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Abstract

In this paper we examine a representative agent forecasting prices in a first-order self-
referential overlapping generations model. We first consider intermediate stage learning,
where agents update the forecasting rule every τ periods. We show that, in theory and
simulations, the learning rule does not converge to the rational expectations equilibrium
(REE). We next consider two stage learning, where agents learn the functional mapping
between the current forecast function and the previous forecast function. We show that in
theory and simulations the two stage learning rule converges to the REE.
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learning, overlapping generations.
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The rational expectations hypothesis, in which agents correctly forecast future state

variables given current information, is a standard assumption in self-referential economic

models.  Authors such as Muth (1961) and Lucas (1986) argue that rational expectations is an

equilibrium condition.  If we believe that agents learn from their environment, then

eventually they eliminate all systematic errors—agents truly know how the economy

functions, what its laws are, and how it behaves.  One might say that under the rational

expectations hypothesis, agents ‘learn to be rational.’  At this point, the economy attains the

rational expectations equilibrium (REE).  A large body of literature exists demonstrating

existence and uniqueness of the REE for a variety of models, and many models take the REE

as a natural starting point for describing the state of an economy.

The argument that rational expectations is an equilibrium condition is compelling as

long as there exists some kind of procedure which an agent can use to find out everything

about the economy that is necessary to forecast without systematic errors.  The agent must

learn the various relationships between the state variables (and sometimes even what the state

variables are) which are dictated by the prevailing model, even if such a model is

mathematically complex, before any hope can be found of reaching the REE.  Whether or not

such a procedure exists has been studied extensively in the literature.  Following Spear

(1989) we can divide the literature into four categories, Bayesian learning and three versions

of adaptive learning from the state variables.

Several papers, including Blume and Easley (1981), Cyert and Degroot (1974), Easley

and Kiefer (1989), El-Gamal and Sundaram (1989), Feldman (1987), Nyarko (1991) and

Townsend (1983) focus on Bayesian learning.  In these models, agents begin with some

initial prior distribution assumption over the future state variables (sometimes with

heterogeneous priors across agents).  By observing the forecasts of others and/or market

observable (e.g. prices) agents infer information about the true distribution of the uncertain

variables, and use Bayesian updating to modify the parameters of the prior distribution.

When every agent infers all information, the economy attains the REE.  Agents are shown to

learn the REE in linear models (see e.g. Townsend, 1983).

Bayesian learning is especially important because it is not an ad hoc assumption, but

an actual model of learning.  Bayesian learning, however, can be difficult to apply if there is

more than one uncertain variable, or under prior distributions which are not normally or
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binomially distributed, since the updated distribution does not in general have the same

functional form as the prior.

Adaptive learning methods, based on realizations of the state variables, typically

utilize some form of a “forecast function” which, given a vector of current state variables,

generates a forecast of the future state variables. Once the future becomes known, the forecast

function may be changed to reflect the new data.  Following Spear (1989) we call the first

category of adaptive learning “incremental learning,” in which agents update their forecast

function after every observation of the state variables.  Agents learn to be rational if the

sequence of forecast functions over time converges to the REE, i.e. the forecast function

reflects the true law of motion that dictates the future state variables.  Outside the REE, i.e. in

the temporary equilibrium (see Grandmont 1977), the forecast functions are not rational.

Incremental learning is advantageous since agents use all available information to update

each forecast function.  Bray and Savin (1986), Marcet and Sargent (1989a, 1989b) and

others show that least squares learning, applied incrementally, can converge to the REE in

linear models.  However, Bullard and Duffy (1993) show that this result does not generally

hold when agents make forecasts that are more than 3 steps ahead.

If each update of the forecast function is costly, however, then incremental learning

may be prohibitively expensive for agents to employ.  In addition, as pointed out in Spear

(1989), agents may require several bad forecasts to realize that the forecast function is

systematically wrong.  In this case, agents may not update the forecast function in a given

period, believing the economy is at the REE when it is not.  Hence we might expect that

agents accumulate observations before updating.

We let “intermediate stage learning” denote an alternative to incremental learning,

where agents accumulate observations on the state variables for τ periods before updating the

forecast function.  Since agents do not update the forecast function each period, this

procedure effectively fixes the temporary equilibrium function (TEF) in between updates.

Hence, given enough realizations of the state variables, the TEF could be learned, which

would give the agent the law of motion of the state variables up to that point. Agents would

then use the TEF as their new forecast function.  Unfortunately, this changes the TEF and

agents must again accumulate observations to learn the new law of motion.  If this sequence

of forecast functions converges to the REE, agents have learned to be rational.  Brock (1972),

DeCanio (1979) and others have shown that intermediate stage learning converges to the

REE in linear self-referential models.
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Since intermediate stage learning assumes that the temporary equilibrium function is

learned, we find that an agent may have an especially difficult task in models with non-linear

laws of motion.  Another consideration is that an agent needs to know the REE in order to

calculate whether or not further updating is optimal.  Therefore, τ must be set in an ad hoc

manner.  On the other hand, an agent may realize that submitting a new forecast function

changes the temporary equilibrium of the model, which is continually used as the new

forecast function after updating.  In this case, agents may try to learn the functional mapping

that takes current forecast functions into future forecast functions.

Agents that attempt to learn this functional mapping use “two stage learning.” In the

first stage of this process, agents accumulate pairs of current and future forecast functions.  In

the second stage, agents try to learn the functional mapping between these forecast functions.

Spear (1989) shows that learning procedures which converge to the REE exist using two

stage learning with full information.  Board (1992), however, shows that for a wide class of

models, agents cannot learn to be rational in a finite time (under the “probably approximately

correct” learning axiom).  Furthermore, finding an algorithm that systematically updates in

the function space is difficult—agents must submit many errant forecasts to obtain each

forecast function pair.  Hence agents on their way to rationality may pay a large price in

utility from these errant forecasts.  Finally, even when the functional mapping is learned, the

agents must still compute the mapping’s functional fixed point, which is the REE.

In this paper, we introduce a general learning procedure which can be used in an

intermediate stage or two stage manner.  We show that for a class of non-linear general

equilibrium models, agents do not learn to be rational when using intermediate stage learning.

This result appears to depend crucially on the two step ahead forecasting rule used—the

current values of the state variables depend upon the agent’s forecast of the future state

variables.  However, for the same class of non-linear models we show that two stage learning

converges to the REE.

We demonstrate the theoretical results outlined above by simulating linear and non-

linear economies with intermediate stage and two stage learning.  We introduce a method of

learning which can learn functional mappings as well as continuous functions.  This method

utilizes functions which are drawn from a class of ‘universal approximators’:  Fourier

analysis, Kolmogorov functions, and Radial Basis Functions are all examples from this class.

