower than the rejection
frequencies actually reported. However, as pointed out by Lee et al. (1993)
and Granger and Terasvirta (1993) ARCH effects cause the size of the neural
network test, the Tsayl, White3, Reset2 and V23 test to be incorrect. By
inspection of table 9 and the results based on model 2 it becomes clear that
this particular feature also seems to be shared by Hamilton’s test. Again the
power properties of the size corrected BDS statistics seem inferior. However it
does appear to be relatively robust to ARCH effects which on the other hand is
a bit surprising because asymptotically the statistics is not able to distinguish
between nonlinearities in the mean and in the variance!

[Table 9]

Considering the results on power of the various test statistics when applied to
the models of block-3, Hamilton’s test again seems to perform relatively well. In
the case of the neural network models, the neural network test and the V23 test
turn out to be the appropriate LM-test statistics - apart from a missing constant,
see Terasvirta et al. (1993) . As expected, their power properties are very good
when applied to the neural network models. However, the power properties of
Hamilton test are just as good. With respect to the LSTAR model all the tests
considered have very good power. If the nonlinearity is of the ESTAR type,
only Hamilton’s test, White3, Reset2 and the V23 test have satisfactory power.
Against the ESTAR type of nonlinearity the neural network test has very low
power. Also based on the models in block-3 the power properties of the BDS
statistics appear to be very poor®. The results on the block-3 models again
seem to confirm that Hamilton’s test has better power or at least as good power
properties as the neural network test even in the case where the true nonlinear
model is in fact of the neural network type.

[Table 10]

table 11 and table 12 show the power of the nonlinearity tests against the SQ
alternative and the EXP alternative respectively, when the signal-to-noise ratio
decreases. The results from these tables suggest that Hamilton tests perform
almost as well as the Neurall, Tsayl and the Reset2 test, when the signal-to-
noise ratio falls. The White3 test performs very poorly in terms of power when
the signal-to-noise ratio decreases in these bivariate models.

[Table 11]

5The power of the BDS statistics seems suspiciously low. However, increasing the numerical
value of 62 in the models of block-3,- making the series look much more nonlinear, turned out
to improve a lot upon the power properties of the BDS test as it should.
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[Table 12]

6 Convergence properties of Hamilton’s estima-
tor

In the following we will analyze and compare five different measures of conver-
gence. These measures are defined as

N
Crny = NT'YIT 1Z{u Ttn) = Q1 pTtn}’] (38)

n=1

N
C%,N = Z -t Z{,Uf CCt n §T((Et,n)}2]
N
C%,N = Z ! Z{N Ttn) §T(5Ut,n)|/\:a,g:2(w(mn))—1/2}2]
v
C%,N = Z -t Z{,u' CZ7t n - xl‘,nng,n)}z]
v
Crn = Z 12@ Tim) — D nFen )]

Common for all five measures is that p(z;,) denotes a realization of the true
functional form conditional on z;,, IV denotes the number of replications in
the Monte Carlo experiment, and T equals the number of observations in each
sample. C%’ y is the average mean square error between p(z; ) and a linear ordi-
nary least square estimator of 1(¢,,). The linear estimator is given by a7, ¢ n
where ar,, is obtained from an ordinary least square regression of y; , on x;,,
for t = {1,.T}. C% y is the mean square error between pi(x,,) and Hamilton’s
maximum likelihood based estimator of p(x¢ ) - denoted ET(a:t,n) - averaged
over N replications. ET(xt,n) is obtained by maximizing the profile likelihood
function stated in equation (??) and equation (8) with respect to (g,¢). If
Hamilton’s maximum likelihood based estimator improves upon the linear least
square estimator, one would expect C% N < Cilf, ~ - 1f the estimator is consistent,
the C’% ~ should converge to zero when the sample size increases whereas C’}F N
should converge to a positive constant if the true model is nonlinear. C’T  is the
average mean square error between pu(z,,,) and a generic version of Hamilton’s
estimator of yi(xy,,,) - denoted {7 (%t n) | \=0,g=2(kV (z,,))-1/2 - Where A and g equal
o and 2(kV (x,))~1/? respectively. We refer to E7(Ttn) Amo, g (kv (2,))-1/2 A5
generic because it is obtained without involving any kind of estimation. It would
be natural to compare the convergence properties of Hamilton’s estimator not
only with the linear estimator but also with competing flexible regression meth-
ods. A natural choice for comparison would be the neural network regression
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model that has gained increasingly popularity in applied time series analysis
lately, see Swanson and White (1997) and Stock and Watson (1998) and the
references herein. Consequently, we let C%’ n denote the average mean squared
error between p(z;,,) and the estimator of the conditional mean function in the
neural network model specified in equation (28) and denoted p(z¢n,Rr,n). To
be more specific the estimated parameters of p(x ., K7,) are obtained by the
method of nonlinear least square, ie. as a solution to problem

