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In econometrics, most null hypotheses are composite, dividing the parameters

into parameters of interest and nuisance parameters. Typically,  a composite hypothesis can be

tested using two or more testing procedures. Competing testing procedures are commonly 

compared using  size-corrected powers. What is often overlooked is that the size-corrected

critical value of a test can  be sensitive to the set of admissible values of the nuisance

parameters, and  hence its size-corrected power. As a result, different choices for the

admissible set can produce different conclusions about which test is best. This fact complicates

the interpretation of Monte Carlo power studies because in many cases there is no natural

definition of the set of admissible values. We find this fact to be crucial when choosing a

Lagrange Multiplier test in the case of a logit model. A theoretical explanation for this effect is

developed using large parameter asymptotics. 

Keywords: Composite hypotheses, finite sample power, Hessian information matrix,
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1.  INTRODUCTION

In logit models, the hypotheses tested usually only involve a subset of the

parameters, in particular, one or more slope coefficients, the others being nuisance parameters.

Typically, such a composite hypothesis can be tested using two or more testing procedures.

Competing testing procedures are commonly  compared using  size-corrected powers. What is

often overlooked is that the size-corrected critical value of a test can  be sensitive to the set of

admissible values of the nuisance parameters, and  hence its size-corrected power.  In Monte

Carlo studies designed to compare size-corrected powers, this set is chosen by the

experimenter. Different choices can produce different conclusions about which test is best. 

Thus, the choice for the set of admissible values of the nuisance parameters can play a key role

in size-corrected power comparisons.  This fact complicates the interpretation of experimental

power studies because in many cases there is no natural definition of the set of admissible

values.

This paper illustrates the influence of the admissible set using variants of the

Lagrange Multiplier (LM) test. The variants of the LM test differ in the estimator of the

information matrix. One variant is based on the expectation of the Hessian matrix, a second on

the Hessian matrix and a third on the outer product (OP) matrix of the score vectors.  The

three estimators produce three variants of the LM test: the expected Hessian LM test, the

observed Hessian LM test and the OP LM test. Dagenais and Dufour (1991) show that  the

expected Hessian and OP LM tests enjoy certain invariance properties to reparameterization,

while the observed Hessian does not. For this reason we only consider these two variants of

the LM test. Although the tests are asymptotically equivalent (Amemiya (1985)), Monte Carlo

evidence suggests that the performance of the tests can be very different in finite samples. The

OP LM test has been reported to have poor size performance in logit and probit models, see

Davidson and MacKinnon (1984). For other tests using the outer product of the score vectors,

see, for example Chesher and Spady (1991), Davidson and MacKinnon (1983, 1985, 1992),

Godfrey, McAleer and McKenzie (1988) and Orme (1990).

In this paper, large parameter asymptotics is used to show that the size of the

OP LM test is strongly influenced by the nuisance parameters. The large parameter asymptotic

distribution is derived from a sequence of test statistics indexed by the values of the
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parameters, assuming the sample size is fixed. The purpose is to obtain the limiting distribution

of such a sequence as the values of the parameters increase in absolute value. The critical

value obtained from this limiting distribution is a lower bound on the size-corrected critical

value of the LM statistics. For the OP LM test these critical values are many orders of

magnitude larger than that of the Hessian LM test and the asymptotic critical value from the

chi-square distribution.

For the logit model, Davidson and MacKinnon (1984) concluded that despite

the poor size performance of the OP LM test, the size-corrected power of the OP LM test is

good compared to the expected Hessian LM test. We find, however, that this conclusion is a

result of the treatment of the set of admissible values of the nuisance parameters; in particular,

the set contains only one point (Savin and Würtz (1996)). This treatment of the set of

admissible values of the nuisance parameters is not uncommon in Monte Carlo experiments

with tests of composite hypotheses. In effect, the null hypothesis is more restricted than

claimed, and hence the tests are actually size-corrected.  A similar point is emphasized, along

with other examples, in Campbell and Dufour (1995),  Dufour (1994) and Dufour and Torres

(1995). Our Monte Carlo simulations demonstrate that the OP LM test can have about the

same power as the Hessian LM test if the set of admissible values of the nuisance parameters

is small. If the set is enlarged, then the Hessian LM test has better size-corrected power. The

poor power performance of the OP LM test is partly due to its poor size-performance, but not

entirely. Hence, when choosing a LM test in logit models, the expected Hessian LM test is

recommended.

