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Abstract

The paper considers the task of selecting a flexible nonlinear model
which can be used as a baseline model. The baseline model may be used
as a testing ground for more structural models which are congruent with
economic theory. From the limited empirical evidence obtained here it
is tentatively suggested to find a baseline nonlinear flexible form for a
univariate time series by following the procedure: 1. Recursively, based
on h extra periods at a time specify and estimate a linear form by use
of model selection criteria like Cross Validation and/or BIC. 2. After
a preliminary test for linearity, recursively, specify and estimate flexible
regression models like the FNL suggested by Hamilton (1999) and the
Projection Pursuit model suggested by Aldrin, Boelviken and Schweder
(1993) for cases of moderate nonlinearities. Use the Cross Validation and
the BIC criteria. 3. Based on the remaining part of the data set select
the best nonlinear flexible form by use of forecast criteria measuring the
absolute forecast performance and the directional forecast performance
in h-steps ahead predictions, and compare the best flexible form to the
linear specification by use of the Diebold Mariano tests, see Diebold and
Mariano (1995) and the forecast encompassing tests suggested by Harvey,
Lebourne, and Newbold (1998). The results indicate that the FNL method
and the Projection Pursuit Model are the preferable models to apply and
that the CV and BIC are the best selction criteria, while the forecast
encompassing tests properly modified as suggested by Harvey et. al.(1998)
possess better power properties than the Diebold-Mariano test.
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1 Introduction

Due to thresholds, capacity constraints, rationing, institutional restrictions like
tax brackets, and asymmetries of different kinds, nonlinear relations are an inte-
gral part of many economic theories. Nonetheless, most empirical econometric
models are basically linear. Several explanations for this state of the art can
be given in addition to the obvious one of familiarity and convenience. One of
the possible explanations is based on the procedure often applied when deciding
on the application of a nonlinear or linear specification. In most cases a linear
model is specified at the outset and a nonlinear specification is only considered if



some test for nonlinearity indicates that the linear specification may be in doubt.
Unfortunately, very little information as to what kind of nonlinear model should
be applied, can be extracted from most or all of the existing tests for nonlinear-
ity implying that the actual choice of nonlinear model is rather arbitrary and
tailored to the data in the sample applied. In fact, it often turns out that the
out of sample forecast performance of the rejected linear model is far better than
the out of sample forecast performance of the nonlinear alternative. As out of
sample forecast performance is one of the preferred means to guard against the
inherent danger of overparameterized nonlinear models, such evidence typically
implies that the nonlinear specification of the model is in doubt. Hence, the lin-
ear model often ends up as the preferred specification. On the other hand, even
if the nonlinear specification adopted should have better forecast performance
than the linear specification, there may exist another nonlinear specifications,
which in a better and more parsimonious way represents the theoretical and
empirical information available. If this is the case, how do we avoid ending up
with a nonlinear specifications which at best has little credibility as it has only
been chosen because it performs better than a specific linear model, and maybe
is at odds with a more general data coherent nonlinear model?

In accordance with the general to specific modelling strategy, one might
argue that the best way to proceed is to start by applying a specification flexible
enough to contain the linear and a wide range of nonlinear specifications as
special cases. The flexible nonlinear specification can then play the role of a
base line model encompassing the class of models within which more specific
and interpretable models must be found. The more specific models must then
be tested against the general model and not rejected in order to be applied in the
subsequent analysis. Two major problems exist. Firstly, how do we determine
the base line flexible model in a feasible and cost effective way, and secondly, how
do we avoid that the base line model is an overparameterized model, overfitting
the sample applied? The answer could be to apply one of the flexible nonlinear
regression models available specified in a computer intensive but labour saving
way and base the choice of base line model on the relative forecast accuracy of
the model in an out of sample context. A related approach to the one suggested
here is advocated by Swanson and White (1995, 1997a, 1997b) and Stock and
Watson (1998). The approach is applied in finding nonlinear components in
US macroeconomic series. Both Swanson and White and Stock and Watson
select the preferred model based on the BIC' criterion, and while Swanson and
White applies a neural network nonlinear model Stock and Watson also apply
exponential smoothing and smooth transition autoregressions. In both cases
the results are quite favourable to the linear model, but we will argue below
that this result may be due to the choice of model selection criterion and to
the class of nonlinear models used in the comparisons. The baseline model may
be chosen among several flexible nonlinear regression models available in the
literature .

In this paper we consider flexible nonlinear regression models such as Hamil-
ton’s Flexible Regression Model (FNL), see Hamilton (1999) , the Neural Net-
work Regression Model (ANN), see White (1992) , and two versions of the Pro-



jection Pursuit Regression Model (PPR). The first version of the PPR model
is based on the algorithm suggested by Friedman and Stuelze (1981) (PPR1)
and the second is suggested by Aldrin, Boelviken, and Schweder (1993) to be
applied in cases of moderate non-linearities (PPR2). The FNL and ANN are
parametric models while the PPR models are nonparametric.

Although the applications of the flexible models in the present context are
restricted to univariate models the alternative flexible models are chosen among
the class of models which can easily be generalized to the multivariate case. The
model selection within each of the four classes of models is made by a forward
stepwise procedure, where a simultaneous estimation method is applied at each
step, and where the model selection criteria applied are the AIC criterion, the
BIC criterion or Cross Validation (CV'). The results of the applications indicate
that the C'V criterion and in some cases the BIC criterion should be preferred
as they lead to the best forecasting models. The predictive precision of the
flexible regression models is evaluated by use of absolute forecast performance
measures such as for instance the Mean Square Error and directional forecast
measures such as the degree of diagonal concentration. In order to compare the
four different models we also apply the Diebold and Mariano test, (DM), see
Diebold and Mariano (1995) for relative predictive accuracy and the forecast
encompassing test suggested by Harvey, Leybourne, and Newbold (1998), in
addition to a test based on Spearman’s rank correlation coefficient. In the
applications performed below only the forecast encompassing tests seem to have
the power to separate nonlinear models from linear models.

Tentatively, the results suggest that the small sample power properties of
the forecast encompassing tests are better than the small sample properties of
the Diebold-Mariano test, at least when the modelling procedure starts from
the linear specification and adds the nonlinear parts. In addition, the size prop-
erties of the encompassing tests are quite acceptable, as shown by Harvey et.
al. (1998). The procedures are applied to the growth rates in US industrial
production and US unemployment in an attempt to make an additional contri-
bution to the ongoing discussion of the possible existence of asymmetries and
nonlinearities in the US business cycle!. For both series the results indicate
that the forecast accuracy of the flexible regression models is in general better
than the forecast accuracy of the linear models. Among the non-linear models
Hamilton’s flexible regression model and a project pursuit model applicable in
case of moderate non-linearities seem preferable as the choice for the baseline
model. The outline of the presentation is that the flexible regression models are
presented in Section 2, while Section 3 contains a presentation of the procedure
suggested when choosing the baseline model. The first subsection contains the
presentation and application of the tests for linearity applied, while the second
subsection contains the discussion of model selection and estimation procedures.
The last subsection describes the real time forecast comparison between the best
linear and nonlinear models. Section 4 contains the conclusions.

1The data may be downloaded from
http://www.econ.au.dk/vip\-htm/shylleberg/webpage /shpage.html



2 Flexible Regression Models

Four Flexible Regression Models will be considered. Three of these, the Neu-
ral Network Regression Model, see White (1992), and the Projection Pur-
suit Regression Model , see Friedman and Stueltze (1981), Huber (1985) and
Hérdle (1990) and the Projection Pursuit Regression Model for moderate non-
linearities, see Aldrin, Boelviken and Schweder (1993) are already well known in
the literature although applications in the field of dynamic time series analysis
in other areas than financial markets are limited. The fourth approach - denoted
Hamilton’s Flexible Regression Model - is novel and due to Hamilton (1999).
While the Neural Network model and the the Projection Pursuit models specify
the nonlinear components as part of the mean function the model suggested by
Hamilton introduce the nonlinear components as part of the covariance matrix
of the disturbance term.

2.1 Hamilton’s Flexible Regression Model.

The basic idea underlying the flexible regression model approach suggested by
Hamilton (1999) is to view not only the endogenous variable as a realization of
a stochastic process but also to consider the functional form of the conditional
mean function itself as the outcome of a random process. Consider the model?

Ye = Py (T1,6) + & (1)

where €; is a sequence of NI(0,0?) error terms and i, (2, 6) is a function of a
k x 1 vector x;, which may include lagged dependent variables. Let us represent
the mean of the conditional distribution i.e. iy, (2, 0) as having a linear part
and a stochastic nonlinear part i.e. as 3

Ppa(we, 8) = 2,8+ Am(g © ) (2)

where for any choice of z, m(z) is a realization from a random field with the
asymptotic distribution

m(z) ~ N(0,1) (3)
E(m(z)'m(w)) = Hi(h) (4)
and where h is defined as h = $[(z — w)/(z — w)]2. The realization of m(.) is

viewed as being predetermined with respect to {z1,.., 21, €1,..,er} and m(.) is
therefore considered to be independent of {x1,..,z7,€1,..,er}. The covariance
matrix Hy(h) is defined by

Gr_1(h,1)/Gr_1(0,1) ifh<1
Ham:{ (1 1)/Gis(01) iR <1 )

2For the sake of convenience it is assumed in the following that all variables are demeaned.
3Here g is a k x 1 vector of parameters and ® denotes element-by-element multiplication
i.e. gOz is the Hadamard product. 3 is a kx1 vector of coefficients.




where Gg(h,r), 0 < h <7 is?

Gr(h,r) = f(ﬁ —2)hae (6)

Closed form expressions for Hy(h) for k = {1,..,5} are provided by Hamilton
(1999) who also gives a general description of the statistical properties of the
random field®.

