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Abstract.
This paper extends the existing literature on linear quadratic adjustment cost (LQAC)
models under rational expectations to the inferential issues arising when: (i) agents
optimise with respect to a vector of endogenous variables; (ii) the behavioural
equations stemming from the agent’s optimisation problem are specified as ‘exact’
rational expectations models; (iii) the stochastic processes involved are integrated of
order one. We discuss estimation both in a ‘limited-information’ and in a ‘full-
information’ framework. In the first case we show that consistent estimation of the
structural parameters may be achieved by focusing on the open-form solution to the
model, and implementing existing procedures. In the second case, by focusing on the
unique and stable forward-looking solution to the model, we propose a likelihood-
based inferential procedure in time domain. The key assumption is that agents form
expectations through a cointegrated vector autoregression (CVAR) system
representing the joint data generation process for both the endogenous and exogenous
variables.
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1. Introduction.

Considerable attention has been recently devoted to the econometric analysis

of intertemporal behaviour under adjustment costs and uncertainty. The standard tool

representative of this kind of models is the linear quadratic adjustment cost model

(LQAC) under rational expectations. The model stems from intertemporal optimising

behaviour of agents subject to quadratic adjustment costs. In particular, agents are

assumed to minimise the expected discounted present value of an infinite period

quadratic cost function, conditional on the information currently available. The

objective function generally measures both the cost of being away from a desired

target depending on a set of exogenous (forcing) variables, and the cost of adjustment.

Even though quadratic costs are unlikely to apply in reality, intertemporal LQAC

models are widely used for empirical research due to their capability to yield linear

behavioural rules approximating sluggish dynamics observed in economic

phenomena. General properties, solutions, stability requirements and estimation issues

when agents choose a single variable in discrete time may be found, inter alia, in

Kennan (1979), Sargent (1979), Hansen and Sargent (1980, 1982). Representation and

estimation when the forcing variables of the system are generated by integrated

processes are respectively discussed in Nickell (1985), Dolado et al. (1991), Gregory

et al. (1993), West (1995), and Engsted and Haldrup (1994, 1996a, 1996b).

The analysis of LQAC models can be extended to situations where the

intertemporal optimisation involves a vector of variables rather than a scalar, as in

Hansen and Sargent (1981). Extending the representation and inference in this

direction it is in general possible to derive structural dynamic models characterising

the interrelated adjustment of many economic phenomena. The implementation of

multi-equation linear quadratic adjustment cost models, henceforth MLQAC, may be

found in Lucas (1967), Treadway (1971), Eichembaum (1984), Nickell (1984),

Weissemberger (1986)1. However, so far no attention has explicitly devoted to the

inferential issues arising in MLQAC models when the variables being modelled are

generated by integrated processes. The purpose of the present paper is to fill this gap.

We assume that the dynamic behaviour of economic agents stems from the

minimisation of the expected discounted value of a quadratic objective function,

which incorporates a stochastic multivariate equilibrium target. The cost function

measures both the cost of being away from the desired target, and the cost of
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adjustment, conditional on the available information. The multivariate target is

specified as a structural system of equations linking the desired values of the vector of

the endogenous variables to the expected evolution of a set of exogenous variables.

Following Hansen and Sargent (1991), the model is specified as an ‘exact’ rational

expectations model.

Firstly we discuss the solutions to the agent’s optimisation problem

characterising the MLQAC model. We show that the open-form solution reads as a

system of interrelated Euler equations, while the unique and stable (quasi)closed-form

solution can be derived by suitably restricting the parameters of the objective function

and reads as the forward-looking behavioural rule of the agent. Secondly we dealt

with inferential issues. It is well known that estimation of econometric models

involving rational expectations can be carried out either in a ‘limited-information’

context through the ‘errors-in-variables method’, or in a ‘full-information’ context,

through the ‘substitution method’, see e.g. Wickens (1982). We consider both

approaches.

As regards limited-information methods, we focus on the open-form solution

to the MLQAC model. By generalising the procedures set out in Dolado et al. (1991)

and Gregory et al. (1993), the only information exploited is the order of integration of

the variables. We show that estimation can be carried out by a two-step procedure

involving instrumental variables and existing procedures. Specifically, in the first-step

the model fits into the framework described by Park and Phillips (1989), Phillips and

Hansen (1991) and Phillips (1995), while in the second-step the model can be easily

fitted into the framework described by Cumby et al. (1983).

As regards full-information methods, we focus on the forward-looking

solution to the MLQAC model and set out a likelihood-based inferential procedure in

time domain. By implementing and adapting the ideas in Baillie (1989) and Johansen

and Swensen (1994), the key assumption is that agents form expectations by means of

a cointegrated vector autoregressive (CVAR) system with Gaussian errors,

representing the joint data generation process of both the endogenous and exogenous

variables. Using the CVAR to compute the expectations, we derive a dynamic system

in the predetermined variables incorporating all the cross-equations non-linear

constraints implied by the rational expectations hypothesis. We show that issues such

as identification, estimation and testing of the rational expectations restrictions, can be

dealt with by means of the associated likelihood function. Actually, due to the
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cointegrating nature of the model, the inferential procedure is divided into two steps,

where in the first step the parameters involved are the ones attached to the long-run

equilibrium target pursued by the agent, while in the second step the ones involved

regard the short-run dynamics of the model.

The plan of the paper is the following. In section 2 we introduce the agent’s

optimisation problem characterising the MLQAC model, and discuss its solutions and

properties. Section 3 briefly deals with estimation issues in a ‘limited-information’

context, through the ‘errors-in-variables’ method. Attention is devoted on the open

form-solution to the model, and the only information exploited is the order of

integration of the process generating the variables. Section 4 focuses on the unique

and stable forward-looking solution to the MLQAC model. The purpose is to propose

a ‘full-information’ likelihood-based inferential procedure in time domain. Subsection

4.1 introduces the expectations generating system as a CVAR model with Gaussian

errors for the observable variables. Using the CVAR to compute the expectations

appearing in the structural model, in subsection 4.2 we derive a dynamic model in the

predetermined variables, incorporating all the cross-equations non-linear constraints

implied by the rational expectations hypothesis. Section 5 deals with identification

and FIML estimation issues of such model. The analysis is based on a two-step

procedure outlined in subsections 5.1 and 5.2. Section 6 completes the analysis by

testing the rational expectations restrictions implied by the MLQAC model.

Likelihood-ratio tests are proposed as the ‘natural’ solution to the problem. Section 7

contains some concluding remarks, while the technical details of the discussion may

be found in the Appendix A and B.

2. The MLQAC model and its representations.

We consider a stylised intertemporal linear quadratic model in which an

economic agent is faced with the task of taking a sequence of decisions at each time

period t under uncertainty. The underlying probability space is (Ξ, A, P), where P is

the probability measure of the agent. All the stochastic processes involved in the

discussion are defined on (Ξ, A, P), are denoted by the symbol {.} and are assumed to

have finite second-order moments. Decisions imply the simultaneous choices of m

observable endogenous variables, denoted by {yt}, and such choices depend on the

values assumed by q observable exogenous (forcing) variables, generated by the (q×1)
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process {xt}. Agents do not control {xt} but their intertemporal plans depend on the

expected values of {xt}. The agent's information set is given by the sigma-field Φt, Φt-

1⊂Φt⊂A, and Et⋅≡E{⋅Φt} is the expectations operator conditional on Φt. We assume

that E{⋅Φt} is defined for every process of the model and that Φt=σ(yt', yt-1', ..., xt',

xt-1',...).

The optimal sequence {yt} is chosen to minimise the expected value of the

quadratic objective-function:

                      { } ( ) ( ){ } yyyy yy E s+ts+t
*

s+ts+t
*

s+ts+t
j

j
tyt

∆Θ∆+−Θ−∑ δ
∞

=
21

0
''min }

(2.1)

where ∆ is the difference operator, ∆yt =( yt − yt-1), δ is the (scalar) agent’s discount

factor, 0<δ<1,  Θ1 and Θ2 are (m×m) matrices and yt* denotes the (m×1) equilibrium

target pursued by the agent.  Θ1 and Θ2 are restricted to be positive definite and

symmetric, while the evolution of yt* is related to xt by the system of equations:

                                                          yt* = Γ xt/t-1 + Γ0

(2.2)

where xt/t-1 is the expected value of xt made at time t-1: xt/t-1= E{xtΦt-1}, Γ is a

matrix of structural parameters of dimensions (m×q), and Γ0 is a (m×1) vector of

constants.