The organization of the paper is the following. The model and the expected

Hessian and OP LM tests are presented in Section 2.  The size properties of the LM tests are

investigated in Section 3.  In Section 4 the large parameter asymptotic distributions are

derived. The implications for the size-corrected powers are analyzed in Section 5 and Section

6 concludes the paper.

2.  HESSIAN AND OP LM TESTS

In this section we describe the Hessian and OP LM test statistics for a binary

logit model. The binary logit model is defined by
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where {Y } is a sequence of independent binary random variables taking the value 1 or 0, $ isi

a k-vector of parameters and x  is the i’th k-vector of regressors from a matrix of regressors Xi

with n observations. The hypothesis is assumed to be composite, restricting only a subset of

the parameters. Partition the parameter vector $ into $  and $  such that $  is the k  vector of 1 2 1 1

restricted parameters and the k -vector $  the remaining parameters. The null hypothesis is2 2

(1)  

and the alternative hypothesis

(2)  ,

where is a bounded subset disjoint with . The null hypothesis does not restrict the

parameters $  and, hence, $  are nuisance parameters. 2 2

The LM test statistics use the score vector and a covariance matrix. Let S be

the score vector and V the covariance matrix. Then the LM test statistic is

  LM = S($)' V($) S($),

where both S and V are evaluated at parameter values satisfying the null hypothesis. Two

versions of the LM test statistics are obtained by using different consistent estimators of the

covariance matrix. One version, the expected Hessian LM test is calculated using the inverse

of the expected information matrix

(3)  

Note, in a logit model the Hessian matrix equals the expected Hessian matrix. The other

version, the OP LM test, is calculated using the inverse of the outer product of the score

vectors
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(4)  

The score vector, used in both versions of the LM test, is given by

(5)  

The two versions are denoted LM  and LM  for the expected Hessian LM test and the OPEX OP

LM test, respectively.

3. SIZES OF THE TESTS

Using first-order asymptotics, the two versions of the LM tests have the same

limiting chi-square distribution when H  is true and the same limiting non-central chi-square0

distribution under sequences of local alternatives.  As a result, the asymptotic critical values

are the same for the two tests, and they have the same local power. In finite samples, however,

the tests are not pivotal: their finite sample distributions depend on the true values of the

parameters under the null hypothesis and, in particular, the values of the nuisance parameters.

Before considering the power of the tests in section 5, we investigate the size properties.

In our Monte Carlo experiments we find, that the actual size of the OP LM test

can differ substantially from the nominal size, which is consistent with the findings of other

investigators. These results hold in both simple and more complicated logit and probit models.

Therefore, to illustrate the effects of the nuisance parameters, it suffices to consider a simple

binary logit model.

In a simple logit model with a slope $  and an intercept $ , consider a test of1 2

the null hypothesis that the slope is zero. The values of the corresponding regressor x were

generated using the perfect normal N(0, 1): x  = M (i/(n+1)),  i = 1,2,...,n, where M is thei
-1

standard normal cdf. The Monte Carlo sample size is 5000. To calculate the Hessian and OP

LM statistics, only the constrained ML estimate of $  subject to the constraint $  = 0 is2 1

needed. The ML estimate is, however, not finite for some samples. In other words, the ML

estimator is not defined for certain points in the sample space; see Albert and Anderson

(1984), or, for a brief discussion, Amemiya (1985).  We call these sample points “bad” points. 
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For the constrained ML estimator of $  there are only two bad points; one is y = (0,0,...,0)’1

and the other is y = (1,1,...,1)’.  For finite n, these bad points have positive probability of

occurring.  If a bad point occurs, it is deleted and not replaced.  Hence, the estimate of the

rejection probability at the parameter point ($ , $ ) is R/G where R is the number of rejections1 2

in the G non-deleted samples.  