We select neural networks from this class, and generate algorithms which are used to

demonstrate intermediate and two stage learning. We show that for intermediate stage
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learning a neural network successfully learns the non-linear temporary equilibrium, but the

sequence of forecast functions using the TEF diverges away from the REE.  In two-stage

learning, neural networks successfully learn the functional mapping between current and

future forecast functions.  Furthermore, the fixed point of the functional mapping (the REE)

is shown to be easily computable using established methods.

The chapter is divided into the following sections.  Section 1 introduces a first-order

self-referential economy derived from a stochastic overlapping generations model, and the

REE of the economy is derived.  In Section 2 the theoretical results for intermediate stage and

two stage learning are presented.  Section 3 gives the results for simulations of the models

outlined in Sections 1 and 2, using the neural network learning algorithm.  Section 4 presents

concluding remarks.  Proofs of Propositions, Theorems, etc. are in the Appendix.
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1 The Model

1.1 The Overlapping Generations Framework

We consider an overlapping generations (OLG) model with uncertainty.  Let time be

indexed as t = 0, 1, … There is a continuum of agents of two types (so that the representative

agent formulation applies to each type), and all agents live for two periods.

There exists a single perishable commodity which is consumed.  Uncertainty enters

the model through tw , the agent’s endowment when young.  We let the young agent’s

endowment be distributed according to Gwt ~  i.i.d., with G a continuous distribution

function over a compact set ℜ⊂Ω .  The young agent observes the current endowment

before any decision is made.  Therefore, the only uncertainty is over the realization of the

endowment by the next young generation, which affects the price when the young agent

becomes old.  Old agents receive a non-stochastic endowment 2w .

We assume that there exists a storable asset, fiat money, which the agents use to

transfer wealth between youth and old age.  There is a fixed supply of money m  endowed to

the old agents born at time zero.

Agents have preferences over consumption in the young and old periods.  We define a

concave, twice differentiable utility function ( )1, +tt ccU .  Agents may trade consumption

goods for money on a spot market at price tp .  We assume a compact price space S ⊂ ℜ+

and we let money be the numeraire good.  The young agent maximizes expected utility

subject to a budget constraint:

( )1
,,

,max
1

+
+

ttt
mcc

ccUE
ttt

 1.1.1

subject to

t

t
tt p

m
wc −=  1.1.2

e
t

t
t p

m
wc

1
21

+
+ +=  1.1.3

Here e
tp 1+  is the point forecast of the price expected to prevail in period t + 1.  Since we will

be dealing with adaptive learning methods with forecast functions in what follows, we note
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here that we are imposing a behavioral condition on the agent which is different than, for

example, the Bayesian procedure in which the agent assumes a distribution function over

e
tp 1+ .  Here the agent forecasts the future by submitting a guess of the future price to a

Walrasian auctioneer.  Since e
tp 1+  is the expected price for period t+1, it will naturally depend

upon the endowment realization in period t+1.

Substituting the constraints into the utility function yields the following maximization

problem:

( )1
1

2,max +
+

∫ 





+− te

t

t

t

t
t

m
wdG

p

m
w

p

m
wU

t

.  1.1.4

This problem has a first order condition given by

( ) 0
11

12
1

1 =





+− +

+
∫ te

tt

wdGU
p

U
p

,  1.1.5

where 2,1, =iUi  is the derivative of U with respect to the ith argument.

Since in equilibrium money supply and money demand are equal, we can write the first order

condition 1.1.5 as

( ) ( ) 0,, 11 =++∫ t
e
ttt wdGpwpz  1.1.6

(for brevity we have suppressed z’s dependence on the total money stock m ).  Equation 1.1.6

is the law of motion for the economy.  We note that there exist many other models that can be

reduced to equation 1.1.6 with tp  typically representing prices, or supply of capital or labor.1

The above model also illustrates a difficult problem for the agent—in order to learn the REE,

the agent must learn equation 1.1.6, which may be a complex, non-linear, stochastic process

in which forecasts ( e
tp 1+ ) affect current values of the state variables (here, tp ).  To make

matters even worse, what the agent learns may qualitatively affect the equilibrium of the

OLG model.  For example, Grandmont (1985) shows that for different adaptive learning

rules, endogenous business cycles of varying periodicity can occur in OLG models.

1.2 Forecasting Rules

We assume the agent uses a first–order forecasting rule, which mimics the first-order

dependence of e
tp 1+  on tp  in the temporary equilibrium function 1.1.6.  This may appear to

                                                
1 See e.g. Azariadis (1981), Grandmont (1985) and Marcet and Sargent (1989a).
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be a restrictive assumption on the class of forecast functions, but the results presented go

through even if there are other variables (e.g. higher-order lags, or sunspot variables) within

the forecast function, due to the nature of 1.1.6. We thus restrict ourselves to first-order

dependence for expositional simplicity.2  Next, it is important to note that when the agent

forecasts e
tp 1+ , the actual current price tp  has yet to be determined (in this simple OLG

model, the price is determined by a Walrasian auctioneer).  In fact, the agent takes tp  as

given when maximizing utility, and must forecast 1+tp  using the last available data point,

1−tp .  However, a first-order forecasting rule allows the agent to update the forecast function

once the current price tp  is revealed—the agent still has no information about 1+tp , but now

has the data ( )tt pp ,1− .

An example may help clarify matters.  Agent Sally supposes that the current price tp

(which is not yet observed) depends only upon the previous known price 1−tp , and thus has a

forecast function which gives the expected current price as a function of 1−tp :

( )1−= t
e
t pgp .

Now Sally is called upon to form an expectation about the future price 1+tp .  Using her first-

order forecast function, her expected future price is given by

( ) ( )( )11 −+ == t
e
t

e
t pggpgp .

Sally submits this e
tp 1+  (which depends only upon 1−tp ) to the auctioneer, who then

calculates the current price tp .  Now Sally is free to update the function g since data is

available on both tp  and 1−tp .  For example, Sally could modify g in some way by

minimizing the error ( ) ( )( )2
1

2

−−=− tt
e
tt pgppp .  Thus, the forecast function g can

incorporate new information, even though nothing is known about 1+tp .

On to formalities.  We want to keep the analysis grounded in what an economic agent

would be expected to achieve in reality.  Thus, we suppose that our first-order forecast

function is parameterized by a finite vector of real numbers, as any forecast function used in a

real economy must be.  Again, the convergence results to be shown do not depend upon such

a parameterization; indeed, the proofs simply assume a continuous first-order forecast

                                                
2 A single price lag in the information set can also be interpreted as a “minimum state variable” condition

(McCallum, 1989).
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function.  But to keep the exposition as clear as possible (and minimize further switching

around of notation!) we will assume a parameterized forecast function in what follows.

