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ABSTRACT.  Multicointegration, in the sense of Granger and Lee (1990),
frequently occurs in models of stock-flow adjustment and implies cointegration
amongst 1(2) variables and their differences (polynomial cointegration). The
purpose of this article is two-fold. First, we demonstrate that based on a
multicointegrated vector autoregression (VAR) two equivalent error correction
model (ECM) representations can be derived; the first is expressed in terms
of adjustments in the flows of the variables (the standard [(2) ECM), and the
second is expressed in terms of adjustments in both the stocks and the flows.
Secondly, we apply 1(2) estimation and testing procedures for multicointegrated
time series to analyze data for US housing construction. We find that stocks
of housing units started and completed exhibit polynomial cointegration (and
hence the flows are multicointegrated) and the associated ECM’s are estimated.
Lee (1992, 1996) also found multicointegration in this data set but without
explicitly exploiting the 1(2) property.

Keywords: Cointegration, multicointegration, 1(2) processes, housing construction.
JEL Codes: C12, C13, C22, C32, C51.

1. INTRODUCTION
Granger and Lee (1989, 1990) have defined the notion of multicointegration amongst
economic variables integrated of order one: If the cumulation of cointegration (equi-
librium) errors cointegrate with the original variables the series are said to be mul-
ticointegrated. The phenomenon is most likely to occur in models describing the

*Both authors are affiliated with Centre for Non-Linear Modelling in Economics at the University
of Aarhus. Part of this work was carried out while the second author was visiting the European
University Institute in Florence during the spring, 1997. We appreciate helpful comments from
Sgren Johansen and we thank Tae-Hwy Lee for providing us with the US housing construction data
set.
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dynamic interactions between stock and flow variables. Multicointegration implies
that in the bivariate 1(1) model, for example, there can exist more than just a single
cointegration vector. More generally, the number of cointegrating relations and the
number of common stochastic trends will not add up to the dimension of the system
which is the case in the usual cointegrated (1) model. In a recent paper Engsted and
Johansen (1997) show that when variables are multicointegrated the requirements for
the system to be an I(1) system will fail; in fact, an I(1) specification will be misspec-
ified even though the main interest lies in the analysis of the I(1) series. Instead the
system should be formulated as an [(2) model where multicointegration can be shown
to result in cointegration amongst generated 1(2) variables and their first differences
(polynomial cointegration)'. Others have been aware of the link between multicoin-
tegration and polynomial cointegration, see inter alia Engle and Yoo (1991), and Lee
(1992), but to the best of our knowledge there have been no empirical contributions
to the multicointegration literature which takes explicitly account of the 1(2) property
in estimation and hypothesis testing. In this paper we provide an example of how
such an analysis can be undertaken.

We also want to show how multicointegrated variables from a general vector au-
toregression (VAR) can be given two equivalent error correction model (ECM) repre-
sentations. The first representation is a direct consequence of the 1(2) formulation of
the model and follows Johansen’s (1992) version of Granger’s representation theorem
for 1(2) variables. It describes how the flow variables adjust in response to disequi-
librium errors between the stocks and the flows as well as between the flow variables
themselves. The second ECM representation describes adjustments in both the stock
and the flow variables in response to the equilibrium errors. Although equivalent,
the two distinct ways of writing the ECM provide different insights of the complex
dynamics characterizing multicointegrated systems.

The plan of the paper is the following. In section 2 we briefly summarize some
known results for the relationship between optimum control models and error correc-
tion models. We also demonstrate how multicointegrating relationships can be given
an 1(2) formulation. The next section describes the relationship between multicoin-
tegration and cointegrated 1(2) VAR models and the section also serves to define the
notation to be used subsequently in section 4 where we show how the two different
ECM representations for multicointegrated time series can be obtained. In section
5 we demonstrate the 1(2) analysis on the US housing construction data set 1968:1-
1994:12 which has previously been examined by Lee (1996) (and Lee (1992) for a

'In the literature the notions of 'multicointegration’ and ’polynomial cointegration’ are frequently
used as synonyms. However, we use 'multicointegration’ in the particular sense of Granger and
Lee, and hence this notion applies to systems where the basic variables are really I(1) but can be
transformed to an 1(2) system. On the other hand, ’polynomial cointegration’ refers to cointegrated
models where the basic variables are 1(2) and the levels and the first differenced variables cointegrate.
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shorter data period) but without exploiting the 1(2) property. This data set is found
to nicely characterize a multicointegrating relationship amongst the variables and we
calculate the associated ECMs. The final section concludes.