Using the 0.95 quantile of the chi-square one distribution as the critical value,

Figure 1 shows the empirical rejection probabilities of the tests when H  is true for values of0

the nuisance parameter, that is, the intercept $ , which range from -6 to 6.  For the Hessian2

LM test with n = 100, the empirical rejection probability is about 0.05 for all values of the

intercept. On the other hand, the empirical rejection probability of the OP LM test is sensitive

to the value of the intercept.  For n = 100, the empirical rejection probability is roughly 0.05

when the absolute value of $  is less than 2 and then increases as the absolute value of $2 2

increases.  For example, the empirical rejection probability is about 0.20 when the absolute

value of $  is 3.  For n = 200, the empirical rejection probability is roughly about 0.05 when2

the absolute value of $  is less than 3 and then increases as the absolute value of $  increases. 2 2

Hence, the distribution of the OP LM test shifts to the right as the value of the nuisance

parameter increases.

Recall that the type I error or the size of a test of a composite null hypothesis is

defined as the supremum of the rejection probabilities under the null hypothesis, see Hogg and

Craig (1978, p. 239) and Lehmann (1959, p. 61):

  ,

where  is the probability of the test rejecting at the true $, that is, the power function. To

find a size-corrected critical value for, say, a 0.05 significant level, select the critical value such

that the maximum rejection probability taken over all $0H  is 0.05. In the simple logit model,0

$  = 0. Define the set of admissible values of the nuisance parameter, denoted by B , to be $1 N 2

0 B = [-$ , , $ , ] where $ ,  is a positive number. Hence, H  = {($ ,$ ) * $  = 0, $  0 [-N 2 max 2 max 2 max 0 1 2 1 2

$ , , $ , ] }; see (1).2 max 2 max

The choice of admissible values of the nuisance parameter has a substantial

influence on the size-corrected critical value. Figure 2 shows the 0.05 size-corrected critical

values for both the Hessian and OP LM test for different choices of the set of admissible
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values of $ . For the Hessian LM test, the asymptotic critical value is approximately the size-2

corrected critical value for all choices for $ , .  In the case of the OP LM test, however, the2 max

size-corrected critical value increases sharply as $ ,  increases.  For example, with n=1002 max

observations it approaches 17.9 as the absolute value of $ ,  approaches 3 and  80 as $ ,2 max 2 max

approaches 6. For n=200, the size-corrected critical value is 158, which is much larger than in

the n=100 case. This counterintuitive effect is explained below by large parameter

asymptotics.

The size-corrected critical value of the OP LM test increases sharply as the set

of admissible values of the nuisance parameters is enlarged. This implies that the distribution

of the test statistic is very different for large values of the nuisance parameters compared to

small values. Moreover, the distributions for large values of the nuisance parameters are

dominating in the sense that the size-corrected critical values are picked from these

distributions. This suggests that a general proof of the size-distortion of the OP LM test can

be found by analysing a sequence of distributions indexed by nuisance parameters increasing in

value. This technique is denoted large parameter asymptotics.

4. LARGE PARAMETER ASYMPTOTICS

We now use large parameter asymptotics to prove that the size-corrected

critical values of the OP LM test are substantially different from the critical values obtained

from the conventional asymptotics. In the conventional asymptotics the limit is taken with

respect to the sample size whereas in large parameter asymptotics the limit is taken with

respect to an index of the parameters. In other words, we find the limit of a sequence of test

statistics indexed by the parameters. The index of the parameters is constructed by selecting a

ray in the parameter space. Since we are interested in investigating the size properties,

attention is restricted to rays satisfying the null hypothesis, namely,

(6)  

With this specification, r can naturally be used as the scalar index on the sequence of test

statistics. To insure that the LM statistics depends on the value of the nuisance parameters,

make the following assumption
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ASSUMPTION 1. " 'x  … 0 for all i.2 i2

For the tests in the logit model considered in Section 3, "  = 0 and "  can be any non-zero1 2

value since the nuisance parameter space is one-dimensional.

The Monte Carlo experiments showed that the distributions of the LM test

statistics for large values of the nuisance parameters determined the size-corrected critical

values. Moreover, in the Monte Carlo experiments bad points were deleted implying that the

distribution over the sample space is renormed. For large values of the nuisance parameters,

the sampling distribution in the renormed sample space concentrates on n sample points; see

the proof to the proposition. The large parameter limiting distribution of the LM test statistics

in the renormed sample space is given in the following proposition.