Since it is not possible to directly observe m(z) - for any choice of z - we
cannot observe the functional form of sz, (z¢,6). Hence inference about the
unknown parameters of the model summarized by 6 = {8,),g,0} must be
based on observing the realizations of y; and z; only. For that purpose rewrite
model (1) as

y=X0B+u (7)

where 3 is a T x 1 vector with t’th element equal to y¢; , X a T X k matrix
with ¢'th row equal to ac; and v a T x 1 vector with ¢#'th element equal to
Am(g ® z¢) + €. Conditional on an initial set of parameters ), g, and by defining

= 2and W(X;g,() = ¢?H + Ip we may obtain the GLS estimate of the
parameters of the linear part of the model consisting of # and o as

Br(g.Q) = [X'WH(X;0, Q)X X' W™ (X;9,¢)y 8)
70,0 = Flv— XBrlo, /W (Xi0,0ly — XBrle.0) )

where Iy is the identity matrix of dimension (T x T') and the {t, s} entry of the
matrix H - denoted H (%, s) - is equal to

o Hk(hts) if hts < 1
Ht.s) = { 0 ifh,>1 (10)
1o~ <1
his = 5@ -5 (@ — )2
Ty = gOxy

Based on the ideas of Wecker and Ansley (1983) , Hamilton (1999) shows, that
the concentrated log likelihood function can be written as

T T. T
L0, X:9,0) = —5 n(2m) ~ T d3(9,0) ~ 3 MW (30,01 5 (11)

4Notice Go(h,r) = h —r, and G} (h,r) can then be computed recursively by

h
Gilhr) = —rp(® )M
kr?
Gr_o(h
+1+k k—2(h,T)

for k=2,3,....

5The correlation between m(z¢) and m(ws) is given by the volume of the intersection of
a k dimensional unit spheroid centered at z; and a k dimensional unit spheroid centered at
ws relative to the volume of a k dimensional unit spheroid. Hence, the correlation between
m(z¢) and m(ws) is zero if the Euclidean distance between z; and ws is > 2.



The value of the concentrated likelihood function is found using the values of
Br(g,¢) and 67.(g, ¢) found from equation (8) and (9). A new set of values for g
and ( is selected and a new value of the concentrated likelihood function (11) is
found again using the new values of BT (9,¢) and 52(g, ¢) found from equation
(8) and (9). Once the estimates of (g, () maximizing equation (11) have been
obtained, a new estimate of 3, and 5% is given from (8) and (9).

From the specification in (7) it is clear that the nonlinearities are introduced
into the Hamilton model through the specification of the error covariance matrix.

The estimator of the conditional mean function s, (x¢,8) is given by the
t'th row of

XBy + Po(Py + 5717) |y — X By (12)

where the {¢, s} entry of the matrix Py - denoted Pg(¢, s) - is equal to

NHp(hes) s <1
Po(t.s) = { ]6( ) h;>1 (13)
1, - s~ ~ 11
his = Gl(F = T) (@ - T (14)
T = 9O (15)

as shown by Hamilton (1999).The estimator of the conditional mean function
will be consistent for x(.) belonging to a very broad class of deterministic non-
linear functions. This result will also apply in the case of u(.) being linear.
Since we are going to evaluate the forecast accuracy of the model out of sam-
ple and equation (12) only works for cases where the conditional mean func-
tion is evaluated at points observed in the sample, a modification must be
made. To be more specific, in order to obtain the maximum likelihood es-
timate of ji4,, and ¢, denoted fif,, and ¢ respectively. we seek to calculate

ﬁ’}nl(ac*,g),where z* = {a7, 25, ..,z } does not belong to the sample. If we let

-~

Pg(t) denote the covariance between jis,,;(w¢,6) and fi},,; (¢, ), we can obtain

-~

an estimate of u},,(z*,0) as

Wi (a*,8) = XBy + Py (Po+63:1r) Y[y — X5y (16)
where

Py o= {Pi(t),t=1,2,..T} (17)

ey [ NHe(hy) by <1
r = {0 (18)

1 ~ ok ~ ~%\1%
o= Sl@ Y@ T (19)
%t = g (20)
T = goa* (21)

for t = 1,..,T. In equation (16) Py and P; denote Py and P} evaluated at the
maximum likelihood estimates of A and g.



2.2 The Neural Network Regression Model

Neural networks models are nonlinear models that can be specified to fit past
and future values of a time series hereby extracting hidden structures and rela-
tionships governing the data. In a traditional statistical context neural networks
can be considered a nonlinear, non-parametric inference technique that in the
unconstrained form is data driven and model free. A priori the relationships
between input variables and output variables are unconstrained and no prede-
termined parameters are required to specify the model. Let us consider the
single hidden layer feedforward® network in which the output y; given inputs z;
is determined as

Yt = uan'n(xh ’{) + & (22)
where
q
/'l’ann(xt: ’{) = ml/‘ﬂ + Zejd)j (‘rf‘,/)/j) (23)
j=1
K = {/67917927""0(17717"77(1} (24)

In this type of neural network k£ input units send the signals z;; to so-called
"hidden” units across weighted connections v,; for ¢ = 1,.,k and j = 1,..,q.
There are in total ¢ hidden units each observing the weighted sum of the k input
signals, that is, hidden unit j observes x;y; where x; = {x1,..,xp} and 7v; =
{715+ Y&j - The hidden unit j then outputs a signal ;(z}7,) where ¥, denotes
the ”activation” or ”squashing” function commonly assumed to be bounded
and monotonically increasing. Following White (1989) we take the activation
function to be a logistic function and to be identical for all hidden units, i.e.
Yi(xy;) = Y(aty;) = (1 + exp(fx,’ffyj))_l for 5 = 1,..,q. Furthermore, we
augment the single hidden layer network by direct links from the input units to
a single output with weights 8 = {3, .., 8;,} implying that the neural network
model will have a linear component and assume that the output also contains
a white noise term €, ~ nid(0,0?). Finally, we let 6 = {61, ..,0,} denote the
hidden-units-to-output weights. The parameters of the model and hence the
estimate of the conditional mean function is obtained by applying nonlinear
least squares, NLS, i.e. by solving

Hli{il’l E(y — Hann (xta K))Q (25)

The NLS procedure may converge to a local rather than a global optimum and
therefore proper starting values are known to be of a very important matter.
For every single specification under consideration we therefore worked with 5
different sets of parameter vectors of starting values and iterated from these
until convergence. The iterated parameter vector corresponding to the smallest

8The model is denoted feedforward because signals flow from input to output and not vice
versa.



value of the objective function given by equation (25) was chosen. As shown by
White (1992) the single hidden layer feedforward neural network models possess
the universal approximation property that it can approximate any nonlinear
function to an arbitrary degree of accuracy with a suitable number of hidden
units. Of course this tells us nothing about the performance of such techniques
in practice, and for a given set of data it is possible for one technique to dominate
another in terms of accuracy etc.

2.3 The Projection Pursuit Regression Model

One very closely related approach to the parametric Neural Network Regression
Model is the semiparametric Projection Pursuit Regression Model proposed by
Friedman and Stueltze (1981) and Huber (1985), see also Hardle (1990). For a
single output variable y; and a variable input vector given by x; the Projection
Pursuit Regression Model can be written in the form

Yt = Hppr (T2, 0) + & (26)
where
/'l’pp'r (‘Tta Q) = xll‘/B + ij(pj (‘T;(I)j) (27)
j=1
9 = {/67("}17'-'-"‘)1}7(1)17"7@0} (28)

The parameters ®; define the projection of the input vector z; onto a set of
planes labelled by j = 1, .., v. These projections are transformed by the nonlinear
activation functions denoted ;(.) and these in turn are linearly combined with
weight w; and added to the linear part, ;3 to form the output variable y;.

The first algorithm for obtaining an estimate of o is the original algorithm
suggested by Friedman and Stueltze (1981), but with a few differences. Firstly,
the algorithm is augmented such that the estimation of the weights w; for
7 =1,..,v can be obtained using simple ordinary least squares. Secondly, least
squares techniques is used for concentrating out the linear part of y. Thirdly,
cubic splines with automatic data dependent determination of the smoothing
parameter is applied in the estimation of the empirical activation functions ¢;,
j=1,..,v. Finally, AIC, BIC and CV in turn are used as stopping rules with
respect to the choice of the appropriate number of activation functions given
by v, but also as determinants of the number of regressors, k; for j = 1,..,v.
included in every activation function.

Let y and X be as defined in equation (7). The set of regressors included in
the various activation functions is allowed to differ. Let X7 denote the matrix of
the k; regressors included in activation function ¢;. How to choose the proper
X7 is of course one of our main concerns and it will be discussed in details later.
Furthermore, we define zv*! = X**'®,, ;. The algorithm denoted PPR1 can
then be described as follows



1. Condition on the regressors by computing the residuals 7 for v = 0 and
provide initial starting values for the parameters ®, and w,. In particular

o= y— XY(XVXY)THXYy) (29)
&, ~ U(-1,1) (30)
wy, ~ U(-1,1) (31)

where U is the uniform distribution. In order to explore the nature of the
local optima repeated runs are important and necessary when estimating
projection pursuit models. As for the ANN model we considered 5 different
sets of starting values every time a new hidden unit was introduced. These
were all drawn from a uniform distribution defined on the unit interval.

2. Find the projection vector ®,41 € R¥+1(||®,41|| = 1) that maximizes the
goodness of fit measure R2, | (P,41) defined as

R 1(Pug1) = 1= (F'F) THFY = Dot By (271)) (7 — @v+1¢u+1(7’€+1)))
32

where the estimated empirical activation function @, (z**!) is deter-
mined by the cubic spline approach

vty = min Sy, (w) (33)

w(zvt1)

Sn(w) = (y—w") (y —w=") +As/(w”(f“))26127(39“)

¢v+1(2

with the weight &y.41 obtained from a linear regression of 7 on @, (2**1)
as

Wyp1 = (@v+1(ZUH)I@;H(ZUH))A@UH(ZUH)IW) (35)

The basic idea underlying the cubic spline smoothing approach is to pro-
duce a flexible curve that provides a good fit of the data, but without
possessing too much local variation. In the current context this approach
translates into choosing the activation function ¢, as the functional form
w(z) that minimizes the Euclidean distance to y but with a penalty for
local variation. Without any penalty included in choosing w(z) we would
obtain a perfect fit to the data. In the cubic spline smoothing approach
the class of curves that provides a perfect interpolation is avoided by intro-
ducing a so-called roughness penalty for rapid local variation. There are
a number of ways to quantify local variation but the cubic spline approach
uses the second order derivative, and the roughness penalty is given by

/ w”(2)%dz (36)

10



which corresponds to the second term in the expression for S»,. Hence,
the empirical activation function ¢; applied is the function w(z) that
minimizes a weighted sum of residual errors and local variation where
the weight associated with the local variation is given by the smoothing
parameter \;.The smoothing parameter A\, in the univariate cubic spline
regression function is determined conditional on a training data set (to be
defined later) and according to the generalized cross validation principle
coined by Wahba (1977).

