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1. Introduction.

Slow adjustment of macroeconomic variables in response to shocks is often explained as

a result of adjustment costs. In the literature the Linear Quadratic Adjustment Cost

(LQAC) model is a widely used specification upon which the dynamic adjustment in

labour input, money holdings, inventories, etc. is interpreted, see Sargent (1978) and

Kennan (1979) for two early applications. Recently a number of papers have investigated

how to estimate and test the LQAC model when time-series are integrated processes, see

e.g. Dolado et al. (1991), Gregory (1994), Gregory et al. (1993), Engsted and Haldrup

(1994, 1995), and Rossana (1995). In particular, Dolado et al. (1991) show how, in an

Euler-equation context, the structural parameters of the model can be estimated

consistently in a combination of cointegration regressions and instrumental variables

regressions.

A limitation of the analysis by Dolado et al. is that they only consider the case

with a single forcing, or exogenous, variable. The generalization to the more realistic case

with several forcing variables (possibly integrated of different orders) is not straightforward

within their framework.

In this paper we follow the route set forth by Dolado et al. and analyze in more

detail the LQAC model when the endogenous variable is an I(2) process. This case is

clearly empirically interesting. In e.g. the money demand literature the LQAC model is

often used to rationalize slow adjustment in agent’s nominal money holdings, see e.g.

Domowitz and Hakkio (1990), Cuthbertson (1988), Cuthbertson and Taylor (1987, 1990),

and Muscatelli (1988, 1989), and nominal money is frequently found to be integrated of

order two, see e.g. Johansen (1992b) and Haldrup (1994). However, in contrast to Dolado

et al. (1991) we focus our attention on the forward-looking error-correction formulation

of the model. Basically this has three major advantages. First, the analysis with more than

one forcing variable becomes relatively straightforward. In the case of money demand the

forcing variables would naturally be nominal prices, which possibly are I(2), and real

income and nominal interest rates, which are I(1). Second, instead of a two-step procedure

as suggested by Dolado et al., we opt for a one step procedure where the statistical

properties (in terms of consistency) of parameter estimates appear to be superior compared

to the two-step procedure. Thirdly, in addition to pure statistical testing, an informal
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evaluation of the fit of the model can be obtained along the lines suggested by Campbell

and Shiller (1987) and Engsted and Haldrup (1994, 1995). An important byproduct of our

approach is that if we are willing to prefix the discount-factor (which is often done in

empirical studies using the LQAC model), then not only long-run structural parameters,

but also the adjustment cost parameter, can be estimated super-consistently in a non-linear

cointegration regression.1 The cointegration properties of the data, as these are suggested

by the theory, can also be tested in an unrestricted model. However, the merit of the non-

linear cointegration regression is that it supplies a direct test of the model since the non-

linear restriction can be tested using a likelihood ratio test with a standard asymptotic χ2

distribution.

The plan of the paper is the following. In the next section an error-correction

formulation of the LQAC model with rational expectations is derived for the case with an

I(2) target variable, and a mixture of I(1) and I(2) forcing variables. In particular we

emphasize the non-linear restrictions that are implied by the model and the fact that first

differences of the I(2) variables need to be included in the cointegration relations. This

type of cointegrated models where differenced variables are needed to obtain stationarity

is frequently referred to as multi- or polynomial cointegration. Problems concerned with

estimation and testing are also discussed. In section 3 it is demonstrated how, given the

estimates of the structural parameters from the cointegration regression, the LQAC model

can be tested and evaluated both formally and informally using a VAR approach. In

section 4 the methods are applied to UK money demand data. The final section concludes.

2. Cointegration implications of the LQAC model with I(2) variables.

According to the LQAC model the economic agent chooses a sequence of the decision

variable, mt, in order to minimize the conditional expectation of the intertemporal cost

function

(1)Lt

∞

i 0

β i[θ(mt i mt i)
2 (mt i mt i 1)

2].

1 See also Engsted (1993), Clarida (1994), and Ogaki (1992) for other examples of dynamic rational expec-
tations models where the structural parameters can be estimated in cointegration regressions.
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β is the subjective discount rate; θ is the relative cost parameter; and mt
* denotes the

desired long-run level of mt. The first order condition to this minimization problem is the

Euler-equation

which can be reparameterized as

∆mt βEt∆mt 1 θ(mt mt )

where ut+1 is an I(0) rational expectations error.