PROPOSITION: Make assumption 1. Assume that bad points are deleted from the sample

space. In testing H  = {($ ,$ ) * $  = 0, $  0 ú}, the large parameter limiting distributions of0 1 2 1 2

the LM statistics along the ray (6) are

(7)   and

(8)  

where #J is the cardinality of the set J, and  and s  are the sample mean and standardx

deviation of the regressor.

Proof: See the appendix.

The critical value obtained from the large parameter limiting distribution in the

Proposition is a good approximation to the size-corrected critical value of the OP LM test

when $ ,  is large.  For our problem, a large value of $ ,  is 6.  From Table 1 we see that2  max 2 max

for this value of the intercept the percentage of bad points is 77.9%.  Figure 2 displays the

size-corrected critical values of the 0.05 size OP LM test when n = 100 and n = 200 for values

of $ ,  from 0 to 6.  The horizontal lines represent the 0.95 quantile of the large parameter1 max
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limiting distribution found by substitution of the regressor values directly into formula (8). 

These values are 80.0 for n =100 and 161 for n = 200. They are close to the empirical size-

corrected critical values.

The large parameter limiting distributions can be further explored by assuming

that x ,...,x  is a random sample from a normal distribution. In this case, the large parameter1 n

limiting distribution of the Hessian LM test is given by

(9)  ,

where F(1,n-1) is the F distribution with 1 and n-1 degrees of freedom.  For n = 100, the 0.95

quantile of the large parameter limiting distribution is 3.98, which is close to the critical value

in our Monte Carlo experiment, namely, 4.10.  Notice that for n large, F(1,n-1) is

approximately equal to the P (1), which is the distribution of the Hessian LM test statistic2

obtained from conventional asymptotics.

In the case of the OP LM test, the large parameter limiting distribution does

not mimic the P (1) distribution. The large parameter limiting distribution of the OP LM test2

can be expressed as

(10)  .

Using this distribution, the 0.95 quantile is 80.4 for n = 100  and 160 for n = 200.  These are

very close to 80 and 158, respectively, which are the critical values obtained in our Monte

Carlo experiments. Conversely, the 0.95 quantile from the P (1) is 3.84 which corresponds to2

the 0.16 quantile of the LM  distribution (10). Hence, using the asymptotic critical valueOP

implies a size distortion of the OP LM test equal to 84 percent. The effect of the sample size n

can be seen both in (8) and (10). A larger n shifts the distribution of the OP LM test to the

left, exactly the result found in the Monte Carlo simulations.

The Proposition is valid for a logit model with 2 parameters. To obtain a

general result with k parameters, the large parameter asymptotics is derived for the full sample

space, that is, by not renorming the sample space by deleting bad points. The large parameter

asymptotic distribution for the full sample space is given in the following theorem.
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THEOREM.  Make assumption 1. In testing , the large

parameter asymptotic distributions of the LM statistics along the ray (6) are

     with   and

      with ,

 where 4 = (1,1,..,1,1) ', W is a (n×n) diagonal matrix with (i,i)’th element , n×1

    and   .

The large parameter limiting distributions are  and  with cdfs

F  and F  where a and b are replaced by  and , respectively.EX OP

Proof. See the appendix.

The distributions of both LM tests are degenerate at a single point in the

sample space. The values of the test statistics in the limit depend on the weight matrix W

which is the only quantity depending on r. Each element i in the weight matrix W converges to

0 at a rate determined by the choice of " , that is, the ray in the parameter space.2

The Theorem is useful to find a lower bound on the size-corrected critical

values. The size-corrected critical values of the LM tests cannot be smaller than the limit

values a  and b  for the Hessian and OP LM tests, respectively, if these tests are to have a size* *

less than one. The reason is that the limit values are derived for parameter values which satisfy

the null hypothesis by construction of the parameter ray. For example, since the probability is

1 for the LM  to be equal to a  in the limit, the size of the LM  test is 1 if the size-correctedEX EX
*

critical value is chosen below a . Hence, the Theorem provides lower bounds on the size-*

corrected critical values of the LM test statistics.

A number of interesting special cases can be derived from the Theorem.