T
min Z(yt,n - P(th,m HT,n))z
i

The appropriate number of hidden units in the Neural Network model is in
general unknown even when the true DGP is known, hence ¢ has to be estimated.
Following the approach suggested in a series of papers by Swanson and White,
e.g. Swanson and White (1995,1997a,1997b), the number of hidden units ¢
is determined in a forward stepwise manner by first adding the linear part and
then by adding one hidden unit at a time until the BIC model selection criterion
can no longer be improved upon. To stress the fact that ¢ is actually estimated
simultaneously with k7 ,, we denoted the vector of estimated parameters sty
as a function of the estimated value of ¢, i.e. as Kr,(g). Finally, we compute
C’% n defined as the average mean square error between p(x:,) and the least
square estimator of p(x;,) based on knowledge of the true functional form i.e.
the true nonlinear regressors. &g, is obtained as the least square estimator
from a regression of y;, on Ty, for t = {1,. T} where the regressors z;,, are
defined explicitely in table 13 for all of the models under consideration. In all
models except model-2 &y, is a consistent and efficient estimator, implying
that &7, 2, will be a consistent (and efficient) estimator of p(2y,). For that
reason C% y has the interpretation of being an estimate of the lower bound
on the average mean squared error between u(x;,) and any possible estimate
of p(z¢n) conditional on available information up to time ¢ — 1. Finally it is
worth mentioning that 0%7 N» ¢ = 1,..,5are all out-of-sample measures. This
will become evident from the following description of the simulation design:

1. For every n = 1,.., N draw the sequence {y; ., 2}, T}, }1_,from the model
under consideration. Based on these realizations obtain the various esti-

mates given by {aT,na aT,nvZT,n’ gT,na 7%T,n(Z]\)}

2. For every n = 1,.., N draw a whole new sequence {y n, Tt n, Tt.n } i from
the model under consideration. Compute Cf y, ¢ = 1,..,5 based on

,U,("L'tm% aIT,nmtJh alT,n%t,n’ §T((Et,n), §T(xt,n)|/\:U,g:2(kV(acn))*1/2 and p(mtﬁh ET,”(Z]\))
forn=1,..,Nand t =1,..,T.

By this approach it is possible to avoid the effects of overfitting in-sample, a
common feature often associated with flexible nonlinear modelling. In fact, the
costs of capturing spurious nonlinear patterns turn out to be very high by this
approach.
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In order to get an impression of how accurate the nonlinear estimators actu-
ally are relative to the linear least square estimator in finite samples we consider
the measure G7. y defined as

i -1 C%,N
TN — + 1 9
CT N

i=23,4 (39)

where G% n is a measure of the percentage improvement in fit of the nonlinear
estimator(s) relative to the linear estimator.

[Table 13]

Now turning to the outcome of the simulations, table 14, table 15, and table
16 report the estimates of Cf y, C7. x ,C% y, Cf y,and CF y together with
the improvement in fit measures GiT7 N sfor i = 2,3,4 based on a Monte Carlo
experiment with N = 100. Looking at the Monte Carlo results for the linear AR
model it is evident that Cf 5 and O y numerically are approximately of the
same size. This implies that the rate of convergence of C.  and CF y is almost
identical. The result based on the AR(2) model, i.e. model-4 in table 15, seems
to confirm this result although the average mean squared errors from the linear
regression tend to be a bit lower than the average mean squared errors obtained
from the flexible nonlinear estimator. However, the speed of convergence® of
the latter seems to be equally high. This suggests that when the true model is
truly linear and the linear model is correctly specified in terms of aiﬂnxt,n, the

rate of convergence of ET($t,n) to p(xe,n) in finite samples is almost as fast as
that of a’Tm,xt,,,,, that is, little is lost by forming a general nonlinear inference
according to Hamilton’s method when the true relation is linear.