(2)∆2mt 1 (β 1 1)∆mt

θ
β

(mt mt ) ut 1

When mt is I(2), equation (2) implies that, unless β=1 (i.e. the case of no

discounting), mt-mt
* will be I(1) and cointegrated with ∆mt with cointegration parameter

θ/(β-1). In the case with only one forcing variable, xt, determining mt
*, and assuming a

linear relationship, we have: mt
*=γxt+εt. This implies that the long-run parameter, γ, can

be estimated super-consistently in a cointegration regression between mt and xt. Thereafter,

the parameter θ/(β-1) can be estimated super-consistently in a second cointegration

regression between (mt-γxt) and ∆mt. This strategy was suggested by Dolado et al. (1991).

Note, however, that the second step of the procedure does not make it possible to

separately identify θ and β (unless we prefix β). Dolado et al. therefore suggest a third

step where, conditional on the second step estimate of θ/(β-1), β is estimated consistently

in a standard instrumental variables regression.

In the following we will derive an alternative estimation strategy based on the

forward-looking error-correction formulation of the model, where we allow for more than

a single forcing variable determining mt
*. We start by solving the Euler-equation using lag-

operator techniques (see e.g. Sargent, 1979), whereby we obtain the following forward-

looking representation

(3)mt λmt 1 (1 λ)(1 λβ )
∞

i 0

(λβ ) iEtmt i
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where λ is the stable root satisfying the characteristic equation βz2-(1+β+θ)z+1=0 implied

by the Euler-equation. Let xt be a vector of forcing variables, and partition this vector into

x1t containing all I(1) forcing variables, and x2t containing all I(2) forcing variables.

Assume that mt
* is a linear function of xt: mt

*=γ́ xt+εt=γ́ 1x1t+γ́ 2x2t+εt. The error term εt

reflects the idea that the econometrician’s information set generally will be smaller than

the economic agent’s information set. Discrepancies from the forward looking model may

thus be due to a large error component. Equation (3) can now be reparameterized into the

following equation:

This equation is a forward-looking error-correction model, defined for I(2) variables. The

(4)
∆2mt (λ 1)[mt 1 γ´xt 1

1
λ 1

∆mt 1

γ´2

1 λβ
∆x2,t 1]

(1 λ)
∞

i 0

(λβ ) iEt[γ´1∆x1,t i

γ´2

1 λβ
∆2x2,t i] µ t

double-difference of mt, which is I(0), is a function of current and expected future values

of the first-difference of the I(1) forcing variables, current and expected future values of

the double-difference of the I(2) forcing variables, and an error-correction term which

captures the gradual adjustment due to adjustment costs.

From the error-correction term an interesting statistical implication of the model

can be seen: First differences of the I(2) variables are needed in the cointegration

relationship between mt and xt in order to reduce the integration order from I(2) to I(0).

This is an example of multi- or polynomial cointegration, see e.g. Yoo (1986), Granger

and Lee (1989, 1990), Gregoir and Laroque (1994), Johansen (1992a, 1995), and Haldrup

and Salmon (1995). Thus, the cointegration relation, with a non-linear relationship between

the parameters, can be written as

(5)mt γ´1x1t γ´2x2t

1
λ 1

∆mt

γ´2

1 λβ
∆x2t et.
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Note, that from a cointegration point of view, estimation of this equation in unrestricted

form does not require that both ∆x2t and ∆mt be included as regressors, since mt and x2t are

assumed to be I(2) with (mt-γ́ 2x2t) being I(1). The differenced I(2) variables will thus

contribute with a stationary I(0) term when entering unrestrictedly. More specifically,

equation (5) can be rewritten as

demonstrating that it suffices to test whether the variables mt, x1t, x2t and ∆x2t constitute

(6)mt γ´1x1t γ´2x2t

1
λ 1

(∆mt γ´2∆x2t) γ´2(
1

1 λβ
1

λ 1
)∆x2t et

an I(0) cointegrating relation. Alternatively ∆mt may enter in place of ∆x2t implying

another parametric restriction to be satisfied:

This cointegration property is fully consistent with the cointegration implications dictated

(7)mt γ´1x1t γ´2x2t

1
1 λβ

(∆mt γ´2∆x2t) ( 1
λ 1

1
1 λβ

)∆mt et .

in (2). Existing procedures can be used to test for cointegration in this case2, see e.g. the

systems approach for I(2) systems of Johansen (1995) or the single equation approach of

Haldrup (1994).

