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1 Introduction

The Great Recession and the recent COVID-19 pandemic have gone hand-in-hand with

spectacular spikes in virtually all measures of US uncertainty (Bloom (2014), Barrero and

Bloom (2020)). Following the seminal papers by Bloom (2009) and Fernández-Villaverde

et al. (2011), numerous studies have investigated the importance of uncertainty shocks for

the business cycle. This paper makes three contributions to this literature. First, using

a nonlinear vector autoregressive (VAR) with a non-recursive identification strategy, we

show that an equal-sized uncertainty shock generates a larger contraction in real activ-

ity when growth is low (as in recessions) than when growth is high (as in expansions).

Second, we demonstrate that a dynamic stochastic general equilibrium (DSGE) model

approximated to third order around its risky steady state is able to capture such state-

dependent responses to an uncertainty shock. In contrast, any state-dependent effects of

this shock are absent when using the deterministic steady state for the third-order ap-

proximation, as commonly done in the literature. Third, relying on this methodological

contribution, we use an estimated New Keynesian model to examine the economic mech-

anisms behind our new VAR evidence. The results reveal that the traditional aggregate

supply (AS) relation implies an upward nominal pricing bias for firms, as emphasized in

Fernández-Villaverde et al. (2015), but that this bias is state-dependent and essential to

understand the asymmetric responses to an uncertainty shock. As a result, our analysis

delivers an empirically credible micro-founded model that can be used to study the role

of monetary policy for addressing the state-dependent effects of uncertainty shocks across

the business cycle.

Let us elaborate on our contributions. First, we estimate a nonlinear VAR using

quarterly US data to assess whether an uncertainty shock has real effects that depend

on the stance of the business cycle. To allow for potentially state-dependent effects to a

shock, we extend the standard VAR by adding quadratic terms that involve the growth

rate of real GDP and a proxy for financial uncertainty, which are both endogenous in

the VAR. Uncertainty shocks are identified using a non-recursive strategy that combines

event, correlation, and sign restrictions following the recent work of Antolín-Díaz and

Rubio-Ramírez (2018) and Ludvigson et al. (2019). Our main empirical result is that

an uncertainty shock of the same size generates a larger response of real activity during

recessions than in expansions. This finding is in line with previous contributions on the

nonlinear effects of uncertainty shocks (see, for instance, Caggiano et al. (2014), Alessan-

dri and Mumtaz (2019), Cacciatore and Ravenna (2020)). Importantly, our empirical

finding is based on a non-recursive identification strategy, and is therefore not subject

to the critique in Ludvigson et al. (2019) of the standard recursive identification scheme
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often used to identify exogenous variations in uncertainty.

Our second contribution is methodological and relates to the ability of nonlinear

DSGE models to generate state-dependent effects of uncertainty shocks. These models

are widely used in the literature to study the economic mechanisms behind the real

effects of uncertainty shocks when solved by a third-order approximation around the

deterministic steady state, as in Fernández-Villaverde et al. (2011), Born and Pfeifer

(2014), Fernández-Villaverde et al. (2015), and Basu and Bundick (2017), among many

others. This is a fruitful way to proceed to understand the effects of uncertainty shocks

on average. However, it does not allow the researcher to investigate the potentially state-

dependent effects of uncertainty shocks, because only the level of a given variable and

terms that are linear in the states are risk-corrected in this approximation (Cacciatore

and Ravenna (2020)). One way to address this shortcoming is to apply a fourth-order

approximation around the deterministic steady state, because it also corrects terms that

are quadratic in the states and hence allows for state-dependent effects of uncertainty

shocks, as exploited in Cacciatore and Ravenna (2020) and Diercks et al. (2020). But

going beyond a third-order approximation substantially increases the execution time and

the memory requirement when solving DSGE models, which may limit the applicability of

this solution when the desire is to formally estimate these models. We therefore propose

a computationally less demanding alternative by simply moving the approximation point

for the third-order approximation to the risky steady state.1 This long-term equilibrium

point is characterized by allowing agents to respond to uncertainty, whereas any effects

of uncertainty is absent in the deterministic steady state. The appealing feature of this

modification is that all linear and nonlinear terms in the approximation are adjusted for

risk, enabling us to capture potentially different effects of uncertainty shocks in expansions

and recessions. To ensure stability, we also provide a pruned version of this approximation

and its closed-form solution for unconditional first and second moments as well as impulse

response functions by using the results in Andreasen et al. (2018). Hence, our contribution

makes it feasible to estimate nonlinear DSGE models with state-dependent effects of

uncertainty shocks using techniques that are commonly applied in the literature.