3. If R? 1 is sufficiently small, stop the algorithm, otherwise go to step 4

4. Construct a new set of residuals
P =7 =g, () (37)

and add an additional activation function. Furthermore update v = v+ 1
and go back through step 2 and step 3.

One important difference between the neural network model described above
and the projection pursuit model of this section is that each hidden unit in the
projection pursuit regression is allowed a different activation function and in par-
ticular that these functions are not prescribed in advance, but are determined
from the data as part of the ”training” or estimation procedure. Another differ-
ence is that the parameters in the projection pursuit regression are optimized
cyclically in groups while those in the neural network are optimized simultane-
ously. Specifically, estimation in the Projection Pursuit Regression Model takes
place for one hidden unit at a time, and for each hidden unit the second-layer
weights are optimized first, followed by the activation function and the first
layer weights. The process is repeated for each hidden unit in turn until a suffi-
ciently small value of the error function is achieved or until some other stopping
criterion is satisfied. Since the output y; depends linearly on the second-layer
parameters, these can be optimized by linear least square techniques. Optimiza-
tion of the activation functions ¢,(.) represents a problem of one-dimensional
curve fitting for which a variety of techniques can be used, as for instance the
one based on cubic splines or the one based on the Nadaraya-Watson type kernel
smoother, see Hardle (1990) for a discussion. Here we have chosen to work with
the cubic spline smoother.

Finally we will consider a flexible regression model denoted PPR2 which is
very closely related to the PPR model outlined above. However, it is much
simpler at the expense of being not quite as flexible as the standard algorithm.
Aldrin, Boelviken and Schweder (1993) argue that nonlinear structures in prac-
tice often are only moderately deviant from a linear structure. These moder-
ate nonlinear structures include S-shapes and other moderate curvatures, slight
jumps in derivatives or local dips or bumps. Upon this argument they are able
to implement a very simple and fast algorithm for estimation of the conditional
mean function given by equation (20) under the assumption that it is nonlinear
but monotone or approximately monotone. Aldrin, Boelviken and Schweder

11



(1993) provide extensive numerical evidence showing that the PPR2 model out-
perform the PPR1 model when the nonlinearity is moderate and the signal to
noise ratio is small. In economics the use of aggregated data is quite common
and as the degree of nonlinearity can diminish with aggregation, see Granger
and Terésvirta (1993) a projection pursuit model like PPR2 is an obvious pos-
sibility.

Consider a simple version of the model given by equation (26) - (28) such as

y = @(XP)+e (38)
= p(2) +e

where 1y and e are vectors with y; and €; as the t'th elements, respectively. And
assume without loss of generality that the columns of the matrix X with the t'th
row equal to a} have zero mean and that the coefficient vector @ is standardized
so that ®'%,® = 1 where 3, = E(X’X). Furthermore, denote the residual
vector as r = y — X'®% where ®° = Y73, where ¥, = E(X'y). In
addition, let the predictor be z = X ®, and consider the vector u = (X —29'%,)
and notice that z and u are uncorrelated as FE(z'u) = E(2/(X — 29'%,)) =
Y, — B, Y'Y, = P'Y, — 'Y, = 0. Premultiplying y = ¢(XP) + € by X’
then imply

X'y = X'¢(z)+ X'e (39)
= X'p(z) +u'p(z) —u'p(z) + X'e
= .92 p(z) +up(z) + X'e

and by applying the expectation operator we obtain
Say = X2 PE(2'¢(2)) + E(u'¢(2)) (40)

Finally, premultiplication by ¥, gives

" = nd + B (41)

where
n = Ele(2)] (42)
B = S;E[We(2)] = 5 E[(X — 20'5,) ¢(2)] (43)

Equation (41) writes the OLS estimate ®°* as a sum of one term proportional to
the true direction vector ® and another term B. As u and z are uncorrelated, the
correlation between u and the transformation ¢(z) may be expected to be small.
Indeed, it can be shown, see Aldrin, Boelviken and Schweder (1993), that if X
follows an elliptically contoured distribution like the Gaussian, E[u'¢(z)] = 0
whereby B = 0 and ®°'* = 1®.Also notice that if ¢(2) is linear i.e. p(z) = X®
then n = E(2'¢(z)) = ®'3,® = 1 and the ordinary least square estimator will
be equal to the true parameter ®°* = ®. Heuristically, = E[2'(2)] measures

12



the correlation between the linear model z = X® and the nonlinear model
(X ®). If this correlation is low then ®°** must be expected to be far from @,
but if the correlation is reasonably high, which is true in the case of moderate
nonlinearities, ®°* must be expected to be close to ®. This suggests to take
the linear ordinary least squares estimate ®°/* for ® and then obtain $(2) by
smoothing y or in the general case where we have a linear part as in equation
(26) 7 in this direction.

To sum up the simple algorithm based on the ordinary least square estimator
will work as long as 1.) 7 is not to close to zero implying that only moderate
nonlinear structures can be analyzed and 2.) B is of a small magnitude requiring
that X should be close to but not necessarily perfectly Gaussian distributed.

The first step in the modified algorithm suggested by Aldrin et al. (1993)
is to construct a consistent sample version of @?ls n,; and B; — denoted &\)gls 7;

and Ej -for j = 1,..,v in order to get a consistent estimate of the true direction
vector @;. In our setup the sample version of equation (41) equals

B = GO+ B+ (XIXI) () (44)
no= TE(E) (4)
B, = T '(XVX)) @) (X - (XIX)8E)  (46)
/Z\j _ Xj(’I;?ls (47)

If the conditions discussed above are fulfilled to an extent such that @?ZS is
already close to the true direction, Aldrin et al. (1993) suggest the following
iterative scheme moderately changed in order to make it fit into our general
model selection strategy

1. Center the response 77 for v = 0. The response is centered by de-meaning
y by a linear combination of the regressors X*. In particular,

™=y - XU(XYXY)THX YY) (48)
2. Estimate ®? 41 by ordinary least squares as

(”I;0+1 _ (Xv+1/Xv+1)71(Xv+1/7/;q;) (49)

v

and obtain @, by using the cubic spline smoother defined by equation
(33) with the smoothing parameter determined by generalized cross vali-
dation conditional on a training set to be described later.

3. compute 7/ p1and Bl 41 according to equation (45) and (46) and update
the direction vector according to

S0 =i
(I)v+1 - Bv+1

)
771;+1

Y
(I)v+1 -

(50)
and standardize such that </I\>f;+1(X“+1’X“+1)—1</I\>i+1 =1.
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4. Find the smoothing function &~ 41(XoT1®7 ) and obtain the associated
optimal weight as

Gh1 = @ (X ) B (X710 ) TH @ (X))

(51)
5. Repeat step 3 and 4 until the scalar difference given by
o ¥
D = H v41 _ v41 H
&Hi—1 v v —15d-1 & v v 157
VTR ) TR Jal () e,
(52)

becomes sufficiently small.
6. If the criterion of fit is satisfied stop the algorithm, otherwise go to step 7

7. Construct a new set of residuals
Pt =7 — ¢v+1 (XUH‘I%H) (53)

and add an additional activation function. Furthermore update v = v+ 1
and go back through step 2 and step 7.

In terms of representational capability, we can regard the standard Projec-
tion Pursuit Regression as a generalization of the multilayer neural network
model, in that the activation functions are more flexible than those applied in
the neural network context. It is therefore not surprising that Projection Pursuit
Regression Models should have the same universal approximation capabilities
as Neural Network Regression Models.

3 The choice of the baseline flexible regression
model

In order to illustrate and compare the use of flexible regression models and
relative forecast performance in specifying nonlinear econometric models two
data series have been analyzed. The first series is the quarterly change in the
US unemployment rate from 1949.Q3 to 1998.Q2, seasonally adjusted, and the
second series is the seasonally adjusted quarterly growth rates of US industrial
production from 1947.Q2 to 1998.Q2. Both series are seasonally adjusted by
X-11. Univariate models using lagged values of the dependent variables as ex-
planatory variables are formulated and the following procedure applied. Firstly,
as a preliminary step, the null hypothesis of the series being linear is tested by
use of Hamilton’s Lagrange Multiplier test, the Neural Network test, the Tsay
test, Whites dynamic information matrix test and the RESET test. The num-
ber of lags in the linear specification is determined by each of the three model
selection criteria applied i.e. AIC, BIC or the Cross Validation (CV).
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The first step is undertaken in order to obtain some preliminary information
as to the linearity or nonlinearity of the appropriate model, but in the context
of this investigation information about the different tests may be obtained as
well.

Secondly, the recursive model selection and estimation procedures for each
of the four models i.e. Hamilton’s Flexible Regression Model (FNL), the Neural
Network Regression Model (ANN) , and two versions of the Projection Pursuit
Regression Model (PPR1) and (PPR2) are applied and the best specifications
chosen based on the AIC, BIC or CV criterion. The forecast ability in a
one period ahead forecasting exercise for each of the three versions of the four
models is evaluated using measures of the forecasting ability such as the mean
square error (M SE), the mean absolute deviation (M AD), the forecast absolute
percentage error (M APE), directional tests based on a contingency table such
as the Henriksson-Merton test (HM) and the x? test for independence (x?
), the confusion rate (CR), and the degree of diagonal concentration (¢). In
addition we report Theil’s U statistic (U) and the Granger- Newbold version
of the Mincer-Zarnowitz regression, where the actual value is regressed on the
forecast, and the coefficient of determination (R ? ) applied as a measure if the
regression has an intercept of zero and a slope of 1. The objective in the second
step is to find the best model based on the precision of the out of sample forecast.
In the context of the analysis performed we may also obtain information about
the different evaluation criteria AIC, BIC or CV.

Thirdly, the best forecasting model specification from the four classes of
nonlinear models is compared to the linear model by use of the Diebold-Mariano
test and the forecasting encompassing test suggested by Harvey et al. Model
selection will be based on Akaike’s and Schwarts’ information criterion denoted
AIC and BIC respectively and on cross validation denoted C'V, see Akaike
(1969), Schwarts (1978) , Stone (1974, 1977) and Wahba and Wold (1975).
The information criteria AIC' and BIC' of Akaike(1969) are found as

AIC = ln(EQ)Jr% (54)
BIC = 1n(82)+dnT(T) (55)

where 5 is the estimated variance of the residual from the regression model, ¢
equals the complexity criterion, i.e. the number of estimated parameters and T’
denotes the sample size. The selected model is the model where ¢ minimizes the
criterion. Basically, both criteria are fit criteria with a penalty for the number
of parameters. Since our goal is to find the model having the best performance
within sample as well as out of sample a simple approach when comparing
different model specifications is to evaluate the error function using data which
is independent of the sample applied in the estimation part”.