[Table 14]

In general the convergence of /E\T (x1,n) appears to be good for all the models in
block-1, except for the BLL model. The measure of the percentage improvement
in fit of Hamilton’s estimator relatively to the linear estimator in block-1 is
largest in the case of nonlinearity of the TAR and SGN type. Here the improve-
ment of Hamilton’s estimator is about 70 pct., when T' = 200. The improvement
of fit is very modest in the case of the NAR model, which may seem a little
disappointing. Looking at the AR model we see that loss of fit in the cases
where T" = 50 or T' = 100 seems very minor while it tends to increase a little
when T grows to 200 . It is also worth noticing that in the case of the TAR and
SGN alternative the percentage improvement in fit of the generic estimator is
larger than the improvement in the maximum likelihood based estimator when

6 As suggested by Ngern (1996) a simple measure of the rate of convergence of Ch y can
be obtained by assuming that C% N = ﬂn,NT*‘sJ,j = {1,..,4}where ¥, y is a constant
independent of T, and 67 for j = {1,..,5} is the measure of the rate/speed of convergence
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T = 50. However, the rate of convergence of this estimator seems in general
to be somewhat lower. Comparison of C’%, ~ and C’% n clearly illustrates that
although Hamilton’s estimator improves a lot upon the estimation of u(zy,)
relatively to the linear estimator, it is still lacking some efficiency, as one would
expect. The results on the bivariate models show the overall best percentage
improvement in fit measures amounting to nearly 90 pct. when the true model
is the SQ model, and nearly 60 pct. in the case of an EXP model. Also the
convergence measures are very good. These result suggest very clearly that
applying Hamilton’s estimator to nonlinear multivariate models seems to be a
particularly fruitful approach. The flexible estimator of the conditional mean
function based on the neural network approach also turns out to contribute to
a significant improvement in fit over the linear least square estimator in case of
nonlinearities, particularly in the TAR, SGN, SQ and EXP case. However the
improvement in fit of the neural network approach in case of the nonlinearities
reported in table 1 never exceeds that of Hamilton’s approach. Furthermore,
in the case of the true model being linear the loss of efficiency of the neural
network approach relatively to the least square estimator can be substantial. In
case of the AR model in table 14 and model-4 in table 15 the loss amounts to
about 50 pct.

[Table 15]

By inspecting the results on the block-2 models reported in table 15, we observe
that for all the models that are linear in mean, C’%, N tends to be about 10-20
pct. higher than Cilf, n for T'=50. However, in the case of model-1 and model-2
the efficiency loss of the flexible approach seems to be reduced rather quickly as
the sample size increases because the convergence rate C’%’  tends to be some-
what higher than the convergence rate for ClT’ - The percentage improvement
of fit arising from applying Hamilton’s estimator to model-3 - the nonlinear
MA(2) model - is rising from about zero pct. when T' = 50 to approximately
30 pct. when T = 200. As it is the case for some of the models in block-1, the
generic estimator again seems to perform almost as well as the maximum like-
lihood based estimator when it comes to the percentage improvement in fit in
situations where the true underlying model is nonlinear. Looking at the results
from the bilinear models 5 and 6 when T' = 200 we notice that the improve-
ment in fit amounts to about 25 pct. and 5 pct. respectively. In particular,
in the case of model-6 the rate of convergence of Hamilton’s estimator appears
rather low as it was the case for the bilinear model in block-1. One reason for
the poor convergence results observed with respect to two of the bilinear mod-
els could be caused by some very undesirable properties featuring this family
of models as pointed out by Brunner and Hess (1995). They show that the
expected likelihood function associated with the bilinear models in some cases
will exhibit bimodality, with the true optimum characterized by a long narrow
spike that become more pronounced as the sample size increases. Furthermore,
these features become even more pronounced for parameterizations where the
model is close to violating at least one of four moment restrictions that estab-
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lish invertability and stationarity conditions. In this light Brunner and Hess
(1995) recommend extreme caution when dealing with the bilinear models. By
comparison with the estimates obtained from the neural network approach the
picture from table 14 seems to be confirmed in the sense that the neural network
model again contributes to an improvement in fit over the linear estimator in
case of nonlinearities, but that it does not appear to be nearly as efficient as
Hamilton’s approach in finite samples.

[Table 16)

The results based on the regime switching and the neural network models of
block 3 are indeed encouraging. The improvement in fit of the flexible nonlinear
estimator ranges from 45 pct. in the case of the true model being an ESTAR
model up to 60 pct. for the LSTAR model in the case of 200 observations. In
addition, the speed of convergence of the flexible nonlinear estimator is much
higher than the speed of convergence of the linear estimator promising an even
higher improvement in fit when the sample size increases. The performance
of the neural network approach seems rather disappointing in the case of the
LSTAR and ESTAR models. However, in the case of the data being generated
from a true neural network model, as in the NN and BN models the approach
is able to outperform Hamilton’s flexible regression approach when the sample
size is of a limited size.

