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1.  Introduction.

Most hypotheses in limited dependent variable (LDV) models are composite, meaning

that the null hypothesis H0 does not completely specify the data generating process (DGP). In

this case, the null specifies only that the DGP belongs to a given set. As a consequence, the

sampling distribution of a test statistic under H0 is unknown except in special cases because it

depends on the true DGP in the set specified by H0. The problem is how to test the null

hypothesis in this situation.  In this paper, the bootstrap is used to solve the hypothesis testing

problem.

The LDV models considered in this paper are the simple binary probit model and the

simple censored normal linear regression model. For these models, a typical null hypothesis H0 is

that the slope coefficient is zero. This null is composite, the remaining parameters being nuisance

parameters. This null is tested using the Lagrange Multiplier (LM), likelihood ratio (LR), and

Wald test statistics. In our Monte Carlo experiments, we compare the powers of the competing

tests when the tests use bootstrap-based critical values. We argue that the powers of the tests

with bootstrap-based critical values are empirically relevant because these critical values can be

calculated in applications.

There are two basic approaches to obtaining critical values for testing a composite null

hypothesis. One approach employs the concept of the size of a test.  The size is the supremum of

the test’s rejection probability over all DGP’s contained in H0.  The α-level size-corrected

critical value is the critical value that makes the size equal to α.  In principle, the exact, size-

corrected critical value can be calculated if it exists, but this is rarely done in applications,

possibly because doing so typically entails very difficult computations.

 In addition to the difficulty of computing size-corrected critical values, size-corrected

tests (that is, tests based on size-corrected critical values) have two fundamental problems. First,

the size-corrected critical value may be infinite, in which case a test based on the size concept

has no power.  Second, even if the size-corrected critical value is finite, the power of the test may

be less than or equal to its size.  Dufour (1997) gives several examples of the first problem.

Bahadur and Savage (1956) demonstrate the second for the case of testing a hypothesis about a

population mean.  Savin and W��urtz (1999a) consider testing the hypothesis that the slope

parameter is zero in a binary logit model with one explanatory variable.  In their example, the

size-corrected critical value of the outer product LM test exists, but it is sensitive to the interval
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of admissible values for the intercept.  If this interval is large, then the power of the test is zero

for empirically relevant sample sizes.

A second approach to dealing with a composite H0 is to base the test on an estimator of

the Type I critical value. Horowitz and Savin (1998) define this critical value as the one that

would be obtained if the exact finite-sample distribution of the test statistic under the true DGP

were known.  In general, the true Type I critical value is unknown because the exact finite-

sample distribution of the test statistic depends on population parameters that are not specified by

H0.  Thus, an approximation to the Type I critical value is required to implement the second

approach.

An approximation to the Type I critical value often can be obtained by using the (first-

order) asymptotic distribution of the test statistic to approximate its finite-sample distribution.

This approximation is useful because most test statistics in econometrics are asymptotically

pivotal: their asymptotic distributions do not depend on unknown population parameters when

the hypothesis being tested is true.  Thus, an approximate Type I critical value can be obtained

from asymptotic distribution theory without knowledge of the true DGP. Critical values obtained

from asymptotic distribution theory are widely used in applications.  However, Monte Carlo

experiments have shown that first-order asymptotic theory often gives a poor approximation to

the exact distributions of test statistics with the sample sizes available in applications.  As a

result, the true and nominal probabilities that a test makes a Type I error can be very different

when an asymptotic critical value is used.

Under certain conditions, the bootstrap provides an approximation to the Type I critical

value that is more accurate than the approximation of first-order asymptotic theory. These

conditions are satisfied for the test statistics considered in this paper. Given that the LDV models

in this paper are fully parametric, the Type I critical can be estimated by the parametric

bootstrap.  Our Monte Carlo results show that the parametric bootstrap estimates of the Type I

critical values provide good control over the probability of making a Type I error. Thus, for the

examples we consider, the bootstrap provides a way to obtain empirically relevant critical values

for the purpose of making power comparisons. As consequence, the powers of tests with

bootstrap-based critical values are empirically relevant because these critical values can be

calculated in actual applications.
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By contrast, conventional Monte Carlo studies comparing the finite-sample powers of

tests usually take a different approach to obtaining critical values.  Most studies report powers

based on critical values that are called “size-corrected,” but are really Type I critical values for

essentially arbitrary chosen simple null hypotheses.  These Type I critical values ignore the

uncertainty about the values of the nuisance parameters; they implicitly assume that the values of

the nuisance parameters are known. Therefore, conventional Monte Carlo studies compare tests

using powers that can be misleading in empirical research. In short, the Type I critical values

used by conventional Monte Carlo studies are both misnamed and irrelevant in empirical

research.

The organization of this paper is as follows. The Type I critical value is defined in

Section 2. The bootstrap critical value when H0 is true is developed in Section 3. Section 4

considers the Type I critical value when H0 is false and its bootstrap estimate. Monte Carlo

results on the numerical performance of the bootstrap are presented in Section 5 for a simple

binary probit model and in Section 6 for a simple censored normal linear regression model.

Section 7 concludes the paper.

2. Type I Critical Values

Let the data be a random sample of size n from a probability distribution whose

cumulative distribution function (CDF) is F.  Denote the data by {Xi, i = 1, ..., n}.  For the

purpose of this paper, F is assumed to belong to a family of CDF’s that is indexed by the finite-

dimensional parameter θ whose population value is θ∗. We  write F(x, θ∗) for P(X ≤ x) and F(⋅,

θ) for a general member of the parametric family.  The unknown parameter θ is restricted to a

parameter set Θ.  The null hypothesis H0 restricts θ to a subset Θ0 of Θ. If H0 is composite, then

Θ0 contains two or more points.

