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ABsTrACT. This note establishes consistency of kernel estimators of the
long-run covariance matrix of a linear process under weak moment and memory
conditions. In addition, it is pointed out that some published consistency proofs
are in error as they stand.
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1. INTRODUCTION
This note establishes consistency of kernel estimators of the long-run covariance ma-
trix of a linear process under weak moment and memory conditions. The best such
consistency results currently known to the author require substantially more restric-
tive moment and/or memory conditions than needed for the functional central limit

theorem (FCLT).! In contrast, our conditions are only moderately stronger than those
of the FCLT of Davidson (1999).2

2. RESULTS

Consider a sequence of n-dimensional random vectors {V;},., = {(Vi, .-\ Vim)'} .
generated by the linear process -

Vi=C(L)e, (1)

where C (L) = Y72, C;L" is an n x n matrix polynomial in the lag operator. For all
t € Z,let F; = o(es:s<t)and for any m x n matrix A = (a;;) and any p > 0,

Specifically, Robinson (1991, Theorem 2.1) requires at least 2.5 finite moments when the band-
width expansion rates recommended by Andrews (1991) are employed, while de Jong and Davidson
(1999, Theorem 2.1) require near epoch dependence of size -1/2. As discussed by Davidson (1999),
the latter condition is excessively stringent for the FCLT. In particular, it is stronger than our
condition (V1) (i).

2Davidson (1999, Theorem 3) requires square summability rather than absolute summability of
the MA coefficients.
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1/p
let [|A]l, = (ZZL > i1 ]aij]p> . We impose the following condition on C' (L) and

{et}tez = {(etb e ’et”),}teZ:

1) 2o G, < oo,
(i) Forallt € Z,E (e | F1_1) =0 (a.s.) and E (eie} | Fr 1) = I, (a.s.), (V1)

(iii) {eses)},cq is uniformly integrable for 1 <i < j <n.

Notice that Cj is not necessarily the identity matrix. Therefore, the assumption
E (eie; | Fioq) = I, simply restricts E (ViV} | Fi_1) to be constant. Under condition
(V1) (ii), (V1) (iii) holds whenever {e;}, ., is i.i.d. or maxi<i<, supyy E |ex|” < 00
for some r > 2.

When (V1) holds, the long-run covariance matrix of V;,

Q= lim T~ 1ZZE (V,V))

s=1 t=1

can be written as follows:
Q=T+T" -3, (2)

where

r=>»ys, (3)
1=0
Si=E ViV, t>i4+1,i>0.

In some applications, such as the cointegration procedures of Phillips and Hansen
(1990) and Park (1992), the one-sided long-run covariance matrix I" in (3) is of inter-
est in it’s own right. In recognition of this fact, we focus explicitly on I'. Of course,
in view of (2) and the fact that ¥ is easy to estimate, a consistent estimator of € is
readily constructed given a consistent estimator of I'. We consider the class of kernel
estimators of I' given by
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where

zT_T Z‘/tt“ OSZST—L

t=i+1

and k (-) is a kernel. The corresponding estimator of (2 is
QT = fT + fVT — 20,T~

The kernel k (-) and the sequence {sr},-, of (positive) bandwidth parameters are
assumed to satisfy the following conditions:

For all x € R, |k;( )| <1and k(z) =k(—x);k(0) =1,k () is continuous

at zero; f k(z)dx < oo, where k () = sup,>, |k (y)| for all z > 0. (K)

1/2

sp— o0 and T~ Y2sp — 0 as T — oo. (S)

In (K), f[z;’oo) k (x) dx denotes the outer integral of k (-) over [0, c0).? Condition (K)
resembles Assumption A2(0) of Robinson (1991) and is satisfied by most kernels
considered in the literature.! In particular, (K) holds for the truncated kernel and
for all kernels in the class ICs of Andrews (1991) and Andrews and Monahan (1992).
Likewise, (S) is satisfied whenever the bandwidth expansion rate coincides with the
optimal rate reported in Andrews (1991, p. 830). Our main result is the following.