Given that cointegration is found and β is prefixed at a reasonable economic

value3, it is possible to identify the unknown parameters γ1, γ2, and λ. This is similar to

the procedure suggested by Dolado et al. (1991) with the modification that all model

parameters are now estimated in one step (rather than in two) and with the implication that

the parameters of the I(2)-variables are estimated super-super consistently, i.e. of order

Op(n
-2), see Haldrup (1994). The two step procedure of Dolado et al. (1991) will only

result in Op(n
-1) consistency (super consistency) of all the unrestricted model parameters.

Although the above procedure is fully legitimate, it is obvious from (5), that there

2 Of course, it is perfectly valid to include both ∆x2t and ∆mt in an unrestricted regression. However, with
respect to cointegration testing, the problem about inclusion of these variables in an unrestricted regression, is
that even asymptotically, a Dickey-Fuller test of whether the regression residuals are I(1) will have a distribution
which depends upon nuisance parameters. This follows from the fact that implicitly there is an I(0) relation build
into the model.

3 It is common practice in much empirical rational expectations literature to preset the discount factor, see
also Gregory et al. (1993).
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exists more structure in the model that can be exploited in order to obtain more efficient

parameter estimates. When β is pre-fixed we demonstrate in the appendix that the non-

linear least squares (NLS) estimates of the model parameters γ1, γ2, and λ will also be of

orders Op(n
-1), Op(n

-2), and Op(n
-1), respectively, given, of course, that the model is fully

cointegrated4. Moreover, in this situation the model has an overidentifying restriction

which can be naturally tested5 by a conventional likelihood ratio test distributed as χ2(1).

However, this is not a complete test of the model since only restrictions associated with

the cointegration parameters are tested. In the next section we elaborate on a complete test

of the model and suggest a way of measuring the model fit.

3. VAR tests of the LQAC model.

Due to the rapid convergence of both the OLS and NLS estimates discussed in the

previous section, these are robust to stationary discrepancies from the underlying model.

For example, we can add a stationary shock term with arbitrary autocorrelation to the cost

function (1) and still, as long as mt and x2t are I(2) and x1t is I(1), the cointegration

relationship among the variables remains as in (5). However, if we want to carry out a

formal (and complete) statistical test of the LQAC model under rational expectations, this

test becomes crucially dependent on the presence and exact nature of the shock term (and

also on the error term εt in the long-run relationship for mt
*). In the literature such a

statistical test is often obtained by assuming particular processes for the shock and error

terms and then estimating a VAR model for the underlying variables, followed by the

calculation of a likelihood ratio test of the cross-equation restrictions implied by the LQAC

specification under rational expectations.

However, recently a number of researchers6 have argued that since typical inter-

temporal optimizing rational expectations models (like the LQAC model) are only crude

4 In the appendix we discuss some technical difficulties about testing for the null of no cointegration when
the model from the outset has been imposed the model restrictions.

5 Note that such a test needs to be based on a dynamic cointegration regression that permits lags of the
differenced I(1) series, and the twice differenced I(2) series in the regression to whiten the errors.

6 See e.g. Campbell and Shiller (1987), Durlauf and Hall (1988, 1989a,b, 1994), Durlauf and Macchini
(1993), and Watson (1993).
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approximations with no claim to describe all the characteristics of the actual data, we

should expect formal specification tests to reject the models, and if they do not, it is

probably due to low power of the test. This does not necessarily mean, however, that the

model is completely useless in describing important aspects of the data. What is needed

therefore, is a metric for measuring the accuracy of the model in approximating the data

even if the model is rejected by formal testing procedures.