Let Tn = Tn(X1, …, Xn) be a statistic for testing H0.  Let Gn[τ, F(⋅, θ)]  ≡ P(Tn ≤ τ|θ ) be the

exact finite sample CDF of Tn when the CDF of the sampled distribution is F(⋅, θ). Consider a

symmetrical, two-tailed test of H0. This is the kind of test typically used to test the parameters of

LDV models.  H0 is rejected by such a test if  |Tn| exceeds a suitable critical value and accepted

otherwise.  For θ * in Θ0, the exact, α-level Type I critical value of |Tn|,  znα, is defined as the

solution to the equation Gn[znα, F(⋅, θ∗)] - Gn[-znα, F(⋅, θ∗)] = 1 - α.  A test based on this critical
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value rejects H0 if |Tn| > znα.  Such a test makes a Type I error with probability α.  However, znα

can be calculated in applications only in special cases.  If H0 is simple so that Θ0 contains only

one point, then θ* is specified by H0, and znα can be calculated or estimated with arbitrary

accuracy by Monte Carlo simulation.

 If, as usually happens in econometrics, H0 is composite, then θ* is unknown and znα 

cannot be evaluated unless Gn[τ, F(⋅, θ)] does not depend on θ  when H0 is true.  In this special

case, Tn is said to be pivotal.  The Student t statistic for testing a hypothesis about the mean of a

normal population or a slope coefficient in a normal linear regression model is pivotal. However,

pivotal test statistics are generally not available in most econometric applications, and, in

particular, for LDV models. When Tn is not pivotal, its Type I critical value znα can be very

different at different points in Θ0. This is illustrated by the examples in Sections 5 and 6.

When H0 is composite and Tn is not pivotal, it is necessary to replace the true Type I

critical value with an approximation or estimator.  First-order asymptotic distribution theory

provides one approximation.  Most test statistics in econometrics are asymptotically pivotal.

Indeed, the asymptotic distributions of most commonly used test statistics are standard normal or

chi-square under H0, regardless of the details of the DGP.  If n is sufficiently large and Tn is

asymptotically pivotal, then Gn[⋅, F(⋅, θ*)] can be approximated accurately by the asymptotic

distribution of Tn.  The asymptotic distribution is the same for any θ in H0 (including θ∗) when

Tn is asymptotically pivotal, so approximate critical values for Tn can be obtained from the

asymptotic distribution without having to know θ∗.

Critical values obtained from asymptotic distribution theory are widely used in

applications of LDV models.  However, Monte Carlo experiments have shown that first-order

asymptotic theory often gives a poor approximation to the distributions of test statistics with the

sample sizes available in applications.  As a result, the true and nominal probabilities that a test

makes a Type I error can be very different when an asymptotic critical value is used. Davidson

and MacKinnon (1984) have documented such distortions for the case of logit and probit models.
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3. Bootstrap Critical Values when the Null Hypothesis is True

The bootstrap provides a way to obtain approximations to the Type I critical value of a

test that are more accurate than the approximations of first-order asymptotic distribution theory.

The bootstrap does this by using the information in the sample to estimate θ and, thereby, Gn[⋅,

F(⋅, θ*)].  The estimator of Gn[⋅, F(⋅, θ*)] is Gn(⋅, Fn) where Fn(x) = F(x, θn) and θn is a n1/2-

consistent estimator of θ*   when θ∗ ∈ Θ0. The idea is that θn has a high probability of being

close to θ* when H0 is true.  Therefore, Fn is close to F(⋅, θ*).  The bootstrap estimator of the α-

level Type I critical value for |Tn|, znα*, solves Gn(znα*, Fn) - Gn(-znα*, Fn) = 1-α.  Thus, the

bootstrap estimator of the Type I critical value is, in fact, the exact Type I critical value at θn.

Usually, Gn(⋅, Fn) and znα* cannot be evaluated analytically.  They can, however, be

estimated with arbitrary accuracy by carrying out a Monte Carlo experiment in which random

samples are drawn from Fn.  Although the bootstrap is usually implemented by Monte Carlo

simulation, its essential characteristic is the use of Fn to approximate F in Gn[⋅, F(⋅, θ*)], not the

method that is used to evaluate Gn(⋅, Fn).  From this perspective, the bootstrap is an analog

estimator in the sense of Manski (1988); it simply replaces the unknown F with the sample

analog Fn.

The bootstrap provides a good approximation to Gn[⋅, F(⋅, θ*)] and znα if n is sufficiently

large.  This is because under mild regularity conditions, supx|Fn(x) - F(x, θ*)| and supτ|Gn(τ, Fn) -

Gn[(τ, F(⋅, θ*)]| converge to zero in probability or almost surely.  Of course, first-order

asymptotic distribution theory also provides a good approximation if n is sufficiently large.  It

turns out, however, that if Tn is asymptotically pivotal and certain technical conditions are

satisfied, the bootstrap approximations are more accurate than those of first-order asymptotic

theory.  See Beran (1988) and Hall (1992) for the details.

In particular, the bootstrap is more accurate than first-order asymptotic theory for

estimating the distribution of a “smooth” asymptotically pivotal statistic. It can be shown that

P T z O nn n(| | *) ( )> = + −
α α 2

when  H0 is true and regularity conditions hold.  (The bootstrap does not achieve the same

accuracy for one-tailed tests.) Thus, with the bootstrap critical value, the difference between the

true and nominal probabilities that a symmetrical test makes a Type I error is O(n-2) if the test
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statistic is asymptotically pivotal.  In contrast, when a critical value based on first-order

asymptotic theory is used, the difference is O(n-1).  This ability to improve upon first-order

asymptotic approximations makes the bootstrap an attractive method for estimating Type I

critical values.  Horowitz (1997) presents results of Monte Carlo experiments showing that the

use of bootstrap critical values can dramatically reduce the difference between the true and

nominal probability that a test makes a Type I error.

4. Bootstrap Critical Values when the Null Hypothesis is False

The discussion of Type I critical values up to this point has assumed that H0 is true so that

there is a θ* ∈ Θ0 corresponding to the true DGP.  The exact, α-level Type I critical value of a

symmetrical test based on the statistic Tn is the (1 - α) quantile of the distribution of |Tn| that is

induced by the DGP corresponding to θ = θ*.  When H0 is false, θ* is not in Θ0, and so there is

no Type I critical value corresponding to θ*. To obtain a Type I critical value, we follow

Horowitz and Savin (1998) and propose using the Type I critical value corresponding to a

specific θ under H0 called the pseudo-true value.  The bootstrap estimates the exact Type I

critical value at the pseudo-true value of θ.  Therefore, when H0 is false, the bootstrap provides

an empirical analog of a test based on the exact Type I critical value evaluated at the pseudo-true

value of θ.