Theorem 1. Suppose (K),(S) and (V1) hold. Then T'y —T' —, 0 and Q7 —Q —, 0
as'T — oo.

Although condition (K) is satisfied by most kernels in actual use, some kernels
in the class K; of Andrews (1991) and Andrews and Monahan (1992) do not satisfy
(K) . Similarly, condition (K) can be violated under Hansen’s (1992) Condition (K)
and Assumption 1.1 of de Jong (1998). As explained in the appendix, however, some
of the proofs in Andrews (1991), Hansen (1992) and de Jong (1998) are in error as

3We state the condition in terms of the outer integral in order to avoid measurability complica-
tions.

4Unlike Robinson (1991) and de Jong and Dav1dson (1999, Assumption 1), we do not require
Jg K (V)] dX < 0o, where K (X) ' [ k (z) exp (iAx) d. This enables us to accommodate the
truncated kernel.
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they stand, precisely because a condition like () is needed for a key step in these
proofs to be valid.’
In applications, the vectors {Vt}t21 are often functions of an unknown parameter

vector 6 (say), V; = Vi () . Given an estimator 6 of 6 (the true value of ), we can
construct the estimators (@T> and Ty (9T> , where

QT (éT> = 1AﬂT (éT> + fT <éT), - XA:O,T <éT> ;

Ir (éT) = 2 k (é) St <éT) ,
S () =17 Y ()i (br) . 0sesTon

To establish consistency of QT (@T) and fT (9T), we impose the following condition:

Either
(i) TV? (@T — 90> = O, (1) and for some neighborhood N of 6,
SUp;>y B <SupeeN (l75v2 (9)H2)2> < 00,

or

(i) Vi (0) = V; (60) — (0 — 60)' Xu, sup <<t |67 X¢[|y = Op (1) , and
T4/2 (@T - 90> 6;0 =0, (1), where {01} 15, is a sequence of

nonsingular matrices.

Condition (V2) (ii) is Hansen’s (1992) Condition (V3), while (V2) (i) is equivalent to
Assumption B of Andrews (1991) under (V1). As in Hansen (1992), the following is
an immediate consequence of Theorem 1.

Corollary 2. Suppose (K),(S), (V1) and (V2) hold. Then T'y (@T> —I' —, 0 and
QT (@T> —Q—=,0asT — oo.

®Theorem 1 of Andrews and Monahan (1992) is true as stated, since the kernel k is assumed to
belong to the class K3. On the other hand, the claim that the consistency results (Theorem 1) hold
for all & € Ky when the sequence of bandwidth parameters is fixed (Andrews and Monahan, 1992,
p. 956) would appear to be incorrect.
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Sample-dependent bandwidth parameters can also be accommodated. Let
QT <9T,§T) and fT (@T,éT) denote QT (@T) and fT (@T> evaluated at the pos-
sibly stochastic bandwidth §r. The following assumption on {sr} suffices:

Sp = bpsr, where ap = O, (1),1/ar = O, (1), and sy satifies (S). (S

Theorem 3. Suppose (K),(S'), (V1) and (V2) hold. Then Ty (@T, §T) - —,0
and QT <@T,§T> —Q—=,0asT — oo.

3. PROOFS
3.1. Proof of Theorem 1. Notice that

Iy —T

<[[fr - (Fr)
2

+ HE (PT> T
2

Y

2
| =0, < o =& (ar)], + = (o) -9,
2 2 2

Continuity of k() at zero and Y .-, |||, < oo implies HE <fT) - FH2 — 0 and

HE <QT> — QH — (0. Moreover,
2

Y

2

[ =2 (0r)], =2 e =2 (P)], + [Sor = 2 (S0 )

while

()],
2

e ()|, < )i (L)

Suppose we can show that

k(é)‘ —0(1). (4)

Moreover, suppose we can find non-negative sequences {/3;},~, and {¢p, np};~, such
that B -

E<H22T_E(22T>H2) < Br + 17, 0<i<T-—-1, (5)
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where > 8; < 00, = 0(1) and n; = O (T~/?) . Then

£ ([ 2 (o)) = o 10

and

T-1

&

Pr-E(Pr)] ) <

=0

A
<
~

N
SN
_|._
=

[

VAN

<

~
VR

L

=
~_

+ .

