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Abstract

In the quarterly Danish sample based wage statistics firms within a given industry are

randomly selected with probabilities proportional to size. The hourly mean wage per

employee is registered within each selected firm. Then the population mean per employee

is estimated by the pps-estimator, i.e. the simple mean of the selected firm means per

employee. I raise the question: Is it possible to produce better confidence intervals for the

population mean by using trimmed means instead of the simple mean when the iterated

bootstrap is used? Monte Carlo experiments indicate that it is the case.

*  I wish to thank Torben Poulsen, Danish Employers’ Confederation, for help with data and Niels Lund



for able research assistance.
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Introduction

A few years ago the producer of Danish wage statistics, the Danish Employers’ Confeder-

ation, began a totally new production of wage statistics for Denmark. The new statistics

cover all kinds of employees and is based on new international standard nomenclatures

and new wage concepts. The wage statistics are covered by an annual census, with

detailed information, and a quarterly sample statistics containing more aggregate results.

The quarterly sample statistics cover 13 branches.

It is earlier shown, Høst, Lund and Poulsen (1994), that within a given branch the simple

mean from a pps-sample (probability proportional to size) is a very efficient estimator of

the population mean. This is, in fact, the estimator which the producer of the quarterly

sample based wage statistics decided to use and still uses. It is also shown, Høst (1997),

that the use of the robust estimator, the trimmed mean, without application of the iterated

bootstrap only gives possibility for minor improvement of the confidence intervals.

The purpose of this paper is to study if application of the iterated bootstrap to the trimmed

mean will improve the confidence intervals. In order to do this we consider three different

branches, Machinery & Electrical Equipment, Wholesale Trade and Construction, and

Monte Carlo experiments are performed on population data from the year 1995 for these

branches.

Sampling Design and Data

The firms are sampling units and within the firms all individual hourly wages are calcu-

lated and aggregated to the firm level by their sum Y . The firm sizes M  defined by thei i

number of employees are known a priori. Due to the fact that Y  and M  are stronglyi i

positively correlated , see Figure 1, an auxiliary variable (M ) estimation procedure of thei

population mean R = 3Y /3M  (the population ratio) is appropriate. Both the ratioi i i i

estimator and the pps-estimator are estimators using auxiliary information of M .i
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 Anyway the bias will be negliable, see Tables A2, B2 and C2 in the appendices.1

Figure 1. Scatterplots of firm sum (Y ) versus firm size (M )i i

As mentioned earlier the pps-estimator of R is a very good choice, and it was also found

that it performs better than the ratio estimator in these cases.

Due to the experience of relatively low quality of data from small firms and relative

higher cost of sampling the producer has decided to disregard firms with less than 5

employees. On the other hand it is decided to include all large firms in the sample.

Consequently, the population frame of firms (with M  $ 5) is divided into two stratai

according to firm size (i.e. the number of employees), see Table 1.

 

Table 1. Stratification of the Frame

Stratum Definition Method

S 5 # M  < a Sampling

C a # M Census
i

i

A possible bias in the estimation of R introduced by excluding firms with less than 5

employees is considered as a problem outside this paper.1



R''N
i'1RiMi/M

RT'
MSRS%MCRC

MS%MC

Pi'Mi/M i'1,2, ...,N
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The stratum limit a which defines the distinction between smaller and larger firms may

take different values between branches. The value of a is chosen such that the variance

of the pps-estimator is low and such that the variance is not very sensitive to the choice

of the limit, i.e. the stratum limit is chosen in an interval where the variance function of

the stratum limit a is low and flat. Then the stratum limit will be stable over time. In this

study we examine three branches based on data from 1995, see Table 2, which contains

the number of firms with at least 5 employees and the number of employees.