Cross Validation may be described in the following way. The models to
be compared are estimated by minimizations of the appropriate error function

"The data set applied in the estimation is also called the training set.
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defined on the training data set. The performances of the models are then
compared by evaluating the error function using an independent validation set,
and the model having the smallest error with respect to the validation set is
selected as the preferred model. This approach is called the Hold Out method.
The danger of the procedure is that it can lead to overfitting with respect to
the validation data set, but we will be able to evaluate the size of the overfitting
because we are going to test the performance of the chosen model on a third
independent data set namely the out of sample data set. More schematically,
the procedure may be described in the following way. First, divide the data set
into S + 1 distinct segments where each of the first S segments consists of &
[T/S] data points and the remaining segment consisting of T'— S * [T'/S] data
points

w={y,a} = {(",2"), (%, 2%), ..., (%, 2%), (", 2")} (56)
and
w = {wli,y (57)
w® = {W_1)es41s - Wexs | for s=1,.,8 (58)
w? = {wr/sest1s - wr} (59)

Furthermore, let us introduce the leave-out operator ” \ ” defining the set
{y\*, 2V} = {y, z}\{y®, 2°} as all of the observed data points except the [T/S]
observations in segment s. Secondly, estimate the regression model using the
data set {y\*, 2\*} and obtain an estimate of the conditional mean function de-
noted p(a:\sfs). Thirdly, evaluate the mean squared regression error function
using the remaining [T'/S] data points in segment s, that is calculate

(1]
CV(s)=[T/8]™ Z (5 = pi(2®, <)) (60)

where y? and p,; denote the ¢’th element/row of the y®-vector and the p-vector,
respectively. The process is repeated for each value of s =1,..,.5, i.e. for every
possible choice of segment omitted from the training process, and finally the
test errors are averaged over all S . Such a procedure allows us to use a high
proportion of the available data ( a fraction 1 —1/S ) to estimate the regression
model, while also making use of all data points in evaluating the cross validation
error. The disadvantage of such an approach is that it requires the estimation
process to be repeated S times, which implies a relatively long processing time.
A typical choice of S is S = 10, see Bishop (1995) . The single measure applied
in the cross validation model selection procedure can be written as

S
CV =81 CV(s) (61)

s=1

8Let [T/S] =sup{t:t < T/S}fort=1,..,T i.e that[T/S] the integer on or just below the
value of T'/S.
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3.1 Tests for linearity

As a first step we suggest testing the null hypothesis of the series being linear by
use of the most general specifications test. This collection of test statistics will
include Hamilton’s test, Hamilton (1999), the Regression Error Specification
Test or RESET test, Ramsey (1969), a test , denoted the Tsay test, see Tsay
(1986), the Neural Network test, see Lee, White and Granger (1993) and a
particular version of White’s information matrix test, White (1987,1992). The
tests are all recommended because of their relatively good performance with
respect to size and power against an unspecified alternative model described in
the literature. The number of lags in the linear specification under the null is
determined by each of the three model selection criteria applied i.e. AIC, BIC
or Cross Validation (CV).

3.1.1 Hamilton’s Lagrange Multiplier test

The Lagrange multiplier test suggested by Hamilton considers the null hypoth-
esis Hy : A = 0 in equation (2). However, g is not identified when X equals zero,
but Hamilton (1999) solves this problem by assuming that the i’th element of g,
i.e. g;, is proportional to the standard deviation of the ¢’th row in z;. Fixing the
nonidentified parameters to the scale of the variables implies that the Lagrange
multiplier statistics for neglected nonlinearity becomes

[€ He — 3 tr(MHM))?

HLM = —; (62)
Y2tr{[MHM — (T — k)=*Mtr(MHM))2}]
where
€T = My (63)
5 = (T'—k)'ee (64)
M = Ir—X(X'X)"'Xx’ (65)

and the (¢, s) element of the T x T covariance matrix H of m(g ® ) is given
by

Hy(hes) hes <1
H{t.s) = { k%t) he > 1 (66)
k
1 — LTit — Li,s 2 1
his = §[k 1 Z(”fs—z)]z (67)
i=1 g
T T
s2 = 17! Z(a:“ -7t Z 1) (68)
t=1 t=1

where Hy(.) is defined in equation (5). The Lagrange multiplier statistics H LM
is asymptotically x?(1) distributed.
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3.1.2 The Neural Network test

When the null hypothesis of linearity is true i.e. Hg : Pr[E(y|X,) = 2,67 =

for some choices of §* and X; = {z},x},..,x}} the optimal network weights
6; in equation (23) are zero for j = 1,..,¢q. The neural network test for ne-
glected nonlinearity can therefore be interpreted as testing the hypothesis Hy :

01 = 02 = .. = 0, = 0 for particular choices of ¢ and 7,. As in Lee et al.
(1993) we set the number of hidden units, i.e. ¢, equal to 10 and draw the
direction vectors v; independently from a uniform distribution on the interval -
2:2]. The test is then carried out by an auxiliary regression where? €rx1) = YT —
Xp(XpXr) N (Xpyr) is regressed on Uy gy = {O(X171) (rx1)s - U (X1T) (1)}
where yr = {y1,y2, .., yr }. The LM-test statistics is given by

NNLM =TR? — x*(q) (69)

where R?, is the coefficient of determination from the auxiliary regression. Be-
cause the observed components of W, typically are highly correlated Lee et al.
(1993) recommend using a small number of principal components instead of the
q original variables. Using the ¢* < ¢ principal components of ¥; , denoted U7,
not collinear with z; an equivalent test statistics is given by

NNLM* =TR2, — x*(¢*) (70)

where Rf,c is the coefficient of determination from a regression of €y;) on

\I,?quﬂ'
3.1.3 The RESET and Tsay tests

Consider the linear model
Y = a8+ uy (71)

where 7, is the dependent variable and x; a k vector of regressors '°. The
first step conmsists of regressing y; on w; in order to obtain an estimate of [,
say ﬂ, the prediction f; = x}03, and the residuals u; = y; — f; whereby the
sum of squared residuals are SSRy = thl %2, In the second step, regress
on z; and on the sxlvector M;, to be defined later, and compute the residuals
from this regression vy = u; — xja; — M/as and the residual sum of squares
SSR = 25:1 v2. Finally, in the third step compute the F statistics given by

(SSRy — SSR)/m

F = SSriT == m)

~ F(s,T —k—ys) (72)

Under the linearity hypothesis the F'statistics above is approximately F-distributed
with s and T — k — s degrees of freedom. The difference between the RESET
test and the Tsay test lies in the choice of M;. The RESET test defines M, as

9Notice, that the regressions discussed here all contain an intercept unless otherwise noted.
10Notice, the regressors may be lagged dependent variables
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M, = {f2,.., ff*'} . Because f}, i = 2,..,s+1 tends to be highly correlated with
z; and with themselves the test is conducted using the s* < s largest principal
components of fZ, .., f“ not perfectly collinear with x; and therefore not with
the linear combination f; = mﬁ Tsay (1986) suggests using M; = vech(z,x})
where the operator vech implies that M; contains the elements on and below
the diagonal of the matrix z;z} i.e. the squared explanatory variables and the

crossproducts of these.

3.1.4 'White’s Dynamic Information Matrix test

The information matrix test is developed from the observation that if a model
is well specified the information matrix equality'' holds, while this is not the
case in a misspecified model. The version of White’s dynamic misspecification
test considered in this paper will be based on the covariance of the conditional
score functions. For a Gaussian linear model the log likelihood function can be
written as

1 1
L[, 8,0) = —5 log(2m) — log(o) — §uf (73)
where u; = 07 1(y; — 2}3). The conditional score function is then given by
s(e,8,0) = 0™ (ug, weay, ui — 1) (74)

Evaluating the conditional score at the quasi maximum likelihood estimators of
the correctly specified model under Hy gives §; = s¢(2¢, 3,7). The information
matrix test is based on forming the ¢x1 indicator m; = S*vec(s;s}) where S is
a selection matrix. In particular we obtain the test statistics denoted ”White3”
in Lee et. al.(1993) by the auxiliary regression @; = & ' (y; — «}() on x; and k;
- where %, is defined to satisfy m; = 7{:\1‘@2 . The test statistic and its asymptotic
distribution is then given by

WIM =TR? — x*(q) (75)

where R? is the coefficient of determination from the auxiliary regression.

3.1.5 Application 1a. The change in the US Unemployment rate

We begin by considering the series of first differences in US unemployment.
In order to obtain the correct size of the test the tests for linearity should be
based on the residuals from the best linear model as suggested by Granger
and Terdsvirta (1993). In practice, this is done by calculating each of the test
statistics based on the best linear model being selected by the three model

11In a well specified model we can compute the information matrix as minus the expected
value of the Hessian matrix of second order derivatives of the log likelihood function or as the
outer product of the score vectors i.e. the vector of first order derivatives of the log likelihood
function. The relationship which holds under quite general conditions is called the information
matrix equality

19



selection criteria in turn. Furthermore we are conditioning the test statistics on
the whole sample period.

We find that the best linear model based on AIC and C'V consists of a
constant term and 4 lags whereas the best linear model chosen by the BIC
criterion includes a constant term but only 2 lags. The results presented in
Table 1 indicate that the null hypothesis of linearity in all cases is rejected at
the 5% level except in the case where inference is based on the outcome from the
RESET test. However, based on the RESET test, rejection of linearity is still
supported at a 10% level. Hence, the applied tests indicate the necessity for a
non-linear specification of the univariate model for the change in unemployment.

3.1.6 Application 2a. The growth rate of US industrial production

For the growth rate of US industrial production the three model selection criteria
agree on the best univariate linear model which includes a constant and two
lags, see Table 2. Based on Hamilton’s linearity test and the RESET test it
is not possible to reject the null of linearity. This result, however is in strict
disagreement with the outcome of the Neural Network test, Tsay’s and White’s
test. It could be due to low power of Hamilton’s test and the RESET test against
a specific kind of nonlinearity inherited in the industrial production series or it
could be due to moderate nonlinearities difficult to detect due to robustness and
good approximation properties of the linear model one step ahead. The power
properties of Hamilton’s test always turn out to be at least as good as the power
properties of the neural network test, as shown by Dahl (1999) based on a wide
range of nonlinear models.