7 Conclusion

We find that the new test for neglected nonlinearity proposed by Hamilton
performs well in finite samples. In general, it has good size and power proper-
ties when compared to existing tests. In particular, our findings indicate that
against nonlinear alternatives where the power properties of the neural network
test are good, the power properties of Hamilton’s test in most cases are even
better. Looking at the properties of Hamilton’s nonlinear estimator our main
finding is that even in situations where the true model is linear, the costs of us-
ing the flexible nonlinear approach are limited in terms of efficiency and speed
of convergence. We have also found that for many nonlinear models the per-
centage improvement in fit of Hamilton’s estimator relative to the least square
estimator can be substantial. Comparing Hamilton’s approach with the neural
network regression models approach, we find that based on all the nonlinear
models considered - apart from the true neural network models - there can be
an substantial increase in accuracy and efficiency by using Hamilton’s flexible
regression model approach instead of the neural network approach.
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8 Tables

Table 1: Block 1 models and bivariate models

AR
BL
TAR
SGN

NAR

SQ

EXP

Yy = 0.6y:—1 + €

Yy = 0.7y 16, 2 + €

Ye = 0.9Yt-10(1y,_,|<1) = 03Yt-10(jy,_,|>1) + €&
Yt = O 151) = Oweacr) T et

ye = (0.7[ye—1])/(Jye—1] +2) + &

Yy = o7 + e

Ty = 0.6x4_1 + €

e; ~ N(0,0%), 02 =1,25,400

yr = exp(xt) + et

xr = 0.6z4_1 + €
e; ~ N(0,0%), 0% =1,25,400
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Table 2: Block 2 models

Modell

Model2

Model3

Model4

Modelb

Model6

yr = € — 0.4e,1 + 0.3€:_2

Yy = € — 0.de,—1 + 0.3€,_2 + 0.5€16,_2

yr =€ —0.3¢,1 +0.2¢;_2 + 0.4e; 16,2 — 0.25¢7_,
Y =04y, 1 — 0.3ys—o + €

yr = 0.4y;—1 — 03y;—2 + 0.5y1—16,1 + €&

yr = 0.4ys—1 — 0.3ys—o + 0.5y _1€6:-1 + 0.8¢6, 1 + €
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Table 3: Block 3 models

yr = 1.8y;—1 — 1.06y;_o + (002 —09y;_1 + O.795yt,2)F(yt,1) + vt
LSTAR  F(y;—1) = [1 + exp(—100(y;—1 — 0.02))]7*
v ~ N(0,0?), 0% = 0.022

yr = 1.8ys—1 — 1.06y: 2 + (—0.9y: -1 + 0.795y; 2) F'(ys—1) + vt
ESTAR  F(y,_1) = 1 — exp(—4000(y,_1)?)
v ~ N(0,0?), 02 =0.01?

NN yr = —1+[1+exp(—=100(y;—1 — 0.8y;_2))]~*
+[1 4 exp(—100(y—1 + 0.8y;—2))] ! + v
v ~ N(0,0%), 0® = 0.05?

g = —1+ [T+ exp(— 1001 — )] + [1 + exp(—100(yi_1 +20))] " + v
BN Ty = 0.81'15_1 + uy
vy ~ N(0,0?), 0% =0.05%, u; ~ N(0,02), o2 =0.052

) u
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Table 4: Definitions of the Reset, Tsay and V23 test used in the simulation study.
My ={y7 1, Ye—1Yt—2, Yi—2, Yi—1, Yi—1Y—2, Yo—1Yi—2, Yi—2}

{p*7p7 k} Mt Dist.
block 1
Reset2 {1,1,5} F(1,T-3)
Tsayl {,1,.} {Xyuseyeyeyes ) F(1,T-3)
V23 {,1,.} {Xyuy ey Xy sy} F(2,T-4)
block 243
Reset2 {1,2,5} F(1,T-4)
Tsayl {.,2,.} {Xy X, X, ey} F(3,T-5)
V23 {.,2,.} {x, %, x,x,%x,x,x} F(7,T-10)
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Table 5: Critical values (5%) based on the AR model in block 1. The first number
equals the simulated 5% critical value. The number in parantheses in the second row
is the asymptotic 5% critical value. The number in brackets denotes the ”asymptotic”
size of the statistics when based on the simulated 5% critical values (equals the area
under the asymptotic distribution to the right of the simulated 5% critical value). The
results are based on 10000 replications.