Building on this methodological contribution, in the third part of the paper we work

with a version of the New Keynesian model proposed by Basu and Bundick (2017) and

refined in Basu and Bundick (2018) to understand why risk matters more in recessions

than in expansions. Key features of this model are recursive preferences as in Epstein and

Zin (1989), an uncertainty shock in the disturbance to the household’s utility function,

and nominal price stickiness as in Rotemberg (1982). We extend the model by consump-

tion habits, the flexible formulation of recursive preferences in Andreasen and Jørgensen

1Solutions around the risky steady state are discussed in Coeurdacier et al. (2011) for a first-order
approximation and in de Groot (2013) for approximations up to second order. However, the methods
adopted in these papers to compute approximations around the risky steady state differ from the approach
applied in the present paper.
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(2020), and cost-push shocks. This model is then estimated by matching stylized un-

conditional moments jointly with our nonlinear VAR impulse response functions to an

uncertainty shock in both recessions and expansions. The estimation results show that

this New Keynesian model goes a long way in reproducing the different responses to un-

certainty shocks in expansions and recessions. Crucially, these differences in the impulse

response functions arise from different initial conditions as captured by different values

of the states, which through the model’s endogenous propagation mechanisms make un-

certainty shocks more severe in recessions than in expansions. In other words, we do not

rely on any form of occasionally binding constraints as in Cacciatore and Ravenna (2020)

or an unanticipated switch in the structural parameters attached to different subsamples

to generate asymmetric responses to uncertainty shocks. A further investigation of the

model reveals that these asymmetries are primarily generated by the nonlinear terms in

the aggregate supply (or Phillips) curve that lead firms to set higher nominal prices than

what would be optimal without uncertainty. Hence, our results show that in response

to an uncertainty shock firms bias their prices upward relatively more in recessions than

in expansions, and therefore display a state-contingent upward nominal pricing bias. To

understand this effect, recall that firms can reset their prices in every period with sticky

prices as in Rotemberg (1982) but they face costs when doing so. In this setting, the

conditional volatility of inflation affects the current price, because it is optimal for firms

to set higher prices after an uncertainty shock to avoid large expensive future increases in

prices. That is, firms simply smooth out their pricing bias. Two effects help to make this

pricing bias stronger in recessions than expansions. First, inflation volatility is higher in

recessions than in expansions. Second, firms discount future profits by the consumption-

based stochastic discount factor, which has a higher level in recessions than in expansions

due to lower consumption and higher marginal utility when growth is low. This implies

that firms assign more weight to future profits in recessions, which also help to increase

their pricing bias. We finally show that this explanation of a state-contingent upward

nominal pricing bias is consistent with evidence for firms’price markup, which increases

by more in recessions than in expansions following an uncertainty shock.

The rest of this paper is organized as follows. Section 2 provides VAR evidence on

the effects of uncertainty shocks, while Section 3 presents an otherwise standard New

Keynesian model with recursive preferences. The proposed model solution is described

in Section 4, and we discuss our empirical findings for the New Keynesian model in

Section 5. Section 6 investigates the key mechanism behind the state-dependent effects

of uncertainty shocks. Concluding comments are provided in Section 7.
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2 VAR Evidence

This section presents our reduced-form evidence for state-dependent effects of an un-

certainty shock. We introduce a nonlinear VAR in Section 2.1, discuss identification in

Section 2.2, and present the impulse responses in Section 2.3. Various robustness checks

are discussed in Section 2.4, while Section 2.5 presents a simulation study that validates

the applied estimation method.