Table 2. The Three Branches 1995

Branch No. of firms No. of employees

Machinery and Electrical Equipment   402 51778

Wholesale Trade   413 21583

Construction 1726 51930

Let us consider a given branch within the sampling stratum S. Then let N be the number

of firms (we omit the index S). Let R  be hourly mean wage per employee in firm no. i andi

M  the number of employees of firm no. i. If M is the total number of employees in thei

stratum, then the hourly mean wage per employee in the stratum is given by

If we add subscripts S and C we can define the hourly mean wage per employee in the

frame T as

This  is the population characteristic which we want to estimate.

Estimators and Sampling Distributions

A pps-sample from stratum S is generated as follows: n firms are randomly selected with

replacement with probabilities P  proportional to firm size M , i.e.i i

The sample values (with subscript S omitted) are given by



r1, r2, ..., rn

r̄n''n
iri/n

a. r̄n is an unbiased estimator of R

b. r̄n is consistent

c. r̄n is asymptotically normal, r̄n vd N(R,Var(̄rn)), where

Var(̄rn)''N
i'1Pi(Ri&R)2/n

s2(̄rn)''n
i'1(ri& r̄n)

2/n(n&1)

r̄",$n '
1

n& ([n"]% [n$])
'n&[n$]

i'[n"]%1
r(i)

R",$'
1

1&"&$
'N&[N$]

i'[N"]%1
R(i)PR(i)'

. R ,
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Then the sample mean (we call it the pps-estimator)

has the following properties, Cochran (1977):

which can be estimated consistently by

Most branches have distributions with excess kurtosis, i.e. they have heavy tails.

Consequently there is room for considering robust estimators of the mean, R. In this

connection we introduce an asymmetric (", $)-trimmed mean r̄ , defined asn
",$

(1)

where ", $ are positive values such that " + $ < 1, ["] represents the greatest-integer

function, and r  # r  # ... # r  are the order statistics. If  " = $ = 0, then r̄  reduces to(1) (2) (n) n
",$

the mean r̄ , i.e. r̄ r̄ . The values " and $ are chosen such that the correspondingn n n
0,0 = 

population functional R  is as close as possible to the population mean R, that is",$

where R  # R  # ... # R  are the ordered population values and P , P , ..., P  are(1) (2) (N) R(1) R(2) R(N)

the corresponding selection probabilities. Recall that P  = M /M.i i

It follows that the special population functional R  is equal to the mean R:0,0
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The reason for using an asymmetric trimmed mean instead of the symmetric trimmed

mean  r̄  defined byn
"

is that the symmetric trimmed mean presupposes a symmetric population distribution.

This is, however, not the case for our data. On the contrary, the population distributions

are skew to the right.

The estimator r̄  is consistent and asymptotically normal distributed. Its variance isn
",$

estimated by means of the bootstrap method. This is explained in the next section.

After estimating R (or R ) by means of R (or R ) which is either r̄  or r̄  = r̄  weS S n n n
ˆ ˆ ",$ 0,0

estimate the frame mean, R , byT

The variance of R  is easily seen to beˆ
T

The purpose in the following of this paper is to compare the statistical performance of the

trimmed means r̄  with the simple mean r̄ . This is done by comparing the mean squaredn n
",$

errors, MSE of these estimators, and coverage probabilities of the corresponding confi-

dence intervals. We therefore estimate the variance r̄  for suitable values of  " and $.n
",$

This is done by means of the bootstrap technique, see next section. Finally we are looking

for values of the sum "+$ such that coverage probabilities are best, i.e. closest to the

confidence coefficient 95% and such that the mean squared error of the estimate is low

or minimum. 

Bootstrap Estimation of the Variance of  r̄  "",$$

Consider a pps-sample
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Then B bootstrap samples of size n,

are generated by sampling with replacement from r with equal probability 1/n, and the B

trimmed means r̄  are computed. For simplicity we replace r̄  by R  and r̄  by R  innb n n n n
",$* ",$ ",$* *ˆ ˆ

the following. The values R , ..., R  then constitute the conditional distribution of theˆ
n1 nB
* *ˆ

trimmed mean R . The bootstrap estimate of the variance of R , s (R ) is defined byˆ
n n boot n
* 2ˆ ˆ

(2)

where

Confidence Interval for R Based on Normal Approximation

The straightforward 95% confidence interval for R based on the normal distribution and

the trimmed mean R  is then given byˆ
n

(3)

where z  is the .975-quantile of the standard normal distribution..975

Another very simple and useful confidence interval which is based on Efron’s backward

bootstrap method is introduced in the next section.