The problem of choosing a critical value when H0 is false does not arise with size-

corrected critical values or asymptotic critical values for asymptotically pivotal test statistics.

This is because size-corrected critical values and asymptotic critical values for asymptotically

pivotal statistics do not depend on θ, that is, do not vary over the θ values in H0.  Thus, the

problem discussed in this section arises only in connection with higher-order approximations to

the Type I critical value such as that provided by the bootstrap.

When H0 is false the true parameter value θ* is in the complement of Θ0 in Θ. There is no

θ ∈ Θ0 that corresponds to the true DGP.  What value of θ should then be used to define the

Type I critical value?  If H0 is simple, Θ0 consists of a single point, and this point can be used to

define the Type I critical value.  If H0 is composite, however, there are many points in Θ0, and it
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is not clear which of them should be used to define the Type I critical value.  We now review the

solution to this problem proposed by Horowitz and Savin (1998).

 As has already been explained, the bootstrap estimator of the Type I critical value is

obtained from the distribution whose CDF is Gn[⋅, F(⋅, θn)], where θn is an estimator of θ.  Under

regularity conditions (see, e.g., White (1982) and Amemiya (1985)) θn converges in probability

or almost surely as n → ∞ to a nonstochastic limit θ 0  and n On p
1 2 0 1/ ( ) ( )θ θ− = . The pseudo-true

value is the limit θ 0 of θn when θn is restricted to Θ0.  If H0 is true, then θ θ0 = * . Regardless of

whether H0 is true, the bootstrap computes the distribution of Tn at a point θn that is a consistent

estimator of θ 0 .  It can be shown that when H0 is false, the bootstrap provides a higher-order

approximation to the Type I critical value based on θ 0  (Horowitz (1994)). For the LDV models

considered in this paper, the bootstrap samples are generated imposing the constraint of H0 and

replacing the nuisance parameters by their constrained estimates.

There are two important considerations when selecting the parameter point used to

calculate the Type I critical value. The first is that the θ value used to obtain the Type I critical

value coincides with θ* when H0 is true and has an empirical analog that can be implemented in

applications regardless of whether H0 is true.  Second, the resulting test has good power in

comparison to alternatives when H0 is false.  As already explained, θ 0  satisfies the first of these

conditions.  Moreover, convergence of the Type I critical value based on θ 0  to the asymptotic

critical value insures that a test based on this Type I critical value inherits any asymptotic

optimality properties of a test based on the asymptotic critical value.

5. Binary Probit Model

This section reports the numerical performance of the bootstrap for tests of the null

hypothesis that the slope parameter is zero in a simple binary probit model.

The binary probit model is

P Y X x x( | ) ( )= = = ′1 Φ β

where X = (X1, X2)′ is a vector of explanatory variables, β = (β1, β2 )′ is a vector of parameters,

and Φ is the standard normal CDF; see Amemiya (1985).  Here X consists of an intercept, X1,

and one covariate X2.  The composite null hypothesis is H0: β 2 = 0, β1 being the nuisance
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parameter, that is, the parameter not specified by H0.

 The null hypothesis is tested using the LM, LR and Wald test statistics. The LM and

Wald test statistics require an estimator of the asymptotic covariance matrix of the maximum

likelihood (ML) estimator of β. Three consistent estimators can be constructed from the expected

Hessian (EX), the observed Hessian (HS) and the outer product (OP) matrix of the score vectors,

respectively. Hence, there are seven test statistics in total.

The test statistics defined as t-statistics are asymptotically distributed as standard normal.

In this and the following section, it is more convenient to consider the squares of the t-statistics,

that is, Tn
2, all of which are distributed asymptotically as a chi-square with one degree of

freedom when H0 is true.  Hence, the asymptotic approximation to the α = 0.05 level Type I

critical value is 3.84. Moreover, the tests have the same asymptotic non-central chi-square

distribution under sequences of local alternatives. Although the test statistics are asymptotically

pivotal, they are not pivotal: their finite sample distributions depend on the value of the intercept

β1 under H0.

The test statistics are calculated using the ML estimator. The ML estimate is not finite for

some samples, that is, the ML estimator is not defined for certain points in the sample space; see

Albert and Anderson (1984), or, for a brief discussion, Amemiya (1985). We call these sample

points “bad” points. The LR statistic uses both a constrained and unconstrained ML estimator.

The value of the LR statistic, however, can be calculated for all sample points because the value

of the likelihood function is defined at the bad points; again see Albert and Anderson (1984).

The situation is different for the LM and Wald statistics. To calculate the LM statistic

only the ML estimator of β1 subject to the constraint β2 = 0 is needed. For the constrained ML

estimator there are only two bad points; one is y = (0,0,…,0)’ and the other is y = (1,1,…,1)’.

For finite n, these bad points have a positive probability of occurring.  If a bad point occurs in the

Monte Carlo experiments, it is deleted and not replaced. We note that the probability of a bad

point goes to zero at an exponential rate in n when H0 is true.

The Wald statistic employs the unconstrained ML estimator. For this estimator there are

many bad points. The procedure for detecting bad points is fairly straightforward for ungrouped

designs with one covariate plus intercept.  A bad point can be detected by sorting the

observations by the values of the covariate. A sample point is a bad point if the first i

observations are all 0’s and the remaining n-i are all 1’s, or the first i observations are all 1’s and
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the remaining n-i are all 0’s. Under the alternative there are 2n bad points out of 2 n sample

points.  If a bad point occurs in the experiment, it is deleted and not replaced.  It is important to

note that each sample has to be checked before calculating the ML estimate. A misleading

procedure is to delete points only when the ML estimation routine fails; standard estimation

routines often produce finite estimates for bad points; see Hughes and Savin (1994).

The Monte Carlo experiment consists of repeating the following steps 1,000 times for

each test statistic:

1. Generate an estimation dataset of size n = 50 by random sampling from the model with

β2 = 0 with X fixed in repeated samples. Estimate the parameters of the model by the

relevant ML method(s) and compute the test statistic.

2. Generate a bootstrap sample of size n = 50 by random sampling from the model with β2 = 0

using the constrained ML estimate β1 instead of its true value. Using this bootstrap sample,

compute the test statistic.