2.1 An Interacted VAR

We consider the vector of macro variablesYt = [log V XOt, logGDPt, logCt, log It, logHt,

logPt, Rt]
′
of dimension n × 1, where V XOt is the implied volatility index in the stock

market (the S&P 100), GDPt is output, Ct is consumption, It is investment, Ht is hours

worked, Pt is the price level, and Rt is the policy rate.2 The vector Yt evolves as specified

by the following interacted VAR (IVAR)

Yt = α+
L∑
j=1

AjYt−j +
L∑
j=1

cj log V XOt−j ×∆ logGDPt−j + ηt, (1)

where α and cj have dimension n× 1, Aj has dimension n× n, and the n× 1 vector of

residuals ηt ∼ IID (0,Ω). Unlike linear VARs, our IVAR includes the quadratic terms

log V XOt−j×∆ logGDPt−j to capture potentially state-contingent effects of higher uncer-

tainty for various levels of the growth rate in GDP, i.e.,∆ logGDPt ≡ log(GDPt/GDPt−1).

We estimate this IVAR with four lags by OLS using quarterly US data from 1962Q3 to

2017Q4.3 Given that the VXO is unavailable before 1986, we follow Bloom (2009) and

combine the VXO by the monthly volatility of daily returns in the S&P 500 before 1986.

Our sample includes the zero lower bound for the monetary policy rate from 2008Q4

to 2015Q4. Hence, we replace the federal funds rate in this period by the shadow rate

of Wu and Xia (2016) to account for unconventional monetary policy. The estimation

results clearly favor our IVAR specification against a linear VAR, as we reject the joint

null hypothesis of cj = 0 for j = {1, 2, 3, 4} with a likelihood ratio test statistics of 62.0,

implying a p-value of 0.0002 in the χ2
28-distribution. Table 1 reports stylized uncondi-

tional moments for the growth rates of the four variables in the VAR and IVAR that are

related to economic activity. Both models match the empirical means and standard de-

viations, and hence show no sign of overfitting. We also see that the IVAR is marginally

2The definition of these variables follows the one used by Basu and Bundick (2017) for their VAR.
3Alternatives to the IVAR include the nonlinear factor model in Guerron-Quintana et al. (2021) and

the quadratic autoregression in Aruoba et al. (2017) that both are motivated from a second-order pruned
perturbation approximation. We prefer the IVAR because it is computationally easier to estimate than
the factor model in Guerron-Quintana et al. (2021), which requires the use of a particle filter. To our
knowledge, the quadratic autoregression in Aruoba et al. (2017) is currently only developed for univariate
time series.
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better at generating negative skewness and excess kurtosis than the linear VAR. Thus,

the presence of nonlinear terms allow the IVAR to better capture higher order moments

of the empirical distribution than implied by the linear VAR.

Table 1: VARs: Unconditional Moments for Economic Activity
This table reports unconditional moments for the growth rate in output, consumption, investment, and

hours worked using US data from 1962Q3 to 2017Q4. The corresponding moments in the linear VAR

and the IVAR are obtained from 500 simulated time series of the same lenght as in the empirical sample.

Data Linear VAR IVAR

Mean Std. Skew. Kurt. Mean Std. Skew. Kurt. Mean Std. Skew. Kurt.

Growth rates:

Output 0.39 0.81 -0.36 4.75 0.38 0.81 -0.004 3.23 0.38 0.81 -0.02 3.30

Consumption 0.40 0.46 -0.27 4.01 0.39 0.45 -0.09 3.20 0.39 0.45 -0.13 3.20

Investment 0.69 2.06 -1.15 6.70 0.63 2.07 -0.13 3.52 0.64 2.00 -0.26 3.73

Hours worked 0.04 0.66 -0.92 5.18 0.04 0.66 -0.02 3.10 0.04 0.63 -0.26 3.50

2.2 Uncertainty Shocks: Identification Strategy

Following Bloom (2009), many contributions in the literature have identified uncertainty

shocks by imposing zero-restrictions either on the impact of macroeconomic shocks on

uncertainty or on the impact of uncertainty shocks on the business cycle. However,

this recursive identification strategy has recently been questioned by Ludvigson et al.

