
December 1995

Separation in Cointegrated Systems, Long Memory

Components and Common Stochastic Trends.

Clive W. J. GRANGER

Department of Economics, University of California, San Diego, La Jolla, CA-92093, USA.

Niels HALDRUP

Department of Economics and Centre for Non-linear Modelling in Economics, Aarhus

University, DK-8000 Aarhus C, Denmark.

ABSTRACT

The notion of separation in cointegrated systems helps identifying possible sub-system
structures that may reduce the complexity of larger systems by yielding a more
parsimonous representation of the time series. In this paper we demonstrate that although
the subsystem cointegration analysis in such systems can be conducted in case of both
completely and partially separated systems, the dual appraoch, i.e. calculation of the
common stochastic trends, may turn out to yield properties of the trends that differ
depending upon the type of separation under consideration. In particular, we demonstrate
how persistent-transitory decompositions and long- and short-memory factorisations of a
multivariate time series will be affected when considering different types of separation. Ge-
neralisations to non-linear error correction models are also discussed.

JEL-codes: C32, C40

Key-words: Separation, sub-system cointegration, persistent-transitory decomposition,
non-linear error correction.

The first author acknowledges support from NSF grant SBR 93-08295. The research was
undertaken while the second author was visiting the UCSD during fall, 1995.



1. Introduction and some motivation.

It is a frequent empirical finding in macroeconomics, that several cointegration relations

may exist amongst economic variables but in the particular way that the single relations

appear to have no variables in common. It is also sometimes found in such systems that

the error correction terms or other stationary variables from one set of variables may have

important explanatory power for variables in another set. For example Konishiet al.

(1993) considered three types of variables of US data: real, financial and interest rate

variables. They found that cointegration existed between variables in each subset but not

across the variables such that the different sectors did not share a common stochastic trend.

On the other hand, it was also found that the error correction terms of the interest rate

relation and the sector of financial aggregates had predictive power with respect to the real

variables of the system. As argued by Konishiet al. (1993) the situation sketched above

may extend the usual ’partial equilibrium’ cointegration set-up to a more ’general

equilibrium’ setting although in a limited sense.

The notion of separation initially developed by Konishi and Granger (1992) and

Konishi (1993) provides a useful way of describing formally the above possibility:

Consider two groups of I(1)-variables,X1t andX2t of dimensionp1 andp2, respectively.X1

and X2 are assumed to have no variables in common and in each sub-system there is

cointegration with the cointegration ranks beingr1<p1 andr2<p2. Hence it follows that the

dimensions of the associated common stochastic trends of each system arep1-r1 andp2-r2.

Denote the two sets of I(1) stochastic trendsW1t and W2t. It follows from Stock and

Watson (1988) that each sub-system can be given the representation

whereGi, i=1,2, arepi×(pi-ri) matrices and theX∼ it components are stationary I(0) relations.

(1.1)X1t G1W1t X̃1t

X2t G2W2t X̃2t

Separation of the two sub-systems means that the componentsW1t and W2t are not

cointegrated so that there is no long-run relationship between theX1t andX2t variables. As

a consequence the stacked time seriesXt=(X1t′, X2t′)′ will be of dimensionp=p1+p2 and

have cointegration rankr=r 1+r 2. The full system stochastic trend component will have the

dimensionp-r.
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Despite this separation of variables it may well occur that a relationship exists

betweenX1t andX2t in the short run. Essentially there are two ways this can happen:∆X2t

(∆X1t) may appear in the transitory I(0) componentX∼ 1t (X∼ 2t) and/or error correction terms

from one system may enter the second. Both possibilities will be of interest in this paper

and we will refer to these situations aspartial separation of types A and B, respectively.

If the error correction terms from each subsystem and the long-run impact of first

differences only have explanatory power in their own system, we denote thiscomplete

separation.

What will be of concern in this paper is to consider a decomposition of the vector

time seriesXt in persistent-transitory (P-T) components for separated cointegration models.