=

~

V)

Z
VR

VA

%H

b

since |k (z)| < 1 for all z € R and ¢ps7 = o(1) under (K),(S). The two lemmas
that follow establish (4) and (5), hereby completing the proof. |

Lemma 4. Suppose (K) and (S) hold. Then limsup;_ . s7' Y1 |k (i/s7)| < oo,

Remark 1. In the proof of Theorem 1(a) in Andrews (1991), it is claimed that the
conclusion of Lemma 4 holds under the weaker condition that k& € K;, where®

Ki= {k():R—[-1,1],k(0) =1,k(z) =k(—z) Vz € R,
Jg |k (z)| dz < oo, K (-) is continuous at 0 and at all but
a finite number of other points} .
A similar claim has been made by Hansen (1992, pp. 970-972). As we now show,

these claims are invalid. Take any k& € K; such that k (x) = 1 Vz € Z and take any
{sr} € N such that (S) holds. Then, as T" — o0,

T-1 ; (T—-1)/sT]
st Y k(=) = st )L (k@)
i=0 ST =0
T —1
- (5]
— O()7

6 As pointed out by Andrews and Monahan (1992, p. 955), the class K1 in Andrews (1991) should
be defined with [, k (x)* dz < oo replaced by [, |k ()| dz < oo.
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where [(T" — 1) /sr]| is the largest integer not exceeding (7" — 1) /s. As a consequence,
the proofs of Theorem 1 of Andrews (1991) and Theorems 1 and 3 of Hansen (1992)
are in error as they stand. Likewise,

T-1 i (T-1)/sT]
S;QZ k(—)‘ i > syt Z |k (x)] - x
=0 ST 2=0
1] ([r=1
L ==
— OO,

contradicting a claim made by de Jong (1998, Proof of Theorem 2). Therefore,
de Jong’s (1998) corrected proof of Hansen’s (1992) incorrect consistency proof is in
error as it stands.

One kernel k € IC; such that k (z) =1 Vx € Z is

BO) =Dk,

where, for each ¢+ > 0 and x > 0,

1—(i+1)*(z—1), ifi <z <i+(it+1)7,
ki(z)=4 1—(i+1)°(+1—z), ifi+1—(i+1)°<z<itl,
0, otherwise.

Letting k (z) = k (—x) Vz < 0, it easily seen that k£ € K;. In particular, k is continu-
ous and

[r@lds - z/mm)k(x)dm

o, °]

= 2) (/[O,oo)ki(m)dx>

=0
oo
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Remark 2. Any kernel k£ € K; satisfies Hansen’s (1992) Condition (K), which
is identical to Assumption 1.1 of de Jong (1998). In Remark 1, we therefore only
considered the case where £ € K;. We notice, though, that matters can get even
worse under Hansen’s (1992) Condition (K), since that condition allows k& to be

discontinuous at countably many points. The sequence {s}l ST E G sT)|}

only depends on k (-) through {k (z):x € D}, where D = Urs; Uicicr 1 {i/s7}.
Since D is countable, s;.' S, ' |k (i/s7)| can take on any value in [s3';s5! - T (for
each T') and still satisfy Hansen’s (1992) Condition (K). In particular, we can have
st S Mk (i/s7)| = spt - T, which diverges (as T — oo) whenever sy = o (T).

Proof of Lemma 4. For any 1 <i < T — 1, we have

. oy i - .
‘k(i)‘Sk(i>§k(x>, L _<a<—,
ST St ST ST

where k (z) = SUDy> | |k (y)| for all z > 0. Therefore,

G L G
St [(i—1)/s1,i/sT) St

1
St

dr < / k() dx,
[(

’i—l)/ST,i/ST)

and hence

-1 ; -1 ;
syt k (—> ‘ = sp' 47! k (—> ‘
! ; 5T ' ! i=1 5T
< sp! +/ k(z)dx
[0,(T=1)/s7)
< S51+/[0 )l_c(x)dx.