In Engsted and Haldrup (1994) we propose such a metric for evaluating the LQAC

model when the underlying variables are I(1) processes. However, the approach extends

very easily to the case where some of the variables are I(2). The idea is to rewrite equation

(4) such that only observable current and lagged values occur on the left-hand side, and

only unobservable expected future values of the variables (apart from the error term) occur

on the right-hand side:

Denote the left-hand side of this equation the spread, St, and define Zt to be equal to

∆2mt (λ 1)[mt 1 γxt 1

1
λ 1

∆mt 1

γ´2

1 λβ
∆x2,t 1] (1 λ)[γ´1∆x1,t

γ´2

1 λβ
∆2x2,t]

(1 λ)
∞

i 1

(λβ ) iEt[γ´1∆x1,t i

γ´2

1 λβ
∆2x2,t i] µ t .

(8)

γ′1∆x1t+γ′2(1-λβ)-1∆2x2t. Then we can set up a VAR model for St and Zt

and we can test the restrictions that equation (8) imposes on the VAR parameters.











Zt

St









a(L) b(L)
c(L) d(L)











Zt 1

St 1











e1,t

e2,t

These restrictions depend on the nature of the error term in (8), which in turn is

a mixture of the error term εt in the long-run relation for mt
* and a possible shock term

in (1). As a benchmark model, consider the case where µt is zero for all t. Hence, in the

terminology of Hansen and Sargent (1991), we have an exact linear rational expectations

model. In this case St is the optimal predictor of the present discounted value of future Zt’s

which implies Granger-causality from St to Zt. Further, the cross-equation restrictions turn

out to be very simple: Define a limited information set Ht as consisting of current and

lagged values of Zt and St, and write the VAR model in first-order companion form as
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Xt=AXt-1+εt, where Xt=[Zt,...,Zt-p,St,...,St-p]′ and A is the companion matrix of VAR

parameters (see Engsted and Haldrup (1994) for details). Then, by projecting equation (8)

(with µt=0 ∀ t) onto Ht we obtain St=g’Xt=(1-λ)λβh’A(I-λβA)-1Xt, where g and h are

selection vectors that pick out St and Zt, respectively, from the VAR. From this expression

we obtain g’(I-λβA)=(1-λ)λβhA, which is the compact form of the cross-equation

restrictions. These restrictions can be tested by a likelihood ratio test, say.

Since a formal test of these restrictions is difficult to interprete economically, c.f.

the discussion above, one might alternatively compute an unrestricted VAR forecast of the

present discounted value of future Zt’s, and compare it with the actually observed values

of St. If the exact LQAC model is true these two variables should be equal to one another,

c.f. equation (8). The unrestricted VAR forecast (called the "theoretical spread" in the

terminology of Campbell and Shiller, 1987) is computed from the following formula:

By plotting St and St
* in a diagram we obtain a visual measure of the deviations from the

(9)St (1 λ)λβ h A(I λβ A) 1X t .

exact LQAC model. In other words, the degree of comovement of St and St
* measures in

an informal way the accuracy of the model in approximating the data.

4. An application to UK money demand.

In this section the methods presented in the previous sections will be applied to UK money

demand. The LQAC specification has been widely used in empirical money demand

studies using UK data, see e.g. Cuthbertson (1988), Cuthbertson and Taylor (1987, 1990),

Muscatelli (1988, 1989), and Engsted and Haldrup (1995). Cuthbertson and Taylor (1990)

and Engsted and Haldrup (1995) explicitly consider how to estimate and test the LQAC

model when the variables appearing in the cost function (1) are I(1) processes.7 However,

at least for the dataset analyzed in this paper, nominal money should rather be considered

an I(2) process, see Johansen (1992b) and Haldrup (1994). The dataset consists of

7 Cuthbertson and Taylor (1990) recognize that nominal money and prices probably are I(2) and consequently
specify the cost function in terms of real money, which is clearly I(1). However, as argued by Goodfriend
(1990), this has the unappealing implication that there are no costs of changing nominal money balances as long
as prices change by the same magnitude. Hence, in Engsted and Haldrup (1995) we also analyze the nominal
money specification, but under the assumption that nominal money is I(1).
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quarterly observations, spanning the period 1963:1 to 1989:2, for the following variables:

The log of nominal M1 (mt), the log of the Total Final Expenditure deflator (pt), the log

of real Total Final Expenditure (yt), and a 3-month learning adjusted interest rate (Rt), see

Hendry and Ericsson (1991) for the precise definitions of the variables. The analyses of

Johansen (1992b) and Haldrup (1994) established the most likely order of integration for

these variables: mt and pt are I(2), and yt and Rt are I(1). Hence, in the notation of section

2, x2t contains one variable, pt, while x1t contains yt and Rt.