Identification of these components are generally non-unique since any I(1) process can be

contaminated with an I(0) process and still have the I(1) property. Various additional

requirements have been suggested in the literature to identify the components and more

recently Gonzalo and Granger (1995), using a factor model approach, suggest that the

temporary component be defined in terms of the error correction relations such that it will

have no explanatory power on the series in the long run. Moreover, the single factors can

be measured in terms of the observed variablesXt. One of the findings of the present paper

(which in some respects actually goes beyond the particular decomposition suggested by

Gonzalo and Granger), is that if the decompositionXt=P(Xt)+T(Xt) is considered where

P(Xt) and T(Xt) are the persistent (long-memory) and transitory (short-memory)

components, respectively, the persistent componentP1t associated with theX1-system, for

instance, can be expressed asP1t=P1(X1t,X2t) in case of both complete and partial

separation. Hence, in order to extractobservablepersistent components in a separated

system, it is not generally sufficient to consider each sub-system in separation, since all

system variables may be needed to define the components. For example, if one (wrongly)

treats a partially separated system as a complete one, we will demonstrate that both the

persistentand the transitory components of the other system may turn out to affect the

persistent component of the sub-system under consideration. Only when the entire system

is completely separated will it be sufficient to look at the submodels to find the long-

memory components and the common stochastic trends. This result is interesting because

it suggests that cointegration analysis, and especially common stochastic trends analysis

and P-T decompositions, may suffer from only looking at small partial models. In the

interpretation of common stochastic trends the idea of ’general equilibrium’ cointegration
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is therefore relevant since persistent and transitory components may interact across

systems.

The plan of the paper is the following. In section two we provide a formal

definition of the various separation concepts and we briefly review some of the literature

concerned with decomposition of a series into persistent and transitory components. The

following section focuses on the decomposition in the context of separated cointegrated

models. We demonstrate that if a partially separated system is treated as if it is complete,

both the long- and short-memory components of the neglected system may potentially

affect the persistent component of the system being analyzed. However, the problem can

be avoided by considering the full system but with the implication that the (true) long and

short memory factors may depend uponall the model variables of each sub-system. In

section 4 possible extension to non-linear error correction models are considered and we

demonstrate that fairly strong restrictions need to be imposed on the functional forms

across systems in order to ensure stability. In the final section we conclude.

2. Definition of the Concepts.

We shall here define formally the different concepts that will be used in the sequel.

2.1 Complete and partial separation in cointegrated systems.

The definition of separation provided below extends Konishi and Granger (1992) and

Konishi (1993).

DEFINITION. Consider the p-dimensional cointegrated vector time series Xt=(X1t′, X2t′)′
where X1t and X2t are of dimension p1 and p2 (p=p1+p2) and have no variables in common.

Then the associated error correction model reads

where r is the cointegration rank. If the matrix of cointegration parameters can be

(2.1)∆Xt γ
p×r r×p

α Xt 1 Γ
p×p
(L)∆Xt 1 t

factored as
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whereαii′ is pi×r i, i=1,2, the system is said to have separate cointegration. Conformably

(2.2)α













α11 0

0 α22

with this partitioning, consider also the matrices

Given separate cointegration; ifγ12=γ21=Γ12(1)=Γ21(1)=0 the system is said to be

(2.3)γ










γ 11 γ 12

γ 21 γ 22

and Γ(L)










Γ11(L) Γ12(L)

Γ21(L) Γ22(L)
.

completely separated. The case withγ12, γ21≠0 refers to partial separation of Type A, and

the case whereΓ12(1), Γ21≠0 will refer to partial separation of Type B.

Notice that in the definition of complete separation there is no feedback from the error

correction terms across each sub-system. Neither is there feedback, in the long run, from

the first differenced variables across the systems. However, we do not preclude the

possibility that the first differences of the variables in one system may have explanatory

power in the other system in the short run.

2.2. P-T decomposition of a vector time series.

It is frequently of interest to decompose a time series into components that may have

different characteristics, for instance a Persistent-Transitory (P-T) decomposition may be

relevant, see e.g. Beveridge and Nelson (1981) and Quah (1992). For a vector time series

similar decompositions may be considered, see e.g. Stock and Watson (1988), Kasa (1992)

Mellanderet al. (1992), Gonzalo and Granger (1995), and Proietti (1995). However, since

identification of such factors is generally non-unique, additional identifying requirements

are needed. Gonzalo and Granger have suggested that the persistent I(1) factors should 1)

be observable, i.e. such that the persistent components be expressed in terms of the original

variablesXt and 2), the shocks to the transitory part should have no impact on the

persistent components in the long run, see e.g. Hosoya (1991) and Granger and Lin (1995)

for a definition of causality at different frequencies. Essentially, this is why the two types
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of factors for this particular decomposition may be given the economic interpretation of

long-memory and short-memory components. The second condition stated above says that

if we let Xt=Pt+Tt be the factorization ofXt into a persistent and a transitory component,

then the components can be given the VAR representation

such thatTt does not cause∆Pt in the long run ifH12(1)=0.