2. OPTIMUM CONTROL ECM’S AND THE DEFINITION OF STOCK VARIABLES
Granger and Lee (1990) have shown how the ECM for multicointegrated time series
can be derived as the solution to a particular control problem?. In a slightly more
general context Lee (1996) addresses the infinite horizon linear quadratic adjustment
cost model

L =B [ — yers)” + M(Quaj — Kyiss) + Aa(Terj — Terjr)] (1)
=0

where, assuming a zero initial condition, Q; = Qi1 + (@ — y) = X—o(z; — y;). The
variable z; is frequently referred to as the control variable whereas y; is the target
series one is attempting to track by choice of z;. The basic I(1) flow variables are x;
and y; while @), is the I(1) stock variable which measures the cumulated discrepancies
between the control and the target series. ¢ is the discount rate and \;, Ay are cost
parameters. Note that x; — y; and Q; — ky; are cointegrating relations and hence are
[(0). Lee (1996) shows how the minimization of the loss function (1) leads to a stock
adjustment model which essentially is of the form:

AQy = a+ B(Qr1— kY1) + (@1 — 1) + p(ye — ye-1) (2)

where [3,~, and p are complicated non-linear functions of 6, A1, and As. This type of
models is familiar from the control engineering literature and belongs to the general
class of feedback controllers with proportional, integral, and derivative corrections,
see Kwakernaak and Sivan (1972) and Phillips (1954). It also introduces the idea
of an inventory accelerator mechanism, see Metzler (1941) and Holt et al. (1960).
Notice that the ECM (2) is defined in terms of adjustments in the stock variable Q.

The adjustment rule derived in Granger and Lee (1990) is based on a one period
decision problem and corresponds to an ECM for the flow variables, e.g.

Az =a+ B(Qtfl - %ytfl) + ”N)’(Cﬂtfl - ytfl) + ﬁ(yt—l - ?/t72)- (3)

The decision rules (2) and (3) provide the motivation for the present paper. The
idea is that from an optimization point of view it is reasonable to consider adjustment
mechanisms for both the stock and the flow variables in this class of models. As
such, (2) and (3) motivate the different ECM mechanisms that can be derived within

2Hendry and von Ungern-Sternberg (1981) report similar results but without using the notion of
cointegration because this concept was not developed until the work of Granger (1983).
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a general framework for multicointegrated VAR models. We want to show how the
two sorts of representations are indeed equivalent and hence will capture the basic
features of the above adjustment mechanisms?.

There are many examples of stock-flow models that can be considered as particular
cases of the above decision rules. Granger and Lee (1989, 1990) address the case
where x; and g; are production and sales of some commodity, and AQ; = z; — y; is
the change of inventories. The Hendry and von Ungern-Sternberg (1981) study of the
consumption function belongs to the same class of models.

Consider also the following bivariate example which has been analyzed by Lee
(1992) in a BULLETIN article and in Lee (1996) for an extended sample period: We
focus on housing market data and let x; and y; be the flows of housing units started
and completed, respectively. For the current period the increment in the stock of
housing units under construction is given by z; — y; and the entire stock (assuming a
zero initial stock) is Q; = Z§:1 (x;—y;). Also in this case the potentially cointegrating
relations are between the variables x; and y; (with an obvious cointegration vector
given by (1,—1)), and between the variables @y and y; (or possibly x;). However, the
identity defining the increment in the stock of housing units under construction AQ);
needs not always be given simply as x; — ;.

"It could be [that] some building companies go bankrupt and some starts
are therefore not completed, and it could also be due to recording errors.
The possibility that dwellings disappear by demolition, fire or conversion
to other uses would also affect the identity”, (Lee, 1992, p. 423).