In table 1 we report the results from estimating various cointegration regressions,

both with and without non-linear parameter restrictions imposed. The non-linear restrictions

are as dictated in (5). Some of the unrestricted parameter estimates can also be found in

Haldrup (1994) and the table is directly comparable with his table 2. Johansen (1992b)

finds a single cointegration vector to exist amongst the variables and the inclusion of the

differenced prices, in particular, may be needed in the cointegration relation. As seen in

table 1, there is some evidence of cointegration in an unrestricted regression with ∆mt as

regressor (regression a1). However, since we have strong priors for the absence of money

illusion in the long run, we choose to prefix the p-coefficient at unity. As seen from the

table, we are now only able to find cointegration if we also impose income homogeneity

(regression c1). Based on this specification we found that the likelihood ratio test of the

non-linear restriction implied by the LQAC model could be strongly rejected8. However,

despite of these findings, all constrained regressions have a negative sign to ∆mt and a

positive sign to ∆pt (which jointly produces a value of λ between 0 and 1). This is

consistent with the LQAC model. In the preferred model with price and income

homogeneity imposed, the restricted regression implies a value of λ equal to .797. This

implies a value of the relative cost parameter, θ, equal to .054. Hence this indicates that

agents put much more weight to costs associated with changing money balances than to

costs associated with deviations from the conjectured optimal level of money balances.

Before we proceed with the VAR tests, we would like to emphasize two useful

insights that can be derived from these results, and the general approach in section 2, in

8 The likelihood ratio test was based on regressions like (c3) and (c4) but extended by two lags of the
differenced variables to whiten the error term. Since the cointegration rank is found to be one for this data set,
see Johansen (1992b) and the fact that the conditioning variables cannot be rejected to be weakly exogenous with
respect to the long run parameters, see Haldrup(1994), a likelihood ratio test based on a single equation analysis
is valid. The test value was found to be LR=18.02 which is strongly significant in a χ2(1) distribution.
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TABLE 1. OLS and NLS estimation of cointegration parameters for UK money demand data, 1963:1-1989:2,

n=105 observations.

m p y R ∆m ∆p Implied

value of λ
ADF ZCI R2 DW

(a1) OLS 1 .77 1.38 -3.86 -2.39 - .942 -2.65 -4.94*
.99 .79

(a2) OLS 1 .68 1.57 -2.67 - -2.55 .954 -2.26 -2.35 .99 .29

(a3) OLS 1 .73 1.50 -3.39 -2.16 -1.49 - - - .99 .73

(a4) NLS 1 .78 1.28 -4.14 -1.82 1.41 .451 - - .99 .58

(b1) OLS 1 1 .56 -4.32 -2.97 - .948 -2.16 -2.49 .74 .73

(b2) OLS 1 1 .39 -4.02 - .90 .894 -2.22 -2.18 .68 .22

(b3) OLS 1 1 .56 -4.76 -3.12 1.64 - - - .75 .85

(b4) NLS 1 1 .54 -4.98 -2.78 2.69 .640 - - .75 .77

(c1) OLS 1 1 1 -4.84 -5.29 - .962 -3.40 -3.90*
.70 .17

(c2) OLS 1 1 1 -3.94 - -.18 .791 -2.05 -1.99 .47 .10

(c3) OLS 1 1 1 -5.27 -5.44 1.64 - - - .70 1.29

(c4) NLS 1 1 1 -5.96 -4.92 4.65 .797 - - .68 1.11

NOTE. The table displays single-equation estimates of cointegration parameters. The non-linear restrictions imposed follow from (5). A constant was included
in all regressions. ADF indicates the Dickey-Fuller cointegration test, see Engle and Granger (1987) and Haldrup (1994); in all regressions it was necessary
to include 1 lag of the differenced series. ZCI is the Phillips (1987) test with truncation chosen at four lags. In (b) and (c) regressions homogeneity and a
unit elasticity was imposed prior to estimation. Hence the I(1) analysis applies to these cases.
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relation to the existing empirical money demand literature. First, as we have shown, the

LQAC approach rationalizes the inclusion of first-differences of money (money growth)

and first-differences of prices (inflation) in long-run money demand equations.9 In

particular, when both money growth and inflation are included as regressors, the approach

predicts a negative coefficient to money growth, and a positive coefficient to inflation,

which may seem odd, unless we interpret it in light of the LQAC model.