(2.4)










H11(L) H12(L)

H21(L) H22(L)











∆Pt

Tt











Pt

Tt

Observability of the factors can be achieved by considering the expression

Xt=P(Xt)+T(Xt) (2.5)

whereP(Xt)=A1ft andT(Xt)=A2zt with ft=γ⊥′Xt andzt=α′Xt and whereA1=α⊥(γ⊥′α⊥)-1 and

A2=γ(α′γ)-1. The matricesα⊥ andγ⊥ are orthogonal complements ofα andγ, i.e. such that

γ⊥′γ=0 andα⊥′α=0. Throughout the symbol "⊥" will indicate the orthogonal complement

of the associated matrix. Notice that the orthogonal matrices in the present case are both

p×(p-r) and that the factorisation of the vector process exists whenα′γ is invertible. In

fact, this will always be the case when the cointegration rank isr. The persistent (or long-

memory) component is given byP(Xt) which can be seen to be expressed in terms of the

(p-r) common stochastic trendsft, and similarly the short-memory components can be

expressed by ther error correction terms in a particular way. Observe thatP(Xt) andT(Xt)

do not necessarily constitute an orthogonal factorisation; this will only happen in special

situations. The Gonzalo-Granger decomposition has similarities with other decompositions

in the literature. For instance theft term is identical to the common stochastic trends of

Stock and Watson (1988) which is a multivariate generalisation of the Beveridge-Nelson

decomposition of a univariate time series. In a recent paper Proietti (1995) compares the

various representations in a common set-up and he demonstrates that the Gonzalo-Granger

decomposition can be obtained from the Beveridge-Nelson decomposition by adding a

particular distributed lag polynomial of the first differences of the series to the long-

memory component. The reason why this can be done is, of course, that any stationary

component can be added to the stochastic trend (or I(1)) component without altering the

over all I(1) characteristics.
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Each term in the Gonzalo-Granger decomposition can easily be calculated in terms

of theXt series given that estimates ofα andγ are available. The factorisation into the two

different components is also seen to be in correspondance with the distinction between

partial separation of Type A and complete separation: It is the error correction terms which

contribute to the short memory component of the Gonzalo-Granger decomposition, and it

is also the impact of the error correction terms across sub-systems which distinguishes

between partial separation of Type A and complete separation.

3. P-T decompositions in separated cointegrating systems.

In this section we focus our attention on different types of separated models to see how

the long and short memory components will depend upon the particular type of separation.

3.1. Erroneously treating a partially separated system as completely separated.

In order to interpret the outcome of cointegration analysis it is frequently an advantage to

consider systems of low dimension. Assume that the econometrician correctly considers

a separated cointegrated system, but wrongly assumes that separation is complete rather

than partial. The difference is, naturally, that the feedback from other cointegrating

relations through the error correction terms and the first differenced variables from the

other system are ignored in the analysis. For simplicity, assume that the model considered

is (2.1)-(2.3) with γ21=0 and Γ21(L)=0 such that we have a recursive system. This

assumption is with no loss of generality but it will make the subsequent arguments clearer.

The econometrician is concerned with the error correction model associated with theX1

system, that is

Naturally, the error term captures whatever may have been left out from the analysis1, so

(3.1)∆X1t γ 11α11X1,t 1 Γ11(L)∆X1,t 1 u1t .

in this case we have thatu1t=γ12α22′X2,t-1+Γ12(L)∆X2,t-1+ε1t.