The percentage of never completed starts is naturally an unknown figure. Lee
solves this problem by using a smoothing estimator and for US data he finds that
approximately 2 % of all housing units started are never completed and hence the
appropriate stock variable is redefined as Q; = 2321(98% — ;).

The 1(2) representation of the model suggests a different way of estimating this
parameter. The idea is to consider the generated 1(2) variables Y; = 23:1 yj, Xi =
Z§:1 x;, and the I(1) variables AY; = y;, AX; = z; (upper case letters represent the
cumulated series) and the associated relation

Y; = HoXt + /‘f;lAE + HQAXt + Ut (4)

which is potentially a multicointegrating (polynomially cointegrating) relation' when
uy ~ 1(0). The parameter k is the estimated percentage of starts that are eventually

3The decision rules (2) and (3) entail certain parameter restrictions for the underlying optimizing
model to be valid. It is beyond the purpose of the present paper to address this particular issue but
merely we want to emphasize how the basic control mechanisms will arise in a multicointegrated
VAR model.

*Observe that in (4) the cumulated variables X; and Y; are allowed to cointegrate with both of
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completed. Note that when kg = 1, (4) simplifies to Q; = X;—Y; = —(K1y+roxi+us).
In the present context, given that the model is a satisfactory description of the data, g
can be estimated at the super-super consistent rate, O,(72) where T is the sample
size and hence, from an estimation point of view, there are very good statistical
reasons for formulating the model in terms of an (2) model. Observe that since
the generated 1(2) series Y;, and X; generally will have a linear trend it may also be
necessary to allow for deterministic components in (4).

Another example where the 1(2) representation is useful in estimating unknown
parameters defining the stock variables is the life cycle hypothesis of consumption.
According to this model consumption cointegrates with income and wealth where
the latter, by definition, equals accumulated savings, i.e. the accumulated difference
between income and consumption. Hence, there is multicointegration between con-
sumption and income. However, in order to find an appropriate measure of savings,
it is frequently necessary in this type of models to estimate the relationship between
income (decomposed into labour and capital income) and the value of non-durables
consumption and service flows, see e.g. Campbell (1987, section 4) for details. An
O,(T?) consistent estimate of this relationship can be obtained using the 1(2) coin-
tegration analysis. In contrast, Campbell (1987) estimates this relationship in a
standard 1(1) analysis and hence only obtains an O,(T~!) consistent estimate.

3. MULTICOINTEGRATION AND I(2) COINTEGRATION

The cointegrated VAR model for I(1) models can be written in the well-known vector
error correction model (VECM ) form, see Johansen (1991),
k-1
Axy =TIx; 1+ > TiAx ;i + & (5)
i=1
where x; is a p dimensional vector 1(1) time series (here assumed to consist of flow
variables) and IT is a matrix determining the cointegration rank of the VAR. g, is a
sequence of ¢.i.d. zero mean errors with non singular covariance matrix €2. If rankII =r
the x; series has r cointegrating relations and p — r common stochastic 1(1) trends
driving the system. In this case the matrix IT can be decomposed as IT = a3’ where
a and 3 are both p x r matrices. The cointegrating relations are given by 3'x;
and the associated adjustment coefficients summarized in a. Engsted and Johansen
(1997) show that if x; is multicointegrated such that the cumulated equilibrium errors
>t B'x; cointegrate with x,, then the representation (5) is invalid. In fact, the (long-
run) covariance matrix defined for the cointegration relations and the differenced

the variables x; and y,. Strictly speaking only one of series z; or y; is needed for the cointegration
property to hold, compare the adjustment models (2) and (3). However, as we shall see it follows as
a natural output from the statistical analysis that the specification (4) is useful when the variables
are considered from a systems approach using the Johansen ML procedure.
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variables will be singular in this case but alternatively the model can be formulated
as a VAR for cointegrated 1(2) variables. If we, as we did in section 2, let upper case

letters denote cumulated (lower case) series then X, = Y°%_, x; follows a p dimensional
VAR for 1(2) variables with the VECM representation

k—2
A’X, =TIX, 1 —TAX 1 + > WA*X,; + vy (6)

i=1

where I' = I— Y%7 T'; and v, is an error having non-singular covariance matrix. The
[(2) VAR is introduced in Johansen (1992, 1995) and he shows that the parameters
satisfy