The lemma follows by taking the limsup (as T — oc) on each side since syt — 0 and
f[zoo)k(x)dx<oo. |

Lemma 5. Suppose {V,} is generated by (1) and satisfies (V1). Then (5) holds.
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Proof of Lemma 5. We have:

!/
o o0
ViV, = (Z Cjet—j> (Z Cket—i—lc)
j=0 k=0
0 o
= ZZCjet—je;—i—kCI{c
j 0 k=0
= ZClJrket i— ket i kC/+Z Z C’et ]et i k
k=0 j=0
j#i+k

Clearlya E(‘/t t— z) Zk 0 z+/~ch7 S0

T
ii,T_E<iz',T> = T Z (Z Cz+l~c €t i k€h_if — )C//€>

t=1+1

T 0o o)
71 Z Z Z Cjetfjei—i—kcllc

+
t=i+1 \ k=0 ;=0
itk
0o T
= Z(TIZ Citk etzketzk )Ck)>
k=0 t=i41
00 0o T
+Z Z (Tl Z (Cjerjei lccll~c>>
k=0 j=0 t=i+1
itk
As a consequence,
(e’ T
Sor =B (Sir), € ST D (rmsetoin = 2| - 1Gu- ICll
k=0 t=i+1 2
0o 0o T
> Z T el il| Gk 1G]

since || AB||, < ||All, || B||, for conformable A and B. Therefore,

FE <H22’T —F (f}i,T> Hz) < B¥r +nr,
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where
B = NCklly - 1Cisll,
k=0
T
—1 /
Vr = iglg 0<I}1<aJTX 1E ( r Z (et_i_ketfifk a In) ) ’
t=i+1 2
T [ BNe’)
o= (e, (|03 e )] (S50 10
sis J,k>0 t=it1 k=0 j=0
]7£2+l€ 2 J
By (V1) (i),
> B = ZZHCkHQ 1Cirkll, < (Z HCkHQ>
i=0 i=0 k=0
Next,

T
'Y (eike o — 1)

t=i+1

E ( T
since || A||, < ||A||, for any matrix A. Each element of 7} /' (et—r€;_j, — In) is a mar-

tingale, so
1 1

T—1
) - E ( T 1 Z 6t ket k n) )
2 2
S E < T 1 Z et ket k ) ) 9
t=1 1

T—1

! Z (et_kegfk — In)
=1

T

7! Z (er—r€)_p — In)

and

T
T Z (er—re€j_y, — In)

k20 t=1

U SsupE(
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as in Andrews (1988, Proof of Lemma) since each element of {ee;}, , is uniformly
integrable under (V1) (iii). Finally,

T 2 T ! T
—1 / _ —2 / /
T E , €t—jCt ik = T7"-tr § €1—jCt—ik E €s—jCs—i—k
t=i+1 9 t=i+1 s=i+1

T T
= T Z Z €t jCs—j€ai—kCliky
t=it1 s=i+1

since (|| Al|,)* = tr (A’A) for any matrix A. If s # ¢ and j # i + k then

E (€;_jes—jel s werik) =0,
since e.g.

E (e;,jes,je;,i,ket,i,k) =F (E (e;,jes,je;,i,ket,i,k \ .7-},]-,1)) =0,

when s <tand j <i+ k. If s=t¢and j # i+ k then

E (€)_jes—j€y i per—ik) = n?,

since e.g.