(2019), who find a non-zero contemporaneous correlation between uncertainty and the

business cycle. We therefore follow Ludvigson et al. (2019) and use a combination of

event restrictions and constraints from external variables, which we supplement with

sign restrictions to obtain a robust non-recursive identification of uncertainty shocks. To

present this alternative, let et denote the structural shocks with zero mean and covariance

matrix In. The mapping between the reduced-form residuals ηt and the structural shocks

et in the IVAR is ηt = Bet, whereB = PQ is of dimension n×n, P is a lower-triangular

Cholesky factor of Ω with non-negative diagonal elements, and Q is any orthonormal

rotation matrix (i.e., QQ′ = In) that implies positive diagonal elements of B. Let B
denote the set that contains the infinitely many solutions of B that satisfy the n(n+1)/2

restrictions implied by the covariance matrix, i.e., Ω = BB′. Given that not all of these

mathematically acceptable solutions are interesting from an economic standpoint, we

impose restrictions to get the subset of economically admissible solutions.4

4The set B is constructed using the algorithm in Rubio-Ramírez et al. (2010). First, we initialize B to
be the unique lower-triangular Cholesky factor P . Then, we rotate B by drawing K = 500, 000 random
orthogonal matrices Q. Each rotation is performed by drawing an n × n matrix M from a N (0, In)
density. Then, Q is taken to be the orthonormal matrix in the QR decomposition of M . Let et(B) =
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The first set of restrictions we impose relate to specific events or narratives following

the work of Antolín-Díaz and Rubio-Ramírez (2018) and Ludvigson et al. (2019). In

particular, we consider the dates located by Bloom (2009) that coincide with spikes in

the financial uncertainty proxy of Ludvigson et al. (2019).5 In addition, we also include

the events emphasized in Ludvigson et al. (2019) as well as 2000Q2 (collapse of the dot-

com bubble) and 2010Q2 (Euro area debt crisis and fears about a global slowdown) with

clear spikes in the financial uncertainty proxy of Ludvigson et al. (2019). At each of

the dates, we require that realized uncertainty shocks eunc,t exceed their 50th percentile

p (eunc,t, 50) across all unconstrained solutions in B, except on 1987Q4 (Black Monday)
and 2008Q4 (collapse of Lehman Brothers) where the uncertainty shock should exceed its

75th percentile as in Ludvigson et al. (2019). The selected dates with spikes in financial

uncertainty are plotted in Figure 1.

Figure 1: Spikes in Financial Uncertainty
The red line denotes financial volatility according to the VXO since 1986, and the realized volatility in
the S&P 500 before 1986 as in Bloom (2009). The blue line is the measure of financial uncertainty in
Ludvigson et al. (2019) for a forecast horizon of one month. Vertical black lines denote the events that
are used to identify uncertainty shocks as reported in Table 2.
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Our second set of restrictions impose two external constraints on eunc,t following the

work of Ludvigson et al. (2019). The first requirement is that the correlation between eunc,t
and the stock market return Rm

t must be lower than the median value of this correlation

B−1
t ηt be the shocks implied by B ∈ B for a given ηt. Then, K different matrices B imply K different

unconstrained shocks et(B) = B−1ηt, t = 1, ..., T .
5When examining the recent peaks in the VXO, we identify one in 2016Q1, which we also include.

Several uncertainty-triggering events occurred right before or during this quarter, e.g., the first increase
of the federal funds rate that ended the zero lower bound phase after seven years; fears about China’s
economic fragility; the policy rate in Japan became negative; and the announcement in February 2016
by the British Prime Minister David Cameron of the Brexit referedum in June that year.
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across all unconstrained solutions in B. In our case, this implies that the correlation
betweenRm

t and eunc,t must be less than or equal to−0.15, which is a stronger requirement

than imposed in Ludvigson et al. (2019). The motivation for this assumption is the well-

known leverage effect, which implies that a negative shock to the stock market (that

reduces Rm
t ) make firms more leveraged and hence more risky. The second constraint

requires that the correlation between eunc,t and the growth rate in the real gold price

∆gt must be higher than the median value of this correlation across all unconstrained

solutions in B. In our case, this means that the correlation between ∆gt and eunc,t must

be bigger than or equal to 0.03, which also is slightly more restrictive than in Ludvigson

et al. (2019). The theoretical justification for this constraint is that gold operates as a

safe asset among investors, and its price should therefore be positively correlated with

uncertainty shocks due to higher demand.

To further sharpen the identification, we require a non-positive response of GDP,

investment, consumption, and hours on impact following a positive uncertainty shock,

which is consistent with a large number of theoretical and empirical investigations of un-

certainty shocks (see, e.g., Bloom (2014) for a survey). As shown in the Online Appendix,

these sign restrictions only help to narrow the identified set but have hardly any effect on

the median target of the identified set, which we will focus on in our subsequent analysis.