We let B be a compact subset of nℜ  and let tβ  be an element of B.  We then define a

continuous function SBSf →×Ω×:  such that

( )ttt
e
t wpfp β,,1−= .  1.2.1

We note that f is misspecified since the agent is not aware that forecasts influence the state

variables, similar to Marcet and Sargent (1989b).  This also abstracts away from the question

of strategic forecasting.3

Substituting the forecast function into the first order condition gives

( )( )∫ +









+−−

+− tttttt
t

t wwpff

m
w

p

m
wU

p ββ ,,,,
,

1

11
21

( )( ) ( )( ) ( ) 0
,,,,

,
,,,,

1
1

11
22

11

=















+− +

+−+−
t

ttttt
t

ttttt

wdG
wwpff

m
w

p

m
wU

wwpff ββββ
.  1.2.2

As before we condense the above equation to

( )( )( ) ( )∫ =++− 0,,,,;, 111 tttttttt wdGwwpffwpz ββ .  1.2.3

Equation 1.2.3 is the stochastic temporary equilibrium function (TEF) of the economy.  Note

that the function z is functionally dependent on f.  For example, if f depended on a second lag

of prices, the TEF would be second order.

We next summarize the restrictions made so far:

Assumption A1: Prices and endowments are defined over the compact sets S and Ω , and

the function z is 1C .

Typically, the endowment space is defined such that a positive monetary stationary state

exists.  For this to occur, the endowment when old must be small enough to induce the young

to trade goods for money.  Note that we impost no linearity restriction on the model.  Another

important consideration is that the agent does not know anything about functional form of the

REE.  Previous results on learning REE such as Bayesian learning (Feldman, 1987), least

squares learning (Marcet and Sargent, 1989b) and genetic algorithms (Arifovic, 1989)

                                                
3 In many (finite agent) models agents may wish to submit strategic forecasts to manipulate current prices if

they are aware that forecasts affect prices.
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assume that the functional form of the REE is known up to a few parameters.  Here the agent

must learn the correct function out of the entire space of continuous functions.

1.3 Rational Expectations Equilibrium

A rational expectations equilibrium is a forecast function ( )∗
−= β,,1 tt

e
t wpfp  that

solves the law of motion, which means that the rational forecast is correct ‘on average.’

Equilibrium occurs when the implicit function between tp and 1−tp  given by equation 1.2.3 is

the same as the forecast function the agent is using.

Definition 1: A Rational Expectations Forecasting Rule is a forecasting rule

( )∗
−= β,,1 tt

e
t wpfp  such that locally,

( ) ( )( )( ) ( )∫ =+
∗

+
∗

−
∗

− 0,,,,;,,, 1111 ttttttt wdGwwpffwwpfz βββ .  1.3.1

Existence of the REE follows from the Implicit Function Theorem.

2 Learning and Convergence to the REE

2.1 Intermediate Stage Learning

One way to model learning is through intermediate stage learning.

Definition 2: Intermediate stage learning allows the forecast function to be updated only

every 1τ >  periods:

( )[ ] KK ,1,0,,, 11 =≡−+ mmmm βββ ττ 2.1.1

If agents use intermediate stage learning then they are not necessarily trying to make the best

forecast every period—incremental learning might then be used. But if it is costly to

recalculate the forecast function every period, an agent may opt to defer updating for several

periods at a time (see e.g. Evans and Ramsey 1992).

Given 1−tp , agents forecast using their initial forecast rule to get e
tp 1+ , which

generates tp  from equation 1.2.3.  Agents then have one data point [ ]tt pp ,1− .  Agents repeat

the process until τ  such data points are accumulated.  Formally we have:

Definition 3: A data set for updating the forecast function ( )τβ,,1 tt
e
t wpfp −=  is a set

[ ] [ ]{ }tttt wwpp ,,,,, KK ττ −−  such that

( )( )( ) ( ) ttkwdGwwpffwpz kkkkkk Kτββ ττ −=∀=∫ ++− 0,,,,;, 111 .  2.1.2
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After τ  periods the agent updates the forecast function.  The mapping between the old and

new forecast functions is defined according to the following equation:

( )ββ
β

τ ,,minarg 11 ttt
B

wpfp −
∈

+ −= .  2.1.3

Here the norm is over the vector of τ  data points.

We must now venture back into reality and discuss how this type of forecasting may

be adversely affected by 1) bad draws from the environment, and 2) poor performance from

the updating procedure itself.  As is the case with stochastic linear learning models (e.g.

Marcet and Sargent 1989a and 1989b), any convergence to the REE will be a local result.

Hence there is the possibility that the [ ]tt pp ,1−  data set is so far from the mean that the

updated forecast function moves outside the domain of attraction (if it exists) of the REE

function.  We thus restrict our attention to local convergence results in what follows.  Unlike

linear models, however, there is also the possibility that the forecast function does not

adequately represent the temporary equilibrium when the minimization of 2.1.3 is performed.

Again, the updated forecast function may find itself outside the domain of attraction (if it

exists) of the REE function.

Naturally, if the REE is locally unstable under learning, then these problems are

irrelevant—the learning routine will not converge in any case.  But for those cases in which

the REE would be stable if learning were perfect, it is necessary to restrict the class of REE to

those for which small perturbations in the temporary equilibrium function do not change the

dynamics around the REE.  This may exclude convergence to many other types of equilibria.

For example, a model for which perturbations in the TEF generate bifurcations in the set of

REE, e.g. a stable, unique REE may under perturbed learning become an unstable member of

a 3-element equilibrium set.

However, we wish to stress that this says nothing about whether a learning system

will or will not converge to an REE which is restricted in the above sense.  An REE which

does not change its dynamics under small perturbations of the TEF might be stable or

unstable under intermediate or (as defined later) two stage learning.  The restriction, outlined

formally in Assumption A2 below, is simply used focus attention on those REEs for which an

agent using a realistic forecasting routine might be expected to learn.

Assumption A2: Suppose Definition 2 holds.  Define a forecast function approximation error

as function η  such that at any time
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( )τβη ,,1 ttt wpfp −−= .

Suppose that the economy is at a point where the agent updates.  We rewrite the law of motion

as:

( ) ( )( )( ) ( )∫ =− ++−+− 0,,,,;,,, 11111 ttttttt wdGwwpffwwpfz τττ ββηβ .  2.1.4

Then the dynamic stability of the system 2.1.4 is identical to the system where 0=η :

( ) ( )( )( ) ( )∫ =++−+− 0,,,,;,,, 11111 ttttttt wdGwwpffwwpfz τττ βββ .  2.1.5

Since we are working with functional REE, the functional notation will be particularly

useful in what follows.  To rewrite the problem to a functional one, we define an operator

11: BSBS CCT ×Ω××Ω× →  implicitly as

( ) ( )( )( ) ( )∫ =++− 0,,,,;, 111 ttttt wdGwwpffwfTz ττ ββ .  2.1.6

Given the collected data, by A2 we can restrict our attention to agents who estimate the TEF

accurately, i.e.