Test T=50 T=100 T=200

HAMILTON  3.35 3.49 3.69
(3.84)  (3.84)  (3.84)
(0.067]  [0.062]  [0.055]

NEURAL1  5.40 5.48 5.66
(5.99)  (5.99)  (5.99)
(0.067]  [0.065]  [0.059]

TSAY1 3.10 3.39 3.65
(4.05)  (3.94)  (3.84)
(0.085]  [0.069]  [0.058]

WHITE3 9.32 9.39 9.16
(9.49)  (9.49)  (9.49)
(0.054]  [0.052]  [0.057]

RESET2 3.41 3.42 3.53
(4.05)  (3.94)  (3.84)
0.071]  [0.067]  [0.062]

V23 2.73 2.75 2.84
(3.20)  (3.09)  (3.04)
(0.076]  [0.069]  [0.061]

BDS 8.346 5709  4.881
(3.84)  (3.84)  (3.84)
(0.004] [0.017]  [0.027]
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Table 6: Critical values (5%) based on model 4 in block 2. The first number equals
the simulated 5% critical value based on model 4. The number in parantheses in the
second row is the asymptotic 5% critical value. The number in brackets denotes the
”asymptotic” size of the statistics when based on the simulated 5% critical values
(equals the area under the asymptotic distribution to the right of the simulated 5%
critical value). The results are based on 10000 replications.

Test T=50 T=100 T=200

HAMILTON 3.7 3.41 3.58
(3.84)  (3.84)  (3.84)
0.062]  [0.065]  [0.058]

NEURALI 7.59 7.58 7.75
(7.81)  (7.81)  (7.81)
0.055]  [0.056]  [0.051]

TSAY1 2.65 2.56 2.64
(2.81)  (2.70)  (2.60)
[0.060]  [0.060]  [0.051]

WHITE3 1523 1531  15.35
(1551)  (15.51)  (15.51)
(0.055]  [0.053]  [0.053]

RESET? 3.92 3.76 3.88
(4.06)  (3.94)  (3.84)
0.054]  [0.055]  [0.050]

V23 2.14 2.01 2.03
(2.25)  (2.12)  (2.01)
0.061]  [0.062]  [0.053]

BDS 9939 6208  4.993
(3.84)  (3.84)  (3.84)
(0.002]  [0.013]  [0.025]
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Table 7: Size of tests and similarity. (1) Each column shows the size (%) for AR(1)
yt = 0.6y:_1 + €, using the 5% critical values simulated with
-0.9,-0.6,—0.3,0,0.3,0.6,0.9. The last column shows the size (%) for the AR(1)
using 5% asymptotic critical values. (2) 95% confidence interval of the observed size
is {3.6;6.4}. (3) Sample size = 100, replications = 1000.

¢yt—1 + € 7¢ -

Test -09 -06 -03 00 03 06 09 Asymp.
HAMILTON 3.3 4.3 48 39 38 43 50 4.2
NEURALI1 3.7 5.5 47 44 44 45 44 4.6
TSAY1 1.9 3.1 29 35 43 47 80 3.4
WHITE3 4.8 6.0 5.1 58 53 46 5.1 4.2
RESET?2 3.9 3.6 29 29 35 46 22 3.5
V23 3.7 4.2 44 37 43 43 33 3.7
BDS 4.1 4.8 52 39 58 43 52 12.5
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Table 8: Power versus sample size for block 1 and bivariate models. Power based on
5% simulated critical values reported in table 5 is shown. Replications = 1000, sample

size = 50, 100, 200.

Test AR BL TAR SGN NAR SQ EXP
HAMILTON
T=50 5.2 127 63.3 75.5 8.4 100.0  96.6
T=100 4.3 194 931 98.1 11.9 100.0  99.8
T=200 3.8 244 99.8 100.0  22.4 100.0  100.0
NEURAL1
T=50 5.8 310 342 53.3 9.9 100.0  98.9
T=100 4.5 456 52.7 81.1 12.0 100.0  99.9
T=200 48 587 80.5 98.0 18.4 100.0  100.0
TSAY1
T=50 6.1 23.9 95 19.6 12.6 100.0  98.8
T=100 4.7 33.7 6.1 17.8 15.4 100.0  99.9
T=200 51 408 5.8 174 21.6 100.0  100.0
WHITE3
T=50 5.1 784 64 32.8 7.2 41.3 324
T=100 4.6 97.1 5.2 58.6 7.6 4.7 55.5
T=200 6.5 99.6 8.0 87.0 14.1 97.1 88.0
RESET2
T=50 6.0 242 285 13.7 8.6 86.2 72.8
T=100 4.6 33.7 484 10.9 12.8 95.2 77.0
T=200 53 422 719 12.7 18.4 99.1 80.3
V23
T=50 6.6 322 353 55.0 10.0 100.0  99.1
T=100 4.3 444 526 82.2 13.1 100.0  100.0
T=200 4.6 589 776 98.6 174 100.0  100.0
BDS
T=50 48 39.0 9.1 8.7 5.1 12.2 14.8
T=100 45 793 149 6.5 5.9 26.4 26.8
T=200 48 969 226 5.9 6.1 51.8 48.3
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Table 9: Power vs. sample size for block 2 models. Power based on 5% simulated
critical values reported in table 6 is shown. Replications = 1000, sample size = 50,
100, 200.