Problem (2.1) satisfies the Certainty Equivalence Theorem (see, for example,

Caines, 1988) and the first-order necessary conditions consist of a set of Euler

equations and associated transversality conditions. The Euler equations read:

                                δ Et ∆yt+1 − ∆yt − Θ ( yt − yt* ) = 0m×1

(2.3)

that is a second-order matrix difference equation where Θ= Θ Θ2
-1

1 . System (2.3)

represents the open-form solution to the MLQAC model and Θ is positive definite and

in general non symmetric. The economic interpretation of the coefficients in Θ will be
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discussed in the examples below. The set of transversality conditions associated to

(2.3) may be expressed in the form (see Appendix A):

                              lim T→∞ δT Et [∆yt+T + Θ (yt+T − yt+T*)] = 0m×1

(2.4)

and since these are necessary for the convergence of the infinite sum in (2.1), (2.4)

ensures the existence of the solution to the economic agent’s problem. As we show in

the Appendix A, the (quasi)closed-form solution to (2.1) that satisfies (2.3) and (2.4)

is given by the rule:

( ) ( )( ) j+ttmm
j

j
1-tt xE  I  I yy ΓΛ−Λ−Λ+Λ= ∑

∞

=

δδ
0

+ ( )Λ−mI Γ0

(2.5)

where Im is the (m×m) identity matrix, and Λ is the stable and unique solution to the

matrix equation:

                                               δ Λ2 − [(δ+1)Im + Θ] Λ + Im = 0m×m

(2.6)

Notice that (2.6) represents the link between the parameters of (2.3) and the

parameters of the forward-looking solution to the intertemporal MLQAC model (2.5).

Following Hansen and Sargent (1991), both (2.3) and (2.5) can be interpreted as

‘exact’ rational expectations models, in that there are no expectations in (2.3) and

(2.5) involving stochastic processes unobservable to the econometrician2. Notice that

(2.5) can also be formulated in the error-correction format (see Appendix A):

                      ( ) ( ) ( ) j+ttm
j

j
1-t1-tmt xE  I xyIy ∆ΓΛ−Λ+Γ−−Λ=∆ ∑

∞

=0

)( δ + ( )Λ−mI Γ0

(2.7)

which should not be interpreted as a standard error-correction model where
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adjustment is entirely the result of discrepancies from equilibrium in the past. To

prove this, let us write (2.7) as:

( ) ( ) ( ) ( ) j+ttm
j

j
t1-t1-ttt xE  I x xy xy ∆ΓΛ−Λ+Γ∆Λ−Γ−Λ=Γ− ∑

∞

=1

δ

(2.8)

so that it is evident that the disequilibrium is both the result of a feed-forward

mechanism due to expectations about unknown future variables, and feed-back effects

through lagged disequilibrium and changes in the exogenous variables. Below we

report two clarifying examples in order to shed some light on the features of the

model.

Example 1. When m=1 we have a scalar LQAC model. That is, yt is a scalar, Θ1 =

c>0, Θ2 = d>0, and system (2.3) collapses to an Euler equation of the form:

                                          δ Et ∆yt+1 − ∆yt − θ(yt − yt*) = 0

(e.1)

where θ=(c/d)>0 measures the relative importance of disequilibrium and adjustment

costs. The stochastic target is yt* = γ'xt/t-1 + γ0 and xt is a (q×1) vector of exogenous

variables. System (2.7) collapses to:

          ( )[ ] ( ) ( ) s+tt1-t1-tt xE  x y1y ∆γ∑ λδλ−+γ−−λ=∆
∞

=
'1'

0j

j + (1 ) 0− λ γ

(e.2)

where now λ is the stable root satisfying the characteristic equation:

δλ2−(δ+1+θ)λ+1=0. Estimation issues of (e.1)-(e.2) in the presence of integrated

processes may be found in Dolado et al. (1991), Gregory et al. (1993) and Engsted

and Haldrup (1994, 1996a, 1996b). Note that (e.1) and (e.2) and their variants have

been extensively used in empirical research3 .
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Example 2. When m=2 we have a two-dimensional MLQAC, that is: yt = (y1t, y2t )' ,

and

Θ1=
c c

c c
11 12

12 22









 , Θ2=

d d

d d
11 12

12 22









 . If for instance q=2, xt = (x1t, x2t )' and:

             yt*= 







*y

*y

2t

1t = 







γγ
γγ

2221

1211 xt/t-1 + 







γ
γ

02

01

System (2.3) now reads:

                             δ Et ∆y1t+1 − ∆y1t − θ11( y1t − y1t* ) − θ12( y2t − y2t* ) = 0

(e.3a)

                             δ Et ∆y2t+1 − ∆y2t − θ22( y2t − y2t* ) − θ21( y1t − y1t* ) = 0

(e.3b)

where Θ= Θ Θ2
-1

1 = 







θθ
θθ

2221

1211 . The computation of the elements in Θ shows that

these are measures of the relative importance of disequilibrium, adjustment and cross-

adjustment costs. As regards (2.5) or (2.7) it is sufficient to notice that the coefficients

in Λ=
λ λ
λ λ

11 12

21 22









  must be interpreted as ‘partial-adjustment’ parameters in a

multivariate framework.

                                                                             ♦

Systems (2.3) and (2.5) (or (2.7)) form the basis form estimation techniques of

the MLQAC model. While in (2.3) expectations involve the future one-period

endogenous variables, in (2.7) expectations involve the future infinite values of the

forcing variables. It is well known that estimation of econometric model involving

rational expectations can be carried out either in a ‘limited-information’ context

through the ‘errors-in-variables method’, or in a ‘full-information’ context, through

the ‘substitution method’, see e.g. Wickens (1982). ‘Limited-information’ methods do

not require a detailed specification of the mechanism by which agents form

expectations. Expectations are indeed replaced by the realised (observed) values of
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the variables creating measurement errors. Estimation does not generally achieve full

efficiency. On the other hand, ‘full-information’ methods require the specification of

the mechanism by which agents form expectations. The joint estimation of the

structural model and the mechanism generating expectations, while exploiting the

cross-equation constraints imposed by the rational expectations restrictions, forms the

basis of the fully asymptotic efficient method. These methods are traditionally

considered computationally burdensome4.

In the present paper we consider both approaches under the assumption that

the variables of the MLQAC model are I(1). In section 3 we show that ‘limited-

information’ methods can be easily applied to system (2.3) by implementing existing

procedures. In sections 4, 5 and 6 we devote attention to the forward-looking system

(2.5) and by specifying the expectations generating mechanism we propose a ‘full-

information’ likelihood-based procedure in time domain.

3. Estimation in a ‘limited-information’ framework.

We examine whether an estimation procedure can be found which makes use

of the second-order matrix difference equation (2.3), disregarding the specification on

the mechanism by which agents forecast future values of the variables. We only

assume that {yt} is I(1), and {xt} is I(1) and not cointegrated. Let us consider the

following orthogonal decomposition:

 xt=Et-1xt + ϕt              ;       Etϕt+1=0q×1

(3.1a)

 ∆yt+1=Et ∆yt+1 + ηt+1    ;   Etηt+1=0m×1

(3.1b)

where {ϕt, Φt} and {ηt, Φt} are respectively martingale difference sequences on (Ξ,

A, P) and can be interpreted as ‘rational expectations’ errors. By using (3.1), the

expected values in (2.3) can be substituted by the observed values, yielding the

estimating system of equations:

∆yt = δ ∆yt+1 − Θ( yt − Γ* xt*) + υt

(3.2)
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where Γ*=[ ]Γ Γ  0Μ , xt*=(xt’, 1)’, υt = (Θϖt − δηt+1), and ϖt = −Γϕt with E(xt

ϖt’)≠0q×m. It is easy to show that in (3.2) the error term υt is such that:

E{υt | Φt}≠ 0m×1

(3.3a)

E{υt | Φt-1}= 0m×1

(3.3b)

If we further assume that the agent’s ‘rational expectations’ errors are correlated, i.e.