The X2 system reads

1 Naturally, it may generally occur that the errorsut are correlated with the regressors in (3.1). Hence, with
respect to estimation this should be reflected by choice of an appropriate estimation procedure. The topic of the
present paper is on representation and hence we will not consider estimation issues here.
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By treating (3.1) as an isolated system the common stochastic trends are given by

(3.2)∆X2t γ 22α22X2,t 1 Γ22(L)∆X2,t 1 2t .

premultiplication of the error correction model (3.1) by thep1×(p1-r1) orthogonal

complement ofγ11, i.e. γ11
⊥′ whereγ11

⊥′γ11=0. This yields

and similarly we have for system 2, that the stochastic trends are given by

(3.3)f1t γ ⊥
11 X1t γ ⊥

11
∞
j 0

u1,t j ,

Sincef1t is seen to depend upon variables from the second system through the errorsu1t,

(3.4)f2t γ ⊥
22 X2t γ ⊥

22
∞
j 0 2,t j .

it will be useful to write the trends in terms of the persistent and transitory components

of each system. In accordance with the Gonzalo-Granger decomposition we can define

(with an obvious notation)

and

(3.5)X1t P1t T1t A11γ
⊥
11́ X1t A21α11́ X1t

A11 f1t A21Z1t

where A11=α11
⊥(γ11

⊥′α11
⊥)-1, A21=γ11(α11′γ11)

-1, A12=α22
⊥(γ22

⊥′α22
⊥)-1 and A22=γ22(α22′γ22)

-1. From

(3.6)X2t P2t T2t A12γ
⊥
22́ X2t A22α22́ X2t

A12 f2t A22Z2t

(3.3) it now follows that

(3.7)∆P1t A11γ
⊥
11́ ∆X1t

A11γ
⊥
11́ Γ11(L)(∆P1,t 1 ∆T1,t 1) A11γ

⊥
11́ u1t .

As seen the transitory componentT1t will have no impact on∆P1t in the long run as it is

required in the identification of the single components suggested by Gonzalo and Granger.

However, consider the remainder termA11γ11
⊥′u1t. This can be written as

(3.8)A11γ
⊥
11́ u1t A11γ

⊥
11́ { γ 12Z2,t 1 Γ12(L)(∆P2,t 1 ∆T2,t 1 ) ∞

j 0 1,t j } .
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This result has the following interesting implications: If partial separation is of

Type B the long-memory component of system 1 will depend upon the long-memory

component of system 2. Only whenΓ12(1)=0 is this possibility excluded. Furthermore,

sinceγ12Z2,t-1=γ12α22′T2,t-1 the short memory component of system 2 will have an impact

on the long-memory component of system 1, unlessγ12=0. In other words, if there is

partial separation of Type A, the transitory component from the neglected system will

affect the persistent component of the system that is examined. The interaction between

the two subsystems is absent, however, if separation is complete.

3.1. Partial separation and P-T decomposition.

The proper way to proceed in order to avoid the caveat emphasized in the previous section,

is to treat the two sub-systems jointly. Again we assume for simplicity thatγ21=0 and let

Γ21(L)=0. Define the matrix

such thatγ⊥′γ=0, and henceγ11
⊥′γ12+γ12

*′γ22=0 and withγ11
⊥′ andγ22

⊥′ defined as before. The

(3.9)γ ⊥













γ ⊥
11 γ 12

0 γ ⊥
22

common stochastic trends of the full system can now be written as

In this case, by construction, the common stochastic trends and the Gonzalo-Granger

(3.10)
f1t γ ⊥

11 X1t γ 12 X2t γ ⊥
11 Γ11(L)X1,t 1 γ ⊥

11 Γ12(L)X2,t 1 γ ⊥
11

∞
j 0 1t γ ⊥

12
∞
j 0 2t

f2t γ ⊥
22 X2t γ ⊥

22 Γ22(L)X2,t 1 γ ⊥
22

∞
j 0 2t .

decomposition effectively separates the adjustment of error correction errors from the long-

memory component as intended. However, an interesting thing to observe is that generally

the decomposition for each sub-system will take the form

(3.11)X1t P1(X1t, X2t) T1(X1t, X2t)
X2t P2(X2t) T2(X2t).
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The variables of the full system are thus needed in both the long and the short memory

components of theX1-system. Notice thatP1t andP2t arenot cointegrated. SinceP1t is I(1)

plus I(0) in a particular way, it can also be seen thatP1t, which essentially is determined

by f1t in (3.10), will haveX1t as the only factor ifΓ12(1)=0. In general, however,X2t will

contribute to both the I(1) and the I(0) components.