The results presented in Table 2 indicate that the null hypothesis of linearity
in the growth rate of US industrial production is rejected by most of the applied
tests at the 5% level but clearly not by Hamilton’s test and not by the RESET
test unless the level of significance is raised to 15%. Hence, the applied tests
disagree on the necessity for a non-linear specification of the univariate model
for the growth rates of industrial production, and the evidence could imply that
the nonlinearity in the US industrial production is nonexistent or of a moderate
nature.

3.2 Model selection and estimation

In the second step the recursive model selection and estimation procedures for
each of the four models i.e. Hamilton’s Flexible Regression Model (FNL), the
Neural Network Regression Model (ANN), and two versions of the Projection
Pursuit Regression Model (PPR1) and (PPR2) are applied and the best speci-
fications chosen as described above.

Although modern computers are very efficient the computations involved in
the different nonlinear approaches discussed here can be excessive. Furthermore,
the procedure applied must be somewhat automatic, and in addition parsimony
is an important objective. The procedure applied here in the specification and
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estimation of linear and Flexible Regression Models is a forward stepwise pro-
cedure, where a simultaneous estimation method is applied at each step. The
exact procedure applied is somewhat dependent upon which of the flexible ap-
proaches we apply and we will therefore provide a detailed description of the
procedure applied in the three cases.

3.2.1 Hamilton’s Flexible Regression Model.

From equation (1) and (2) it is seen that the model contains a linear and a
nonlinear part. The first step consists of performing a forward stepwise linear
regression with regressors (lags in the univariate case) added on one at a time
until no additional regressor improves upon the model selection criterion applied.
The number of regressors in the linear part is then fixed. Next the number of
regressors in the nonlinear part, the m(.) function, is to be determined. As
in the linear part this is done by including regressors one at a time until the
model selection criterion cannot be improved upon. If, after adding the first
regressor to the nonlinear part of the model , the model selection criterion is not
improved upon this will imply that the preferred model will be linear. If applied
recursively to different but consecutive time periods the Flexible Regression
Model approach allows for the preferred model to be linear in some periods
and nonlinear in others. Furthermore, a key feature of the model selection and
estimation procedure is that every time a new regressor is added to the model
all the parameters in the linear and nonlinear part are reestimated by maximum
likelihood.

3.2.2 The Neural Network Regression Model.

First, the number of regressors in the linear part of the model is determined
and fixed in exactly the same way as described above. Secondly, a single hidden
unit is added and regressors are selected one by one as part of the first hidden
unit until the model selection criterion no longer can be improved. The number
of regressors included in the first hidden unit is thereafter fixed and a second
hidden unit is added and the process repeated until five hidden units have
been tried or the model selection criterion cannot be improved upon by adding
additional hidden units. Again all the parameters of the model are reestimated
by nonlinear least square every time a new regressor is included.

3.2.3 The Projection Pursuit Regression Model.

The model selection procedure applied in connection with the Projection Pursuit
Regression Model is similar to the model selection in the neural network case.
However, there is one main difference. Since the parameters of the model are
estimated in groups, not all the parameters of the model are reestimated every
time a new regressor is included. In order to cut down the computational burden
we did not consider backfitting as it is also apparent from the description of the
PPR1 and PPR2 algorithms. This rule implies that only the set of parameters in
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the hidden unit in which the new regressor is added are reestimated. The model
selection procedure is as follows. Add a hidden unit - which in this case is an
empirically determined univariate function - including a constant term and one
regressor. Add regressors to this hidden unit and reestimate the model every
time a new regressor is included until the model selection criterion cannot be
improved. When the number of regressors in the first hidden unit is determined
fix both the number of regressors and the parameters at their estimated values.
Add the second hidden unit and repeat the process until five hidden units have
been tried or the model selection criterion cannot be improved upon by adding
additional hidden units.

3.2.4 h steps ahead forecasts

In order to evaluate the forecast ability of the three approaches an out of
sample one step ahead forecast gz, 11is generated from each of the three flexible
regression models estimated by use of a data window containing a sample from
the starting point in period ¢ty to period t;. In the next step a second set of
one step ahead forecast 7,12 is computed using a data window beginning at
time tg and terminating at time t; + 1. Continuing this procedure, rolling the
data window forward one period every time enables us to simulate a sequence of
true out of sample forecasts. The sequence we generate contains n data points .
The forecast period must be long enough to include periods where the nonlinear
characteristics are present. For instance, if asymmetric dynamics over the phases
of the business cycle is the expected cause of the nonlinearities, recessions as
well as expansionary economic phases must exist in the out of sample forecast
period.

In the following we will apply both one step ahead and four steps ahead
forecasts. The four step ahead forecast sequence for each flexible regression
method is constructed in a way analogous to the sequences constructed for the
one step ahead forecast described above. The motivation for also considering
four steps ahead forecasts for each flexible regression method is that linear
models might locally approximate nonlinear patterns reasonably well. Hence,
the one step-ahead forecast measure may not unveil the nonlinear components,
while a four step ahead forecast could. A drawback is that the overall forecast
ability of all the econometric models may fall dramatically as a consequence of
extending the forecast horizon. Hence, we may end up with the difficult task of
comparing forecasts which are all of a rather low quality.

The method we use here to produce the one and four steps ahead forecast is
the so-called direct method. The primary reason for this particular choice is due
to the conceptual and computational simplicity of the direct method. According
to the direct method the h steps ahead forecasts are calculated simply as

Yern = p(x,<) (76)

where ¢ is obtained from the general regression model y;:15 = p(zs,<) + €; and
hence will equal a) the least square estimator of the linear regression coeflicients
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in cases where p(.) is a linear function in the regressors b) the maximum like-
lihood estimator of ¢ when applied to Hamilton’s Flexible Regression Model
or ¢) the nonlinear least square estimator of x and g in the Neural Network
Regression Model or Projection Pursuit Regression Models, respectively.

3.2.5 Maeasures of the absolute forecast performance

Obviously the loss function applied in measuring forecast performance should be
the economic loss associated with the produced forecast. However, such a loss
cannot be computed here and consequently we apply several different measures,
which enable us to evaluate how sensible our results may be to the choice of
loss function. We compare the absolute predictive accuracy of the models using
three different loss functions. The first measure is the forecast mean squared
error (MSE), the second is the forecast mean absolute deviation (MAD), while
the third is the forecast absolute percentage error (MAPE). Consider the h steps
ahead forecast and let j = 1,2, ....T be the training or estimation sample period.
If we let n denote the length of the out of sample period over which we wish to
evaluate the forecast performance the three measures can be defined as

n—h
1 ~
MSE = - (YT +h+j *yT+h+j)2 (77)
j=1—h
1 n—h
MAD = - YT hts — YT +his) (78)
j=1—h
n—h ~
1 .
MAPE = = ITehsi g (79)
"ol YT+hti

The forecast with the smallest value of these measures is producing the ”best”
forecast. Theil’s U-statistic defined by

n—h ~
U— Z (yT+h+j - yT+h+j)2 (80)
S Wity — yres)?

is also a commonly applied measure. A value of U = 0 indicates a perfect
forecast, while a value equal to 1 indicates that the forecast is equivalent to a
no change forecast. Another measure of the absolute forecast performance is the
squared correlation coefficient, R? | between the forecast and the actual value.
However, the correlation coefficient does not measure whether the forecast is
off target with a constant and therefore it can only be applied as a relevant
measure if the intercept is zero and the slope equals one in a regression of the
actual value on the forecast. The so-called Granger Newbold regression. Let
{yrsnt; }?:_lhf 5 and {@\T—i-h—i-j}?:_{i ;, denote a sequence of actual and predicted
values respectively. Consider the following linear regression

YThtj = Qo + 0 Yryhyj + €rpnsg, j=1—h,.,n—h (81)
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The hypothesis of an unbiased out of sample forecast corresponds to ag =
1 — a3 = 0. Thus a very simple regression based test is the student ¢ test of the
two separate null hypotheses Hg : g = 0 and Hy : @y = 1. Furthermore, we
apply the regression based F-test to test the composite hypothesis Hy : ag = 0,
a1 = 1. Finally, we compute the R? from the above regression and interpret it
as a simple measure of absolute forecast performance.

3.2.6 Measures of directional forecast performance

In addition to the application of measures of the absolute forecast performance,
measures of directional predictive ability are often used. Here we will consider
the Henriksson-Merton test (HM), see Henriksson and Merton (1981), in or-
der to compare the ability of the models under consideration to forecast the
correct directions of the movements in the series y; over time. The HM test
for directional prediction ability is conducted by setting up the following 2 x 2
contingency table

actual
up down
predicted up nyy N2 n10
down na1 n99 T390
no1  Mo2 n

Assuming that the column and row sums are fixed the HM test can be inter-
preted as an exact test for independence between the predicted and the actual
values of the time series y;. The HM test statistics is calculated as

n10M0
ni1 —

HM = —“2—n_ . N(0,1) (82)
BRI

Asymptotically HM will have a standard normal distribution. However, as
pointed our by Pesaran and Timmermann (1994) the HM test is difficult to
interpret from an economic point of view since it is conditional on fixed margins
where the margins are the predicted changes in downward direction (n1g), the
realized changes in downward direction (ngy), and the realized changes in up-
ward direction (ngz). In our case these quantities will be unknown and therefore
they must to be estimated and consequently the test of independence looses
two degrees of freedom. The HM test is still a relevant test statistics, but it
is asymptotically equivalent to the well known x? test for independence in a
2 x 2 contingency table given by

) 2 (nij _ Mionoj )2 )
=D e ~ X2 (83)

=1 j=1

Based on the 2 x 2 contingency table we will also present a measure of the con-
fusion rate denoted C'R which is the sum of the off diagonal elements divided by
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the total number of elements, and the degree of diagonal concentration denoted
¢. The confusion rate CR and ¢ are computed as
N2 +noy

CR = ——= (84)

¢ = VX/n (85)

The C' R measure indicates how frequently the forecast is in the wrong direction,
while the ¢ measure can be interpreted almost like an R?, but only in the 2 x 2
case. The x? statistics is proportional to n and in a 2 x 2 table ¢ will lie between
zero, independence, and one, perfect directional prediction.