Σϖη= E(ϖtηt’)≠0m×m, then {υt} is an autocorrelated process of order one5. The

structural parameters of interest are (Γ*, δ, Θ) and possibly the coefficients of the

matrix Συ= E(υtυt' ). Since in many empirical studies it is common finding that the

estimate of the discount factor appears to be rather imprecise, we impose an over-

identification restriction on (3.2), by prefixing δ 6. In order to ensure consistency

between the order of integration of the variables and the structure of (3.2) we need the

hypothesis:

 {(yt − Γ* xt*)} ≡ {e1t} is I(0)

(3.4)

which implies that the stochastic processes {yt} and {xt} are cointegrated, with

cointegration matrix Γ, and constant  Γ0.

One of the purposes of the present paper is to show that consistent estimation

of (Γ*, Θ, Συ) in this ‘limited-information’ context can be achieved by a two-step

procedure where Γ* is estimated separately from (Θ, Συ). Indeed note that under the

assumptions above, the partial system:

   yt = Γ xt +  Γ0 + e1t

(3.5)

               ∆xt = e2t

(3.6)



11

where the eit, i=1,2, are all stationary I(0) processes, is such that {et}, et=(e1t’, e2t’)’,

satisfies a multivariate invariance principle, see e.g. Park and Phillips (1989). Thus

(3.5)-(3.6) fits into the theoretical framework described in Park and Phillips (1989)

and Phillips and Hansen (1990), so that a ‘first-step’ and super-consistent estimate of

Γ can be achieved by OLS or IV7. Clearly, when dealing with IV we assume that an

I(1) process {wt} of dimension (h×1), h≥q, is available, such that ∆wt = e3t, and {et},

et=(e1t’, e2t’, e3t’)’, is I(0) 8. The main consequences of the super-consistency result is

that Γ can be replaced in (3.2) by its estimator, Γ̂ , as if Γ̂ were the true value of  Γ,

and     {( yt − Γ̂ xt)} can be treated as an I(0) process. Therefore the ‘second-step’

system:

∆yt = δ ∆yt+1 − Θ( yt − Γ̂ xt) + ς +υt

(3.7)

where ς = −ΘΓ0, is a model involving only I(0) variables where the only quantities to

be estimated in (3.7) under (3.3) are the adjustment matrix Θ and the covariance

matrix Συ=E(υtυt' ). Note that the substitution of Γ by Γ̂  only affects the asymptotics

in (3.7) through terms of op(T-1).

Actually, due to the correlation between the regressors and the error term, the

asymptotic distribution of the OLS as well as of the IV estimator of Γ in (3.5)-(3.6) is

affected by the presence of a ‘second-order’ bias reflecting on inference in finite

samples. A procedure to eliminate this bias without fully specifying the process

generating {et} is suggested in Phillips and Hansen (1990) and Phillips (1995). The

idea is to modify the OLS and IV estimators of Γ* for the effects of simultaneity and

serial correlation by means of a consistent and non parametric estimate of the ‘long-

run’ covariance matrix associated to (3.5)-(3.6). This is given by the expression:

 Ω = ( )( )[ ]'lim 11
1  eeTE T

t
T

tT ∑∑−
∞→

and its non-parametric estimation is discussed with details in Phillips (1995). The

‘fully-modified’ least squares (FM-OLS) and the ‘fully-modified’ instrumental
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variables (FM-IV) estimators of Γ achieve the same asymptotic efficiency of systems

maximum likelihood, which on the contrary require a detailed specification of the

process generating {et}. Testing general hypothesis on Γ can be carried out by means

of Wald test statistics formed with the FM-OLS or FM-IV estimators, and these

statistics are asymptotically distributed as χ2.

As regards the ‘second-step’ estimation of (Θ, Συ) in (3.7), it is in general

possible to handle the correlation between the error term and the regressors by

exploiting the orthogonality condition (3.3b) and implementing the principles of the

generalised method of moments (GMM), set out in Hansen (1982). It is quite clear

that in (3.7) GMM estimation of (Θ, Συ) through the orthogonality condition (3.3b)

specialises in IV or GIV, where observable instruments are drawn from Φt-1. Two

issues should be mentioned here. First, a straightforward application of IV or GIV

does not take into account the serial correlation of {υt}, implying lack of efficiency in

inference. The problem can be relaxed by applying the procedures set up in Cumby et

al. (1983) and Hayashi and Sims (1983). These are instrumental variables methods

taking into account the possible serial correlation of {υt}
9, and achieving efficiency

within a class of GMM estimators exploiting the orthogonality condition (3.3b).

Furthermore, though these methods have been proposed for single-equation rational

expectations models, they can be easily generalised to the multi-equational

framework. Note also that consistent and semi-positive definite estimation of Συ can

be achieved by applying the formula in Newey and West (1987). Second, it is not

actually clear whether the estimate of (Θ, Συ) is indeed consistent. This is because

when applying instrumental variables methods, the cross-moment matrix of

instruments and regressors in (3.7) cannot be established to be non-singular without

explicitly solving the model, see e.g. Binder and Pesaran (1995, subsection 3.1) 10.

4. Estimation in a ‘full-information’ framework: a VAR approach.

The purpose of this section and the ones below is to propose a ‘full-

information’ likelihood-based inferential procedure in time domain for the MLQAC

model introduced in section 2. Specifically, we focus on the exact model (2.5), that is

on the agent’s forward-looking behavioural rule so that the structural parameters of

interest are (Γ, Γ0, δ, Λ). In order to apply full-information methods, we need to

specify the system used by agents to compute ‘model-based’ expectations. This is
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given by a cointegrated vector autoregressive model (CVAR) introduced in sub-

section 4.1 below. Then maximum likelihood methods can be applied taking account

of the cross-equations restrictions linking the coefficients of the agent’s decision rule

to those of the CVAR expectations generating system, as outlined in sub-section 4.2

and section 5.

4.1 Expectations generating mechanism.

Grouping both the endogenous and exogenous variables in the vector zt=(yt',

xt')' of dimensions (p×1), p=(m+q), we assume that the process generating {zt} is

given by the Gaussian VAR(k):

                 zt = C1zt-1 +... + Ck zt-k + µ + εt  ;   t=1,...,T    ;   {εt}~iidN (0p×1, Σε)

(4.1)

where k is supposed to be known, z-k+1,..., z0 are fixed, C1,..., Ck are matrices of

dimensions (p×p), µ=(µy’, µx’)’ is a (p×1) constant and  Σε= 







ΣΣ
ΣΣ

εε

εε

xxy

yxy
. Note that

by not imposing the proper exclusion restrictions on Cyi, i=1,2, ..., k, in C1= 








x1

y1

C

C
, ...,

Ck= 








xk

yk

C

C
, we allow for Granger causality of {yt} with respect of {xt}. The condition

Σεxy≠0q×m prevents {xt} to be strictly exogenous in (4.1). From (4.1) it is possible to

derive the error-correction representation of the VAR:

                                  ∆zt = Πzt-1 + Π2∆zt-1 +... + Πk∆zt-k+1 + µ + εt

(4.2)

where Π=(C1 +...+ Ck − Ip) and Πi= −(Ci +...+ Ck), i=2,...,k.

The fundamental hypothesis of the present paper is that the process {zt} is

CI(1,1). It is thus well known that whether in (4.2):

Π=αβ’      ;    rank(α⊥’ Ψβ⊥) = (p−r)

(4.3)
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where α and β are (p×r) matrices of full column rank, 0<r<p, α⊥ and β⊥ are the

p×(p−r) orthogonal complement of α and β, and Ψ=(Ip − Π2 −...− Πk). The r columns

of β are the cointegrating vectors of the system in the sense of Engle and Granger

(1987), and the constant term µ may be decomposed into two parts, ακ1, where

κ1=(α’α)-1α’µ is of dimensions (r×1), which contributed to the intercept in the

cointegrating equations, and α⊥κ2, where κ2=(α⊥’α⊥)-1α⊥’µ is of (p−r)×1 which

determines a linear trend.