An alternative way to proceed yielding further insights is to study the interaction

of the persistent and transitory components across sub-systems. The long-memory

components read

∆Pt=A1γ⊥′∆Xt. (3.12)

By straightforward matrix operations, using rules of partitioned inverse, it can be shown

that

By using the error-correction model (2.1)-(2.3) for∆X1t and∆X2t in the present set-up and

(3.13)∆P1t A11γ
⊥
11∆X1t A11γ 12A22α22∆X2t

∆P2t A12γ
⊥
22∆X2t .

using the fact thatγ11
⊥′γ12+γ12

*′γ22=0, it can be easily proved that the single components are

related in the following way:

This way of writing the autoregressive representation of the components

(3.14)

∆P1t A11γ
⊥
11 Γ11(L) (∆P1,t 1 ∆T1,t 1)

{ A11γ
⊥
11 Γ12(L) A11γ 12 A22α22Γ22(L)}( ∆P2,t 1 ∆T2,t 1)

A11γ
⊥
11 1t A11γ 12 A22α22 2t

∆P2t A12γ
⊥
22 Γ22(L)(∆P2,t 1 ∆T2,t 1) A12γ

⊥
22 2t .

demonstrates that in the long runT1t and T2t will not have any explanatory power with

respect to the long-memory components in either system. This is fully consistent with their

definition of course. However, the long-memory component of theX2-system will cause

the corresponding component of theX1-system, but without being cointegrated. Trivial

exceptions where∆P2t does not cause∆P1t in the long run exist, of course, for instance

whenΓ12(1)=Γ22(1)=0.

The analysis of the past two sections demonstrates the importance of considering
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whether error correction terms and other short run dynamics from other systems may have

an impact on the system of interest when cointegration is separate. Although it is not going

to affect the cointegration properties of the data, it clearly becomes of importance in

extracting and interpreting the common stochastic trends and the long and short memory

components of the multivariate system. In this sense it is of interest to consider the notion

of cointegration in a general (rather than a partial) equilibrium framework. After all, it can

be seen that examinations including common stochastic trends analysis should be done

with care due to the dependence of such trends with respect to the information set.

4. Extensions to non-linear error correction models.

Cointegrated models with non-linear error correction mechanisms have recently attracted

much attention in the literature, compare e.g. Granger and Swanson (1995), and Granger

and Teräsvirta (1993) and the references therein. The types of non-linearity entering such

systems need to be restricted, however, in order to ensure stability of the model. In this

section we demonstrate how the restrictions required in one system may or may not restrict

the other system when cointegration is separate.

Non-linear error correction models may take many different forms. Consider, for

example, a single system with the non-linear error correction mechanism entering as

follows:

whereZt=α′Xt. As usualXt is a p-vector time series and we letθ(β′Zt-1) be a (p-r) vector

(4.1)∆Xt γ θ(β Zt 1) Γ(L)∆Xt t ,

of non-linear functions of the lagged error correction terms; notice that sinceβ is r×1, β′Zt

is assumed to be a scalar variable. Here we want to emphasize the non-linear property and

assume for simplicity thatΓ(L)=0.

Multiplying (4.1) by α′ we obtain

which is a non-linear VAR(1) process. In defining

(4.2)∆Zt α γ θ(β Zt 1) α t.

(4.3)Zt h(β Zt 1) η t
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where

the admissable class of functions ensuring stability should satisfy the necessary and

(4.4)h(Z) Z α γ θ(β Z)

sufficient stability conditions, see Tweedie (1975), Lasota and Mackey (1989), and Granger

and Teräsvirta (1993),

||h(Z)||≤a||Z|| for ||Z||≥c and |a|<1. (4.5)

and

||h(Z)|| is finite for all finite Z. (4.6)

||.|| can be any norm, not necessarily the Euclidean norm2. It follows that for the case of

one dimension, the functions satisfying stability must be dominated by a linear function

with slope less than one, for instance, ifθ(Z) is one dimensional the function could be

logistic in Z or log(Z). The stability condition above applies to the vectorZ. If this is

stable, so are the single components, but it is not generally possible to provide conditions

on the stability of each element inθ(Z).

The restrictions above can be weakened in some cases meaning that only a subset

of the functions inθ(Z) need to be restricted, i.e. the functions for which the adjustments

lie in the space spanned byα⊥ we need no restrictions to be imposed to ensure stability.

Assume for simplicity that this space is empty such that each element ofθ(Z) should be

considered in derivation of the stability conditions.