3. Repeat step 2 above 1000 times.  Estimate the 0.05 Type I critical value by the 0.95

quantile of the empirical distribution of the each test statistic. Let z n0.05* denote the

estimated Type I critical value.

4. Reject H0 at the nominal α = 0.05 level if the value of the test statistic exceeds z n0.05*.

The powers of the tests with bootstrap-based critical values are estimated by carrying out the

same steps except that the value of β2 is set equal to a nonzero number in step 1. Note that the

estimate of the Type I critical value is R/G where R is the number of rejections of H0 in G non-

deleted samples.

The experiment can also be used to estimate the rejection probability of the test based on

the asymptotic critical value.  In this case, H0 is rejected at the nominal α = 0.05 level if the test

statistic exceeds the 0.95 quantile of chi-square distribution with one degree of freedom, namely

3.84.

The Monte Carlo experiment is carried out for two designs.

Design 1. In the first design, β1 ranges over the interval [-1.5, 0] and β2 over the interval

[0, 0.8]. The values of X2 are generated using a perfect standard normal N (0,1): xi =

Φ− +1 1( ))i / (n , i = 1, 2,…,n.  For this design, the probability of a bad point is negligible.

The second column of Table 1 reports the estimated probabilities (in paratheses) of
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making a Type I error when the tests are based on the 0.05 asymptotic critical value 3.84. Note

that the estimated rejection probabilities tend to be sensitive to the value of the nuisance

parameter β1. The largest distortions in the rejection probabilities under H0 occur for the

asymptotic OP LM and OP Wald tests; for β1  = -1.5, the OP LM test massively over-rejects, and

the OP Wald substantially under-rejects. The asymptotic critical value works satisfactorily for

the EX LM and LR tests. For the remaining tests, the asymptotic critical works satisfactorily

except when β1  = -1.5.

The remaining columns of Table 1 report the empirical rejection probabilities of the tests

with bootstrap-based critical values, both under H0 and the alternative hypotheses. The bootstrap

eliminates the distortions in the rejection probabilities under H0 except for OP LM test when β1

=  -1.5. Hence, the bootstrap provides good control over the probability of making a Type I error.

The empirical powers are very sensitive to the value of the nuisance parameter; the power

tends to be largest when β1  = 0.0 and smallest when β1  = -1.5. The powers are similar for all the

tests, except for the OP LM test and the OP Wald test. In particular, when β1  = -1.5, the

estimated powers of these two OP-based tests are lower than that of the LR test. This is due, at

least in part, to the fact that the bootstrap does not fully correct the distortions in the rejection

probabilities under H0 of these OP-based tests. For example, when β1  = -1.5, the estimated

rejection probability under H0 is 0.021 for the OP LM test and 0.055 for the LR test. The

estimated power functions of the OP LM and LR tests are shown in Figure 1. The figure shows

the lower power of the OP LM test compared to the LR test when β1  = -1.5

Table 2 reports the average bootstrap critical value for the 1000 Monte Carlo samples for

each pair of parameter values. The average bootstrap critical values for the OP LM and OP Wald

tests are very sensitive to the true parameter values. Under H0, the average critical value depends

on the value of the intercept; the average critical value ranges from about 3.9 to 23 for the OP

LM test and about 2.3 to 3.7 for the OP Wald test. When H0 is false, the average critical value

varies across the values of the slope, for a given value of the intercept. For example, for the OP

LM test, the average critical value ranges from 12 to 22 when β1  = -1.5. This is in sharp contrast

to the behavior of the Type I critical value used in a conventional Monte Carlo study: for a given

value of β1, the Type I critical value is constant across alternative values of β2.

In the introduction, we noted that the powers produced by the conventional Monte Carlo
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study could differ substantially from those produced by a study that uses bootstrap-based critical

values.  This is now illustrated for the case of the OP LM test. Assuming that the value of β1 is

known, the Type I critical value can be calculated. The Type I critical value is 25 for the OP LM

test when β1  = -1.5.  Using this critical value, the power of the test increases from 0.050 to 0.066

as the alternative β2 increases from 0.0 to 0.8. Using bootstrap-based critical values, the power of

the test increases from 0.021 to 0.56 as β2 increases from 0.0 to 0.8.  For this example, the

powers of the bootstrap-based OP LM test are dramatically higher than those produced by the

conventional Monte Carlo study.

The behavior of the average bootstrap critical values for the LR test differs markedly

from those of the OP LM test. This is shown graphically in Figure 2. For the LR test, the average

bootstrap critical values are close to 4.0, both when H0 is true and when it is false. This reflects

the fact that for Design 1 the LR test statistic is almost pivotal. Hence, for the LR test, the powers

produced by the conventional Monte Carlo study are very close to those obtained using

bootstrap-based critical values.

Design 2. In the second design, β1 ranges over the interval [-1.5, 0] and β2 over the

interval [0, 0.8].  The values of X2 are now generated using a perfect uniform [2, 4] : xi = 2 + 2(i-

1)/(n-1), i = 1,2, …,n.  For this design, the power functions of the test statistics are

nonmonotonic; in particular, the power first increases and then decreases as the value of β2

increases. Savin and W��urtz (1999b) show that the power function is nonmonotonic for a large

class of tests when all values of X2 are positive.

The second column of Table 3 reports the estimated probabilities of making a Type I

error for the tests with asymptotic critical values.  Again, the asymptotic critical value of 3.84

does not work satisfactorily for most of the tests when β1  = -1.5. In particular, for Design 2, the

LR test signficantly over-rejects when β1  = -1.5. As in the case of Design 1, the largest

distortions in the rejection probabilities under H0 occur for the OP LM and OP Wald tests.

The estimated rejection probabilities of the bootstrap tests are also given in Table 3. The

bootstrap eliminates the distortions in the rejection probabilities under H0 except for OP LM and

OP Wald tests when β1  =  -1.5.  In contrast to Design 1, the power tends to be largest when β1  =

-1.5 and smallest when β1  = 0. In general, the powers tend to be much lower for Design 2 than

Design 1.  This is partly due to the nonmonotonicity of the power functions. The estimated
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power functions of the OP LM and LR tests are shown in Figure 3. The nonmonotonicity is most

clearly seen in the figure when β1  = 0. Comparing the powers across the tests, the OP-based tests

have lower powers than the other tests at β2  = 0.60 and 0.80 when β1  = 0. The EX and HS Wald

tests also have nonmonotonic powers at β2  = 0.80 when β1  = 0.