( ) ( )ττ ββ ,, 111 −+− = tt pfTpf o .  2.1.7

T maps current forecast functions into future forecast functions.  From equation 2.1.6 T is at

least piecewise continuous.  Since the forecast function is first-order, we have seen that

agents must iterate their old forecast function to generate the new forecasting function:

τττ fTfTfpe
t ooo== ++ 11 ,  2.1.8

where we define ( )ττ β,,1 tt wpff −≡ .  (Since we are working in the function space, we will

also drop the arguments of f for brevity.)  Similarly, we let ( )∗
−

∗ ≡ β,,1 tt wpff , so that ∗f  is

our shorthand for the rational expectations equilibrium.  We are now in a position to present

the main results.  The following theorem shows that the sequence of forecast functions

defined above diverges away from the rational expectations equilibrium .

THEOREM 1: Suppose that A1 and A2 are satisfied.  Let BSBSf ×Ω×→×Ω×:0  be such

that 1
0 BSCf ×Ω×∈  and

( )






 <−≡∈ ∗

∈∈

∗ ε
Ω

ε ffffNf
wSp ,

0 sup:  2.1.9
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for a given ε.  Then if τf  evolves according to equation 2.1.8, the sequence of forecast

functions does not converge (in the sup norm) to ∗f  for any εNf ∈0 .  That is, the rational

expectations equilibrium is unstable.

We note that there are no restrictions on the law of motion other than continuity and

invertibility.  Hence Theorem 1 applies to a wide range of economic models.  The reason

behind the divergence is that the two step mapping in the function space (i.e., the operator

which results when T and f are iterated twice) is no longer a contraction.  Assuming that the

functional mapping is a contraction is an implied assumption in the linear learning literature,

as well as in White (1989).  The nonconvergence result of Theorem 1 is not unlike that of

Bullard and Duffy (1993) where forecasts which are several steps ahead cause some roots to

be outside the unit circle and hence cause linear learning rules to become unstable.

We also note that the above result is more a negative result for the learning procedure

than for the rational expectations hypothesis.  Although intermediate stage learning is an

intuitive way for agents to update, with each update the agent forecasts less accurately.

Therefore, the utility cost of using intermediate stage learning increases to the point where

the agent ought to try something else.

We next test how robust Theorem 1 is to variations of intermediate stage learning.

Specifically, we suppose that the agent chooses a new forecast function 1+τf , as a 1C

function of the temporary equilibrium and the most recent forecast function:

( )τττ ffTf ;1 oΨ=+ .  2.1.10

For example, the agent may choose 1+τf  as a convex combination of the TEF and the current

forecast function:

( ) ( ) τττ γγ ffTf −+=+ 11 .  2.1.11

The following theorem generalizes Theorem 1 to the variant 2.1.10 of intermediate stage

learning.

THEOREM 2: Suppose A1 and A2 are satisfied.  Let 0f  be as in Theorem 1.  Suppose the

following consistency condition is satisfied:

( ) ∗∗∗ =Ψ fff ; .  2.1.12

Then if τf  evolves according to equation 2.1.10, the sequence of forecast functions does not

converge (in the sup norm) to ∗f  for any εNf ∈0  and for ε sufficiently small.  That is, the

rational expectations forecast function is unstable.
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The consistency condition in Theorem 2 states that the agent does not update away from the

rational expectations forecast function once the current forecast function is rational (i.e. the

agent knows when the REE is achieved).4  Such a condition is already present in the form of

intermediate stage learning given by 2.1.8.

2.2 Two Stage Learning

Given the law of motion 1.1.6, when agents use intermediate stage learning, they

cannot learn the rational expectations equilibrium.  In this section we describe another

learning procedure, called two stage learning, which enables an agent to learn the REE.

Definition 5: A two stage learning process is a learning algorithm which, given a data set

consisting of ( )1, +ττ ff  pairs, learns the operator T defined implicitly by equation 2.1.6.

With two stage learning, an agent attempts to learn the functional mapping between current

and future forecast functions in the 1C  function space.

The two stage learning procedure is composed of the following stages:

 Stage One

• An agent discovers that the current forecast function influences the TEF, possibly

as a result of trying some intermediate stage learning process.

• After submitting a forecast τf , the agent uses intermediate stage learning to learn

the temporary equilibrium function 1+τf .  The agent thus collects pairs of forecast

functions ( )1, +ττ ff .

 Stage Two

• The agent learns the operator T, which maps the initial forecast function τf  into

the new forecast function 1+τf .

• The agent then computes the fixed point of T, which is the rational expectations

equilibrium ∗f .

We now develop an algorithm to demonstrate that two stage learning is feasible, using

the above stages as guidelines.  The following Lemma introduce the existence of one subset

of the class of so-called ‘universal approximators,’ which are groups of functions that are

able to approximate to an arbitrary degree of accuracy any measurable function.

                                                
4 See Grandmont (1985) for the consistency condition in the price space.
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LEMMA 1 (Hornik, Stinchcombe and White, 1989 and 1990): For every function

SSfCf S →∈ :,1  there exists a function SSkCk n

RS n →ℜ×∈ × :,1 , a vector nf ℜ∈β  and

an 0>ε  such that 0>∀ε ,

( ) ( ) εβ <− pfpk f, , 2.2.1

( ) ( ) εβ <′− pfpk f
p , , 2.2.2

where pk  denotes the derivative of the function k with respect to the price p.

We now recast the two stage learning process in terms of the vectors β which define

the forecast functions.  Suppose that the agent begins with an initial forecast τk

parameterized by a vector τβ .  The agent then samples from the price space to learn an

approximation of τkT o , defined as 1+τk  which is parameterized by 1+τβ .  Now the agent has

two functions, represented by two parameter vectors τβ and 1+τβ .  This process is repeated

until the agent acquires a series of data vectors [ ]1, +ττ ββ .  This completes the first stage of

learning.

In the second stage, the agent attempts to learn the operator T between the forecast

functions τk  and 1+τk .  We show in the following theorems that learning a vector mapping

between tβ  and 1+tβ  is sufficient for learning T, which is a useful and powerful result as it

means that functional mappings can in general be approximated (theoretically to an arbitrary

degree of accuracy) by vector-valued mappings.  We first generalize Lemma 1 to functional

operators:

PROPOSITION 1:  Let 11: BSBS CCT ×Ω××Ω× →  be as in Section 2.2.  Let A1 and A2 hold.  Then

there exists an operator 11:ˆ
BS

n
BS CCT ×Ω××Ω× →ℜ×  such that 1

BSCf ×Ω×∈∀ , there exists a

vector nT ℜ∈β  such that for a given 0>ε ,

( ) ( ) εβ <− TfTfT ,ˆ .  2.2.3

Furthermore,

( ) ( ) ε2ˆ <′−′ fTfT .  2.2.4

Proposition 1 shows that there exists an approximation of the functional operator T which is

parameterized by a vector—in order to show that an algorithm exists which can converge to

this approximation, we require the next set of theorems.
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THEOREM 3:  Suppose that the REE, ( )∗∗ = fTf  satisfies ( ) 0≠′ ∗fT , i.e. the REE is a

regular value of the operator T.  Then there exist a vector nℜ∈∗β  and a function

( ) ∗∗ ≡ kpk β,  such that

( ) ,ˆ ∗∗ = kkT

0lim
0

=− ∗∗

→
fk

ε
,

∗∗∗ =− εfk ,

where

( ) ( )( )













′−
<⇒<′

∗

∗∗

fT
fT

ˆ1

1
1ˆ εε ,

( ) ( )
( ) ( )( )














−′′

′
<⇒>′

∗∗

∗
∗∗

1ˆ

ˆ
1ˆ

fTfT

fT
fT εε .