Despite non-linearity in the adjustment and error correction terms, the common

stochastic trendsft, in the Stock-Watson and Gonzalo-Granger sense, turn out to behave

linearly since ft=γ⊥′Xt=γ⊥′∆-1εt in the present situation. In other words, the common

stochastic trends will haveno non-linear feature.

Assume now that cointegration is separate, using the terminology of section 2, and

that error correction is non-linear in the following way,

2 Strictly speaking, the above conditions also require that the non linear VAR model is of first order.
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using an obvious notation. In case of complete separation, which in the present set-up

(4.7)










∆X1t

∆X2t











γ 11 γ 12

0 γ 22













θ1(β 1α11X1t 1)

θ2(β 2α22X2t 1)











t

t

means thatγ12=0, the common stochastic trends (with no non-linear feature) are easily

calculated for each sub-system. This case is rather trivial. So is the situation where

Xt=(X1t′,X2t′)′ is treated jointly and separation is partial (γ12≠0). In this caseγ⊥′ effectively

kills both the non-linear error correction terms.

Consider instead the case where system 1 is treated as completely separated

although it is only partially separated. In this case the common stochastic trends of theX1-

system read

Hence, although the common stochastic trends of theX2-system are linear, the correspon-

(4.8)∆f1t γ ⊥
11 ∆X1t γ ⊥

11 γ 12θ2(β 2α22X2,t 1) γ ⊥
11 1t .

ding trends of theX1-system will generally have a non-linear feature.

What restrictions are needed onθ1(.) andθ2(.) in the partially separated system to

ensure stability ? We have that

So, the stability requirements in this case are not affected: As long as the stability

(4.9)∆Z1t α11γ 11θ1(β 1Z1,t 1) α11γ 12θ2(β 2Z2,t 1) α11 1t

∆Z2t α22γ 22θ2(β 2Z2,t 1) .

conditions of system 2 are satisfied, the stability conditions that are necessary for system

1 will be unaffected by system 2. Observe, however, that if we introduceγ21≠0 such that

α22′γ21θ1(Z1,t-1) will appear in the expression for∆Z2t in (4.9), the stability conditions for

the single systems cannot be calculated in isolation. The systems have to be treated jointly

in this case, i.e. by lettingZt=(Z1t′, Z2t′)′ and considering the system (4.2). The joint

stability requirements ofθ1(.) andθ2(.) are given by (4.5) and (4.6).

It is clearly a restriction implied by the particular non-linear model considered

above, that the functional forms of the error correction terms associated with theX2-

system, and entering in theX1-system, must be the same as those arising in theX2-system

with respect to the the same error correction terms. Many other model constructions could
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be considered. For instance, the model

could be analyzed. This class of model is probably more relevant in practice, but its

(4.10)










∆X1t

∆X2t













γ 11θ11(β 11Z1,t 1) γ 12θ12(β 12Z2,t 1)

γ 21θ21(β 21Z1,t 1) γ 22θ22(β 22Z2,t 1)











1t

2t

increased flexibility adds to the complexity of deriving common stochastic trends and P-T

decompositions. No results are presently available for this type of non-linear error

correction models, but is is certainly a class of dynamical models that will be of interest

for future research.

5. Conclusion.

Separation in cointegrated systems is a useful notion which helps to reduce the complexity

of large systems and eases their interpretation. Within a cointegrated VAR set-up, c.f.

Johansen (1988, 1991), both partially and completely separated models can be easily tested

by considering particular hypotheses on the cointegration vectors and the adjustment

coefficients, see Konishi and Granger (1992).

The possibility of partial separation, i.e. where error correction terms and stationary

variables from other systems may enter the model, is an important possibility to consider;

not only because it may improve the model for forecasting purposes , but also, as we have

demonstrated in this paper, because the implied short run dynamics actually may add to

our understanding of the stochastic trends driving the system as well as the complex

dynamical interaction that may exist across systems. It is therefore our suggestion for

empirical practice that the applied econometrician is aware of such important links rather

than just focusing on the long properties of the data in terms of cointegration.

Generalisations to non-linear models, and in particular, non-linear error correction

models, is still in its infancy, but potentially a rich class of dynamical systems can be

analyzed within this set-up. However, much more research needs to be done in order to

obtain results that are useful for the practitioner.
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