E (e jei g i werir) = E(E(e;jer e perinl|Fij))

= E(n-€_i_peiik) =n°

when j < ¢ + k. Therefore,

oAl

whenever j # i + k. By the Cauchy-Schwarz inequality,

T
-1 /
T E , €t—5€1 ik

t=i+1

2 T
I —i n?
) 2 2
> =1 g n* = 2n<—,
2

t=i+1
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T T 2 1/2
E( A Z €t—j€1ik ) < | E ( T Z €t—j€h_ik >
t=i+1 2 t=i+1 9
< N
= 12’
and as a consequence,
T 00 9]
M= | 2 S;;@OE< T e e ik ) >SS ICk,- IG,
Frith t=itl 2 k=0 ; g’;?k
n 0 o
= T1/2 Z Z HCkHQ'HCjHQ
k_OJ =0
n = ’
< T1/2 ZHCk“2>
k=0
— o1,

since > oo [|Ckll, < oo under (V1) (i). |

3.2. Proof of Corollary 2. Since I'; (6y) —T" —, 0 and Q (69) —Q —, 0 (Theo-
rem 1), it suffices to show that Iy (@T> - (6p) —, 0 and Qr (@T> —Qp (6o) =5 0.
As in the proofs of Theorems 2 and 3 in Hansen (1992), Condition (V2) implies that

for some Qr = O, (1), where Qr does not depend on s,
o ) T— .
Pr (br) = Dr (00)|, < (7772 ( Z ( )D Qr.
=0
Now, T~Y2sp = o(1) under (S) and s7' 3.1, \k(z/sT)] O (1) under (K),(S)
e (5r) 1 0], -

ment can be used to show that HQT (@T> — Q7 (o) H = 0p ( ) and the desired result
2
follows. u

(Lemma 4). As a consequence, 0p (1). An analogous argu-
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3.3. Proof of Theorem 3. Under (§'), oy < a < a,, with probability arbitrarily
close to unity for sufficiently large T" and appropriately chosen «; > 0 and o, < c0.
Consequently, it suffices to show that for any 0 < o; < o, < 00,

A

sup ||[I'r (@T, a- ST> —T|| =0, (1),

a<alay

QO <@T,oz . ST) — QH2 = 0p (1), where

o+ (1) denotes convergence to zero in outer probability.” Notice that

which is easily shown to imply sup,, <,<q,

sup Py (Br.a-sp) =1 < s B0 (B0 sr) < Ty (B0 s0)|
g <alay 2 oyg<a<oy 2
+ sup |y (0,0~ s7) — E (fT (0, ax - ST)) H
a<alay 2
+ sup |[|E (f’T (Oo, - ST)> T .
a<a<lay 2

We shall show that each term on the right hand side is op+ (1). As in the proof of
Corollary 2, we can show that

A

I'r <@T, Q- ST) - f‘T (B, - ST)H

2

< (T’l/Qa . sT) (

for any a > 0, where Qr = O, (1) and Qr does not depend on « or sr. Now,
T-2q-sp =0(1) and

T-1 ) T-1 )
1 ) 1 - )
Q- S = Q- ST Q- S = Q- ST
=0 =0
T-1
< Qu 1 ? ( i )
T QST — Qy, + ST
T-1
< Qu 1 7 ( l )
Qo QST \ QST

"To avoid measurability complications, we consider convergence in outer probability rather than
convergence in probability.
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for any 0 < oy < a < oy, < 00 under (K) and (S) (Lemma 4), so

A

'y (9T,o¢ . ST> — Ty (0o, v - ST)H = 0, (1).

2

sup
Qg Sagau

Next,
T—1 ; R .
I'p (80705'3T> _E<PT (QO;OC'ST))H < k ( )‘ : Ez',T_E(Ei,T)H
2 P Q- St 2
T—1 ; R R
< k( ) S - B (S
i Oy, * ST

o

forany 0 < oy < a < e, < oo under (K) . It follows from the proof of Theorem 1 that

T—1 ;
o) |
i=0 Qu 5T

f}in — E <2i,T> H = Op (1) 3
2

establishing
sup f‘T (O, - s7) — E (fT (0o, cx - ST)> H =o0p (1).
a<a<ay 2
Finally,
sup E(fT (Qo,a-sT)> —FH — 0,
a<alay

by continuity of k (-) at zero and Y oo ||Zill, < oc. W
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