Test Modell  Model2 Model3 Modeld Model5 Model6

HAMILTON
T=50 5.2 7.0 25.2 4.8 51.8 37.0
T=100 5.2 8.4 53.7 5.5 91.7 74.9
T=200 3.8 13.0 87.4 3.9 100.0 98.9
NEURALI1
T=50 4.4 9.2 49.9 5.5 61.0 50.8
T=100 5.9 14.4 79.5 5.8 79.1 68.7
T=200 5.3 15.8 97.2 5.2 90.5 83.6
TSAY1
T=50 5.1 9.8 93.5 5.0 76.2 56.9
T=100 7.0 15.9 85.5 4.9 95.0 77.8
T=200 5.9 19.0 99.3 9.5 98.7 90.8
WHITE3
T=50 5.2 13.2 29.8 3.9 81.4 1.7
T=100 14.2 18.6 58.1 5.8 99.4 93.8
T=200 24.7 30.8 90.7 5.2 100.0 99.5
RESET2
T=50 6.1 8.8 14.9 3.7 214 40.5
T=100 6.0 10.5 214 6.4 374 52.3
T=200 4.4 11.9 29.0 5.5 60.3 65.6
V23
T=50 4.5 13.8 43.5 4.2 82.9 72.9
T=100 6.0 19.8 77.8 6.4 99.0 93.0
T=200 5.3 21.2 97.8 4.7 100.0 99.4
BDS
T=50 4.4 2.1 7.6 4.0 294 31.9
T=100 5.4 3.0 15.8 5.0 77.8 72.4
T=200 4.5 4.4 25.7 4.4 98.6 96.0
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Table 10: Power vs. sample size for block 3 models. Power based on 5% simulated
critical values reported in table 6 is shown. Replications = 1000, sample size = 50,

100, 200.
LSTAR ESTAR NN BN
HAMILTON
T=50 33.8 20.7 61.3 61.0
T=100 71.0 47.2 96.6 96.5
T=200 98.7 82.2 100.0  100.0
NEURAL1
T=50 56.6 9.2 45.3 45.2
T=100 85.7 11.2 76.0 T1.7
T=200 95.6 13.5 93.6 88.3
TSAY1
T=50 65.0 9.4 9.6 17.6
T=100 93.8 9.7 11.5 15.9
T=200  100.1 8.9 13.6 154
WHITE3
T=50 33.2 22.8 13.2 182
T=100 69.3 45.7 21.2 30.3
T=200 95.9 74.2 41.3 60.9
RESET?2
T=50 33.1 44.0 5.4 114
T=100 42.4 76.5 6.8 7.7
T=200 63.1 93.5 6.4 8.2
V23
T=50 63.1 32.4 470  49.0
T=100 93.0 65.2 88.0 86.7
T=200 100.0 92.8 99.5 99.7
BDS
T=50 0.0 0.0 1.9 21
T=100 0.0 0.0 4.8 4.0
T=200 0.0 0.0 5.6 6.4
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Table 11: Power vs. sample size and noise for bivariate model (SQ). Power based on
5% simulated critical values reported in table 5 is shown. The signal-to-noise ratio
equals 700% for o = 1, 28% for o= 5 and 2% for o= 20. 1000 replications. Sample
size = 50, 100, 200.

c=1 o0=5 o=20

HAMILTON
T=50 100.0  40.7 7.3
T=100 100.0 75.4 9.2
T=200 100.0 96.7 14.7
NEURAL1
T=50 100.0  62.9 12.1
T=100 100.0 90.2 16.1
T=200 100.0 99.6 27.0
TSAY1
T=50 100.0 75.1 14.1
T=100 100.0 94.7 19.5
T=200 100.0 99.8 33.8
WHITE3
T=50 41.3 8.3 4.2
T=100  74.7 14.3 4.4
T=200 97.1 27.9 5.9
RESET2
T=50 86.2 40.9 37.1
T=100 95.2 64.5 62.9
T=200 99.1 86.1 85.3
V23
T=50 100.0  63.7 11.0
T=100 100.0 92.3 17.6
T=200 100.0 99.7 26.5
BDS
T=50 12.2 38.3 81.4
T=100 264 46.2 73.9
T=200 518 42.3 74.2
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Table 12: Power vs. sample size and noise for bivariate model (EXP). Power based
on 5% simulated critical values reported in table 5 is shown. The signal-to-noise ratio
equals 216% for o = 1, 8.6% for o= 5 and 0.5% for o= 20. 1000 replications. Sample
size = 50, 100, 200.