Confidence Interval for R Based on Percentile Method

Consider the conditional distribution of R  as defined above. Then the 95 percent percen-ˆ
n
*
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tile (or backward) confidence interval for R is given by

(4)

where b  is the p-quantile of the conditional distribution of R , Efron and Tibshiraninp n
* *ˆ

(1993).

In order to produce better confidence intervals for R we introduce the procedure “first

Studentize, then bootstrap”, Hall (1988) and the so-called Prepivoting method, Beran

(1987). Both methods presuppose the use of the iterated bootstrap. The procedure is called

iterated, because bootstrap samples are created in two steps: Consider the pps-sample r

= (r , r , ... r ). In the first step we create B  bootstrap samples, r , b = 1, 2, ..., B . In the1 2 n 1 b 1
*

second step B  bootstrap samples r , r , ..., r  are created by resampling from each2 b1 b2 bB2
* * *

bootstrap sample r  from the first step. Consequently, the total number of bootstrapb
*

samples is B B .1 2

Confidence Interval for R Based on First Studentize, then Bootstrap

The Studentized statistic T of the trimmed mean R  based on bootstrap estimation of theˆ
n

variance of the estimator is given by

If T is approximately normally distributed, then the normal confidence interval for R

given in (3) can be used.

If, however, the normality assumption does not hold, then the distribution function of T

G (x) = P(T # x) is estimated by means of the bootstrap replican

where s (R ) is estimated in the second step of the iterated bootstrap procedure.boot n
* *ˆ
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That is

To summarize: For every given sample r B  values of R  are computed in the first step1 n
ˆ *

and B  values of s (R ) are computed in the second step.1 boot n
* *ˆ

Let c  be the p-quantile of the Studentized statistic T, i.e. c  = G (p) and let thenp np n
-1

corresponding bootstrap estimate be c  = G (p). Then the bootstrap confidence intervalnp n
* *-1

for R is given by

(5)

which is found by isolating R in the following probability statement

and replace c  by c .np np
*

Confidence Interval for R Based on the Prepivoting Method

The rationale behind Beran’s prepivoting technique is the well-known theorem based on

the probability integral transform, which states that if X is a continuous random variable

with a strictly increasing distribution function F, then Y = F(X) has a uniform distribution

on (0,1).

Let G  be the distribution function of the statistic /n(R -R) and let G  be its bootstrapn n n
ˆ *

approximation, i.e. the conditional distribution function of /n(R -R ), then the distribu-ˆ
n n
* ˆ

tion of G (/n(R -R)) is uniform on (0,1) and consequently G (/n(R -R )) is expected ton n n n n
ˆ * *ˆ ˆ

be close to the uniform distribution on (0,1) also. If H  denotes the known distributionn
*

of G (/n(R -R )), then the 95% confidence interval for R is found by solving the follow-n n n
* *ˆ ˆ

ing two equations
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Let d   be the p-quantile of the stochastic variable G (/n(R -R )), that is d   =  H (p),np n n n np n
* * * * *-1ˆ ˆ

then the confidence interval is given by

(6)

The distribution function H  is determined by using the iterated bootstrap in the followingn
*

way: For a given sample r, B  values of the statistic /n(R -R ) are computed in the first1 n n
ˆ * ˆ

step and B  values of /n(R -R ) are computed in the second step. Consider a given2 n n
ˆ ** *ˆ

bootstrap sample in the first step. Then the corresponding value of the distribution func-

tion of /n(R -R ) is estimated from the second step bootstrap samples by the formulaˆ
n n
* ˆ

where 1{q} is the indicator function. The B  values of G (/n(R -R )) then determines the1 n n n
* *ˆ ˆ

bootstrap estimate of H (/n(R - R )).n n n
* *ˆ ˆ

Results of Monte Carlo Experiments

The number of replications is 2000 and the number of bootstrap samples in the first step