COROLLARY 1: Suppose ( ) ( )2

1
211ˆ εε +++≥′ ∗fT .  Then εε <∗ .

Theorem 3 and Corollary 1 say several things—they are the heart of the procedure for

approximating the functional mapping T.  Theorem 3 states first of all that an approximation

of the REE ∗f  exists, which is a fixed point of the vector-parameterized approximation T̂  of

the operator T.  This amounts to saying that finding the fixed point of T̂  is akin to finding

∗f .  In addition, the theorem and the following corollary place boundaries on the

approximation error between ∗k and ∗f , which is after all what we are ultimately concerned

with.  If we presume that the approximation error between T and T̂ is ‘small enough,’ then

Corollary 1 ensures that the error between ∗k and ∗f  is even smaller.

Theorem 3 says nothing, however, about actually finding the function ∗k .  We seem

to have traded one functional fixed point search for another.  Fortunately, the fact that ∗k  is

parameterized by a vector ∗β  allows us to define in Theorem 4 a vector mapping with ∗β  as

the fixed point.  We can then apply conventional vector fixed point search algorithms to

recover ∗β  and hence ∗k .

THEOREM 4: Let the assumptions of Theorem 4 hold.  Then there exists a vector mapping

nnT ℜ→ℜ:
ˆ̂

 such that ( ) ∗∗ = ββT
ˆ̂

, where ∗β  satisfies ( ) ∗∗ = kpk β,  and SSk n →ℜ×: .
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From Lemma 1, the mapping T
ˆ̂

 can be approximated using the second stage of two

stage learning. Then we know that the vector fixed point of the approximation T
ˆ̂

 defines the

mapping ∗k  which is in an ε-neighborhood of the rational expectations equilibrium ∗f .  As

noted earlier, since T
ˆ̂

 maps vectors into vectors, the fixed point can be found by an algorithm

such as the Gauss-Newton method.5  The following diagram summarizes the relationship

between the forecast functions, the functional operator T, and their vector mapping

equivalents:

fτ fτ+1
T

βτ βτ+1

kk

$$T

To summarize, we have shown that in theory agents can learn the REE with two stage

learning.  The key to this procedure is that agents are able to code forecast functions into

vectors.  Then the problem reduces to one of finding a fixed point in a vector space instead of

a function space.  Theorem 4 shows that the fixed point of the vector mapping, when

decoded, is the approximation of the rational expectations equilibrium.

3 Simulations

We next test the theory presented in Section 2.  As defined in Lemma 1, we have need

of a vector-valued function approximator belonging to the class of universal approximators.

We select neural networks as our universal approximator satisfying Lemma 1 (indeed,

Lemma 1 was presented in the context of showing that neural networks are universal

approximators—see Hornik et al. 1989 and 1990).  For the simulations we chose several

different functions for the law of motion, which were deterministic to reduce computation

time.  We note here that the neural network tends to learn linear functions, non-monotonic

polynomial functions, and transcendental functions faster than monotonic concave or convex

                                                
5 The two stage learning algorithm can also be used to approximate other functional mappings, such as

Bellman’s equation in dynamic programming problems.
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functions.  We thus selected laws of motion that the neural network learns both quickly and

slowly.

3.1 Simulated Intermediate Stage Learning Network

With intermediate stage learning, agents update their forecast function every τ

periods, learning the temporary equilibrium of the economy.  However, the results of Section

2.1 predict that the sequence of forecast functions derived from intermediate stage learning

does not converge to the rational expectations forecast function, but instead diverges.   To

show this numerically, we first set up a neural network to learn the rational expectations

forecast function ∗f .  The resulting approximation was then very close (in terms of the sum

of squared errors), but not exactly equal, to the true law of motion.  Hence this approximation

makes a good starting point for the sequence of temporary forecast functions (the 0f ) since

the function is in a small neighborhood of the rational expectations equilibrium.

Given 0f , we then calculated a training set by dividing the domain equally into 50

points.  We then calculated the output 0fT o  for each of the 50 points.  (We designed the law

of motion so that we could always solve the first order condition for the T operator.)  This

became the training set for 1f .  Using the same input, we then calculated an output set using

1fT o .  This became the training set for 2f  and so on.

For our law of motion under intermediate stage learning we selected a quadratic

function

( )2

1
e
tt pp += ,  3.1.1

which generates the functional REE

( )2

1

1 tt pp =+ .  3.1.2

This law of motion can also be derived from a non-stochastic OLG model.6  The price

domain was the interval [ ]5,0 .

For the law of motion defined by equation 3.1.1, we set up a network with n = 4.  We

found in this case that the sigma function which produced the fastest results was the

hyperbolic tangent function, tanh(x).  We used the Nguyen and Widrow (1990) initial

condition algorithm for the 0f  approximation.  For the rest of the approximations we let the

                                                
6 See e.g. Cass et al. (1979).
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final 0f  weights be the initial weights for the next run.  This increased the rate of

convergence.  We found that although the initial forecast function was very close to the REE,

the sequence of forecast functions generated from the TEFs diverged towards infinity.  This

is in keeping with the theoretical results presented in Section 2.1.  Figures 1-6 show this

divergence, with the REE given by equation 3.1.2.

3.2 Simulated Two Stage Learning Network

To simulate two stage learning, we first used the neural network to convert input and

output functions to vectors.  A neural network then learned the mapping between these

vectors.  The fixed point of this mapping was then the approximation of the REE, once this

vector was converted back into a neural network.  We selected the quadratic function (see

equation 3.1.1) and also selected a linear law of motion given by

( )
3

4

3

1 −= tt ppf .  3.2.1

We again used the interval [ ]5,0  as the domain.

For each law of motion we first trained the neural network on the rational

expectations equilibrium.  We then took the final weights and perturbed them 50 times for the

linear law of motion and 100 times for the quadratic law of motion.  These were taken as the

input forecast functions.7 Next we took the perturbed weights, created neural networks from

these weights, and then ran the input data through ( )( )τβ,1−tpfT  to get output data points.

On these input-output vectors several neural networks were trained, which generated a vector

approximation for each ( )ifT , where i indexes the 50 (100 in the quadratic case)

perturbations.  This gave us an input and output vector for each perturbation of the

equilibrium function.  We then trained a neural network on the 50 (100) input and output

vector pairs, as an approximation of the functional operator T.  Finally, to test if the resulting

approximation could correctly identify the rational expectations equilibrium, we ran the

approximation of the rational expectations equilibrium ( ∗k ) through the neural network

approximation of the operator T.  If the REE was to be identified, the output of the network

would be the same as the input.  In addition, we used numerical techniques to approximate

the fixed point of the vector mapping directly.