II = af, witha,Bpxr, r<p (7)
a/J_PIBL = €n,’ with f;"? (p - T) X 8, s < (p - T) (8)

where | denotes the orthogonal complement of o and hence has dimension px (p—r)
and satisfies o/, @ = 0. Paruolo (1996) denotes the numbers r, s, and p — r — s the
integration indeces of the 1(2) VAR model: r relations cointegrate to 1(0) level, possibly
by including the first differences of X;, s relations are I(1) and constitute the 1(1)
common stochastic trends, and finally, p — r — s relations are (2) which we refer to
as the 1(2) common trends. Associated with these three cases it is possible to find
mutually orthogonal matrices (3, B;, 3,) where each component individually provides
a basis for the 1(0), I(1), and 1(2) directions, respectively.
The p different relations can also be written as

r o ,BIXt - (S,BIQAXt ~ |(0> (9)
s @ BIX ~1(1) (10)
p—r—s : [(3.X;~12). (11)

Note that the 1(0) relations can be expressed in terms of linear combinations between
the levels of 3'X; (which generally are 1(1)) and the differenced 1(2) trends B5AX,
(which are also I(1)), and hence include the polynomially cointegrating relations. The
matrix & has dimension r X (p — r — s) and has the orthogonal complement é, of
dimension r x (r — (p — r — s)) satisfying 8,8 = 0. More precisely & is defined as
6 =a'T'B, where @ = a(a’a)™" and B, is defined in a similar way®.

Not all the 1(0) relations in (9) need to be polynomially cointegrating. The linear
combinations where the differenced variables are not needed to yield stationarity
are given by & 3'X;. On the other hand, the relations which surely require the

SNote that P, = @a’ = ai@’ denotes the projection onto the space spanned by the columns of
Q.
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differenced variables are the polynomially cointegrating relations and are given by
63X, — §68,AX,. These are the truely multicointegrating relations. Hence the r
[(0) relations can be partitioned into p — r — s multicointegrating relations and the
remaining r — (p—r—s) cointegrating relations. Of course this separation requires that
r > p—r — s. In practical situations with multicointegration it seems less likely that
the directly stationary cointegrating relations &', 3'X; will be present. This would
imply that the differenced linear combinations 8’ 3'x; be I(—1). Hence we believe
that it is most common that » = p — r — s when the focus is on multicointegration
in the sense of Granger and Lee. Finally, it should be mentioned that the I(1) trends
31X, will be stationary in first differences, i.e. AB;X; = B1x; ~ 1(0).

Observe that for bivariate systems certain simplifications will arise. In particular,
if the series are multicointegrated then (r,s,p —r —s) = (1,0,1) and hence no (1)
trends can be present.

4. ERROR CORRECTION REPRESENTATION OF MULTICOINTEGRATED VARIABLES

The VECM for general 1(2) systems (6) can be given the following alternative repre-
sentation due to Paruolo and Rahbek (1996):

k—2

A*X, = a(B/X‘tfl - 5,3/2AX7571) —(¢1,€9)(B, ,31)/AX7571 + Z U,A*X, + vy, (12)

i=1

where ¢, = I'8 and ¢, = I'3; are adjustment parameters. This way of writing the
VECM is perhaps more intuitive compared to (6) since all the cointegration possibil-
ities (9)-(11) are displayed rather straightforwardly. The representation (12) forms
the basis for the VECM formulated in terms of the original I(1) flow variables x; :

Theorem 1. Error correction model representation for the flow variables.
Let x; be a p-dimensional vector process of flow variables integrated of order one
and multicointegrated such that r > p —r — s > 0 and such that X; = Z§:1 X,
is an autoregressive process given by (12). Then Ax; can be given the following
representation:

Ax; = & [6'Qi1 — 8'685xi1] + &, (6, Q1] (13)
—C1AQe 1 — (B %1 + P (L)AX, + vy

where £, = ab and €, = ad, are adjustment parameters of dimensions p x (p—r—s)
and p x (r — (p—r — s)), respectively, and Q, = 3°_, 3'x; is the stock of cumulated
I(0) errors. Furthermore W(L) = S M2 W, ¢,

Proof. Consider the ECM representation (12) and in place of a use the identity
a = a(P,+ Ps,) where Ps = §(8'8)™'8' denotes the orthogonal projection matrix
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on the space spanned by 8. Ps, is defined in a similar fashion. The representation
now follows straightforwardly by collecting terms and noting that x;, = AX; and
X, = Z§:1 x, and by using the definition of the stock variables Q. W

In (13) &, adjusts for the p —r — s multicointegrating relations which are given by
(6'Q; 1 — 6'63,%; 1] and correspond to the ’integral’ control mechanisms. &, adjusts
for the remaining r — (p — r — s) cointegrating relations amongst the stock variables
but these relations do not have the property that they multicointegrate. ¢; and ¢,
adjust for the 'proportional’ error correction terms given by AQ; and 3,'x;. Finally
the ’derivative’ control mechanisms are given by W(L)Ax;. Note that, ignoring the
error term, the flow ECM given in (3) can be obtained as a special case of (13).

The second ECM representation for multicointegrated time series can be stated as
follows:

Theorem 2. Error correction model representation for the stock variables.
Let x; be a p-dimensional vector process of flow variables integrated of order one and
multicointegrated such that r > p —r — s > 0 and such that X; = Z§:1 X, Is an
autoregressive process given by (12). Then the process Ax; = (AQ}, B1x;, AX,3,)
where Q; = Zj-:l B'x; can be given the following representation:

ARy = & [6'Qi — 8'680xi1] + &, (6 Q] (14)
+C1AQi—1 + Czﬁaxt—l‘i‘M‘I’(L)BgA,Blzxt—l
+W (LA, + 1,

where the parameters and symbols are defined in the following way: M = (3, 8,, 3,)’,

& = Mfuvgz = M¢,, Zl = (¢, — M(,), Ez = (s — M(y), ¢, = (IT,O,O)’, Ls =
(0,1,,0)", (L) = M¥(L)YM'D, (1), and U; = Mwv,. The dimensions of the '~’

)8
)

parameters are the same as the parameters without the

)
~ 7,

Proof. We adopt the same technique as in Mellander et al. (1992) and define
the matrices

B A, L
M=| 3], |, D)= A , D, (L) = I
By L, s A,

Observe that M~ = (3,8}, 8,) and D(L)D, (L) = A,.
We want to transform the variables in (12) such that error correction adjustments
are defined in terms of 3'X;, 81X, and B5AX;, which are all I(1), c.f. (9)-(11). Eqn.
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(12) can be written as follows:

AD(L)D (L)MX; = Ma]L,0,-6]D,(L)MX, (15)
—M(¢, €2, 0)AD L (L)MX, 4
+MV¥(L)AM™'D(L)D, (L)MX;_; + Mv;.

Now, defining %, = (X3, X}3;, AX}3,)" and rewriting (15) yields

AX, = Mall,0,-6]%_, (16)
+{D.(1) = M(¢,,¢2,0) + ME(L)M 'D(1)} A%,
+MW¥(L)M D (1)A%%X;,_; + M.

Alternatively, by letting ¢, = (I,,0,0)" and ¢, = (0,1,,0)" and collecting terms we
obtain

A%, = Mal[L,0,-6]%; (17)
+{(er = M) (6 — MCGy) . (M¥(L)B,) | A%
+M¥ (LM D (1)A%*%;_; + M.