Secondly, the approach also sheds some light on the puzzling feature of many money

demand studies, namely that it appears to be very difficult to decide whether money,

prices, income, and interest rates themselves constitute a fully cointegrated system, or

whether first-differences of money or prices are needed to obtain full cointegration. For

example, Johansen (1992b) is able to find, on the one hand, full cointegration between UK

money, prices, income, and interest rates, and, on the other hand, that changes in prices

are needed to obtain full cointegration. Of course, these two possibilities are mutually

exclusive. However, if we look at equation (5) we see that since β should be close to, but

strictly less than, one in reality, and γ2 is also close to one (otherwise there would be

money illusion), the coefficients to ∆mt and ∆pt are close to but strictly different from each

other. This implies that in a finite sample it will be extremely difficult to discriminate the

two cases from each other, such that ∆mt-[(1-λ)/(1-λß)]∆pt will look stationary although

it is not. Since near-stationarity of ∆mt-[(1-λ)/(1-λß)]∆pt implies near-stationarity of mt-γ′xt,

this provides an explanation for the puzzling results in Johansen (1992b).

Now let’s proceed with the VAR tests of the LQAC model. As described in section 3

the exact LQAC model under rational expectations implies three different kinds of

implications for a VAR model for Zt and St: Granger-causality from St to Zt; a particular

set of cross-equation restrictions; and that St
* (computed according to (9)) is equal to St.

Table 2 presents the results of examining these implications for VAR models with four

different lag-lengths. The results for λ=.797 are reported, i.e. the estimate found in

regression (c4).

As seen, for all the VAR models the exact version of the LQAC model under

rational expectations is very strongly rejected by the data: St does not significantly

Granger-cause Zt; the likelihood ratio tests imply strong rejection of the cross-equation

9In a similar context Engsted (1993) has shown that under hyperinflation, the rational expectations
version of the Cagan money demand model implies that real balances cointegrate with money growth.
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restrictions; and the degree of comovement of St and St
* is very low. In principle these

results can be reconciled with the basic LQAC specification by adding shock terms to the

model, but especially the comparison of St and St
* made above suggests that the variance

of such shocks must be quite large. In the terminology of Durlauf and Hall (1989, 1994)

a substantial "noise" component must be added to the model in order for it to match the

data. Overall, the results suggest a rather limited role for the LQAC model to explain the

dynamics of nominal UK money demand.

TABLE 2. VAR tests of the LQAC model. The tests are based on λ=.797, i.e. from

regression (c4) in Table 1.

VAR(1) VAR(2) VAR(3) VAR(4)

Test for Granger-cau-
sality from S to Z. .765 .934 .603 .678

Test of cross-equation
restrictions .000 .000 .000 .000

Correlation(S,S*) -.262 .621 .096 .346

Var(S*)/Var(S) .286 .063 .081 .073

NOTE: The numbers for Granger-causality tests and the test of the cross-equation restrictions are p-values.

5. Concluding remarks.

The LQAC model has a long tradition in empirical macroeconomics; especially the

question of how best to estimate the structural parameters of the model has been a major

concern in the literature. In this paper we have shown that when the target variable and

some of the forcing variables are I(2) processes, then, provided that we are willing to

prefix the discount factor, the long-run parameters and the adjustment cost parameter can

be estimated in a strongly consistent way from both a linear and a non-linear cointegrating

regression where first-differences of the I(2) variables are included in the regression. In

addition, these estimates are robust to stationary deviations from the underlying LQAC

model (measurement errors, cost shocks, etc). Further, based on a specific parameterization
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of the forward-looking error-correction formulation of the model, we have derived a

number of testable implications that the exact version of the model under rational

expectations imposes on a VAR model written in a particular way.