Table 4 presents the average bootstrap critical values. As the case of the Design 1, there

is substantial variation in the average critical value for the OP LM test.  But in contrast to Design

1, the average bootstrap critical values do not always decrease as β2 increases from 0.0 to 0.8.

For example, the average bootstrap critical for the OP LM test increases from 3.9 to 35 as β2

increases from 0.0 to 0.8 when β1  = 0.  This dramatic increase is shown in Figure 4.  This

because the distribution of the OP LM test statistic evaluated at the estimate of the pseudo-true

value is shifting rapidly to the right as β2 increases; see Savin and W��urtz (1999a). By

comparison, the average bootstrap critical value for the LR tests increases only from 4.0 to 4.6 as

β2 increases from 0.0 to 0.8 when β1  = 0.  Again see Figure 4

From the behavior average bootstrap critical values for the OP LM test, it is clear that the

conventional Monte Carlo study will produce substantially different powers from a study using

bootstrap-based critical values. Note further that in the case of Design 2, there is also substantial

variation in the average bootstrap critical value for all the Wald tests, even though the variation

is not as pronounced as in the case of the OP LM test.

6. Censored Normal Linear Regression Model

This section reports the numerical performance of the bootstrap for tests of the null

hypothesis that the slope parameter is zero in a simple censored normal linear regression model.

The censored regression model is

Y X U= +max( , ' )0 β

where X = (X1, X2,)′ is a vector of explanatory variables, β = (β1, β2, )′ is a vector of parameters,

and U is N(0, σ2); this is the standard Tobit model in Amemiya (1985).   Here X consists of an

intercept, X1, and one covariate X2.  The composite null hypothesis is H0: β 2 = 0, β1 and σ2 being

the nuisance parameters.

Design 3. In this design, the intercept varies, but not the variance: β1 ranges over the
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interval [-0.75, 0.75], β2 over [0, 0.8] and σ2 = 1. The values of X2 are generated using a perfect

standard normal N (0,1): xi = Φ− +1 1( ))i / (n , i = 1,2,…,n.

The experiment with Design 3 was carried out for six of the seven tests. Under the

alternative it often happens that the Hessian matrix evaluated at the constrained estimate is not

positive definite. Bera and McKenzie (1986) also encountered this problem. For this reason, we

do not consider the HS LM test further in the censored normal regression model.

The estimated rejection probabilities in the second column of Table 5 show that the

asymptotic critical value does not work satisfactorily for the OP-based tests when β1 = -0.75 and

–0.50 and the EX Wald test when β1 = -0.75. The largest distortions in the rejection probabilities

under H0 occur for the OP LM and OP Wald tests. Recall that this was also true for Design 2.

The results in Table 5 also show that the bootstrap eliminates the distortions in the

rejection probabilities under H0 except in the case of the OP Wald test. The powers of the tests

are sensitive to the value of β1.  The power against the alternative β2  = 0.40 varies from about

0.32 to 0.70as β1 varies from –0.75 to 0.75. For Design 3, the powers of the EX Wald and OP

Wald tests are lower than the powers of the other tests when β1 = -0.75. Aside from this case, the

power functions of the tests are similar.

Table 6 presents the average bootstrap critical values. For each of the test, there is

relatively little variation in the average critical value, except for the OP LM and OP Wald tests.

Figure 5 shows the average critical values for the OP LM test. The same figure also shows that

there is relatively little variation in the case of the LR test.

For Design 3, the powers produced by the conventional Monte Carlo study are not very

different from those using bootstrap-based critical values, even for the OP LM and OP Wald

tests. For example, the Type I critical value is 5.1 for the OP LM test when β1  = -0.75.  Using

this critical value, the powers of the OP LM test are 0.05, 0.18, 0.52, 0.82 and 0.96 as β2

increases from 0.0 to 0.8. These are somewhat higher than the powers reported in Table 5 for this

case.

Design 4.  The intercept is fixed and the variance varies: β1 =-0.25,  β2 ranges over the

interval [0, 0.8] and σ2  over the interval [0.25, 2]. The values of X2 are generated using a perfect

normal N (0.5 , 1): xi = Φ− +1 1( ))i / (n + 0.5 , i = 1,2,…,n,  to avoid too high a degree of

censoring. The experiment with Design 4 was carried out for six of the seven tests. Again, the
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HS LM test was not considered for the reason discussed under Design 3.

Column two of Table 7 reports the estimated probabilities of making a Type I error with

asymptotic critical values. The effect of the nuisance parameter σ2 is different for different tests.

The asymptotic critical value does not work satisfactorily for the OP LM test and the Wald tests

when σ2 = 0.25 and for the LM tests and the LR test when σ2 = 2.0. Note that for Design 4, the

LR test over-rejects when σ2 = 1.0 and 2.0. The largest distortions in the rejection probabilities

under H0 occur for the OP LM and OP Wald tests. Recall that this also true for Design 2.

The estimated rejection probabilities of the bootstrap tests are also given in Table 7. The

bootstrap eliminated the distortions in the rejection probabilities under H0 except for σ2 = 2.0.

The powers are very sensitive to the value of σ2.  The power against the alternative β2  = 0.20

varies from about 1 to 0.1 as σ2 varies from 0.25 to 2.0. For Design 4, all the tests have very

similar power functions.

Table 8 presents the average bootstrap critical values. There is substantial variation in the

average critical value for the OP LM test and the HS and OP Wald tests when H0 is true. Figure

6 shows the average bootstrap critical values for the OP LM and LR tests. Note that for both tests

there is relatively little variation in the average critical value when H0 is false; the latter is true

for the other tests as well.

We also note that for the OP LM test, the true Type I error is 7.4 when σ2 = 0.25. This

implies that the conventional Monte Carlo study will produce somewhat lower powers than a

study using bootstrap-based critical values for the alternatives considered in the table.