With the definitions of symbols given in the Theorem and by using the identity
a = a(P;+ P, ), like in the proof of Theorem 1, the representation (14) results. B

The interesting thing to note about Theorem 2 compared to Theorem 1 is that
although the same equilibrium relations appear in the ECM, the model is formulated in
terms of stock and flow variables rather than in terms of the original flow variables x;.
But of course the adjustment coefficients will be different. The stock variables in the
representation (14) are given by the variables Q; = §'=1 B'x; and Q; = Z;Zl B1x;
whereas the flow variables enter through the differenced 1(2) trends, 3,x;. Note,
however, that the stock variables Q; only enter through their derivatives, the flow
counterparts AQ;. The ECM given in (2) can be obtained as a special case of (14).

Of course the above representations can be extended to the case where deter-
ministics are included in the models. However, since this complicates the analysis
considerably without gaining much additional insight it is excluded in the present
exposition. The way that deterministics affect the representation of the 1(2) VAR and
the statistical analysis is discussed in Paruolo (1996) and Jgrgensen et al. (1996).

5. AN APPLICATION TO US HOUSING CONSTRUCTION DATA
In this section we use 1(2) techniques to analyze multicointegration in the US housing
data set previously examined by Lee (1992, 1996). The series are from Citibase and
are: new privately owned housing units started, xry = HSFR, and new privately
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owned housing units completed, 1, = HCP. Data are monthly seasonally adjusted
and covers the period 1968:1-1994:12. In figure 1 x; and y; are displayed. Unit root
tests (not reported) strongly indicate the presence of a single unit root in both series.
Since the 1(2) analysis is based on the cumulated series Xy = >>'_; z; and Y; = )_, y;
the graphs of these time series are displayed as well in figure 1. Note that assuming
x; and y; to be I(1), X; and Y; will be 1(2) by their construction and will measure the
stocks of started and completed housing units, respectively.

This is a bivariate example and naturally this simplifies the analysis somewhat.
If z; and y; are multicointegrated the theory predicts that s = 0 (no I(1) common
trends), r = 1, (one multicointegrating relation), and p —r — s = 1 (a single common
[(2) trend).

Figure 1 about here

5.1. Testing for multicointegration. Lee (1992, 1996) defined the stock of
housing units under construction as Q; = >'_;(.98z; — y;) = 98X, — Y; and he
found strong support for @); being I(1) and cointegrating with y;, that is x;,y, are
multicointegrated. However, since (); is a constructed variable a prior: his analysis
did not explicitly involve I(2) variables, c.f. the discussion in section 2. Here we
adopt the 1(2) analysis both by single equation tests and by tests based on the VAR.

Single equation tests. The single equation procedure has recently been sug-
gested by Engsted et al. (1997) as an extension of the Engle and Granger (1987)
two-step procedure to the case with 1(2) variables, see also Haldrup (1994). The idea
is in the first step to conduct the regression

Y, = RoX, + FiAY, + 8o + 61t + Ty (18)

and in the second step to test the integration order of #;. For instance, an augmented
Dickey Fuller test (or Phillips (1987) Z—test) can be conducted. Given that y,
and z; cointegrate to 1(0) level the critical values for the ADF test for the null of
no multicointegration are reported in Engsted et al. (1997) for the case where an
intercept plus a trend are included in the first step regression as in (18). For m; =1
[(1) regressor and ms = 1 1(2) regressor the asymptotic 1% critical value is given by
-4.73. Note that the reason for including a trend regressor in (18) is to account for
the fact that the generated series X; and Y; are likely to drift when z; and y; have
a non-zero mean. The ADF test gives a test value of -4.82 when 3 lags are included
in the auxiliary DF regression®. Hence there is rather strong evidence in favour of
multicointegration.

6The single equation analyses were conducted by using PcGive 9.0, see Hendry and Doornik
(1996).
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The estimated cointegrating relation (apart from deterministics) is given by
Y, = .947X; — 8.153AY,, (19)

so the estimate of kg, the percentage of housing constuction starts that are eventually
completed, is given by 94.7%.

Alternatively, since cointegration has already been found it is also possible to
estimate k¢ from a more complex dynamic regression including lags of AY; and AXj.
The implied ’static’ long run solution (see Hendry and Doornik, 1996, p. 234), from
a model including 4 lags of AY; and AX; reads:

Y, = .947X, — 5.581AY; — 2.651AX, (20)

and hence it is seen that the estimate of ko happens to be identical to the estimate
based on the regression (19).