Typically, an intercept is included in the model where the intercept is a nuisance parameter. By
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selecting a ray in the parameter space in the direction of the intercept, it can be seen that all

the terms in the weight matrix converge with the same speed, that is, r  = r ,  i,j=1,2,..,n.i j

Hence, by pulling the r terms outside, the LM  test equals a constant divided by r , whichEX i

implies that the limit value a  equals 0. For the LM  test, however, all the r  terms cancel and*
OP i

what is left is a constant, whose value is straight forward to calculate. In particular, if the null

hypothesis is $  = 0, then all the c ’s are the same and they cancel. The remaining part is1 i

 .

The term in the bracket is an orthogonal projection of 4 onto the plane spanned by X. Since

the intercept is included, 4 is in the plane spanned by X and, thus, b  = 4’4 = n. The conclusion*

is that the size-corrected critical value for the LM  test is bounded below by 0, that is, noEX

restriction, whereas the size-corrected critical value of the LM  test is bounded below by n,OP

the sample size. Hence, a larger sample size increases the size-corrected critical value, which

exactly mimics the result from the Monte Carlo experiments. It also demonstrates in general

that the size-corrected critical value of the LM  test is substantially larger than the criticalOP

value provided by the chi-square distribution.

5. POWERS OF THE TESTS

To judge the performance of the two LM tests, the size-corrected powers are

compared. In Section 3, the size properties of the tests were analysed and the OP LM test

shown to have large size distortions using the asymptotic chi-square critical value. This,

however, does not imply that the LM OP test is inferior to the Hessian LM test in terms of

power. To make a fair comparison, the size-corrected powers are used. We will show that

even with this adjustment the LM OP test has inferior power which partly is a result of its

poor size performance.

For the same simple binary logit model as in section 3, we compare the powers

of the 0.05 size-corrected LM tests for three values of $ , , that is, three different sets of2 max

admissible values of the intercept.  Our results show that the power comparison is strongly

influenced by the value of $ , .  The first value is $ ,  = 2.  For sample size n = 100, the2 max 2 max

size-corrected critical value is 4.10 for the Hessian LM test and 5.17 for the OP LM test. 

Figure 3 shows the empirical powers when $  = 0.  The empirical powers are essentially the2
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same for the Hessian and OP LM tests.

The second value is $ ,  = 3.  For this case, the size-corrected critical value is2 max

4.10 for the Hessian LM test and 17.9 for the OP LM test. Figures 4 and 5 show the empirical

powers when $ = 0,  and 3, respectively.  In these figures, the empirical powers of the size-2 

corrected OP LM tests are substantially smaller than those of the Hessian LM tests.  Also

notice that in Figure 5 the OP LM test has empirical power 0.05 when $  = 0.  This is because1

the $  = 3 is on the boundary of the set of admissible values for $  and the rejection probability2 2

is increasing in $2 .

It is misleading to interpret the lower power of the OP LM test in Figure 4 as

due to size distortion.  The test has the correct size by construction.  What  Figure 4 shows is

that the rejection probability is less than the size when $  = 0.  By contrast, the test has2

rejection probability equal to its size in Figure 5.  Even in this case, the power of the OP LM

test is substantially less than the power of the Hessian LM test.

In the present setting, there is no natural definition of the admissible set for $ ,2

except possibly the entire real line; the latter is the admissible set used in ML estimation. If this

definition is used, then the power comparison is even more dramatic. Figure 6 shows the size-

corrected powers of the Hessian and OP LM tests when $ ,  is 6, $ = 0  and n = 100.  In2 max 2 

this case, the power function of the OP LM test is a horizontal straight line at 0; that is, the

OP LM test never rejects H .0

Part of the reason for the inferiority of the OP LM test is its poor size

performance. Under the null hypothesis, the distributions of the OP LM tests shift to the right

for larger values of the nuisance parameters. Therefore, if the true value of the nuisance

parameter is small, then the true distribution is far to the left of the distribution from which the

critical value is selected, namely, a distribution for which the value of the nuisance parameter

is large. Even though the true distribution shifts to the right as the parameter of interest

increases in value, the critical value is so far out in the tail to begin with that the power only

increases slightly, and certainly much less than for the Hessian LM test. Hence, it is not

surprising that a test statistic which has very different distributions for different parameter

values satisfying the null hypothesis also has poor power performance and, as in the extreme

case of Figure 6, no power at all.