3.2.7 Application 1b. The change in the US Unemployment rate

Let us now proceed and evaluate the flexible regression models considered on
the first differences in US unemployment rate and sequences of true one step
ahead out of sample forecasts to evaluate each of the flexible regression models
discussed in Section 2. In recent work on the search for nonlinear components in
US macroeconomic time series, forecast comparisons between linear and flexible
regression models have been done by the use of the exponential smoothing ap-
proach, see Stock and Watson (1998), the neural network model , see Swanson
and White (1995, 1997a, 1997b) and Stock and Watson (1998), or the smooth
transitions autoregressions., see Terdsvirta (1995) and Stock and Watson (1998).
In case of forecast ability based on MSE in particular the evidence from these
studies has been in favour of the linear model. However, as also pointed out
by Swanson and White this could be due to the chosen model selection crite-
rion and in fact they question the use of BIC for selecting the best model with
respect to forecast performance.

The results of the model selection and forecasting exercise for the change in
US unemployment rate are given in Tables 3, 4, and 5. In Table 3 all the models
have been selected using the AIC criterion and the mean value of the AIC is
shown in the first row. The second row gives the frequency of cases where the
one step ahead forecast can be improved by adding the nonlinear component to
the linear part. The computation of the frequency is done as follows. The best
model according to the AIC criterion is specified for the period to and including
1979.Q4 and it is registered whether the best model contains the nonlinear part
of the specification. In the Hamilton model this will be the part of equation(2)
containing Am(g® x+) while the linear part is ac; (. The model is used to forecast
1980.Q1.

Next, the best model according to the AIC criterion is specified for the
period to and including 1980.Q1 and it is registered whether the best model
contain the nonlinear part of the specification. The model is used to forecast
1980.Q2, etc. Measures of the absolute one period ahead forecast performance
of each of the models are presented in the second row block of Table 3, while
the row block contains the measures of the directional forecast performance.
Tables 4, and 5 contain the corresponding information when the BIC and the
CV criteria have been used to select the best model at each stage. Based on
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the results in Tables 3, 4, and 5, Hamilton’s FNL model using the C'V criterion
performs the best when the absolute measures are applied, while Hamilton’s
FNL model using the BIC criterion is superior when the directional measures
are applied.

The projection pursuit model PPR2, which is especially suitable in cases
of only moderate nonlinearities, performs quite well especially when the model
selection is based on the C'V criterion and the directional measures are con-
sidered. In general, the AIC criterion is not producing the best forecast in
any case. None of the selection criteria picked up a nonlinear component for the
PPR2 model probably because it is very difficult to identify moderate nonlinear-
ities. For that reason we imposed a nonlinear component in the PPR2 model by
constraining v to obey v > 1 in equation (27). This also explains why the mean
values of the various information criteria exceeds the ones associated with the
linear models. While PPR2 always ”finds” it necessary to apply the nonlinear
component, PPR1 seldom does. The FNL model ”finds” a nonlinear component
necessary quite often if the BIC criterion is applied and a little more than half
the times when the C'V criterion is applied , but never when the AIC criterion
is used The neural network model ANN applies a nonlinear component when
the C'V criterion is used in 91% of the cases but almost never or never when
the other criteria are applied.

3.2.8 Application 2b. The growth rate of US industrial production

The results of the applications to the growth rate of the Industrial Production
are presented in Tables 6, 7, and 8. The best performing models are here PPR2
applying the CV criterion when the absolute forecast performance measures
are used and the ANN model applying the CV criterion when the directional
forecast performance measures are used. That the FNL model does not perform
as well as in the case of the change in the unemployment can be no surprise in the
light of the result of the test for linearity performed earlier on, as Hamilton’s test,
HLM, did not reject linearity. Both the PPR2 model and the ANN model finds
that a nonlinear component should be added in all cases. Hence, the general
impression from the two applications performed here indicates that the model
selected by the Cross Validation criterion in general has slightly better forecast
abilities than the models selected by the BIC criterion. The models selected
by the AIC criterion have the worst forecasting record. The best performing
models with respect to the forecasting ability seem to be Hamilton’s Flexible
Regression model and the projection pursuit model for moderate non-linearities,
PPR2, and the Neural Network Model ANN. The results indicate that the results
obtained when testing for linearity are consistent with the results applied when
estimating the full model, insofar as both the result of the HLM test and
the result of the NINLM test are consistent with the result obtained when
estimating the model by FNL and ANN, respectively.
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3.3 Comparing real time forecast abilities

The best forecasting model specification from the four classes of nonlinear mod-
els is compared to the linear model by use of the Diebold-Mariano test and a
series of forecasting encompassing tests including those suggested by Harvey
et al. Again the procedures are applied to the two series: The change in US
unemployment rate and the growth rate of US industrial production.

3.3.1 The Diebold-Mariano test

Comparing the relative forecast accuracy of two different time series models is
complicated for a number of reasons. Forecasts will typically be serially and
contemporaneously correlated and will often be characterized by having a non-
Gaussian heavy tailed distribution. Fortunately, the test of the null hypothesis
of no difference in the accuracy of two competing forecasts suggested by Diebold
and Mariano (1995) (DM) is robust against all of these features. The DM test
statistics is designed as follows: Let {7;;}} and {¥;:+}} denote two sequences of
forecasts of the time series {y;}} and let the associated forecast errors be {e; }7
and {e;;}?. Assume that the loss function'?, g(.), can be written as a function
of the forecast errors only i.e. g(e;;) and define the loss differential between
the two competing forecasts as d; = [g(e;z) — g(ej¢)]. If the sequence {d;}} is
covariance stationary and has a short memory the asymptotic distribution of
the sample mean loss differential d = (1/n) >, di can be shown to be, see
Diebold and Mariano (1995),

Va(d—p) 5 N, V(@) (86)

If all autocorrelations of order h or higher of the sequence {d;}; are all zero

when considering h steps ahead forecasts, the variance V(d) can be shown to
be equal to
3 h—1
V(d)=n"(rg+2) 1) (87)
i=1

where r; is the i’th order autocorrelation of d;. An estimate of ; can be obtained
as

Fi=n"" Y (de —d)(dy—; — d) (88)
t=i+1

and by substituting the estimate for 7; in the expression for V(d) we obtain the
variance estimate V (d). The Diebold-Mariano test statistic for testing the null
hypothesis of equal forecast accuracy is then given by

DM =

~ N(0,1) (89)
V()

I2Results applying the MSE loss function will be reported below.
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Under the null hypothesis the Diebold-Mariano test statistics will have a stan-
dard normal distribution asymptotically. Harvey, Leybourne and Newbold
(1997) argue that the DM test can be quite over-sized in small and moder-
ate samples and that this problem becomes acute for longer forecast horizons.
In order to cure this problem they suggest modifying the DM statistics as follows

_ -1 _
MDM = \/" F1o2ha T h )y (90)
n

Furthermore Harvey, Leybourne and Newbold (1997) suggest comparing the
statistics with critical values from the Student’s ¢ distribution with n—1 degrees
of freedom rather than from the standard normal distribution.

3.3.2 The forecast encompassing tests.

Evaluation of the relative forecast ability of two competing econometric models
can also be done by using the forecast encompassing principle, see Chong
and Hendry (1986), Clements and Hendry (1993) , and Harvey, Leybourne and
Newbold (1998). The forecast encompassing principle is based on the literature
on combining forecast, see Granger and Newbold (1977). Consider the combined
forecast y.; from two competing forecasts given as

Y = (1—a)yu+ Oé@\jt (91)
0 < a<l1 (92)

Then the model generating the forecast 7;; is said to forecast encompass the
other model i.e. ¥, if the entire optimal weight is associated with g;.t, that is
if a = 0. If we define ¢; = y; — y. the equation above can be rewritten as

€t = a(eit — ejt) + € (93)

This implies that given the sequence of forecast errors {e;;}7 and {e;j;}* we can
determine whether ¥;; forecast encompasses 7;; by applying standard regression
based tests of the null hypothesis &« = 0. Furthermore, the test procedure is
expected to perform well when (e;, e;;) is bivariate normally distributed. How-
ever, this is probably very rarely the case. In addition, Harvey, Leybourne and
Newbold (1998) show analytically and by Monte Carlo simulations that if the
distribution of (e, e;;) deviates from the bivariate normal the test for forecast
encompassing can be seriously oversized.

A possibility for handling deviations from the assumption of bivariate nor-
mality of the variables in equation (93), is to apply the rank correlation between
e;¢ and e;; — ej; as the basis for the test of & = 0. The rank correlation is ob-
tained by ordering the ”observations” for e;; and e;; — e;; according to size and
measure the relationship between their ranks instead of their actual numerical
values. Spearman’s rank correlation coeflicient is given by

63 DR?

Re=1-rneoy

(94)
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with the approximate distribution
(n—1)R, ~ N(0,1) (95)

where DR, equals the difference between ranks of corresponding pairs of e
and e;; — ej; and n equals the number of ”observations”. The approximation is
known to be reasonably good provided n > 30. A small value of R corresponds
to a small value of o. Hence a small value of R, indicates that the forecast 7
does not contribute to the combined forecast and consequently 7;; encompasses
Ujt. Similarly, whether 7;, encompasses y;; may be tested by help of Spearman’s
rank correlation coeflicient between e;; and e;; — €.