B  is 350 and in the second step B  is 200. The values of B  and B  are kept relatively low1 2 1 2

in order to reduce computer time, but still the total number of samples including bootstrap

samples to be generated in one experiment is as big as 1.4q10 . The total sample size n8
T

for Machinery & Electrical Equipment is set to 100 and 125 which means that the

corresponding values of n  are 23 and 48, respectively. For the two other branches,S

WholesaleTrade and Construction, n  is chosen to be 75 and 100 such that n  is equal toT S

18 and 43 for Wholesale Trade, and 22 and 47 for Construction. The bootstrap sample

size is equal to the original sample size n . I have chosen the total trimmed percentage,S

TTP = ("+$)q100 to be 0, 10, 20 and 30. The reason for these rather few values of TTP

is again the overwhelming computer time which is necessary to perform the described

Monte Carlo experiments. The actual chosen values of TTP are also consistent with the
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results from earlier experiments, Høst (1997), which indicate that improvements of

confidence intervals are most likely for values of TTP around 10-20. Coverage probabil-

ities are based on the four confidence intervals described above with confidence coef-

ficients equal to 95 percent. The results for the three branches appear in the appendices,

see Tables A1, B1, C1 and C3. A few important population characteristics are described

in the appendices too, see Tables A2, B2 and C2, and Figures A1, B1 and C1.

Machinery & Electrical Equipment (Appendix A)

From Table A1 follows that coverage probabilities are improved when trimmed means are

used instead of the simple mean. It also follows that the method based on first Studentize,

then bootstrap gives the best results. It should be noted that the improvements in coverage

probability are paid by a slightly increase in variance and bias, and therefore also in mean

squared error, MSE.

Wholesale Trade (Appendix B)

For this branch, Table B1, we get almost similar results as for the former branch with  the

exception that for the relatively big sample size (n  = 100) and the biggest TTP (30)T

Prepivoting is even better than first Studentize, then bootstrap.

Construction (Appendix C)

For this branch it follows, Table C1, that both variance and bias increase with the TTP.

This may be explained by the extreme values of skewness and kurtosis for this branch.

But again we find coverage probability improves when trimmed means are used instead

of the simple mean and confidence intervals are based on the iterated bootstrap, i.e. either

first Studentize, then bootstrap or Prepivoting.

In order to reduce the considerable size of bias, I have also made Monte Carlo

experiments where the original "-values of the trimmed means, see (1) p. 5, are reduced

and the corresponding $-values incrased such that their sums are unchanged. These results

are shown in Table C3. The bias is now closer to zero and not especially increasing with

TTP and at the same time the variance is also reduced. I do not, however, claim that the

chosen values of " and $ are “optimal”, since bias is not totally eliminated, but it follows

that reduction of MSE is at least possible by adjusting the " and $-values. It now follows
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that first Studentize, then bootstrap gives the best confidence intervals for both sample

sizes and for all the selected TTP-values greater than zero. According to MSE a value of

TTP around 20 is best.

Conclusion

The three branches have different population distributions, and of most interest, different

coefficients of skewness and kurtosis. Consequently it is not surprising that we do not find

exactly the same solutions for three branches. But for all the studied branches it can be

concluded that better confidence intervals for the population mean can be found by using

trimmed means instead of the simple mean when the iterated bootstrap technique is used.
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APPENDIX A: MACHINERY & ELECTICAL EQUIPMENT 1995

Table A1. Results

Coverage Probability (Percentage)