Tests based on the I(2) VAR. Single equation analysis is not the most ef-
ficient way of estimating ko. The 1(2) VAR model for the variables Y; and X; is an
alternative and more comprehensive benchmark for analyzing the multicointegrating
properties of the data. The statistical analysis for the I(2) model in VAR systems is
discussed in Johansen (1995, 1997). The basic model we consider is of the form (6)
but we also want to allow for an intercept and a deterministic trend in the model.
However, since we do not want the model to generate quadratic trends we restrict the
trend to lie in the cointegration space. Essentially this corresponds to a multicointe-
grating relation with a trend similar to (18). The statistical analysis for this situation
is discussed in Jgrgensen et al. (1996). In the subsequent analysis this restriction has
been imposed in the estimation’.

In order to determine the integration indeces an 1(2) VAR model with 12 lags and
a trend restricted to lie in the cointegration space was estimated for the variables
Y; and X;. In table 1 various univariate and multivariate diagnostics of the VAR are
reported. As seen there are generally no problems about autocorrelation but due to
heteroscedasticity and excess kurtosis there are problems with the normality tests.
A possible remedy of this problem is to log transform the variables. However, this is
not strictly permitted when the focus is on the stock-flow relations. Since Gonzalo
(1994) has found that the Johansen ML procedure is rather robust to discrepancies
from the model assumptions due to heteroscedasticity we ignore this problem. In
figure 2 the roots of the companion matrix of the VAR(12) are displayed for the case
where no 1(2) trends are allowed for in the estimation. As seen there is evidence of at

TAll I(2) VAR computations have been calculated from the the 1(2) extension of the CATS in
RATS programme. The programme is written by Clara M. Jgrgensen and is downloadable from
http://www.estima.com/procs/i2index.htm.
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Table 1. Misspecification tests of the VAR(12).

Multivariate tests:

Residual autocorrelation LM(1) X*(4) = 2.79
Residual autocorrelation LM(4) X*(4) = 7.31
Normality LM X2(4) = 19.31%
Univariate tests: AY, AX;

ARCH(12) 5.53*  33.33*
Jarque-Bera, Normality 12.56**  7.19***
Skewness AT -.13

Excess kurtosis 3.91 3.69

R? .95 91

Note: (*), (**), and (***) denote significance at 1,5, and 10 % levels,
respectively.

least two unit roots in the data. Formal testing for the number of unit roots and the
integration indeces can be based on the S, trace statistics discussed by Johansen
(1995, 1997). The results are reported in table 2. This table should be read from
the upper left corner (the most restricted model, r = 0, p — r — s = 2) to the right,
and down, until the first hypothesis that cannot be rejected is identified. That is, the
hypotheses should be tested successively less and less restricted.

Figure 2 about here

As seen the first hypothesis that cannot be rejected corresponds to the hypothesis
where r = 1 and p—r — s = 1. Hence the tests indicate that there is one common (2)
trend in the data and one polynomially cointegrating (or multicointegrating) relation.
Note that s = 0, so there are no I(1) trends in the model.

The error correction models. The ECM’s presented in theorems 1 and 2
become somewhat simplified in the present situation when there are no I(1) trends
and 7 = p—r —s. In this case the I(0) relation is also the multicointegrating relation.
The estimates of the model parameters are tabulated in table 3. Note that since
6, =0 and (5, = 0 many of the error correction terms will vanish.

As seen the estimated stock of housing units under construction is given by @Q; =
—B'(Yy, Xy) = X5_1(.972x; — y;). This is only slightly different from Lee’s (1992)
estimate that 2% of housing starts were never completed. In figure 3 two different
measures of the stock variable are displayed and it is apparent that the estimated
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Table 2. Joint tests of the integration indeces.
US Housing data set, 1968:1-1994:12.

p—r r Sr,s Qr
2 0| 76.90*** 32.72% 22.55*
47.60 34.36 25.43
1 1 13.90 4.20
19.87 12.49
p—r—=s 2 1 0

Note: (*), (**), and (***) denote significance

at 1,5, and 10 % levels, respectively. Numbers in
italics are 95 per cent quantiles, (Jgrgensen et al.
(1996), table 4). r and p — r — s are the number of
[(0) and 1(2) components.