The LQAC model has been widely used to explain UK money demand, and UK

nominal money and prices are often found to be I(2) processes. Consequently, we applied

the methodology to a common and well-known money demand data set for the UK. The

cointegration analysis delivered economically plausible estimates of the adjustment cost

parameter. This is good news for the LQAC model. On the other hand, the likelihood ratio

test of the non-linear restriction and the tests based on the VAR set up strongly reject the

exact version of the LQAC specification under rational expectations. Although these results

can be reconciled with the basic LQAC specification (and with the cointegration results)

by adding a "noise" term to the model, the variance of this term must be substantial in

order for the model to match the data. Hence, overall we believe that the results in this

paper constitute quite strong evidence against the LQAC model as a valid framework for

analyzing UK nominal money demand.

6. Appendix.

In this appendix we derive some statistical results that are relevant for a regression model

like (A.1) below, which involves both I(1) and I(2) variables and with nonlinear

restrictions across the parameters. To be specific, consider the regression model

where the processes x1t, x2t and ut are driven as

(A.1)mt γ´1x1t γ´2x2t (λ 1) 1∆mt γ´2(1 λβ ) 1∆x2t ut

∆x1t 1t

∆2x2t 2t

∆ dut 3t.
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The εit-series, i=1,2,3, are all stationary I(0) error terms. The only requirements that are

needed are the weak conditions for the multivariate invariance principle to be satisfied, see

e.g. Park and Phillips (1989). When d=0 the variables in (A.1) are fully cointegrated

whereas if d=1 implies that only the two I(2) variables of the system, mt and x2t, will

cointegrate into an I(1) relation, but with no further cointegration occuring amongst the

variables. Throughout, we assume that the I(2) variables of the system are CI(2,1),

following Engle and Granger’s (1987) terminology.

PROPOSITION: Denote by ’^’ the nonlinear least squares (NLS) estimates of the parameters

in (A.1), and let superscript ’0’ indicate the true parameter values. Then, given that the

requirements of the multivariate invariance principle are satisfied we have:

PROOF. Since the partial sum of the error sequence εt=(ε1t, ε2t, ε3t)′ is assumed to satisfy

For d 0, (full cointegration): For d 1 (no cointegration):

n(γ̂ 1 γ 0
1) Op(1) (γ̂ 1 γ 0

1) Op(1)

n 2(γ̂ 2 γ 0
2) Op(1) n(γ̂ 2 γ 0

2) Op(1)

n(λ̂ λ0) Op(1). (λ̂ λ0) Op(1).

the multivariate invariance principle it follows that

B n(r) n 1/2 [nr]

1 t ⇒ B(r)≡(B1(r), B2(r), B3(r))´ r∈ [0,1]

where [.] indicates the integer value of its argument and all the Bi(r)´s are Brownian

Motion processes defined on the unit interval. For our asymptotic results we need not

specify how these are correlated for our present purpose. For instance the above results

imply that n-1/2x1t⇒ B1(r) and n-1/2x1t⇒ 0
rB1(s)ds≡B

_
1(r).

Since the model is linear in the variables but nonlinear in the parameters we prefer

to write it as

mt xt(α) ut, with α (γ´1,γ´2,λ)
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The gradient of xt(α) is

and associated with this vector, define Dn=diag{n1/2, n3/2, n1/2}. It follows that

X t(α)
∂xt(α)

∂α
(x1t, x2t (1 λβ ) 1∆x2t, (λ 1) 2∆mt γ´2β(1 λβ ) 2∆x2t)´.

Since the gradient vector has components that are I(1), I(2), and I(1), respectively, it can

D 1
n X t(α) ⇒ (B1(r), B2(r), γ´2(λ 1) 2B2(r) γ´2β(1 λβ ) 2B2(r))´.

be deduced from Park and Phillips (1989) and Haldrup (1994) that

and

(A.2)n 1D 1
n

n

1
X t(α)X t(α)´D 1

n Op(1)

An intermediate result that we also shall need is that for d=0

(A.3)n 1/2 dD 1
n

n

1
X t(α)ut Op(1).

while for d=1 the same expression becomes Op(1). To see that this is correct, notice that

(A.4)n 1D 1
n

n

1
ut

∂X t(α)

∂α´
D 1

n op(1)

the Hessian of xt(α),

has components that are of maximal order Op(n
1/2). (A.4) then follows trivially from the

∂X t(α)

∂α´

∂2xt(α)

∂α∂α ´

Lemmas of Park and Phillips (1989) and Haldrup (1994).