The econometric analysis of the model (4.2)-(4.3) has been extensively

treated, inter alia, in Johansen (1991) and Johansen and Juselius (1990). It can be

proved that, properly normalised, the distribution of the maximum likelihood (ML) of

β converges at the rate T-1 towards a mixed Gaussian distribution, while the ML

estimators of the parameters in (α, Π2, ..., Πk, Σε) converge at a rate T-1/2, and the

asymptotic distribution is a multivariate Gaussian. Also the ML estimator of µ is

consistent, but its asymptotic distribution proves to be more complex with respect to

the Gaussian, see e.g. Johansen (1995, chap. 13, Theorem 13.6). For the purposes of

our analysis it is important to point out that that since the asymptotic covariance

matrix of the estimator of β and of   (α, Π2, ..., Πk, µ, Σε)  is block diagonal, inference

may be carried out separately, as in a two-stage procedure where in the second step

the model to be estimated is the stationary error-correction system:

             ∆zt = α ∃β ’zt-1 + Π2∆zt-1 +... + Πk∆zt-k+1 + µ + εt        ;    {εt}~iidN (0p×1, Σε)

(4.4)

where ∃β  denotes the first-step ML estimate of β and can be treated as a known

quantity. We shall return on the subject in the next sections.

4.2 The solution for the expectations and the structural model.

Expectations in the ‘exact’ model (2.5) involve the future infinite values of the forcing

variables as unobservable predetermined variables at time t. Adapting the ideas in

Baillie (1989) and Johansen and Swensen (1994), the purpose in this section is to use

(4.1)-(4.3) to compute these unobservable expectations as function of observable
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predetermined variables at time t. It is then possible to generate a structural model

incorporating all the restrictions implied by the rational expectation hypothesis, as

well as the parameters of interest (Γ, Γ0, δ, Λ).

Firstly, it is easy to show that using zt, (2.5) can be written as:

                      ( )δΛ j-1

j=

∞

∑
1

EtM1’zt+j + M0’zt + M -1’zt-1 + M = 0m×1

(4.5)

where the (p×m) matrices M1, M0, M -1and M are defined as follows:

M1’= [0m×m ΜδΛ (Im − δΛ) (Im − Λ) Γ ]

M0’= [ -Im   Μ (Im − δΛ) (Im − Λ) Γ ]

M-1’= [Λ Μ0m×q ]

M = (Im − Λ) Γ0

To prove this, note that

 ( )∑ Λδ
∞

=1j

1-j EtM1’zt+j = ( )∑ Λδ
∞

=1j

1-j [0m×m ΜδΛ (Im − δΛ) (Im − Λ) Γ ] Etzt+j

= ( )∑ Λδ
∞

=1j

j (Im − δΛ) (Im − Λ) Γ Etxt+j ;

M0’zt = [ -Im   Μ (Im − δΛ) (Im − Λ) Γ ]
y

x
t

t







 = - yt + (Im − δΛ) (Im − Λ) Γ Etxt ;

M -1’zt-1 = [Λ Μ0m×q ]
y

x
t-1

t-1







 = Λyt-1.

Using iterated conditional expectations in an expression similar to (4.5) at time t+1,

multiplying by (δ Λ) and subtracting from (4.5) yields the alternative relation:

     (M1’− δΛ M0’) Etzt+1 + (M0’− δΛ M -1’)zt + M -1’zt-1 +(Im −δΛ)M = 0m×1

(4.6)
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where the infinite term summation has been eliminated.

Secondly, computing E{zt+1 | Φt} from (4.1)11 and pre-multiplying by (M1’−

δΛM0’), we get:

 (M1’− δΛ M0’) Etzt+1 =  (M1’− δΛ M0’) C1zt +... +  (M1’− δΛ M0’) Ck zt+1-k +  (M1’−

δΛ M0’) µ

and given that zt≠0p×1 a.s. for all t, substituting into (4.6) yields the following set of

constraints on the parameters of the VAR (4.1):

(M1’− δ Λ M0’) C1 +  (M0’− δΛ M -1’)  = 0m×p

(M1’− δ Λ M0’) C2 +  M -1’  = 0m×p

(M1’− δ Λ M0’) Ci = 0m×p  ;    i=3, ..., k

(M1’− δ Λ M0’) µ +  (Im − δΛ) M = 0m×1

Since (C1 +...+ Ck − Ip) = Π, Πi = − (Ci +...+ Ck), i=2,...k, and

 −((M1’− δ ΛM0’) + (M0’− δ ΛM -1’) + M -1’) = [ (Im − δ Λ)(Im − Λ) Μ−(Im − δ

Λ)(Im − Λ) Γ ]

(M1’− δ ΛM0’) = [ δ Λ Μ0m×q ]

by straightforward algebraic manipulations, the restrictions above can also be

expressed as implicit conditions on the parameters of the model (4.2)-(4.3):

[ δ Λ Μ0m×q ] αβ’ = [− (Im − δ Λ)(Im − Λ) Μ(Im − δ Λ)(Im − Λ) Γ ]

(4.7)

  [ δ Λ Μ0m×q ] Π2= [ −Λ Μ0m×q ]

(4.8)

[ δ Λ Μ0m×q ] Πi= 0m×p  ; i=3,..., k

(4.9) [ δ Λ Μ0m×q ] µ = −(Im − δΛ)(Im − Λ) Γ0

(4.10)
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The (m×m) matrix (Im − δ Λ)(Im − Λ) is non-singular and (4.7) can be decomposed

into (see e.g. Johansen and Juselius, 1990):

                                    [Im  Μ −Γ ]’ ∈ sp(β)  ;    r ≥ m

(4.11)

and

                      [ δ Λ Μ0m×q ] α =  − (Im − δ Λ)(Im − Λ) [ Im  Μ − Γ ] β(β’β)-1

(4.12)

where (4.12) is obtained from (4.7) by postmultiplying by the full rank matrix β(β’β)-

1.

It is thus evident that the restrictions on the CVAR (4.2)-(4.3) implied by the

rational expectation hypothesis can be separated into constraints on the long-run,

given by (4.11), and constraints on the short-run dynamics given by (4.8)-(4.10) and

(4.12). Partitioning (α, Π2, ... , Πk) conformably with zt, (4.12) and (4.8)-(4.10) can be

also expressed respectively as:

α = 








α
ωΛ−Λδ−Λδ−

x

mm
- )I)(I()( 1

(4.13a)

Π2 = 








Π
δ ×

x2

qmm
 -1

    

0   I Μ

(4.13b)

Πi = 







Π

×

xi

pm0
   ;  i=3, ..., k

(4.13c)

µ = 








µ
ΓΛ−Λδ−Λδ−

x

0mm
- )I)(I()( 1

(4.14)

where ω= [ ] -1
m )'( -  I βββΓΜ is a full rank matrix of dimensions (m×r), and the sub-
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matrices in α= 







α
α

x

y  and Πi= 







Π
Π

xi

yi , i=2,...k, are of suitable dimensions. It is however

convenient to refer to (4.13)-(4.14) compactly as

ξ = g(ψ)

(4.15)

where ξ=(vec(α)’, vec(Π2)’, ..., vec(Πk)’, µ’)’ is of dimensions (n×1),

n=p(r+p(k−1)+1), ψ=(Γ0’, δ, vec(Λ)’, vec(αx)’, vec(Πx2)’, ..., vec(Πxk)’, µx’)’ is of

dimensions (s×1), s=(m+1+m2+q(r+p(k−1)+1)), (s<n), and g: Rs→Rn is a function

with continuous partial derivatives.