In Monte Carlo experiments, a useful criterion of empirical relevance is the
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probability that the ML estimate blows-up.  In Table 1 we report the percentage of bad points

for selected positive values of $  when $  = 0 and n = 100.  The results show that the2 1

percentage of bad points is 0.007 for $ = 3 and increases as the absolute value of $  increases.2 2

Since bad points are uncommon in practice (the ML estimate typically does not blow-up in

applications), the results in Table 1 suggest to us that $ = 3 is a plausible empirically relevant2 

value when the null is true.

6.  CONCLUSION

It is well known for nonlinear models that the power function depends on the

value of the nuisance parameters.  What is often overlooked is that the size-corrected critical

value of a test may depend on the set of admissible values of the nuisance parameters.  In this

paper, we show that this dependence can affect the conclusions of  Monte Carlo experiments

designed to compare the size-corrected power of competing tests.  In particular, for a simple

logit model, where the nuisance parameter is the intercept, the expected Hessian and OP LM

tests have about the same size-corrected power when the range of admissible values for the

intercept is sufficiently narrow; as the range increases so does the superiority of the expected

Hessian LM test.

The OP LM test suffers from serious size distortion when using the

conventional asymptotic critical value. This has been observed in Monte Carlo experiments for

many tests based on the outer product information matrix. Large parameter asymptotics

permits us to obtain an analytical result on the size-distortion of the OP LM test. In fact, in a

general logit model with an intercept, the size-corrected critical value of the OP LM test is

closely related to the sample size, and it is many order of magnitude larger than the

conventional critical value. The main difference between conventional asymptotics and large

parameter asymptotics is that the latter is derived using the nuisance parameters and for a

fixed sample size.

 The arguments for and against a particular admissible set of nuisance

parameters are typically based on an appeal to empirical relevance. These arguments often

tend to rely implicitly on a prior distribution for the nuisance parameters. An example of this is

the argument that $ ,  = 3 is not empirically relevant because $ = 3 is “very unlikely” and2 max 2 
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produces rare events.  It suffices to say that a prior on the nuisance parameters is not

compatible with the classical analysis in this paper. But even with a prior, the results would

not change qualitatively if the prior has the whole set of admissible values as support.

It is worth stressing that the admissible set refers to the possible, not the likely,

values of the parameters. In this regard, it is instructive to consider the Challenger Space

Shuttle data (Presidential Commission on the Space Shuttle Challenger Accident (1986)).

This data includes the number of occurrences of distress (O-ring failures) and the launch

temperature of the 23 space shuttle flights before the explosion of the Challenger space

shuttle. Applying the logit model to this data, the estimated intercept is about 5. When the null

of no temperature effect is true, the probability of distress is essentially one. Since the

Challenger data is arguably one of the most analysed data sets in the last decade, the argument

that for this data set that $  = 5 is not empirically relevant is not credible. Of course, the2

alternative also matters. In the case of the space shuttle, the temperature effect may not be

zero.

For many models, there is no natural definition for the admissible set of values

for the nuisance parameters. Consequently, different experimenters may use different

definitions of the admissible set. As our results illustrate, different definitions can lead to

different conclusions about which test is best.  Hence, the conclusions of experimental power

studies may be more problematical than they appear. Our recommendation is to conduct a

power study using different admissible sets.  If different sets produce different results, then the

reader can draw his or her own conclusions.

APPENDIX

A. Proof of Proposition

Without loss of generality consider  y = y  = (0,1,1..,1)’.  In the reduced and(1)

renormalized sample space the probability of y is denoted Q(y)

  .

For "  > 0, r 6 4 implies a 6 0. Using L’Hospital’s rule, Q(y) 6 1/n.  A similar result can be2

obtained when "  is negative.2
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Next we calculate the value of the LM statistics at the sample points y  ,(i)

i=1,2,...,n. Without loss of generality again suppose y = y  = (0,1,1..,1)’. The constrained ML(1)

estimate is  or .  By substituting into (5), the score

vector is

  

The expected Hessian covariance matrix (3) is

  

The OP covariance matrix (4) can be written as

    where

  

Because the second element of the score vector is zero, only the (1,1) element of the

covariance matrix is used to calculate the value of the LM test statistic.  The other n-1 values

of the large parameter limiting distribution of the LM test can be obtained by replacing x  with1

x  for the corresponding sample y .  This completes the proof.i
(i)