Table 3. Parameter estimates of the 1(2) VAR for r = 1,5 =0,
andp—r—s=1.

Multicointegrating relation B =(1,—-.972), 6 = 3.908, (6, = 0)
(2) trend B, = (1,1.029)
M—matrix M= (3,8,
Multicointegrating parameters 3,@; = (3.908,4.022)
Adjustment coefficients a' = (—.026,.034)
. = 372 —.158
Gamma matrix I'= < _ 907 — 064 )
Derived estimators
Flow ECM Stock ECM
£6=atb=a €,6 = NiE,6 - Ma - ( 050 )

13
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stock variable rather than the difference ; = X; — Y; seems to behave more like
the original flow variables x; and y;. The variable (; = X; — Y; tends to drift away
compared to the flow series. This drift captures the cumulation of starts that are
never completed. It is likely that the drift can be partially corrected for by allowing
a trend in the cointegration space as we have done in the present study, however, this
will only capture part of the discrepancy since the estimate of kg is still strictly less
than one®.

Figure 3 about here

The multicointegrating relation can be written as follows (apart from the deter-
ministic components), compare (9):

B (Y, X)) — 8B,(AY,, AX,) =Y, — 972X, + 3.908AY; + 4.022AX,  (21)
and the 1(2) trend is given by
BL(Y:, X,) =Y, + 1.029X,. (22)

Note that the 1(2) trend is close to being the sum (average) of the two series since kg
is not too far away from unity:.
The flow ECM can be written as follows:

—.026
A < Y > = < 034 > (Qt*l - 3-908'3/1571 - 4'0221}*1) (23)

Xt

+ < 6%24170 > (AQq 1) + lags of {Ay,, Az, } + constant + trend.

With respect to the stock adjustment ECM this can be written:

Q: [ =059 - -

A ( gy, xy | = \ ooy )(@1— 3908y —40228) (24)
657

T < —.194 > (AQq—1) + lags of {Ay;, Az, } + constant + trend.

Of course, from an economic perspective the first row in the stock ECM is most
interesting. For both ECM’s it is seen that the adjustment coefficients have the
correct signs but adjustment also seems to be extremely slow which reflects high
costs of adjustment.

8Notwithstanding, it should be mentioned that a LR test for the hypothesis that 5’ = (1, —1)
cannot be rejected. The test value is 1.36 which should be compared with the x2(1) distribution;
the p-value is .24. It is likely that the trend in the cointegration space gives rise to this result.
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6. CONCLUDING COMMENTS

In this paper we have demonstrated how two separate, though equivalent, error cor-
rection model representations can be given to time series that are multicointegrated
in the sense of Granger and Lee (1989, 1990). The I(1) model is not adequate for
describing multicointegrated time series, so much of the analysis has focused on the
[(2) model and how this can be reparametrized to describe the particular features of
multicointegrated time series. Through an empirical application of US housing con-
struction data we also demonstrated how the 1(2) analysis can be useful in practice
as a tool for analyzing multicointegrated time series even though the basic economic
variables are really 1(1). To the best of our knowledge this provides the first empirical
example of explicitly adopting 1(2) procedures to multicointegrated time series in the
Granger-Lee meaning of the concept. What remains is to consider multicointegration
in more advanced models where a potentially larger information set is used to de-
scribe the stock building and flow decisions of the housing market. At least the 1(2)
procedures seem to work well for small stylized models.
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Figure 1: Housing construction data set for US, 1968:1-1994:12, seasonally adjusted.
New privately owned housing units started, x;, and completed, y;. The corresponding
stock series have been generated as Xy = 35_; x;, and Yy = 37, ;.
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Figure 2: The roots of the companion matrix of the VAR(12).
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