Substituting (4.13)-(4.14) into (4.2), the resulting equations are:

   ∆yt = ωΛ−Λδ−Λδ− ))(I(I mm
-1)( β’zt-1+δ−1∆yt-1 0mm

- )I)(I()( ΓΛ−Λδ−Λδ− 1  +

εyt          (4.16a)

  ∆xt = αx β’zt-1 + Πx2∆zt-1 + ... + Πxk∆zt-k+1 + µx + εxt

(4.16b)

where β is restricted as in (4.11). System (4.16) is highly non-linear, involves only

predetermined observable variables and incorporates all the parametric restrictions

implied by the intertemporal MLQAC model. From (4.16b) it is furthermore evident

that it allows for Granger-causality of {∆yt} with respect to {∆xt}.

5. Identification and estimation of the structural parameters.

System (4.16) is the estimable structural form associated to the forward-

looking solution to the MLQAC model provided the condition ensuring local

identification of (Γ, Γ0, δ, Λ) are satisfied. If such parameters are (at least) locally

identified, the maximisation of the log-likelihood function of (4.16) provides FIML

estimates. However, since (4.11) and (4.13)-(4.14) separate respectively into

restrictions on the long-run, and restrictions on the short-run parameters of the CVAR

(4.2)-(4.3), identification and estimation issues can be dealt with by a two-step

procedure. Indeed in the first-step super-consistent and fully efficient estimation of Γ

can be achieved into the framework of (4.2)-(4.3), by suitably identifying the structure
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of the cointegration space. Part of the information needed is provided by (4.11)

according to which the cointegration space must contain at least the long-run

equilibrium target pursued by the economic agent. In the second step the suitably

identified β can be replaced in (4.16) by its ML restricted estimate, β̂ , while ω can be

replaced by [ ] -1
m )'( -  I βββΓ=ω ˆˆˆˆˆ Μ 12. As proved in Phillips(1991) and Johansen (1991),

these substitution only affect the asymptotics in (4.16) through terms of oP(T
-1
).

Provided that the restrictions ensuring local identification of (Γ0, δ, Λ) are also

satisfied, consistent and efficient estimation can be achieved by maximising

numerically the associated log-likelihood function. Note that in contrast to the slightly

different approaches set out in Engsted and Haldrup (1994, 1996a) and Ripatti (1997)

with respect to the case m=1, our procedure allows {∆yt} to Granger-cause the forcing

variables {∆xt}, and {∆xt} not to be weakly exogenous with respect to the long-run

parameters. In other words, the forcing variables are not restricted to be strongly-

exogenous. The technical details of the procedure are sketched in the subsections

below.

5.1 First step.

Without imposing some a priori restrictions, the cointegrating vectors in (4.2)-(4.3)

are only identified up to a non-singular linear transformation, since for any non-

singular (r×r) matrix Κ,  αΚ’-1 and βΚ give the same value of Π and (α, β) and (αΚ’-

1, βΚ) are observationally equivalent. A necessary condition for identification of β is

that a number f, where f ≥ r2, of a priori restrictions (included normalisation) are

imposed on its columns13. Let us focus on (4.11). Whether r=m, that is the

cointegration rank of the CVAR equals the number of long-run equilibrium targets

pursued by agents, (4.11) is satisfied by restricting β as:

  β = 







Γ− ' 

I m                                                    

(5.1a)

In this case the (m×1) process {β’zt}≡{(yt − Γxt)} is I(0) and reproduces, a part from

the constant, the long-run equilibrium target (2.2) of the MLQAC model. The quantity
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ω in (4.13a) becomes: ω= [ ] -1
m )'( -  I βββΓΜ =Im, and provided relevant economic

theory does not predict homogeneity and/or cross-equation restrictions on Γ, β is just-

identified (f = r2 = m2).

In the more general case, r ≥ m, (4.11) can be satisfied by restricting β as:

                                                   β = 







β

Γ− 0Μ
' 

I m

(5.1b)

with β0 a p×(r − m) matrix to be suitably identified14. Now the cointegration space

contains not only the structural parameters of (2.2) (a part from the constant), but also

(r − m) ‘additional’ long-run relationships via β0. In general we have no ‘theory-lead’

information to identify β0, because relevant economic theory concerns the

determination of the equilibrium target pursued by agents, and typically does not

explain whether and how the forcing variables cointegrate. Nevertheless, in many

cases it is not difficult to formulate ‘reasonable’ hypotheses about the structure of β0.

Consider, for instance, the situations where the vector of the forcing variables xt

contains short-term and long-term interest rates which are well known to move

together in the long-run.

Example 3. Let us consider zt=(y1t, y2t, x1t, x2t)’, with m=2 and q=2. The

(unrestricted) equilibrium target of the MLQAC is given by system (e.3) of example

2. It is clear that if the cointegration rank of the CVAR system for zt is r=2=m, then

(5.1a) becomes:

β ’ = 







γγ
γγ

2221

1211

--10

--01

and if the parameters (γ11, γ12, γ21, γ22) are not restricted, β is exactly identified.

Relevant economic theory about the determination of yt* could suggest, however,

constraints on (γ11, γ12, γ21, γ22). For instance, the constraint: γ21=γ12 would introduce

one testable over-identification restriction on β. Let us now consider the case r=3.

The ‘additional’ cointegration relationship could involve, for instance, only the
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forcing variables of the system, via

x1t = φ12 x2t

so that (5.1b) would read:

                                     β ’  = 

















φ
γ
γ

γ
γ

12

22

12

21

11

-

-

- 

  

1

- 

- 

  

0

1

0

   

0

0

1

with β0 ’= (0, 0, 1, −φ12). Observe that now one additional restriction on each of the

first two rows of β ’ is required in order to achieve just identification, for example,

γ11=1, and γ21=γ12.

                                                                         ♦

The estimation of the cointegrating relations in the context of (4.2)-(4.3) under

the constraint (5.1) may be found in Johansen (1995, chap 5 and 7) and Pesaran and

Shin (1994). When the cointegration rank of the system is consistent with (4.11) and

the possible over-identifying restrictions on Γ predicted by relevant economic theory

are not rejected by the data, it is then possible to consider the second step of the

analysis.

5.2 Second step.

We focus on the I(0) system (4.16), where β is replaced by ∃β = 







β

Γ− 0
ˆ

ˆ Μ
'

I m , β0 is

supposed to be suitably identified, and ω is replaced by [ ] -1
m )'( -  I βββΓ=ω ˆˆˆˆˆ Μ .

Clearly, if in (4.11) r=m, then ω=Im and β will be replaced by 







Γ−

=β
' 

I mˆ . The

purpose now is to discuss the identification of (Γ0, δ, Λ), and explore, if the case,

whether it is possible to propose a FIML procedure. Observe that whenever (δ, Λ) are

identified, the ML estimate of the matrix Θ in (3.7) can be derived from (2.6),

yielding: 1ˆ)ˆ)(ˆˆ(ˆ −ΛΛ−Λδ−−=Θ mm I I .
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For β and ω fixed as above, we denote by logL(ψ) the Gaussian log-likelihood

function of (4.16) concentrated with respect to Σε. Following Rothemberg (1971,

Theorem 1), under the usual ‘regularity conditions’, ψ will be locally identifiable if

and only if the (s×s) information matrix: R(ψ)= 







∂ψ

ψ∂
∂ψ

ψ∂
'

)(log)(log L
 

L
E is non-

singular15. From (4.15) we can write:

        
 ' 
)g(

 
 ' 

)logL(
 

 ' 
)logL(

∂ψ
ψ∂

∂ξ
ξ∂

=
∂ψ

ψ∂

(5.2)

                                       (1×s)                    (1×n)           (n×s)

with 
 ' 
)g(

∂ψ
ψ∂

=J(ψ)=





















∂ψ
ψ∂

∂ψ
ψ∂

∂ψ
ψ∂

∂ψ
ψ∂

s

nn

s

11

gg

gg

)()(

)()(

1

1

ΜΟΜ

Κ

 the (n×s) Jacobian matrix of g(⋅), and

q(ξ)=   
 '  

)logL( 
ξ∂

ξ∂
 the score of the concentrated log-likelihood function of (4.4). Using

(5.2) it is then possible to show that:

   R(ψ) = 







ψ∂

ψ∂
  

)(g 
'

’
R(ξ)

  
)(g 

 
'ψ∂
ψ∂

(5.3)

where R(ξ)= 







∂ξ

ξ∂
∂ξ

ξ∂
'

)(log)(log L
 

L
E is (n×n) and non-singular. The structure of the

information matrix in (5.3) suggests that the local identificability of ψ depends on the

rank of the Jacobian matrix, J(ψ), so that the number of restrictions required to

identify ψ is given by the rank deficiency of J(ψ). The computation of J(ψ) and the

determination of its rank is dealt with in the Appendix B, leading to the following

proposition:

Proposition 1.
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(a) If in (3.1) k ≥ 2, then rank(J(ψ))=s and the parameters in ψ are locally identified;

(b) if in (3.1) k=1, then rank(J(ψ))=(s−1) and one identification restriction is required

on (δ, Λ);

Proof: see Appendix B.   