B. Proof of Theorem

First the convergence in distribution is established. Let the discrete random

variables LM  and LM  have probability mass functions P  and P , respectively. ThenEX OP EX OP

  P (LM  = h) = P(y 0 A),EX EX
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where y is a sample point, A = { y : LM (y) = h } and P the probability mass function overEX

the sample space. The probability mass function over the sample space is given by

  

The limit distribution of P along the ray

  

degenerates to a single sample point y  given by*

   where  and I is the indicator function,

since 

  

by assumption 1. Then the limit cdf of the Hessian LM test, , and OP LM test, , are:

     with 

and

     with 

The cdf has to converge to the limiting cdf at every continuity point of the

limiting cdf (Amemiya 1985). The limiting cdf only has one discontinuity point namely at a .*

Using the limit of the probability mass function over the sample space, it is seen that for all

sample points except y  the probability converges to zero as r goes to infinity.*

Next, the limit values a  and b  are derived. For that purpose, the LM statistics* *

are approximated. The LM statistics depends on the parameter values $ only through F, the

logistic distribution function. Therefore, the convergence properties of the expected

information matrix will depend crucially on the behaviour of

  ,

and the convergence properties of the score vector and OP information matrix will depend on

 .
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The convergence rate of these terms as r 6 4 is defined as a real positive function of r, g(r),

which bounds a term away from 0 and 4 when multiplied to the term. Hence, g(r) must satisfy

the following condition

  

The convergence rate

  

is next shown to satisfy the condition.

First, consider . The limit of F("(r)'x ) isi

   

where I is the indicator function. Therefore, two cases arise depending on the sign of " 'x .2 i2

Consider the case where " 'x  > 0. Then implying that2 i2

  .

Now, verify that the expression for g(r) given in the Theorem indeed satisfies

the conditions for convergence. Rewrite (1-F("(r)'x ))g(r) asi

  

The first term in the denominator goes to zero as r goes to infinity. Since " 'x  > 0, the r part2 i2

of the second term in the denominator cancels. Hence,

 ,

which is a non-zero constant.

Consider the second case where " 'x  < 0. Then 2 i2

implying that

  .
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As above, verify that the expression for g(r) given in the Theorem indeed

satisfies the conditions for convergence. Rewrite F("(r)'x )g(r) asi

  

The first term in the denominator goes to zero as r goes to infinity. Since " 'x  < 0, the r part2 i2

of the second term in the denominator cancels. Hence,

 ,

which is a non-zero constant.

The convergence of (y -F("(r)'x )) can be found in a similar manner as fori i
*

. Again, consider two cases. First, suppose " 'x  > 0. Then y  = 1.2 i2 i
*

From above, 

  ,

and, hence, (y -F("(r)'x )) with y  = 1 has the same limit as  for " 'xi i i 2 i2
* *

> 0.  In the second case where " 'x  < 0, the limits are also the same apart from the sign.2 i2

When " 'x  < 0, y  = 0. From above,2 i2 i
*

  ,

and, hence, the last expression is the negative of the limit of  (y -F("(r)'x )) with y  = 0 fori i i
* *

" 'x  < 0.2 i2

Using the above result, the score and covariance matrices can be approximated.

For convenience, define

  ,     and   

and form two diagonal matrices W and W  with (i,i)’th element  and , respectively. Thend
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the score vector and covariance matrices can be approximated by

  ,

  and

 ,

where 4’ = (1,..,1) . Since W W  = WW, W  can be replaced with W when writing the LMn×n d d d

statistics.
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Percent of Bad Points
Intercept

$1

Percent

0.0 0.000
2.0 0.000
3.0 0.007
3.5 0.053
6.0 0.779

Table 1
Percent of Bad Points



FIGURE 1. ) Rejection probabilities for two-sided symmetric LM test with the 0.05
asymptotic critical value and $  equal to 0.2

FIGURE 2. ) Size-corrected critical values for 0.05 two-sided symmetric Hessian and
OP LM tests with $  equal to 0.2



FIGURE 3. ) Size-corrected powers of 0.05 two-sided symmetric LM tests with $2,MAX

equal to 2.