Even if application of Spearman’s’ rank correlation statistics solves the prob-
lem of nonnormality of the included variables it cannot guard against depen-
dence of the errors in the auxiliary regression in (93). Harvey, Leybourne and
Newbold (1998) therefore suggest robustifying the forecast encompassing test
against such dependence. The robustified tests are based on the assumption
that the h steps ahead forecasts at most have forecast errors that are h — 1
dependent. If this is correct a robust forecast encompassing test statistics can
be calculated as

R, =n'2Q;Y?D ~ N(0,1),0 =1,2 (96)

where Dy = (e; — eji)eq, and D = n~1 37 Dy If we let & be the residual
from a least square regression of e;; on (e;+ — ej;) the estimator of @)1 can be
obtained as

h—1 n
Qu=n'? % Y7 (en—ep)aleirir — ejeir)etr  (97)

T=—(h.—1) t=|7|+1

The estimator Q1 is a consistent estimator but convergence may be slow. Instead
an alternative estimator denoted QQ could be applied. The estimator of ()5 can
be computed as

h—1

Qe=n' 3 Y DDy (98)

T=—(h.—1) t=|7|+1

Unfortunately, @2 is a consistent estimator only under the null. Asymptotically
both R; and Ry have a standard normal distribution under the null, although
Monte Carlo evidence, see Harvey, Leybourne and Newbold (1998), suggests
that the tests have better size and power properties when using the critical
values from the Students t distribution with n —1 degrees of freedom. However,
Ry may have a lack of power due to the use of Qg The tests Rs may also be
improved by replacing Qg by

@dnz = n1/2 Z Z Dl‘ Dt 7] — } (99)

T=—(h.—1) t=|7|+1
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i.e. by applying the mean corrected D; The improved test statistics is denoted
R4 Following Harvey, Leybourne and Newbold (1998) Rg;, may be improved
even further by a correction similar to the one applied to DM above. Hence,
the test statistics becomes

1-2h “1ph -1

n

In order to save space only forecast comparisons between the best linear
model and the best non-linear model are reported. In determining the best
models the measures applied are the absolute forecast performance measures
MSE,MAD, MAPE, and R? and the directional forecast performance measure
¢ depicted in Tables 9 and 10. Both the 1 step ahead forecast ability and the 4
steps ahead forecast ability are compared. The motivation for also considering
four steps ahead forecasts for each flexible regression method is that linear
models might approximate nonlinear patterns reasonably well when the forecast
horizon is small. When performing the 4 steps ahead forecast comparisons the
R and the R, statistics are not used due to their sensitivity to autocorrelation
in the errors.

3.3.3 Application 1c. The change in the US unemployment rate

The Diebold-Mariano test results, DM and the Modified DM test results shown
in Table 9 indicate that the non-linear models are no better in predicting the
change in the US unemployment than the linear model. A different result is ob-
tained when the encompassing test is applied, see Table 10. When the absolute
performance measures are used in selecting the best models, the best non-linear
model, FNL®Y encompasses the best linear model and not vice versa in the
1 step ahead forecasts. This result is obtained irrespective of the choice of
test statistic R, Rs, R1, Rgm, and Ry,4m. However, the best nonlinear model
PPR2¢V found when the directional performance measure ¢ is applied, encom-
passes the best linear model and vice versa in the 1 step ahead forecast of the
change in the unemployment. The results for the 4 steps ahead forecasts are
somewhat more mixed. When the absolute performance measures MSFE, M AD
and the directional measure ¢ are applied, PPR2 using the C'V criterion, i.e.
PPR2¢V is the preferred nonlinear model, and it encompasses the best linear
model and not vice versa at least at a 10 % level of significance. However, when
the measure applied is the M APE and R?, the best nonlinear model FNL¢Y
and the best linear model LR®Y encompass each other.

3.3.4 Application 2c.The growth rate of US industrial production

Again the Diebold-Mariano test results, DM and the Modified DM test results
shown in Table 11 indicate that the non-linear models are no better in predicting
the growth rate of US industrial production than the preferred linear model.
However, the forecast encompassing tests, see Table 12 indicate that the best
nonlinear model encompasses the linear model but not vice versa. This result
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is obtained irrespective of whether 1 step ahead or 4 steps ahead forecast are
applied or whatever test is applied except Spearman’s rank correlation test Rs.
When the directional measure ¢ is applied the result is less clear cut in the
1 step ahead forecast comparisons. In the 1 step ahead forecast PPR2CV:BIC
are the best models when the absolute forecast measures are applied, while
ANNC®Y is the preferable model when the directional measures are applied. But
irrespective of the result of Hamilton’s test for linearity, which indicates that
the model is linear, FNLZI:CV are the best models when 4 steps ahead forecast
are performed for the growth rate of US industrial production.

Hence for both series investigated here, i.e. the change in the US unem-
ployment rate and the growth rate of US industrial production, there is some
indication that the non-linear model is preferable, and that FNL and PPR2 are
the better ones. In addition, the results also suggest that the small sample power
properties of the forecast encompassing tests are better than the small sample
properties of the Diebold Mariano test, at least when the modelling procedure
starts from the linear specification and adds the nonlinear parts. In addition,
the size properties of the encompassing tests seem quite acceptable, as shown
by Harvey et. al. (1998).

4 Conclusions

From the limited empirical evidence obtained here it is tentatively suggested to
find a baseline nonlinear flexible form for a univariate time series by following
the procedure: 1. Recursively, based on h extra periods at a time specify and
estimate a linear form by use of model selection criteria like Cross Validation
and/or BIC. 2. After a preliminary test for linearity, recursively, specify and
estimate flexible regression models like the FNL suggested by Hamilton (1999)
and the Projection Pursuit model suggested by Aldrin, Boelviken and Schweder
(1993) for cases of moderate nonlinearities. Use the Cross Validation and the
BIC criteria. 3. Based on the remaining part of the data set select the best
nonlinear flexible form by use of forecast criteria measuring the absolute forecast
performance and the directional forecast performance in h-steps ahead predic-
tions, and compare the best flexible form to the linear specification by use of
the Diebold Mariano tests, see Diebold and Mariano (1995) and the forecast
encompassing tests suggested by Harvey, Leybourne, and Newbold (1998). The
results indicate that the FNL method and the Projection Pursuit Model are the
preferable models to apply and that the C'V and BIC' are the best selection cri-
teria, while the forecast encompassing tests properly modified as suggested by
Harvey et. al.(1998) possess better power properties than the Diebold-Mariano
test.
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5 Tables

Table 1: Tests for linearity.

Change in US Unemployment rate, 1949.Q3 -

1998.Q2
TEST AIC (lag=4) BIC (lag=2) CV (lag=4)
HLM  7.18(00l)  565(0.02) 7.18 (0.01)
NNLM  10.16 (0.00) 15.61(0.00) 10.16 ( 0.00 )
TSAYF  332(000)  4.51(0.00) 3.32 (0.00 )
WIM 3229 (0.03) 17.11 (0.03) 32.29 (0.03)
RESETF 3.54 (10.06) 3.05 (0.08) 3.54 (10.06)

* p-values in parentheses. H L M-Hamilton’s LM test
NN LM —The Neural Network test. T'SAY F'—The Tsay test
W IM— White’s Inf. Matrix test. RESETF— The RESET test

Table 2: Tests for linearity. Growth rate in US Industrial Production, 1947.Q2-

1998.Q2
Test AIC (lag=2) BIC (lag=2) CV (lag=2)
HLM 0.75 (0.39) 0.75(039) 0.75(0.39)
NNLM 1139 (0.00) 11.39 (0.00) 11.39 ( 0.00)
TSAYF  277(004)  277(004) 277 (0.04)
WIM  17.00 (0.03) 17.00 (0.03) 17.00 ( 0.03 )
RESETF  2.03(015)  203(015) 203 (0.15)

*see the note to Table 1

35



Table 3: One period ahead forecast performance of the change in US Unem-
ployment rate, 1980.Q1 - 1998.Q2. All models selected by AIC

LR FNL ANN PPR1 PPR2

Mean AIC -2.3014 -2.3014 -2.3095 -2.3891 -2.2588
Frequency * 0.00 0.09 0.22 1.00
Absolute forecast .

performance

MSE 0.0679  0.0679  0.0758 0.1196  0.0682
MAD 0.1950 0.1950 0.2020 0.2614  0.1949
MAPE 2.0852 2.0852  2.1093  3.4814  2.0409
Theils U 0.9621  0.9621 1.0161  1.2764  0.9640
t-stat.(intc=0) [p-val.] 0.4650 0.4650 0.4274 0.1979 0.3718
t-stat.(slope=1) [p-val.]  0.5684  0.5684  0.1937  0.0002  0.4005
F-statistic [p-val.] 0.6512 0.6512 0.3173 0.0002  0.4669
R? 0.3600  0.3600  0.3009 0.1603  0.3636
Directional forecast

performance

HM [p-val] 0.2552  0.2552 0.2552  0.5134  0.1657
X? [p-val] 0.2520 0.2520 0.2520 0.5106  0.1629
CR 0.4324 04324 0.4324 0.4595 0.4189
0] 0.1332 0.1332 0.1332 0.0765 0.1622

* The frequency of a nonlinear component being added
**LR-Linear Regression Model, FNL-Hamilton’s Flexible R.M
ANN- The Neural Network R.M., PPR1-The Projection Pursuit
R.M., PPR2- The Projection Pursuit R.M. for Moderate N.L.
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Table 4: One period ahead forecast performance of the change in US Unem-
ployment rate, 1980.Q1 - 1998.Q2. All models selected by BIC

LR FNL ANN PPR1 PPR2

Mean BIC -2.2297  -5.4636 -2.2297 -2.2348 -2.1636
Frequency 0.88 0.00 0.22 1.00
Absolute forecast

performance

MSE 0.0668  0.0897 0.0668  0.0667  0.0675
MAD 0.1950 0.2144 0.1950 0.1968  0.1973
MAPE 2.7775  3.0734  2.77775  2.8815  2.8723
Theil’s U 0.9543 1.1054 0.9543 0.9539 0.9594

tstat.(intc=0) [p-val]  0.6841 01994 0.6841 0.7452  0.5320
t-stat.(slope=1) [p-val.]  0.4693  0.0001  0.4693 0.3461  0.2066

F-statistic [p-val.] 0.7183 0.0007 0.7183 0.6205  0.3827
R? 0.3685 0.3378 0.3685 0.3716  0.3733
Directional forecast

performance

HM [p-val] 0.2573 0.0181  0.2573  0.5085 0.5132
X2 [p-val.] 0.2540 0.0174 0.2540 0.5057  0.5103
CR 0.4324 03649 0.4324 0.4594  0.4595
10} 0.1326  0.2765 0.1326  0.0774  0.0765

* See the notes to Table 3
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Table 5: One period ahead forecast performance of the change in US Unem-
ployment rate, 1980.Q1 - 1998.Q2. All models selected by CV

LR FNL ANN PPR1 PPR2

Mean CV 0.1079 0.1056 0.0969 0.1075 0.1110
Frequency 0.58 0.91 0.08 1.00
Absolute forecast

performance

MSE 0.0669 0.0631 0.0665 0.0665 0.0670
MAD 0.1932 0.1895 0.1951 0.1939 0.1935
MAPE 2.0614 19739 2.0537 2.0848 2.1403
Theil’s U 0.9548 0.9275 0.9522 0.9520 0.9556

t-stat.(intc=0) [p-val.] ~ 0.5118 0.5298 0.4080 0.5642 0.5775
t-stat.(slope=1) [p-val.] 0.6309 0.6715 0.5638 0.6315 0.3304