c=1 o0=5 o=20

HAMILTON
T=50 96.6 37.5 8.8
T=100  99.8 60.9 10.4
T=200 100.0 87.8 15.7
NEURAL1
T=50 98.9 56.2 14.5
T=100  99.9 81.5 22.8
T=200 100.0 97.9 35.4
TSAY1
T=50 99.1 99.2 15.1
T=100 100.0 82.7 22.5
T=200 100.0 97.6 35.3
WHITE3
T=50 32.4 10.3 0.7
T=100  55.5 15.1 5.7
T=200 88.0 28.4 7.3
RESET2
T=50 72.8 28.7 10.8
T=100 770 40.8 15.1
T=200  80.3 49.6 21.9
V23
T=50 99.1 95.1 15.6
T=100 100.0 83.2 23.8
T=200 100.0 98.5 36.7
BDS
T=50 14.8 37.5 68.7
T=100  26.8 43.7 64.9
T=200 48.3 40.5 70.3
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Table 13: The regressors included in 7, for the various models under consideration.

2
L €—1,ns €—2n, €t—1n€t—2n, €2

17 Yt—1,n,Yt—2n, Yt—1,n€t—1,n

Lyt 1 Yt—2m, Yt—1,n€—1,n, €t—1,n

[1+ exp(—100(ys—1 — 0.8y:—2))]~
[1 4 exp(—100(yi—1 + 0.8y;—2))]~

Model Regressors, Tt Model  Regressors, Tt
AR Lyi—in Modell  1,€-1n,€i—2.n
BL Lyt—1,n€t—2,n Model2  1,€;-1n,€—2.n
TAR Lyt—100(ye_1.n1<1) Yt—1,00(y,_1.|>1) | Model3
SGN L0y 1ms1) = Oyierinen)) Modeld  1,yt—1n,Yt—2.n
NAR L, (0.7[y—1.n])/(Iye—1,n] +2) Model5
SQ L, »thn Model6
EXP 1,exp(zyn)

L, F(Yt—1,n), 1,
LSTAR Y1 Yi—1,n * F(Yi—1.n), NN

Yt—2,n5Ye—2.n % F(Yt—1,n)

L F(Yi—1n), L,
ESTAR  Yi—1m,Yi—1,n * F(Yt—1,n), BN

Yt—2n,Yt—2n * F(ytfl,n)

[]_ + exp(—lOO(ytfl - mt))]7
[1 + exp(—loo(ytfl + 'Tt))]_
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Table 14: Convergence properties of block 1 and bivariate models. C’%’ N> C%, Ns
C%, N s C% ~ and C% ~ are calculated according to the their definitions stated above

where {aT,n,ZT(.),p(.,RT,n(Zj))} and {&r,,»} are estimated conditionally on a pair of
{Yin, xin} and {y; », Tr , } that differs nummerically from {yi n,z¢,n} and {ye,n, Te,n}
but is generated from same underlying process/model. The number of replications
equals N=100.

C%F,N CT. N GzT,N C%’,N G n CT. G4T,N Ch. N
AR
T=50 0.052 0.053 -0.025 0.117 -1.238 0.075 -0.451 0.052
T=100 0.029 0.030 -0.024 0.088 -2.047 0.043 -0.498 0.029
T=200 0.015 0.016 -0.107 0.059 -3.023 0.022 -0.490 0.015
BL
T=50 2.439 2.642 -0.083 2.650 -0.087 2.568 -0.053 0.095
T=100 2.202 2.235 -0.106 2.219 -0.099 2.275 -0.033 0.027
T=200 1.851 1.968 -0.063 2.023 -0.093 1.903 -0.028 0.018
TAR
T=50 0.276 0.181 0.345 0.157 0.430 0.262 0.052 0.059
T=100 0.258 0.112 0.564 0.116 0.551 0.251 0.027 0.029
T=200 0.245 0.073 0.701 0.082 0.666 0.205 0.161 0.013
SGN
T=50 0.368 0.213 0.422 0.203 0.450 0.307 0.166 0.047
T=100 0.344 0.145 0.577 0.143 0.585 0.246 0.286 0.021
T=200 0.333 0.100 0.700 0.095 0.713 0.219 0.342 0.012
NAR
T=50 0.057 0.061 -0.084 0.121 -1.129 0.072 -0.258 0.046
T=100 0.040 0.042 -0.054 0.084 -1.091 0.046 -0.157 0.022
T=200 0.030 0.029 0.046 0.059 -0.980 0.035 -0.161 0.011
5Q
T=50 5.362 2.044 0.619 2.374 0.557 3.463 0.354 0.045
T=100 5.644 1.216 0.785 1.578 0.720 3.086 0.453 0.027
T=200 5.251 0.680 0.871 0.916 0.826 2.892 0.449 0.012
EXP
T=50 13.220 8.506 0.357 9.250 0.300 9.271 0.299 0.118
T=100 9.858 4.755 0.518 5.369 0.455 6.667 0.324 0.035
T=200 9.502 2.882 0.697 3.743 0.606 6.384 0.328 0.013
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Table 15: Convergence properties of block 2 models. C%’7N, C’%’J\], C%N , C%N
and C’% ~ are calculated according to the their definitions stated above where