FIGURE 4. ) Size-corrected powers of 0.05 two-sided symmetric LM tests with $2,MAX

equal to 3.



FIGURE 5. ) Size-corrected powers of 0.05 two-sided symmetric LM tests with $2,MAX

equal to 3.

FIGURE 6. ) Size-corrected powers of 0.05 two-sided symmetric LM tests with $2,MAX

equal to 6.



Working Paper

1997-4 Alvaro Forteza: Multiple Equilibria in the Welfare State with Costly
Policies.

1997-5 Torben M. Andersen and Morten Stampe Christensen: Contract Re-
newal under Uncertainty.

1997-6 Jan Rose Sørensen: Do Trade Unions Actually Worsen Economic
Performance?

1997-7 Luca Fanelli: Estimating Multi-Equational LQAC Models with I(1)
Variables: a VAR Approach.

1997-8 Bo Sandemann Rasmussen: Long Run Effects of Employment and
Payroll Taxes in an Efficiency Wage Model.

1997-9 Bo Sandemann Rasmussen: International Tax Competition, Tax Co-
operation and Capital Controls.

1997-10 Toke S. Aidt: Political Internalization of Economic Externalities. The
Case of Environmental Policy in a Politico-Economic Model with
Lobby Groups.

1997-11 Torben M. Andersen and Bo Sandemann Rasmussen: Effort, Taxation
and Unemployment.

1997-12 Niels Haldrup: A Review of the Econometric Analysis of I(2) Vari-
ables.

1997-13 Martin Paldam: The Micro Efficiency of Danish Development Aid.

1997-14 Viggo Høst: Better Confidence Intervals for the Population Mean by
Using Trimmed Means and the Iterated Bootstrap?

1997-15 Gunnar Thorlund Jepsen and Peter Skott: On the Effects of Drug
Policy.

1997-16 Peter Skott: Growth and Stagnation in a Two-Sector Model: Kaldor’s
Mattioli Lectures.

1997-17 N.E. Savin and Allan H. Würtz: The Effect of Nuisance Parameters
on Size and Power; LM Tests in Logit Models.



CENTRE FOR NON-LINEAR MODELLING IN ECONOMICS
DEPARTMENT OF ECONOMICS - UNIVERSITY OF AARHUS - DK - 8000  AARHUS C - DENMARK 

  F  +45 89 42 11 33 - TELEFAX +45 86 13 63 34

Working papers, issued by the Centre for Non-linear Modelling in Economics:

1995-6 David Easley, Nicholas M. Kiefer, Maureen O’Hara and Joseph B. Paperman:
Liquidity, Information, and Infrequently Traded Stocks.

1995-13 Tom Engsted, Jesus Gonzalo and Niels Haldrup: Multicointegration and Present
Value Relations.

1996-1 Tom Engsted and Niels Haldrup: Estimating the LQAC Model with I(2)
Variables.

1996-2 Peter Boswijk, Philip Hans Franses and Niels Haldrup: Multiple Unit Roots in
Periodic Autoregression.

1996-3 Clive W.J. Granger and Niels Haldrup: Separation in Cointegrated Systems,
Long Memory Components and Common Stochastic Trends.

1996-4 Morten O. Ravn and Martin Sola: A Reconsideration of the Empirical Evidence
on the Asymmetric Effects of Money-Supply shocks: Positive vs. Negative or
Big vs. Small?

1996-13 Robert F. Engle and Svend Hylleberg: Common Seasonal Features: Global
Unemployment.

1996-14 Svend Hylleberg and Adrian R. Pagan: Seasonal Integration and the Evolving
Seasonals Model.

1997-1 Tom Engsted, Jesus Gonzalo and Niels Halrup: Testing for Multicointegration.

1997-7 Luca Fanelli: Estimating Multi-Equational LQAC Models with I(1) Variables:
a VAR Approach.

1997-12 Niels Haldrup: A Review of the Econometric Analysis of I(2) Variables. 

1997-14 Viggo Høst: Better Confidence Intervals for the Population Mean by Using
Trimmed Means and the Iterated Bootstrap?

1997-17 N.E. Savin and Allan H. Würtz: The Effect of Nuisance Parameters on Size and
Power; LM Tests in Logit Models.