7. Discussion

For the simple limited dependent variable models considered in this paper, the bootstrap

provides better estimates of the Type I critical values of LM, LR and Wald tests than first-order

asymptotic theory. The bootstrap substantially reduces or essentially eliminates the distortions in

the probability of making a Type I error. The bootstrap estimates of the Type I critical values are

empirically relevant since they can be calculated in empirical applications. The same is not true

for the so-called “size-corrected” critical values calculated in most Monte Carlo studies, which

are in fact Type I critical values for simple null hypotheses.  The Type I critical value for a

composite hypothesis depends on the value of the parameter vector θ, both when the null is true
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(except if the test statistic is pivotal) and when the alternative is true.  This is mirrored by the

behavior of the bootstrap estimate of the Type I critical value: the estimate also depends on the

value of θ under the null and the alternative. This point is illustrated by showing that the average

bootstrap critical value depends on the value of θ in our Monte Carlo results.  This behavior is in

sharp contrast to that of size-corrrected critical values, which are invariant to the value of θ for a

given value of the nuisance parameter.

We noted in the introduction that size-corrected tests have two fundamental problems.

Both problems are the consequence of having a null-hypothesis set Θ0 that is too large.  Dufour

(1997) has shown that this happens in a wide variety of settings that are important in applied

econometrics.  Thus, even if computation of a size-corrected critical value is not an issue, size-

corrected tests are available only when Θ0 is a sufficiently small set.  Usually, this is

accomplished by restricting F(⋅, θ) to a suitably small, finite-dimensional family of functions. In

applications, however, there is usually little justification for assuming such restrictions.  This is

reflected in the recent emphasis on semiparametric and nonparametric models and methods in

econometrics, especially in the case of LDV models; for example, see Horowitz (1998a) and

Powell (1994). Hence, we believe it is unlikely that size-corrected tests will play an important

role in the future in testing of LDV models.

As also noted in the introduction, the parametric model LDV models considered in this

paper satisfy the standard conditions under which the bootstrap provides improved estimates of

the critical values. In particular, the test statistics can be approximated as smooth functions of

sample moments. This is generally not the case for semiparametric and nonparametric models.

The estimators and test statistics for these models typically depend on a bandwidth that decreases

to zero as the sample size increases.  Developing bootstrap methods for statistics that are not

smooth functions of sample moments, even approximately, is a current area of research

(Horowitz (1998b)).  This research promises to provide improved estimates of critical values and

hence empirically relevant power comparisons for semiparametric and nonparametric models.
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Table 1. Empirical rejection probabilities (percent): probit with normal regressor X2 (Design 1)

β1 β2

.00 .20 .40 .60 .80
EX LM

-1.5 ( 4.4) 4.6 8.8 24 50 77
-1.0 ( 5.8) 5.5 14 38 70 91
-.50 ( 5.7) 5.8 20 50 81 96
.00 ( 5.0) 4.7 20 55 87 98

HS LM
-1.5 ( 3.1*) 4.6 9.4 25 50 77
-1.0 ( 5.3) 5.8 14 38 70 91
-.50 ( 5.7) 5.8 19 51 82 96
.00 ( 5.1) 4.8 20 55 86 98

OP LM
-1.5 (27*) 2.1* 3.1 12 30 56
-1.0 (9.8*) 4.2 12 34 64 87
-.50 (6.5) 5.2 19 49 82 96
.00 (5.2) 4.5 19 54 86 97

EX WALD
-1.5 ( 1.9*) 5.3 10 27 52 78
-1.0 ( 4.5) 6.0 15 39 70 91
-.50 ( 5.5) 5.7 19 51 82 97
.00 ( 4.7) 4.7 20 55 87 98

HS WALD
-1.5 ( 1.9*) 4.6 10 26 53 78
-1.0 ( 4.4) 5.9 14 39 70 91
-.50 ( 5.4) 5.7 19 51 82 96
.00 ( 4.8) 4.8 20 55 87 98

OP WALD
-1.5 ( .93*) 4.1 8.5 20 42 66
-1.0 ( 3.2*) 6.0 13 36 66 88
-.50 ( 4.9) 5.6 19 49 81 95
.00 ( 4.8) 4.9 20 53 81 97

LR
-1.5 ( 6.3) 5.5 9.0 24 50 76
-1.0 ( 6.3) 5.6 14 38 70 91
-.50 ( 6.0) 5.7 19 51 82 96
.00 ( 5.3) 4.7 20 55 86 98

Notes: nominal .05 symmetric tests of H0: β2 = 0 using bootstrap-based critical values; n = 50.
The number of Monte Carlo replications is 1,000, and the number of bootstrap replications is
1,000.  The numbers in parentheses are the empirical rejection probabilities for a nominal .05 test
using the asymptotic critical value. The asterisk denotes rejection of the null that the nominal
rejection probability is .05 using a .05 symmetric asymptotic test.
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Table 2. Average bootstrap critical values: probit with normal regressor X2 (Design 1)

β1 β2

0.0 .20 .40 .60 .80
EX LM

-1.5 3.8 3.8 3.8 3.8 3.8
-1.0 3.9 3.9 3.9 3.9 3.9
-.50 3.9 3.9 3.9 3.9 3.9
.00 3.9 3.9 3.9 3.9 3.9

HS LM
-1.5 3.5 3.5 3.5 3.6 3.6
-1.0 3.7 3.8 3.8 3.8 3.8
-.50 3.9 3.9 3.9 3.9 3.9
.00 3.9 3.9 3.9 3.9 3.9

OP LM
-1.5 23 22 19 16 12
-1.0 7.4 7.1 6.3 5.5 4.9
-.50 4.2 4.2 4.1 4.1 4.1
.00 3.9 3.9 3.9 3.9 3.9

EX WALD
-1.5 3.0 3.0 3.2 3.3 3.4
-1.0 3.6 3.6 3.6 3.7 3.7
-.50 3.8 3.8 3.8 3.8 3.8
.00 3.8 3.8 3.8 3.8 3.8

HS WALD
-1.5 2.9 2.9 3.1 3.2 3.2
-1.0 3.5 3.5 3.6 3.6 3.7
-.50 3.8 3.8 3.8 3.8 3.8
.00 3.8 3.8 3.8 3.8 3.8

OP WALD
-1.5 2.3 2.3 2.5 2.7 2.8
-1.0 3.1 3.2 3.2 3.3 3.4
-.50 3.6 3.6 3.6 3.6 3.6
.00 3.7 3.7 3.7 3.7 3.7

LR
-1.5 4.3 4.3 4.3 4.3 4.2
-1.0 4.1 4.1 4.1 4.1 4.1
-.50 4.0 4.0 4.0 4.0 4.0
.00 4.0 4.0 4.0 4.0 4.0

Notes: See Table 1.