For completeness, all the identification restrictions are summarized in Table 2.

2.3 Impulse Response Functions

We quantify the business cycle effects of uncertainty shocks by computing generalized

impulse response functions (GIRFs) that account for the nonlinearities introduced by the

term log V XOt−j ×∆ logGDPt−j in the IVAR (Koop et al. (1996)). The GIRFs for Yt

at horizon h to an uncertainty shock of size δunc in period t is defined as

GIRFY(h, δunc,$t−1) ≡ E [Yt+h|δunc,$t−1]− E [Yt+h|$t−1] . (2)

These impulse responses depend on the state of the economy, which is captured by the

initial conditions $t−1 ≡ {Yt−1, ...,Yt−L}. We are interested in exploring the effects of
an uncertainty shock across the business cycle, and we therefore compute GIRFs when

the initial condition for real GDP growth is below its 10th percentile (i.e., deep recessions)

and above its 90th percentile (i.e., strong expansions). The results are reported in the

left column in Figure 2, which shows the responses for the the median target (MT) model

BMT , which is the solution in B that delivers the GIRFs with the smallest distance to
the median of the impulse responses in the identified set (see Fry and Pagan (2011)). For

a positive one-standard deviation uncertainty shock (δunc = 1), we find the familiar drop

in real activity for several quarters after the shock in both recessions and expansions.

However, the key focus of the present paper is the finding that this drop in activity
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Table 2: Identifying Restrictions for Uncertainty Shocks
This table summarizes the identifying assumptions for uncertainty shocks in the IVAR. For event restric-
tions, the notation > p(eUnc,t, 50th) indicates that the uncertainty shock at a given date should exceed
the 50th percentile of its distribution. The sources for each of these event constraints are from Bloom
(2009) and Ludvigson et al. (2019) (LMN). Excluded dates from Bloom (2009) are 1963Q4 (Assassination
of JFK), 1997Q4 (Asian crisis), and 2003Q1 (Iraq invasion).

Conditions on eunc,t Source
Event Restrictions
1966Q3: Vietnam buildup > p(eunc,t, 50th) Bloom
1970Q2: Cambodia and Kent state > p(eunc,t, 50th) Bloom
1973Q4: OPEC I, Arab-Israeli War > p(eunc,t, 50th) Bloom
1974Q3: Franklin National > p(eunc,t, 50th) Bloom
1978Q4: OPEC II > p(eunc,t, 50th) Bloom
1979Q4: Volcker experiment > p(eunc,t, 50th) LMN
1980Q1: Afghanistan, Iran hostages > p(eunc,t, 50th) Bloom
1982Q4: Monetary policy turning point > p(eunc,t, 50th) Bloom
1987Q4: Black Monday > p(eunc,t, 75th) Bloom & LMN
1990Q4: Gulf War I > p(eunc,t, 50th) Bloom
1998Q3: Russian, LTCM default > p(eunc,t, 50th) Bloom
2000Q2: Collapse of the tech bubble > p(eunc,t, 50th) LMN extra
2001Q3: 9/11 terrorist attacks > p(eunc,t, 50th) Bloom
2002Q3: Worldcom, Enron > p(eunc,t, 50th) Bloom
2008Q4: Great recession > p(eunc,t, 75th) Bloom & LMN
2010Q2: European debt crisis > peunc,t, 50th) LMN extra
2011Q3: Debt ceiling crisis > p(eunc,t, 50th) LMN
2016Q1: FFR liftoff and China > p(eunc,t, 50th) Bloom (update)

External Restrictions
Stock market return, rmt 6 p(corr(eunc,t, r

m
t ), 50th) LMN

Real log difference price of gold, ∆gt > p(corr(eunc,t,∆gt), 50th) LMN

Sign Restrictions on Impact
GDP < 0
Investment < 0
Consumption < 0
Hours < 0

is larger and more persistent in deep recessions (the red dotted lines) than in strong

expansions (the blue lines) although the size of the uncertainty shock is the same. For

instance, in recessions the peak responses of output, investment, and hours are -0.28%,