From part (b) of the proposition it follows that whether the order of the VAR

(4.1) is k=1, the ‘natural’ solution to achieve identification in MLQAC models is to

pre-fix δ to a plausible economic value16. This results encompass the one in Gregory

et al. (1993), where identification issues are discussed with respect to the

assumptions: (i) m=1; (ii) the process generating {xt} is assumed to be strictly

exogenous with respect to {yt}.

Explicit derivation of the first-order necessary conditions to the FIML

estimation of ψ may be obtained by maximising the likelihood function of (4.16). We

first write (4.16) compactly as

 ∆zt = Π(ψ) ut + εt      ;        {εt}~iidN (0p×1, Σε)

(5.4)

where

Π(ψ)= [ ]












µΠΠα

ΓΛ−Λδ−ΛδδωΛ−Λδ−Λδ ××

xxkx2x

mm
1-

ppqmm
1-

mm
1-

                                                                                       

II)(    0        I     II)(

Κ

ΚΜ 0))((0ˆ))((     ;   ut =

























∆

∆

β

+−

1   

z

    

z

z'

kt

-1t

-1t

1

ˆ

Μ

and the vector ψ is supposed to be of dimension (s*×1), with

s*=(m+1+m2+q(r+p(k−1))) if k ≥ 2, and s*=(s−1) with δ pre-fixed if k=1. The

estimation of models similar to (5.4) is dealt with in Sargan (1972) and Wallis (1980

pp. 64). The associated log-likelihood function can be written as:

 log L(ψ, Σε) = cost − (T/2)log Σε− (1/2)tr{ Σε
-1 [∆Z − U Π(ψ)’]’[∆Z −
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UΠ(ψ)’] }

with ∆Z’ = [∆z1Μ... Μ∆zT], and U ’= [u1 Μ... ΜuT]. Concentrating logL(ψ, Σε) with

respect to Σε, the first-order conditions for ψ read:

     
i

)L( log 
∂ψ

ψ∂
= − tr{ Σε

-1(ψ) [∆Z’U − Π(ψ) U ’ U]
i

)'(
∂ψ

ψΠ∂
} = 0          i=1,2, ..., s*

(5.5)

where Σε(ψ) = T-1[∆Z − U Π(ψ)’]’ [∆Z − UΠ(ψ)’], and (∂Π(ψ) / ∂ψ ) is defined as in

Dwyer (1967, pp. 608). Experience in solving FIML problems such as (5.5) through a

variety of numerical optimisation procedures may be found, inter alia, in Sargan and

Sylwestrowicz (1976) and Hendry (1995, Appendix A5).

6. Testing the rational expectations hypothesis.

The purpose in this section is to test restrictions implied by the rational

expectations hypothesis subsumed in the intertemporal MLQAC model. That is, the

purpose is to test the set of constraints on the CVAR (4.2)-(4.3), derived in sub-

section 4.2 by computing the unknown expectations in the multivariate forward-

looking model (2.5). It is proved in Johansen (1991, Appendix C) that stacking the

parameters of (4.2)-(4.3) in the vector ζ=(vec(β)’, π’)’, where π contains the

parameters not relating to the cointegration space, the likelihood ratio (LR) test

statistic Q for a simple hypothesis on ζ can be approximated by:

          -2 log Q ≈ T 







β−β

π−π
)()ˆ(

ˆ

vecvec
 
’










2221

1211

qq

qq








β−β

π−π
)()ˆ(

ˆ

vecvec

                         ≈ T1/2 ( )π−π̂ ’ q11T
1/2 ( )π−π̂

(6.1)

                            + T1/2(τ+1) ( ))()ˆ( β−β vecvec ’ (T−τ q22) T
1/2(τ+1) ( ))()ˆ( β−β vecvec

where τ is a positive constant and q11=(1/T)[∂2logL(ζ)/∂π∂π’],

q12=(1/T)[∂2logL(ζ)/∂π∂vec(β)’], q21=(1/T)[∂2logL(ζ)/∂vec(β)∂π’],

q22=(1/T)[∂2logL(ζ)/∂vec(β)∂vec(β)’ ]. The LR test statistic decomposes into a test
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statistics for vec(β), and an independent test statistics for π, and vice versa. This

means that in accordance with the estimation procedure of section 5, the rational

expectations restrictions (4.11) and (4.13)-(4.14) can be tested separately, according

to the following steps:

A) check whether r ≥ m, i.e. if the number of long-run equilibrium relationships

subsumed in the CVAR is consistent with the number of equilibrium targets pursued

by agents;

B) if r ≥ m test the possible ‘theory-lead’ over-identification long-run restrictions on

β;

C)  if r ≥ m and the possible over-identification restrictions on β are not rejected, test

the restrictions (4.13)-(4.14), i.e. the ‘smooth hypothesis’ on the short-run

dynamics (4.15).

Observe that steps A and B refer to the consistency between the long-run

features of the observed time series and the economic structure of the equilibrium

targets pursued by agents. The determination of the number of long-run equilibrium

relationships in the context of (4.2)-(4.3) is discussed, inter alia, in Johansen (1991),

while a general approach to testing linear and possible non-linear over-identification

restrictions on β in the context of (4.2)-(4.3) is dealt with in Pesaran and Shin (1994).

It is there shown that the LR test statistics for these restrictions is distributed as a χ2

with degrees of freedom given by the number of over-identification restrictions.

Finally, step C refers to the restrictions implied by the intertemporal MLQAC

model on the structure of the adjustment dynamics of the mechanism generating

expectations. However, for the sake of simplicity in the following we shall disregard

the restrictions on the constant term given by (4.14). This is because the asymptotic

distribution of the ML estimator of µ is not Gaussian and inference proves to be

complex17. Accordingly, henceforth attention will be devoted only to (4.13), i.e. to the

rational expectations restrictions involving (α, Π2, ..., Πk). Partitioning the vectors ξ

and ψ defined in section 4 as ξ=(ξ1’, ξ2’)’ and ψ=(ψ1’, ψ2’)’, with ξ2=µ and ψ2=(Γ0’,

µx’)’ both of dimension (p×1), the smooth hypothesis (4.15) can be decomposed as:
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(6.2)

with g1: Rs-p→Rn-p and  g2: Rp→Rp,  and where the sub-hypothesis:

 ξ1= g1(ψ1)

(6.3)

represents a compact description of the constraints in (4.10). Note that the FIML

estimation of ξ1 can be easily achieved from the Gaussian likelihood function of the

multivariate regression model (4.4), concentrated with respect to ξ2=µ:

logL(ξ1, Σε) = cost − (T/2)logΣε− (1/2)tr{Σε
-1 ( )( )ε ε ε εt t

t

T

− −
=
∑

1

’}

(6.4)

where the bar denotes average. On the other hand, the FIML estimation of ψ1 can be

obtained from the restricted model (4.16) (or equivalently (5.4)) by following the

maximising procedure set out in subsection 5.2; the only difference needed is the

concentration of the associated log-likelihood function with respect to the constant

term:

logL(ψ1, Σε) = cost − (T/2)logΣε

        − (1/2) tr{Σε
-

1 [ ][ ]∑ −Π−−−Π−−
=

T

t
tttt uuzz uuzz

1
11 ))(()())(()( ψψ ’}           (6.5)

A LR test statistic for (6.3) is then two times the difference between the unrestricted

log-likelihood (6.4) and the restricted log-likelihood (6.5). Under the null hypothesis

that the rational expectations restrictions (6.3) are true, the asymptotic distribution of

the test statistics will be χ2 with degrees of freedom equal to the number of

restrictions being tested (n−s*). Alternatively one could test (6.3) by Wald-type tests



27

as in Revankar (1980).