{aT,n,ET(.),p(.,ET’n(/q\))} and {Or,} are estimated conditionally on a pair of
{Yin,zin}t and {y; », Ti ., } that differs nummerically from {y¢ n, zt,n} and {ys,n, Te,n}
but is generated from same underlying process/model. The number of replications
equals N=100.

Cr.n Chn Gl Ct G%‘,N C4T,N G'4T,N CE)T,N
Modell

T=50 0.113 0.126 -0.114 0.209 -0.855 0.159 -0.408 0.069

T=100 0.062 0.067 -0.084 0.152 -1.458 0.092 -0.491 0.031

T=200 0.047 0.048 -0.011 0.120 -1.538 0.059  -0.260 0.017
Model2

T=50 0.393 0.445 -0.132 0.515 0.309 0.478 -0.215 0.334

T=100 0.352 0.374 -0.063 0.461 -0.309 0.386  -0.097 0.291

T=200 0.321 0.337  -0.048 0.415 -0.290 0.339 -0.058 0.259
Model3

T=50 0.384 0.377 0.018 0.386 -0.004 0.399 -0.040 0.104

T=100 0.386 0.344 0.109 0.351 0.090 0.378 0.022 0.061

T=200 0.331 0.241 0.272 0.269 0.186 0.283 0.144 0.026
Model4

T=50 0.061 0.074 -0.208 0.156 -1.555 0.089 -0.464 0.061

T=100 0.039 0.044 -0.131 0.125 -2.172 0.069 -0.774 0.039

T=200 0.016 0.019 -0.206 0.092 -4.828 0.023 -0.415 0.016
Modelb

T=50 1.343 1.271 0.054 1.175 0.125 1.295 0.036 0.129

T=100 1.018 0.820 0.195 0.773 0.240 0.869 0.147 0.046

T=200 1.001 0.746 0.254 0.698 0.302 0.881 0.120 0.023
Model6

T=50 2.773 2.877 -0.038 2.614 0.057 2.857 -0.030 0.144

T=100 2.728 2.715 0.005 2.499 0.084 2.849  -0.045 0.060

T=200 2.321 2.190 0.056 2.035 0.123 2.259 0.027 0.025

35



Table 16: Convergence properties of block 3 models. C’%’J\], C%N, C%N , C%N
and C%,N are calculated according to the their definitions stated above where

{aT,n,ZT(.),p(.,ﬁTm(a))} and {Or,} are estimated conditionally on a pair of
{Yin, zin} and {y; », Tr,, } that differs nummerically from {yi n,z¢,n} and {ye,n, Te,n}
but is generated from same underlying process/model. The number of replications
equals N=100.

Cr N CT N G2T,N C%’,N G n C4T,N G4T,N Ch N
LSTAR
T=50 1.754 1.627  0.072 1271 0.275 2128  -0.213 0.384
T=100 1.518 1.018 0.329 0.828 0.454 1.503 0.010 0.173
T=200 1.488 0.590 0.592 0.553 0.618 1.311 0.119 0.064
ESTAR
T=50 0.231 0.236 -0.022 0.227 0.015 0.311 -0.345 0.055
T=100 0.203 0.172 0.153 0.158 0.224 0.235 -0.159 0.034
T=200 0.183 0.100 0.451 0.113 0.384 0.176 0.036 0.017
NN
T=50 0.182 0.151 0.168 0.128 0.296 0.126 0.308 0.018
T=100 0.172 0.103 0.402 0.095 0.446 0.091 0.470 0.007
T=200 0.167 0.076 0.544 0.073 0.561 0.071 0.575 0.004
BN
T=50 0.220 0.182 0.173 0.157 0.287 0.149 0.323 0.027
T=100 0.159 0.104 0.347 0.096 0.398 0.094 0.411 0.009
T=200 0.151 0.070 0.536 0.069 0.545 0.069 0.542 0.005
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9 Appendix A.

Table 17: Closed form expressions for Hy(h). Hg(h) equals unity when h = 0, and
equals zero when h > 1

k  Hy(h)

21— 2[h(1—h?)7 +sin~}(h)]
31-(3)+(%)
4 1—2[2h(1—h?)% +h(1 —h?)? +sin~ (k)]

5 1—2h+3h®— 3 (1—h?)?
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