                                                
7 These are local perturbations around the fixed point of the T operator in the function space.
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For the linear case we set n = 2.  With two stage learning, a large value of n not only

makes the first stage of learning slower since there are more weights to update, but also

makes the second stage more difficult to learn, since the vector has more elements.

Therefore, we set n to as small a value as possible.  The Nguyen and Widrow algorithm

selected the initial weights for learning the REE, and we then used the final weights of that

network as the initial weights for learning each perturbation ( )ifT .  For the second stage the

network had to learn a mapping from 6ℜ  to 6ℜ .  We thus selected a larger network with n =

12, and again used the Nguyen and Widrow initial conditions.  For the quadratic law of

motion we used an identical set-up except that for the first stage n = 3.  This created a

mapping from 10ℜ  to 10ℜ  for the second stage learning, for which selected n = 20.

The results for the simulations were similar.  In both cases the network was able to

learn the vector mapping.  The final sum of squared error was .01 in the linear case and .55 in

the quadratic case.  The input-output fixed point tests for the quadratic case are shown in

Figures 7 and 8.  When we submitted the approximation of the fixed point to the network

vector mapping, the fixed point was returned, in the sense that the sum of squared errors

between the input vector and the output vector was 0.1 in the linear case and 0.01 in the

quadratic case.

Since the fixed point in the function space is a fixed point of the network

approximation, agents can find the fixed point with an algorithm such as the Gauss-Newton

method.  In this paper we use a more robust procedure, the Levenberg-Marquandt (LM)

method (see e.g. More 1977).  The LM algorithm was set with a tolerance of 0.0001 for the

maximum difference between the elements of β  and the elements of ( )β,⋅f .  With this

tolerance, in the local neighborhood of the fixed point, the LM method found the fixed point.

Figure 9 shows the graph of the fixed point in the function space found by the LM method for

the quadratic case.  The final sum of squared errors between the approximation of the fixed

point and the fixed point calculated by the LM method was 0.12.  We also note that the

stationary state of the actual REE fixed point is 1, while the stationary state of the fixed point

calculated by the LM method was 1.03, indicating that the true economy and the

approximated economy possessed essentially the same stationary state price.
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4 Conclusions

In this paper we have examined whether or not rational expectations can be learned

using incremental learning, intermediate stage learning and two stage learning in a general

single good, non-linear self-referential model.  We find two main conclusions.  First, agents

do not learn to be rational using intermediate stage learning.  Rather, the sequence of forecast

functions generated by the types of learning diverges.  Agents can, however, learn to be

rational with two stage learning.  The key difference is that with intermediate stage learning

the TEF changes, while in two stage learning the functional operator T remains fixed.  It is

this fixed nature of the functional operator which is apparently more important for

convergence than in what space (real number or function) the operator works in.

Furthermore, we find that neural networks can be part of a learning algorithm which

learns both TEFs and functional mappings.  Since neural networks learn by combining

transcendental functions in a non-linear manner, they are capable of learning non-linear TEFs

and making approximations of functions used for two stage learning.  Hence two stage

learning with neural networks is a practical, ‘hands-on’ algorithm for rational learning.

In this study the temporary equilibrium function is first order.  In OLG models with

several goods, the law of motion can be second order even when the rational expectations

forecast function is first order (see e.g. Kehoe and Levine 1984).  Analysis of the more

general model in which the law of motion possesses higher orders determines that divergence

away from the REE with incremental and intermediate stage learning is a facet of the single

good, first order economy.  In the more general OLG model, incremental learning converges

locally to the REE for an open set of economies (Shorish, 1996).

An avenue of future research worth investigating concerns the importance of the two-

step forward looking nature of intermediate stage learning. DeCanio (1979) shows that an

intermediate stage learning model which is not one-step forward looking converges to an

REE, while conversely a multi-step ahead forecast sequence was unstable using incremental

learning in Bullard and Duffy (1993).  One conclusion from this previous line of research is

that there appears to be a close connection between convergence of the learning rule and the

model within which the learning rule is embedded.  Learning seems to be a context-

dependent phenomenon.  Exactly which classes of models (in the sense of how forward

looking the model is) are learnable with both incremental and intermediate stage learning is a

question currently under study.
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In addition, we have assumed a representative agent model, where agents always

submit identical forecasts.  Although this will generally be true at the REE, it is more

reasonable to assume that agents possess many different beliefs while learning.  For example,

agents may have different initial forecast functions, or different beliefs about the temporary

equilibrium sequence or about the functional mapping.  Other future research would entail a

simulation of economies where, for example, agents begin their learning with different types

of forecast functions.

Although there is room for extensions to different models, non-linear one-step

forward looking models with rational expectations are quite common in the literature.  By

showing that the two stage learning process converges to the REE, we strengthen the results

established in the literature for these models.
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5 Appendix: Proofs

5.1 Proof of Theorem 1

Consider the TEF:

( )( )( )∫ =+− 0,,,,;, 11 dGwwpffwpz ttttt ββ .  5.1.1

(For brevity we omit the dependence of z on tw  and of G on 1+tw  in what follows).  By

Assumption A2, we can restrict our attention to an agent who learns the TEF arbitrarily

accurately. Note also that T is the implicit TEF function

( )τfTpt =  5.1.2

Hence

( )( )τετ fTNpf e
t ∈=+1  5.1.3

For ε sufficiently small, then, the convergence properties are identical to the convergence

properties of

( )( )∫ ≡ 0; dGfffTz τττ o .  5.1.4

If the operator T is unstable, the sequence of forecast functions diverges away from the REE.8

Thus,

( ) 0lim1 ≠−⇒≥′ ∗

∞→

∗ fffT
t

τ  5.1.5

By Assumption A1, ( )τfT  is Fréchet differentiable in τf  .  The Fréchet (equivalently,

Gateaux) derivative of T is found by perturbing τf  by a function hα , 1,, 1 ≤∈ℜ∈α hCh

and then finding the limit of the derivative with respect to (hereafter w.r.t.) α as α approaches

zero. We apply the derivative to τf  in equation 5.1.4:

( ) ( ) ( )( )∫ ⇒≡+++ 0; dGhfhfhfTz
d

d ααα
α τττ o

( ) ( ) ( ) ( )( )∫ +++++′
→

dGhfhfhfThzhfT αααα ττττα
o;lim 1

0

( ) ( ) ( )( ) ( ) ( ) ( )[ ]∫ =++⋅+++++
→

0;lim 1,12
0

dGhfhfhhfhhfhfhfTz αααααα ττττττα
oo  5.1.6

                                                
8 The reverse is not necessarily true.  Additional assumptions would be needed to keep stochastic realizations

from bouncing forecast functions f outside of the domain of attraction for f*.
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where iii hfz ,, ,τ  are the derivatives of hfz  and ,, τ  w.r.t. their ith arguments, respectively.