TTP Variance Bias MSE Normal Percentile Student Prepivot

n  = 100 00 1.92 0.01 1.92 91.5 91.3 91.8 90.8T

n  = 23 10 2.05 0.42 2.22 92.4 92.3 94.3 92.3S

20 2.34 0.50 2.60 92.8 92.8 95.4 93.0
30 2.42 0.25 2.48 92.5 93.3 95.3 93.0

n  = 125 00 0.95 0.02 0.95 93.3 93.5 93.3 92.3T

n  = 48 10 1.04 0.26 1.11 94.3 94.0 95.3 94.0S

20 1.13 0.45 1.34 94.0 93.0 94.8 94.6
30 1.15 0.05 1.15 93.2 94.5 95.0 94.5

Table A2. Population Characteristics

Population M  < 5 5 # M  < 120 120 # M Frame Total
characteristic (deleted) (S) (C) (T) population

i i i

N 58 325 77 402 460
M 152 11425 40353 51778 51930
R 152.39 142.50 138.08 139.05 139.09

Figure A1.
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APPENDIX B: WHOLESALE TRADE 1995

Table B1. Results

Coverage Probability (Percentage)

TTP Variance Bias MSE Normal Percentile Student Prepivot

n  = 75 00 11.63 -0.12 11.64 91.7 91.3 93.7 90.5T

n  = 18 10 12.52  1.07 13.67 92.4 91.6 94.8 91.3S

20 12.40 -0.56 12.72 92.0 92.5 94.8 90.4
30 13.14  0.11 13.15 93.4 93.8 95.7 92.9

n  = 100 00  5.12  0.08  5.13 92.3 92.0 93.0 91.9T

n  = 43 10  5.29  0.29  5.37 93.8 93.5 94.8 93.7S

20  5.05 -0.24  5.11 92.5 93.0 93.3 93.6
30  5.09 -0.14  5.10 93.2 93.5 93.8 95.8

Table B2. Population Characteristics

Stratum M  < 5 5 # M  < 90 90 # M Frame Total
characteristic (deleted) (S) (C) (T) population

i i i

N 75 356 57 413 488
M 193 9506 12077 21583 21776
R 152.36 149.88 155.62 153.09 153.08

Figure B1.
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APPENDIX C: CONSTRUCTION 1995

Table C1. Results

Coverage Probability (Percentage)

TTP Variance Bias MSE Normal Percentile Student Prepivot

n  = 75 00  9.28  0.07  9.29 91.5 90.8 91.9 90.5T

n  = 22 10 10.00  0.95 10.90 92.2 91.6 94.6 92.3S

20 10.97  1.12 12.22 93.8 93.0 95.3 94.0
30 11.74  1.92 15.42 92.9 91.1 94.9 93.8

n  = 100 00  4.51 -0.03  4.51 92.1 91.6 92.0 92.2T

n  = 47 10  4.73  0.38  4.87 94.5 93.6 94.3 94.0S

20  4.94  1.16  6.27 93.8 92.4 93.5 94.8
30  5.07  1.59  7.59 91.8 89.9 91.5 94.8

Table C2. Population Characteristics

Population M  < 5 5 # M  < 120 120 # M Frame Total
characteristic (deleted) (S) (C) (T) population

i i i

N 1061 1673 53 1726 2787
M 2540 30149 21781 51930 54470
R 126.87 136.64 153.75 143.82 143.03

Figure C1.
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Table C3. Results

Coverage Probability (Percentage)

TTP Variance Bias MSE Normal Percentile Student Prepivot

n  = 75 00  9.47 0.04  9.47 92.7 92.3 93.3 91.3T

n  = 22 10 10.21 0.91 11.04 93.5 93.0 95.5 92.5S

20 10.36 0.24 10.42 94.4 94.3 95.8 93.2
30 10.69 0.50 10.94 94.0 94.5 95.7 94.0

n  = 100 00  4.49 0.02  4.49 94.2 94.0 93.9 93.8T

n  = 47 10  4.57 0.01  4.57 94.5 94.9 95.6 94.3S

20  4.51 0.15  4.53 95.0 95.3 95.6 95.0
30  4.71 0.65  5.13 95.2 94.7 95.5 96.3
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