F'-statistic 0.7208 0.7532 0.5986 0.7592 0.5437
R? 0.3679 0.4028 0.3745 0.3706 0.3719
Directional forecast

performance

HM [p-val] 0.1692 0.0665 0.1692 0.2572 0.0206
X2 [p-val.] 0.1663 0.0647 0.1663 0.2540 0.0198
CR 0.4189 0.3919 04189 0.4324 0.3649
10} 0.1609 0.2148 0.1609 0.1326 0.2709

* See the notes to Table 3
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Table 6: One period ahead forecast performance of the growth rate of US In-
dustrial Production, 1980.Q1 - 1998.Q2. All models selected by AIC

LR FNL ANN PPR1 PPR2

Mean AIC 1.4509 -2.2340 1.4336 1.4101 1.4874
Frequency 0.77 0.95 0.68 1.00
Absolute forecast

performance

MSE 1.3619  1.5388 1.4778 1.4779 1.3808
MAD 0.7960  0.9040 0.8628 0.8733 0.8117
MAPE 1.1240 1.1768 1.3322 1.3413 1.2314
Theil’s U 0.8846  0.9403 0.9215 0.8803 0.8908

tstat.(intc=0)[p-val]  0.4366  0.5747 0.5505 0.8290 0.9885
t-stat.(slope=1)[p-val.]  0.8964  0.0553 0.1122 0.1708 0.2851

F-stat [p-val.] 0.3897 0.1091 0.2458 0.2329 0.3322
R? 0.2338 0.1671 0.1799 0.1812 0.2268
Directional forecast

performance

HM [p-val] 0.0072  0.0188 0.2605 0.2043 0.1145
X2 [p-val.] 0.0068  0.0180 0.2573 0.2013 0.1121
CR 0.3378  0.3649 0.4459 0.4324 0.4054
10} 0.3144  0.2749 0.1317 0.1486 0.1847

* See the notes to Table 3
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Table 7: One period ahead forecast performance of the growth rate of US In-
dustrial Production, 1980.Q1 - 1998.Q2. All models selected by BIC

LR FNL ANN PPR1 PPR2

Mean BIC 1.5076 0.7740 1.5076 1.5068 1.7640
Frequency 0.42 0.00 0.51 1.00
Absolute forecast

performance

MSFE 1.3619 1.7928 1.3619 1.4611 1.3094
MAD 0.7960 0.9345 0.7960 0.8377 0.7893
MAPE 1.1240 1.8139 1.1240 1.0860 1.1123
Theil’s U 0.8846 1.0150 0.8846 0.9163 0.8675

t-stat.(intc=0)[p-val.] ~ 0.4366 0.1630 0.4366 0.9476 0.2328
t-stat.(slope=1)[p-val.] 0.8964 0.0043 0.8964 0.3876 0.9287

F-stat.[p-val.] 0.3897 0.0209 0.3897 0.4877 0.2141
R? 0.2338 0.0815 0.2338 0.1725 0.2762
Directional forecast

performance

HM [p-val] 0.0072 0.1405 0.0072 0.2871 0.0070
X2 [p-val.] 0.0068 0.1378 0.0068 0.2839 0.0074
CR 0.3378 0.4189 0.3378 0.4459 0.3378
10} 0.3144 0.1725 0.3144 0.1246 0.3112

* See the notes to Table 3

40



Table 8: One period ahead forecast performance of the growth rate of US In-
dustrial Production, 1980.Q1 - 1998.Q2. All models selected by CV

LR FNL ANN PPR1 PPR2

Mean C'V 4.5321 4.5321 4.2569 4.5273  4.5809
Frequency 0.00 1.00 0.05 1.00
Absolute forecast .

performance

MSE 1.3619 1.3619 1.3347 1.3614 1.2985
MAD 0.7960 0.7960 0.7965 0.7958 0.7791
MAPE 1.1240 1.1240 1.1371 1.1236 1.0785
Theil’s U 0.8846 0.8846 0.8758 0.8846 0.8638

t-stat.(intc=0)[p-val.] ~ 0.4366 0.4366 0.2736 0.4305 0.5479
t-stat.(slope=1)[p-val.] 0.8964 0.8964 0.9880 0.8845 0.9136

F-stat [p-val.] 0.3897 0.3897 0.2348 0.3718 0.6041
R? 0.2338 0.2338 0.2603 0.2351 0.2601
Directional forecast

performance

HM [p-val] 0.0072 0.0072 0.0039 0.0072 0.0215
X2 [p-val.] 0.0068 0.0068 0.0037 0.0068 0.0207
CR 0.3378 0.3378 0.3243 0.3378 0.3649
10} 0.3144 0.3144 0.3379 0.3144 0.2696

* See the notes to Table 3
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Table 9: Diebold-Mariano test for relative predictive ability. Change in US
Unemployment rate, 1980.Q1 - 1998.Q2. The Squared Error loss function is
used in the DM and MDM statistics.

Measure Hy DM  MDM

1 step ahead forecast

MSE, R? LRBIC ~ FNLCV -0.938  -0.932
(0.35)  (0.35)
MAD,MAPE,$ LRV ~FNLSV -0.691  -0.686

(0.49)  (0.50)

4 steps ahead forecasts

MSE, ¢ LRAIC ~ PPR2BIC 0502  -0.837
(0.62)  (0.41)
MAD LRV ~ PPR2BIC  0.006  -0.006
(1.00)  (1.00)
MAPE, R? LRV ~ FNLEV -0.929  -0.923

(0.35)  (0.36)

* p-values in parentheses

o~ - Equal forecast accuracy

DM - The Diebold-Mariano test

M DM - The modified Diebold-Mariano test
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Table 10: Encompassing test for relative predictive ability. Change in US Un-
employment rate, 1980.Q1 - 1998.QQ2. The best linear model versus the best
non-linear model

Meas. H 0 R R s R1 Rdm Rmd7n

1 step ahead forecasts

MSE, LRBIC 2.074 2.120 2.073 1.802 1.790

R? FNLEY (0.04) (0.03) (0.04) (0.07) (0.07)
FNLCY ¢ 0.117 -0.001 0.117 0.117 0.116
LRBIC (0.91) (0.91) (0.91) (0.91) (0.91)
MAD, LR rC 2,129  -1.909 2168 1.880 1.867
MAPE  FNLCV (0.03) (0.06) (0.03) (0.06) (0.06)
FNLEV -0.406 -1.795 -0.414 -0.407 -0.405
LRCY (0.68) (0.07) (0.68) (0.68) (0.69)
b LRV C (0.68) 0.193 0661  0.633  0.629
PPR2CV (0.51) (0.85) (0.51) (0.53) (0.53)
PPR2V & 0.754 1.334 0749 0.743  0.738
LR (0.45) (0.18) (0.45) (0.46) (0.46)
4 steps ahead forecasts
MSE, LRAC - - 1982  1.473  1.463
o PPR2BIC - - (0.05)  (0.14)  (0.14)
PPR2BIC = - - 0.908 0.936  0.930
LRAC - - (0.36)  (0.35) (0.35)
MAD LRCY - - 2221  1.708  1.696
PPR2BIC - - (0.03)  (0.09)  (0.09)
PPR2BIC £ - - 0.844 0.851  0.845
LRV - - (0.40)  (0.39)  (0.40)
MAPE, LRV rC - - 1.330  1.301  10.292
R? FNLEY - - (0.18)  (0.19)  (0.20)
FNLCY ¢ - - 1.490  1.441  1.432
LRCYV - - (0.14)  (0.15)  (0.15)

* p-values in parentheses. A  B: A encompass B.

R - OLS based t-test.

R - Spearman’s Rank correllation test, Ry - Robust Encompassing test.
Rg,n - Robust Encom. test with mean correct.

R,.am - Robust Encom. test with mean and D.F. correct.
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Table 11: Diebold-Mariano test for relative predictive ability. Growth rate of
US Industrial Production. 1980.Q1 - 1998.Q2. The Squared Error loss function
is used in the DM and MDM statistics.

Measure Hy DM  MDM

1 step ahead forecasts

MSE,MAD,MAPE LR®Y ~ PPR2¢V -0.938  -0.932
(0.35)  (0.35)

o LRV ~ FNLCV 0.000 0.000
(1.00)  (1.00)
R? LRPIC ~ PPR2BIC 1016  -1.010

(0.31)  (0.32)

4 steps ahead forecasts

MSE, MAPE, R? LRCY ~ FNLBIC -0.732  -0.697
(0.46)  (0.49)
MAD, ¢ LR¢Y ~ FNLCV -1.733  -1.651

(0.08)  (0.10)

* See the note to Table 9
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Table 12: Encompassing test for relative predictive ability. Growth rate of US
Industrial Production, 1980.Q1 - 1998.Q2. The best linear model versus the
best non-linear model

Meas. Hy, R R, Ry Ram Roam

1 step ahead forecasts

MSE, MAD, LRV ¢ 2.204 1.061 1978 1793  1.781
MAPE PPR2CYV (0.03) (0.29)  (0.05) (0.07)  (0.07)
PPR2CYV = -1.109 0.847 -0.995 -0.957 -0.951
LRV (.27)  (.0.40) (0.32) (0.34)  (0.34)
b LRCY & 1.259 1580 2279 1.337  1.320
ANNCV (0.21) (0.11)  (0.02) (0.18) (0.18)
ANNCY 0.309 1.407 0576  0.527  0.530
LRCY (0.76) (0.16)  (0.58) (0.53) (0.53)
R? LRCY 1.710  -0.688 1.905 1.945  1.932

PPR2BIC (0.09) (0.49) (0.06) (0.05) (0.05)
PPR2BIC - _0.045 -1.241 -0.050 -0.050 -0.050

LRCY (0.96) (0.21)  (0.96) (0.96)  (0.96)
4 steps ahead forecasts
MSE, LRV - - 2.634 2245  2.139
MAPE, R? FNLBIC - - (0.01)  (0.02)  (0.03)
FNLBIC - - 1.005  1.005  0.958
LRCY - - (0.31)  (0.31)  (0.34)
MAD, ¢ LRV - - 4.046 2524 2.405
FNLEY - - (0.00) (0.01)  (0.02)
FNLCV - - -0.054 -0.054 -0.051
LRV - - (0.96)  (0.96)  (0.96)

* See the note to Table 10
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