Taking the limit as α goes to zero yields a solution for the Fréchet derivative of T, T ′ ,

multiplied by h:

( )
( )( ) ( ) ( )[ ]

( )( )∫
∫ +

−=′=
∂
∂

→ dGfffTz

dGhfffhfffTz
hfT

T

τττ

ττττττ
τα α o

o

;

;
lim

1

,12

0
 5.1.7

At the equilibrium point ∗f , equation 5.1.7 becomes

( ) ( ) ( ) ( )[ ]
( )∫

∫
∗∗∗

∗∗∗∗∗∗
∗

+
−=′

dGfffz

dGhfffhfffz
hfT

o

o

;

;

1

12
 5.1.8

We now make the following side calculation.  From the definition of the REE forecasting

rule, we know that the first order condition is solved:

( ) 0; ≡∫ ∗∗∗ dGfffz o .  5.1.9

Since 5.1.9 is an identity in the price space, we can take the derivative of both sides w.r.t.

1−tp , yielding

( ) ( ) ( ) 0;; 121 =+ ∗∗∗∗∗∗∗∗∫ dGfffffzfffz oo .  5.1.10

Solving for ( )∗∗ ff1  and substituting into equation 5.1.8 gives

( ) ( ) ( )
( ) h

dGfffz

dGfhfffz
hfT +=′

∫
∫

∗∗∗

∗∗∗∗
∗

o

o

;

;

1

2
. 5.1.11

Now the norm of the derivative of T can be found by taking the sup norm of both sides (recall

that the underlying arguments tt wp  and 1−  are drawn from compact sets):

( ) ( ) ( )
( ) h

dGfffz

dGfhfffz
fT

h

+=′
∫

∫
∗∗∗

∗∗∗∗

=

∗

o

o

;

;
sup

1

2

1

.  5.1.12

From the Mean Value Theorem, since 1+tw  has compact support there exists a 1ˆ +tw   and

constants 10  and kk such that

( ) ( )( )( ) ( )
( ) h

dGfffz

wfhkkwfffz
fT tt

h

+
−

=′
∫ ∗∗∗

+
∗

+
∗∗∗

=

∗

o;

ˆ,ˆ,;
sup

1

10112

1

.  5.1.13

Using the properties of norms, we find

( )
( )[ ]

( )( )( )
( )

( )
⇒








⋅











 −
=′ +

∗

∗∗∗
+

∗∗∗

=

∗

∫∗ h

wfh

dGfffz

kkwfffz
fT tt

hfh

1

1

0112

1,

ˆ,
1,

;

ˆ,;
sup

o
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( ) ( )( )( )
( ) ⇒











 −
=′

∫ ∗∗∗
+

∗∗∗

Ω∈∈

∗ 1,
;

ˆ,;
sup

1

0112

, dGfffz

kkwfffz
fT t

wSp o

( ) ( )( )( )
( ) 11

;

ˆ,;
sup

1

0112

,
≥+

−
=′

∫ ∗∗∗
+

∗∗∗

Ω∈∈

∗

dGfffz

kkwfffz
fT t

wSp o
.  5.1.14

The rational expectations equilibrium  is locally unstable with incremental or intermediate

stage learning.

■

5.2 Proof of Theorem 2

Recall equation 2.1.12, which specifies the evolution of forecast functions:

( )τττ ffTf ;1 oΨ=+ .  5.2.1

Following Theorem 1, given ε sufficiently small we have

( ) 0lim1 ≠−⇒≥ ∗

∞→

• fff
df

d
t

τ
τ

Ψ
.  5.2.2

By Assumption A1 and the differentiability of Ψ, equation 2.1.12 is Fréchet differentiable

w.r.t. τf .  Again following Theorem 1,

( )( ) ( ) ( )( )hffThfTffTh
df

d
τττττ

τ

ΨΨΨ
;; 21 +′= ,  5.2.3

which when evaluated at the equilibrium yields

( ) ( ) ( )hffhfTffh
df

d

ff

∗∗∗∗∗

=

+′=
∗

;; 21 ΨΨΨ

τ
τ

.  5.2.4

Substitution of hT ′  from equation 5.1.11 from Theorem 1 then gives

( ) ( ) ( ) ( )
( ) ( )hff

dGfffz

dGfhfffz
ffhffh

df

d

ff

∗∗
∗∗∗

∗∗∗∗
∗∗∗∗

=

Ψ+Ψ+Ψ=Ψ

∫
∫

∗

;
;

;
;; 2

1

2

11
o

o

ττ

.  5.2.5

We apply the Mean Value Theorem to the above equation to get

( ) ( ) ( )( )
( ) ( ) ( )




























Ψ

−
ΨΨ=Ψ

+
∗∗∗

∗∗∗

∗∗∗
∗∗∗∗

= ∫∗
h

wfh

h

ff
dGfffz

kkfffz
ffff

df

d
t

ff

12

1

012
11 ˆ,;

;

;
;;

o

o

ττ

. 5.2.6

Taking the sup norm of both sides yields
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( )[ ]
( ) ( ) ( )( )

( ) ( ) ( ) ⇒



























Ψ

−
ΨΨ=Ψ

+
∗∗∗

∗∗∗

∗∗∗
∗∗∗∗

∫∗

h

wfh

h

ff
dGfffz

kkfffz
ffff

df

d
t

hfhh
12

1

012
11 ˆ,;

;

;
;;sup

o

o

τ

( ) ( ) ( ) ( )( )
( ) ( )∗∗

∗∗∗

∗∗∗
∗∗∗∗∗ Ψ+

−
Ψ+Ψ=Ψ

∫
ff

dGfffz

kkfffz
fffff

df

d
;

;

;
;; 2

1

012
11

o

o

τ

.  5.2.7

As in Theorem 1, we perform a side calculation based on the consistency condition

2.1.12:

( ) ⇒≡ ∗∗∗ fff ;

( ) ( ) 1;; 21 =+ ∗∗∗∗ ffff .  5.2.8

Substituting equation 5.2.8 into 5.2.7 yields

( ) ( ) ( ) ( )( )
( ) ( )∗∗

∗∗∗

∗∗∗
∗∗∗∗∗ Ψ−+

−
Ψ+Ψ=Ψ

∫
ff

dGfffz

kkfffz
fffff

df

d
;1

;

;
;; 1

1

012
11

o

o

τ

, 5.2.9

and from the triangle inequality we finally have

( ) ( ) ( ) ( ) ( )( )
( ) ⇒

−
Ψ+Ψ−+Ψ≥Ψ

∫ ∗∗∗

∗∗∗
∗∗∗∗∗∗∗

dGfffz

kkfffz
fffffff

df

d

o

o

;

;
;;1;

1

012
111

τ

( ) ( ) ( )( )
( ) 1

;

;
;1

1

012
1 ≥

−
Ψ+≥Ψ

∫ ∗∗∗

∗∗∗
∗∗∗

dGfffz

kkfffz
fff

df

d

o

o

τ

.  5.2.10

■

5.3 Proof of Proposition 1

From Lemma 1 we know that ( ) 1
1 ,,0, BS

fTfTS CpkBCf ×∈∈∃>∀∈∀ oo ββκ  such that

( ) ( ) κβ <− fTpkpfT oo , .  5.3.1

This allows us to define a new mapping ( ) ( )fT
k pkfT oβ,≡ .  Again from Lemma 1 we know

that there is a vector-parameterized approximation to this mapping, i.e.