21

Table 3. Empirical rejection probabilities (percent): probit with uniform regressor X2 (Design 2)

β1 β2

.00 .20 .40 .60 .80
EX LM

-1.5 ( 4.0) 4.9 8.1 27 49 63
-1.0 ( 5.4) 5.6 11 26 42 42
-.50 ( 5.7) 5.1 11 23 28 27
.00 ( 5.0) 5.0 9.1 18 17 13

HS LM
-1.5 ( 3.5) 5.3 8.1 27 49 63
-1.0 ( 5.6) 5.8 11 26 43 42
-.50 ( 5.7) 5.1 11 23 28 27
.00 ( 5.1) 4.8 9.1 19 17 12

OP LM
-1.5 (28*) 2.0* 7.2 26 49 59
-1.0 (9.9*) 4.1 11 25 40 26
-.50 (7.1*) 4.9 11 22 17 11
.00 (5.0) 5.1 8.0 10 6.1 12

EX WALD
-1.5 ( 1.0*) 4.6 8.8 27 49 64
-1.0 ( 5.1) 6.1 11 25 43 43
-.50 ( 5.7) 5.3 11 23 29 22
.00 ( 4.8) 4.9 8.9 20 13 5.3

HS WALD
-1.5 ( .93*) 4.4 8.8 27 49 64
-1.0 ( 4.5) 6.3 11 26 44 42
-.50 ( 5.5) 5.1 11 24 29 21
.00 ( 4.9) 4.8 9.0 20 13 4.7

 OP WALD
-1.5 ( .41*) 2.8* 9.6 28 50 58
-1.0 (3.2) 6.0 11 26 40 27
-.50 ( 4.9) 5.6 12 22 21 11
.00 ( 4.9) 5.2 9.7 14 7.8 2.8

LR
-1.5 ( 8.0*) 5.5 7.6 26 49 62
-1.0 ( 6.5) 5.5 11 26 42 40
-.50 ( 5.9) 5.0 11 23 26 24
.00 ( 5.3) 4.8 9.1 18 14 11

Notes: See Table 1.
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Table 4. Average bootstrap critical values: probit with uniform regressor X2 (Design 2)

β1 β2

0.0 .20 .40 .60 .80
EX LM

-1.5 3.5 3.9 3.9 3.9 3.9
-1.0 3.8 3.9 3.9 3.9 3.7
-.50 3.9 3.9 3.9 3.7 3.3
.00 3.9 3.9 3.8 3.3 3.0

HS LM
-1.5 3.4 3.8 3.9 3.9 3.8
-1.0 3.8 3.9 3.9 3.9 3.6
-.50 3.9 3.9 3.9 3.6 3.1
.00 3.9 3.9 3.7 3.1 3.8

OP LM
-1.5 25 6.6 4.0 4.0 5.5
-1.0 8.6 4.1 4.0 5.1 17
-.50 4.2 3.9 4.7 15 31
.00 3.9 4.4 13 31 35

EX WALD
-1.5 2.7 3.6 3.8 3.8 3.7
-1.0 3.5 3.8 3.8 3.7 3.1
-.50 3.8 3.8 3.8 3.2 2.4
.00 3.9 3.8 3.3 2.4 2.1

HS WALD
-1.5 2.6 3.6 3.8 3.8 3.7
-1.0 3.4 3.8 3.8 3.7 3.0
-.50 3.8 3.8 3.7 3.1 2.3
.00 3.8 3.8 3.2 2.3 2.0

OP WALD
-1.5 2.0 3.3 3.8 3.8 3.4
-1.0 3.1 3.7 3.8 3.5 2.5
-.50 3.7 3.8 3.5 2.6 1.6
.00 3.8 3.6 2.7 1.6 1.2

LR
-1.5 4.6 4.2 4.0 4.0 4.1
-1.0 4.2 4.0 4.0 4.1 4.5
-.50 4.0 4.0 4.1 4.4 4.7
.00 4.0 4.0 4.4 4.7 4.6

Notes: See Table 1.
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Table 5. Empirical rejection probabilities (percent): censored model with σ2 = 1(Design 3)

β1 β2

.00 .20 .40 .60 .80
EX LM

-.75 (5.1) 5.4 16 46 81 97
-.50 (5.9) 6.1 20 53 87 99
.00 (5.9) 5.7 23 63 94 100
.50 (6.7*) 6.2 24 70 96 100
.75 (5.8) 5.7 25 70 97 100

OP LM
-.75 (10*) 5.2 14 43 76 96
-.50 (8.5*) 5.7 18 51 84 98
00 (7.8*) 5.2 22 61 92 100
.50 (7.9*) 6.2 23 67 95 100
.75 (7.5*) 6.0 23 68 96 100

EX WALD
-.75 (6.8*) 5.7 11 32 65 90
-.50 (4.9) 5.7 16 50 83 97
.00 (5.9) 5.7 23 63 94 100
.50 (6.6*) 6.2 24 69 96 100
.75 (6.6*) 6.0 25 70 97 100

HS WALD
-.75 (4.0) 5.5 16 46 81 97
-.50 (4.9) 6.1 19 53 86 98
.00 (5.9) 5.6 23 63 94 100
.50 (6.7*) 6.2 24 69 96 100
.75 (6.4) 6.0 25 70 97 100

OP WALD
-.75 (2.7*) 6.0 14 39 68 90
-.50 (3.2*) 6.6* 18 48 80 96
.00 (4.5) 5.7 23 59 92 99
.50 (4.9) 5.3 23 67 96 100
.75 (5.7) 5.8 24 69 96 100

LR
-.75 (6.3) 5.1 16 47 81 97
-.50 (6.4) 5.8 20 53 86 98
.00 (6.0) 5.8 23 63 94 100
.50 (6.7*) 6.2 24 69 96 100
.75 (6.1) 5.8 24 70 97 100