7. Conclusions.

In this paper attention has been devoted to the class of LQAC models under

rational expectations. We have dealt with the inferential issues arising under the

following assumption: (i) agents choose a set of endogenous variables, leading to the

class of MLQAC models; (ii) the structural equations stemming from the agent’s

optimisation problem are specified as ‘exact’ rational expectations models; (iii) the

process generating the observable variables of the system is I(1). Both ‘limited-

information’ and ‘full-information’ methods have been proposed.

As regards the ‘limited-information’ framework, by focusing on the open-form

solution to the agent’s optimisation problem, we have show that the estimation of the

structural parameters of the MLQAC model can be carried out by simply

implementing existing procedures. Specifically, we have shown that under suitable

assumptions on the order of integration of the variables, estimation can be set out by a

two-step procedure. In the first-step the model can be specified such that it fits into

the framework described by Phillips and Hansen (1990), and the parameters involved

regard the long-run equilibrium target pursued by agents. In the second-step the short-

run adjustment parameters of the model can be estimated by instrumental variables,

implementing existing procedures on rational expectations econometric models.

However, due to the ‘limited-information’ context, the cross-moment matrix of

instruments and regressors can not be established to be non-singular when applying

instrumental variables methods. The ‘relevance-condition’ has to treated as a

maintained hypothesis and thus it is not actually clear whether in the second-step the

parameters associated to the short-run dynamics of the model can be estimated

consistently.

As regards ‘full-information’ methods, point (iii) has been modelled by

assuming that the I(1) ‘stochastic environment’ faced by agents was described by a

CVAR system for joint the endogenous and exogenous variables. Focusing on the

forward-looking solution to the agent’s optimisation problem, and using the CVAR to

compute the unknown expectations, we have proposed a likelihood-based inferential

procedure in time domain. After discussing the conditions ensuring local

identification of the structural parameters of interest, a two-step FIML procedure has

been adopted. Indeed, due to the cointegrating nature of the model, the parameters
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associated to the long-run target of the model can be estimated super-consistently and

efficiently, separately from the parameters associated to the dynamic adjustment. The

short-run dynamics in turn can be estimated consistently and efficiently in a separate

framework. The choice to divide the inferential procedure into two-steps has been

adopted for the sake of simplicity: it is clear, however, that the likelihood function of

the MLQAC model should be maximised in just one-step. The restrictions implied by

the rational expectations hypothesis, except the ones involving the constant term of

the CVAR, can be tested by likelihood-ratio statistics involving only χ2 tables. The

proposed procedure easily accommodates situations where also the forcing variables

are subject to long-run equilibrium restrictions, does not require the assumption of

strict exogeneity and allows for Granger causality of the endogenous variables with

respect to the forcing ones.

Appendix A.
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In this appendix we discuss the solutions to the MLQAC model. By applying the

Certainty Equivalence Theorem, we can first regard problem (2.1) as a deterministic

one. After differentiating the objective function with respect to yt+j, it is possible to

replace all future random variables by their (conditional) expectations. For j=0 we

obtain system (2.3) in the text. The set of necessary transversality conditions are:

lim T→∞ δT Et ∆yt+T = 0m×1

(A.1)

but using (2.3) and the law of iterated conditional expectations, it is possible to

express (A.1) as (2.4) in the text. The aim now is to derive the closed-form solution

that satisfies both (2.3) and (2.4). Discussion follows the route of Nickell (1984,

Appendix, section I), see also Corollary 1 in Binder and Pesaran, (1995, p.159). Let us

write system (2.3) using the backward operator B as:

{ δ ImB-1 − G + ImB}Etyt = − Θ Etyt*

(A.2)

where B-1Etyt = Etyt+1, Etyt = yt, Etyt*= yt*, and G=[(δ+1) Im + Θ]. Observe that the

matrix G has eigenvalues (1+δ+di) i=1,2, ..., m. To prove this, by the Schur

decomposition (see Magnus, 1988, Chapter 1), Θ=HDH-1, where D is an upper

triangular matrix whose diagonal elements (di) i=1,2, ..., m are the eigenvalues of Θ. It

is now evident that

                 G = [(δ+1)Im+Θ] = H [(δ+1)Im+D] H-1

where [(δ+1)Im+D] is an upper triangular matrix with diagonal elements (1+δ+di)

i=1,2,..., m. Now let us decompose the left hand side of (A.2) as:

−A (Im− δ1/2 V B-1) (Im − δ-1/2 V B)

(A.3)

with A and V (m×m) matrices. Comparing the coefficients of (A.2) and (A.3) implies:
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A + A V2 = G

A V = δ1/2 Im

and eliminating A yields the matrix equation for V:

 δ1/2 V2 − GV + δ1/2 Im = 0m×m

(A.4)

The eigenvalues, λv, of a generic solution V to (A.4), satisfy the determinantal

equation (see Gantmacher, 1959, Chapter 8, Theorem 4):

det{δ1/2 Im λv
2 − Gλv + δ1/2 Im} = 0

(A.5)

whose degree is 2m. Observe that λv= 0 can not be a solution to (A.5). Moreover the

structure of the matrices in the equation (A.5) implies that if the generic eigenvalue λv

is a root, then so is λv
-1, and it is ruled out the possibility of roots on the unit circle.

Indeed by the Schur decomposition:

                det{δ1/2Imλv
2 − G λv + δ1/2Im} = det{δ1/2Imλv

2 − [(δ+1)Im+D] λv + δ1/2Im}

                                                                  = ( d + )1/ 2
v
2

i v
1/2

i=1

m

δ λ δ λ δ− + +∏ ( )1 = 0.

and each scalar equation δ λ δ λ δ1/2
v
2

i v
1/2d +− + +( )1 =0, i=1,2, ..., m, is such that one

roots falls inside the unit circle and the other root falls outside the unit circle.

Accordingly all m pairs of roots to (A.5) will be such that one roots falls inside the

unit circle, and the other root falls outside the unit circle and there exists a unique and

stable matrix solving (A.4) and this will be referred to as Λ*. Using (A.3) and

substituting V with Λ*, system (A.2) now reads as:

−A (Im− δ1/2 Λ*B-1) (Im − δ-1/2 Λ*B) Etyt =   − ΘEtyt*

(A.6)
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As in the static (non stochastic) long-run equilibrium yt = yt* = y*, it follows:

−A (Im− δ1/2 Λ*) (Im − δ-1/2 Λ*)y*  = −Θy* ⇒ (Im− δ1/2 Λ*) (Im − δ-1/2 Λ*) = A-

1Θ         (A.7)

and from (A.6) we can write:

(Im − δ-1/2 Λ*B)yt = (Im− δ1/2 Λ*B-1)-1 A-1Θ Etyt*

(A.8)

Considering the expansion: (Im− δ1/2 Λ*B-1)-1 = ( )δ1/2 j* BΛ
j

j=

∞

∑
0

 and using (A.7) we

obtain:

yt − δ-1/2 Λ* yt-1 = ( ) ( )( ) *
j+tt

1/2-
m

j

1/2
m

j1/2 yE * I* I* Λδ−∑ Λδ−Λδ
∞

=0

(A.9)

Finally, using (2.2), defining the matrix Λ= δ-1/2 Λ* and substituting, (A.9) reads as

(2.5) in the text, while (2.6) is obtained from (A.4) by the position V=Λ*=δ1/2 Λ.

From (2.5) it is now possible to derive the error-correction representation (2.7). This

can be accomplished by the following algorithm: (1) use the expression:

( ) ( )Λδ−∑ Λδ
∞

=
 I m

j

j

0
= ∑ Λδ−∑ Λδ

∞∞

0=j

1+j

0=j

j )()( ; (2) add the quantity (−yt-1) to both sides;

(3) add the quantity  ±(Im− Λ)Γ xt-1 to the right hand side; (4) rearrange the terms.