( )fTS kpkCf oβν ,0,1 ∃>∀∈∀  such that

( ) ( ) νβ <− fT
k

kpkfT o, . 5.3.2

Then by the triangle inequality and using the inequalities 5.3.1 and 5.3.2 we have

( ) ( ) ( ) ( ) ( ) ( ) ενκββββ ≡+<−+−<− fTpkpkpkfTpk fTfTfTfT kk oooo ,,,, .

5.3.3
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Define ( ) ( )fTkfkfT oβ,ˆ ≡  for brevity. The, since κ and ν are arbitrary, we have that 0>∀ε ,

( ) ( ) ε<− fTfT̂ . 5.3.4

This concludes the proof of the first part of Proposition 1.

To prove the second part, we first write out the definition of the Fréchet derivative for the

operators T and T̂ :

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )hofThfThfT

hofThfThfT

−−+=′
−−+=′ ˆˆˆ

.  5.3.5

Taking the sup norm of both sides and subtracting the equations in 5.3.5 yields (ignoring

higher order terms)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ≤−′−+′−−′−+′=′−′
==

hofThfThofThfTfTfT
hh 11

supˆˆsupˆ

( ) ( ) ( ) ( ) ( ) ( ) ≤+′++′−−′−+′
=

hofThfThofThfT
h

ˆˆsup
1

( ) ( ) ( ) ( ) ε2ˆsupˆsup
11

≤′−′++′−+′
==

fTfThfThfT
hh

. 5.3.6

■

5.4 Proof of Theorem 3

We omit the first two parts of the proof for brevity—they follow directly from the existence

of ∗f  and from the fact that T̂  approximates T arbitrarily closely.  For the third part, we first

suppose that 1ˆ <′T .  We know that

( ) ( ) ⇒≡−=− ∗∗∗∗∗ εfTkTfk ˆ

( ) ∗∗∗ =+= εζβζ ,.pfk . 5.4.1

From the triangle inequality and Proposition 1 we have

( ) ( ) ( ) ( ) ε+−≤− ∗∗∗∗ fTkTfTkT ˆˆˆ .  5.4.2

Using the definition of the Fréchet derivative (and ignoring higher order terms)

( ) ( ) ( ) ( ) ( ) ( ) ∗∗∗∗∗∗∗ ′<′=−−=− εζζ kTkTkTkTfTkT ˆˆˆˆˆˆ . 5.4.3

Substituting 5.4.1 and 5.4.3 into 5.4.2 gives
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( ) ( ) ( ) ⇒+′≤− ∗∗∗∗ εεkTfTkT ˆˆ

( )∗
∗

′−
<

kT̂1

1ε .  5.4.4

Now suppose that 1ˆ >′T .  Since T̂  is continuous, there exists a function af  such that

( ) ∗= ffT a
ˆ .  Then by the triangle inequality

∗∗∗∗ −+−≤− fffkfk aa .  5.4.5

By the Intermediate Value Theorem, there exists a function bf  such that

( ) ( ) ( ) ⇒−=′− ∗∗ fTfTfTff aba

( )b
a fT

ff
′

<− ∗ ε
.  5.4.6

Also from the Intermediate Value Theorem there exists a function cf  such that

( ) ( ) ( ) ∗∗∗ =−=′− εaca fTkTfTfk ˆˆ .  5.4.7

Substituting equations 5.4.7 and 5.4.6 into 5.4.5 yields

( ) ( ) ⇒
′

+
′

<
∗

∗

bc
fTfT

εεε
ˆ

( )









−′′

′
≤∗

1ˆ

ˆ

TT

T
εε .  5.4.8

■

5.5 Proof of Corollary 1

From Theorem 3 we know that when 1ˆ >′T ,

( )









−′′

′
≤∗

1ˆ

ˆ

TT

T
εε .

From this it is evident that if

[ ]1ˆˆ −′′≤′ TTT ,  5.5.1

 then εε ≤∗ .  From Proposition 1,
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TTTT ′+<′⇒<′−′ ˆ22ˆ εε .  5.5.2

Substitution of the above equation into 5.5.1 then yields

[ ][ ]1ˆ2ˆˆ −′+′≤′ TTT ε .  5.5.3

Suppose for the moment that 5.5.3 holds with equality—the equation can then be simplified

to

( ) ( ) ⇒=−′−+′ 02ˆ22ˆ 2
εε TT

( ) ( )2

1
211ˆ εε ++−=′

∗
T ,  5.5.4

where 
∗

′T̂  is the (positive) value of the solution to the above quadratic equation.

By inspection, it is clear that if 
∗

′>′ TT ˆˆ  then equation 5.5.1 obtains, that is if

( ) ( )2

1
211ˆ εε ++−>′T ,

then

( ) εεε <














−′′

′
≤∗

1ˆ

ˆ

TT

T
.

■

5.6 Proof of Theorem 4

First define a vector mapping ℜ→ℜ×ℜ nnG :  as

( ) ( )( ) ( )11 ,,ˆ, ββββ pkpkTG −≡ .  5.6.1

From Proposition 1 we can infer that there exists a mapping ℜ→ℜnv :  such that

( ) ( )βββ vG =1, , and that

( ) ( )( ) ( )βββ ,,ˆ iff 0 pkpkTv == .  5.6.2

Using the Implicit Function Theorem we know there exists a mapping nnT ℜ→ℜ:
ˆ̂

 such
that

( ) ( ) 0
ˆ̂

, =−


 βββ vTG .  5.6.3

From this, it is clear that ( ) ∗∗ = ββT
ˆ̂

 if and only if ( )( ) ( )∗∗ = ββ ,,ˆ pkpkT .
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Since ( )∗β,pk  is a fixed point of T̂ , by local uniqueness it must be true that ( ) ∗∗ = kpk β, ,

and the properties of Theorem 3 are satisfied.

■
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6 Figures

Figures 1 – 6: Divergence of sequence of forecast functions using intermediate stage learning.

Solid line = REE, Dashed Line = forecast function. Starred points = training grid of TEF

values.

Figure 1
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Figure 2

Figure 3
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Figure 4

Figure 5
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Figure 6

Figure 7.  Two Stage Learning: Neural Network Approx. and Actual Fixed Point
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Figure 8. Two Stage Learning: Output of Operator T Approximator when Fixed Point
Approx. is Input

Figure 9. Two Stage Learning: LM Approximation and Actual Fixed Point
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