NLS seeks to minimize the sum of squares function 1
n(yt-xt(α))2, so in optimum

n

1
(yt xt(α̂))X t(α̂) 0.
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Expand this in a short Taylor series about α0, the vector of true parameter values, hence

giving

α* is determined as a convex combination of α̂ and α0 which naturally can be different for

(A.5)0 n

1
utX t(α0) (α̂ α0)´

n

1
[ X t(α)X t(α)´ (yt xt(α ))

∂X t(α )

∂α´
].

each row of the equation as dictated by Taylors Theorem. Since the contents of the

bracketed term is the contribution to the sum of squares function of observation t, the last

term i (A.5) will be a positive definite matrix for α* close to α0. In the limit this is

naturally the case when α̂ is a consistent estimator since α* is defined as a convex

combination of α0 and α̂ . Hence it follows for n → ∞ that

By using (A.2)-(A.4) we therefore obtain that

(α̂ α0)´ [ n

1
X t(α0)X t(α0)´

n

1

∂X t(α0)

∂α´
ut]

1[ n

1
X t´(α0)ut]

This demonstrates that the asymptotic orders displayed in the propostion are valid. Observe

n 1/2 dDn(α̂ α0)´

(n 1D 1
n

n

1
[X t(α0)X t(α0)´

n

1

∂X t(α0)

∂α´
ut]D

1
n ) 1 (n 1/2 dD 1

n
n

1
X t´(α0)ut] Op(1).

however, that for d=1, the non-cointegration case, λ and γ1 are actually estimated

inconsistently at the rate Op(1). This is not surprising since the same result appears in

linear spurious regression models when the regressors are I(1). However, the finding is

not in association with the prior assumption that α̂ is consistent, hence we have provided

a counterproof of the assumption.

Some problems implied by testing the null of no cointegration when the model is

estimated with the parameter restrictions imposed.

One way to test for the null of no cointegration with a non-linear parameter restriction

imposed on the model, is to consider a regression model with d=1 under the null

hypothesis (using the notation of the previous section) and calculating the NLS residuals
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Testing for their order of integration can then by conducted using e.g. a standard residual

ût yt xt(α̂).

based cointegration Dickey-Fuller test. This procedure is a simple modification of the

Engle-Granger (1987) two-step procedure. The only difference here is that a nonlinear

restriction is imposed in the estimation at the first step of the procedure. However, in so

doing the implied limiting distributions will be rather different from those applying to the

standard regression model which is linear in the parameters. We are not going to derive

the actual distribution of the Dickey-Fuller test statistic from our present set up, but it will

be instructive to see how the NLS regression residuals will be constructed and to see how

these behave in the limit. Ultimately this is what we need to know in order to see how the

Dickey-Fuller cointegration test statistic will behave asymptotically.

Expand the NLS residuals around α=α0 as before in a short Taylor series

expansion. This yields

where again α** is a convex combination of α̂ and α0 in order to satisfy the relation

ût ut X t´(α )(α̂ α0)

equality. Notice that for d=1

and hence the scaled residuals will tend weakly to a Brownian motion process Q(r). Notice

n 1/2ût n 1/2ut (X t´(α )D 1
n )(n 1/2Dn(α̂ α0) ⇒ Q(r)

though, that this Brownian motion will itself be made up of the Brownian motion

processes B1(r), B2(r) and B3(r) in a complicated fashion that reflects the particular type

of restrictions that are imposed on the model. The distribution of the Dickey-Fuller test for

the null of no cointegration will obviously depend upon Q(r) and the way it is constructed.

Numerical simulation of the critical values for this case can be conducted in

principle. However, the restrictions to be imposed on the regression model are rather

specific for this particular problem. Furthermore, difficulties are likely to arise due to the

fact that an optimizing algorithm in each stage of replication will be needed in order to

simulate the null distribution. A further problem is caused by the fact that some parameters

will be inconsistently estimated under the null hypothesis (c.f. the previous section). In
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fact, this problem was also found to be of practical relevance.
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