Notes: See Table 1.
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Table 6.  Average bootstrap critical values: censored model with σ2 = 1(Design 3)

β1 β2

.00 .20 .40 .60 .80
EX LM

-.75 3.8 3.8 3.8 3.8 3.9
-.50 3.9 3.9 3.9 3.9 3.9
.00 4.0 4.0 4.0 4.0 4.0
.50 4.0 4.0 4.0 4.0 4.0
.75 4.0 4.0 4.0 4.0 4.0

OP LM
-.75 6.3 6.2 5.8 5.5 5.2
-.50 5.0 5.0 4.9 4.9 4.8
.00 4.5 4.5 4.5 4.5 4.5
.50 4.4 4.4 4.4 4.4 4.4
.75 4.5 4.5 4.5 4.5 4.5

EX WALD
-.75 4.3 4.3 4.1 3.9 3.8
-.50 3.7 3.7 3.7 3.7 3.7
.00 4.0 4.0 4.0 4.0 4.0
.50 4.1 4.1 4.1 4.1 4.1
.75 4.1 4.1 4.1 4.1 4.1

HS WALD
-.75 3.4 3.4 3.4 3.5 3.5
-.50 3.6 3.6 3.7 3.7 3.7
.00 3.9 3.9 3.9 3.9 3.9
.50 4.1 4.1 4.1 4.1 4.1
.75 4.1 4.1 4.1 4.1 4.1

OP WALD
-.75 2.8 2.8 2.9 2.9 3.0
-.50 3.1 3.1 3.2 3.2 3.3
.00 3.5 3.5 3.6 3.6 3.6
.50 3.7 3.7 3.7 3.7 3.7
.75 3.8 3.8 3.8 3.8 3.8

LR
-.75 4.1 4.1 4.1 4.1 4.1
-.50 4.1 4.1 4.1 4.1 4.1
.00 4.0 4.0 4.0 4.0 4.0
.50 4.0 4.0 4.0 4.0 4.0
.75 4.0 4.0 4.0 4.0 4.0

Notes: See Table 1.
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Table 7. Empirical rejection probabilities (percent): censored model with β1 = -0.25 (Design 4)

σ2 β2

.00 .20 .40 .60 .80
EX LM

.25 (5.0) 5.7 98 100 100 100

.50 (5.9) 6.1 58 100 100 100
1.0 (6.9*) 5.9 22 62 94 100
2.0 (6.9*) 6.7* 9.3 23 42 64

OP LM
.25 (14*) 3.9 98 100 100 100
.50 (8.5*) 5.7 56 100 100 100
1.0 (8.1*) 5.9 21 60 92 100
2.0 (8.6*) 5.8 9.6 22 41 63

EX WALD
.25 (6.9*) 4.6 96 100 100 100
.50 (4.9) 5.7 58 100 100 100
1.0 (6.2) 6.1 23 62 94 100
2.0 (6.6*) 6.5* 9.8 23 42 64

HS WALD
.25 (2.6*) 6.4 98 100 100 100
.50 (4.9) 6.1 58 100 100 100
1.0 (6.1) 6.1 22 62 94 100
2.0 (6.4) 6.3 9.8 23 41 64

 OP WALD
.25 (1.6*) 5.6 94 100 100 100
.50 (3.2*) 6.6* 53 99 100 100
1.0 (4.6) 6.0 21 58 92 100
2.0 (5.0) 6.5* 9.1 22 38 62

LR
.25 (6.4) 5.4 98 100 100 100
.50 (6.4) 5.8 58 100 100 100
1.0 (7.0*) 6.1 22 62 94 100
2.0 (7.2*) 6.5* 9.4 23 42 64

Notes: See Table 1.
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Table 8. Average bootstrap critical values: censored model with β1 = -0.25(Design 4)

σ2 β2

0.0 .20 .40 .60 .80
EX LM

.25 3.7 3.9 4.0 4.0 4.0

.50 3.9 3.9 4.0 4.0 4.0
1.0 4.0 4.0 4.0 4.0 4.0
2.0 4.0 4.0 4.0 4.0 4.0

OP LM
.25 11 4.9 4.5 4.4 4.4
.50 5.0 4.7 4.5 4.5 4.4
1.0 4.6 4.5 4.5 4.5 4.4
2.0 4.5 4.5 4.5 4.5 4.4

EX WALD
.25 5.6 3.7 3.9 4.0 4.1
.50 3.7 3.8 3.9 4.0 4.1
1.0 3.8 3.9 4.0 4.0 4.0
2.0 3.9 3.9 4.0 4.0 4.0

HS WALD
.25 3.0 3.7 3.9 4.0 4.0
.50 3.6 3.8 3.9 4.0 4.0
1.0 3.8 3.9 3.9 3.9 4.0
2.0 3.9 3.9 3.9 3.9 4.0

OP WALD
.25 2.3 3.2 3.5 3.6 3.7
.50 3.1 3.3 3.5 3.6 3.6
1.0 3.4 3.4 3.5 3.6 3.6
2.0 3.5 3.5 3.5 3.6 3.6

LR
.25 4.2 4.1 4.0 4.0 4.0
.50 4.1 4.0 4.0 4.0 4.0
1.0 4.0 4.0 4.0 4.0 4.0
2.0 4.0 4.0 4.0 4.0 4.0

Notes: See Table 1.
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OP LM test

LR test
Figure 1. Powers of nominal 0.05 OP LM and LR tests in the probit model: Design 1.
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OP LM test

LR test

Figure 2. Average bootstrap critical values of nominal 0.05 OP LM and LR tests in the probit
model: Design 1.
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OP LM test

LR test

Figure 3. Powers of nominal 0.05 OP LM and LR tests in the probit model: Design 2.
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OP LM test

LR test

Figure 4. Average bootstrap critical values of nominal 0.05 OP LM and LR tests in the probit
model: Design 2.
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OP LM test

LR test

Figure 5. Average bootstrap critical values of nominal 0.05 OP LM and LR tests in the censored
model: Design 3.
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OP LM test

LR test

Figure 6. Average bootstrap critical values of nominal 0.05 OP LM and LR tests in the censored
model: Design 4.
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