Appendix B.

The purpose in this section is to prove the Proposition 1 in sub-section 5.2. This is

accomplished by deriving the structure of the Jacobian matrix J(ψ) = 
 ' 
)g(

∂ψ
ψ∂

 and

studying its column-rank properties. Observe that 
 ' 
)g(

∂ψ
ψ∂

= =
' ∂ψ

∂ξ

)'' ,)'( ..., ,')( , ,'( 

)''... ,)' vec(,)'((

x0

2

µΠΛδΓ∂
µΠα∂

xkvecvec
vec

, so that the Jacobian exhibits the block structure:
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J(ψ)=
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Applying the vec operator to both sides of (4.13)-(4.14), it is possible to compute the

derivatives in J(ψ). It is easy to recognise that:

J(ψ)=







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(B.2)

so that J(ψ) will be of full column-rank if the two block-matrices:

                   L=
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are of full-column rank, and A7 and A* are linearly independent. We first focus on L*.

By the symbol Km we denote the commutation matrix of order m as defined in

Magnus, 1988, Chapter 3. The algebra we use here and the properties of the

commutation matrices are described in Magnus, 1988, p. 35. Since
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have full column-rank, it is possible to recognise that L* has full column-rank

q(p(k−1)+1). Second, let us focus on the sub-matrix L. In this case:
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It is evident that A3 and A4 are of full column-rank. We now establish the rank of A2

and A9. These are of full column rank m2. To prove this it is sufficient to show that the

(m2×m2) matrix [ ]2m
1-1- I )'( δ−Λ⊗Λ is of full column-rank. By the Schur

decomposition (see Magnus, 1988, Chapter 1): -1-1-1 PPG=Λ , where G-1 is an upper
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triangular matrix whose diagonal elements:  {λ-1, λ-2, ..., λ-m} are the eigenvalues of

Λ-1, therefore:

   ))()(( 'PPGG'PP)'( -1-1-1-1-1-1 ⊗⊗⊗=Λ⊗Λ

Calling F= )( 'PP -1⊗ :

[ ]2m
1-1- I )'( δ−Λ⊗Λ = [ ] 1-

m
1-1- F I )'G(G F 2δ−⊗

Also [ ]2m
1-1- I )'G(G δ−⊗ is an upper triangular matrix and it will have rank m2 if

λ-iλ-j ≠ δ     for  i,j=1,2,...m2

As the eigenvalues of Λ are in modules less than 1 (see Appendix A), it follows that

the eigenvalues of Λ-1 will be in modules greater than 1, and their product can not be

equal to δ. Thus det [ ]2m
1-1- I )'( δ−Λ⊗Λ ≠0 and A2 is of full column rank m2, that

means that L has column-rank 1+m2+qr. Finally,
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so A7 is linearly independent from A*. Summarising: rank(J(ψ))=m+1+m2 +q(r +

p(k−1)+1) = s which proves part (a) of Proposition 1. When k=1 in (4.1), then

ξ=(vec(α)’, µ’)’, ψ=(Γ0’, δ, vec(Λ)’, vec(αx)’, µx’)’ and s=(m+1+m2+qr+q). In this

case J(ψ) collapses to

                         J(ψ) = 
0        A      A      A      0

A     A      A      0      A
1 2 3

7 8 9 *









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and since A1= ∂δ
α∂ )vec( 

 (pr×1) belongs to the space spanned by A2= )'vec( 
)vec( 

Λ∂
α∂

(pr×m2), and A8= δ∂
µ∂
 
 

 (p×1) belongs to the space spanned by A9= )'vec( 
)vec( 

Λ∂
µ∂

 (p×m2),

then rank(J(ψ))=(s−1). It is therefore evident that at least one identification restriction

is required on (δ, Λ). This proves part (b) of Proposition 1 and completes the proof.

                                                                 ♦
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Note

                                                       
1 The models in Lucas (1967) and Treadway (1971) are in continuous time, while the ones in Eichembaum (1984),
Nickell (1984), Weissemberger (1986) and Binder and Pesaran (1995) are in discrete time.

2 Following exactly the definition in Hansen and Sargent (1991, pp.45): ‘... models in which there is an exact
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linear relation across forecasts of future values of one set of variables and current and past values of some other
set of variables. They key requirement is that all of the variables entering this relation must be observed by the
econometrician’. Actually, it is common practice in the literature on LQAC model, to specify disturbance
processes reflecting the phenomenon that in forecasting the future, private agents use larger information sets than
the econometrician can consider because of data limitations, see, inter alia,. Gregory et al. (1993) and Engsted and
Haldrup (1994). Anyway, as pointed out in Hansen and Sargent (1991, pp.46), this interpretation of error terms can
be accommodated within the class of ‘exact’ rational expectations models.

3 In the money-demand framework, see e.g. Cuthbertson and Taylor (1987, 1990), Dutkovsky and Foote (1988),
Muscatelli (1988, 1989), Domowitz and Hakkio (1990), Bagliano and Favero (1992), and Engsted and
Haldrup(1996). See also footnote 4. In models of price adjustment, see e.g. Rotemberg (1982), and Price (1992).
In the demand for labour see e.g. Sargent (1978), Nickell (1984, 1987), and Engsted and Haldrup (1994). In the
consumer-demand theory see Weissemberger (1986) and the references therein.

4 Notice that a remarkable comparison of limited and full information estimation methods of rational expectations
models for money demand may be found in Ripatti (1997).

5 It is indeed easy to show that E(υtυt-k' )=0m×mwhen k≥2. Actually it can be also proved that {υt} has the
structure of a multivariate MA(1) process.

6 We shall return on this subject in the sections below where identification of the parameters of the MLQAC model
is discussed with details.

7 Note that in the present context (3.5)-(3.6) can not be interpreted as a conditional multivariate regression model
of yt given xt.

8 Since the variables involved are I(1), the ‘relevance’ condition required by IV estimation holds irrespective of the
properties of I(1) instruments, see e.g. Phillips and Hansen (1990, pp. 104).

9 The procedure set up by Hayashi and Sims is based on the additional assumption of conditional homoscedasticity
of the error term with respect to the set of instruments.

10 See Phillips (1989) for the inferential consequences arising in models where the cross-moment matrix of
instruments and regressors is singular. It is there stated, pp. 224, that: “... In such models, where two-step
procedures and instrumental variables are routinely used, partial identification occurs because of instruments
failures. That is, the instruments fail to satisfy what might be called the relevance condition. This condition
requires that the asymptotic correlation matrix between the instruments and the regressors be of full rank. If the
instruments fail, then the model is only partly identified and conventional asymptotics break down.”

11 It is sufficient to write equation (4.1) with respect to time (t+1) and take the terms on the right-hand side.

12 As it will be shown in sub-section 5.1, whenever in (4.11) r=m, then ω=Im, and no substitution for ω is actually
required.

13 general discussion about identification in cointegration analysis may be found in Pesaran and Shin (1994),
Johansen (1995, chap. 5 and 7) and Boswijk (1996).

14 Now identification of the cointegration space requires at least (r-m) restrictions on each row of Γ, and at least r
restrictions (included normalisation) on each column of β0. Observe that following the argument in Dengsoe et al.
(1995), it is clear that when r>m, the process {xt} can not be weakly exogenous with respect to β in (4.2)-(4.3).

15 We are implicitly assuming that ψ is a ‘regular point’ of R(ψ), see e.g. Rothemberg (1971).

16 For instance Gregory et al. (1993) point out that the intertemporal discount factor should generally fall in the
range 0.96-0.99. Note that part (b) of the proposition also provides a rationale for the choice adopted in section 3,
where δ has been pre-fixed on a priori grounds. Anyway, δ is actually locally identified, it is not possible, in the
‘limited-information’ framework depicted in section 3, to test the over-identification restriction implied by this
choice.

17 See sub-section 4.1.
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