-0.87%, and -0.45%, respectively, whereas the corresponding responses in expansions are

only -0.19%, -0.35%, and -0.23%. Turning to the nominal side, the responses for prices

are slightly positive in expansions and slightly negative in recessions. For the monetary

policy rate, we find a clear negative effect of an uncertainty shock, with effects that are

stronger in recessions than in expansions.
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Figure 2: Nonlinear VAR: Impulse Responses to an Uncertainty Shock
The charts to the left show the median target responses in the IVAR in deep recessions and strong
expansions following a positive one-standard deviation uncertainty shock. The charts to the right show
the difference between these responses in (deep recessions minus strong expansions) in addition to the 68
and 90 percent confidence interval, which are estimated by a residual-based bootstrap (with 1,000 draws)
when conditioning on the median target responses. All responses are shown in percentage deviations,
except for the policy rate where changes in percentage points are reported.
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The charts to the right in Figure 2 report the distance between the MT responses

in recessions relative to the MT responses in expansions, where the shaded gray and
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light gray areas report the bootstrapped 68% and 90% confidence intervals, respectively.6

These confidence intervals reveal that the different responses in expansions and recessions

in general are significant at the 68% level, and for investment, hours, prices, and the policy

rate we even have significance at the 90% level.

2.4 Robustness Analysis

In the Online Appendix, we show that our new result is robust to the following modi-

fications and extensions of the IVAR presented above: i) re-estimating the IVAR using

data from 1987Q1 to 2017Q4 to only use the offi cial VXO measure and to exclude the

Great Inflation period; ii) replacing the shadow rate of Wu and Xia (2016) by the federal

funds rate throughout the sample and adding the 10-year Treasury zero-coupon yield

to capture effects of quantitative easing and forward guidance; iii) adding a series for

realized skewness in the S&P500 to control for skewness shocks as discussed in Salgado

et al. (2019); iv) use the purchasing managers index instead of real GDP growth for the

interactive term in the IVAR; v) controlling for first-moment financial shocks by including

the credit spread between BAA and AAA yields for bonds with more than 20 years to

maturity; and vi) defining the expansionary state as episodes where real GDP growth is

above its 10th percentile (i.e., outside deep recessions).

2.5 Simulation Evidence

Before proceeding, it is important to test the ability of the IVAR and the non-recursive

identification scheme to estimate the effects of uncertainty shocks and capture any state-

dependence in these responses. We therefore simulate {Yt}St=1 from the DSGE model

presented below and estimate the IVAR on this sample using a relatively high value of

S = 3, 000 to sidestep issues related to sampling uncertainty. The adopted identifying

assumptions for uncertainty shocks on this simulated sample are similar to those presented

above, except for two minor modifications. First, when working with historical data, we

locate extreme observations for volatility as periods when spikes in the VXO (i.e., the

conditional volatility of the stock market return Rm
t ) coincide with spikes in the financial

uncertainty proxy of Ludvigson et al. (2019), which is an estimated stochastic volatility

process extracted from a rich panel of financial variables. This volatility proxy is not

available in our simulated sample, and we therefore replace it by the stochastic volatility

process in the DSGE model. This implies that extreme observations for volatility in our

6There are two reasons to focus on a single model instead of the entire identified set. First, our goal
is to estimate a DSGE model by matching impulse responses and we therefore have to focus on a single
set of responses from the IVAR. Second, the confidence bands for the GIRFs can be computed by a
standard bootstrap algorithm when focusing on a single model. However, in our Online Appendix, we
show that for all models belonging to the set B, the response of real activity to an uncertainty shock is
stronger in recessions than in expansions.
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simulated sample are episodes when the conditional volatility of Rm and the stochastic

volatility shocks both are high and exceed their 50th percentile across all unconstrained

solutions in B. Second, the DSGE model presented below does not include a gold price,
and we are therefore unable to include the correlation restriction between the real gold

price and uncertainty shocks in the simulation study.

Figure 3: Simulation Exercise for the IVAR: IRFs to an Uncertainty Shock
This figure shows the generalized impulse response functions (GIRFs) in the IVAR to a positive one-
standard deviation shock to uncertainty in strong expansions (to the left) and deep recessions (to the
right) on a simulated sample of 3, 000 draws from the New Keynesian DSGE model using the estimates
in column (1) of Table 4. The solid (dashed) lines report the median target impulse responses in strong
expansions (deep recessions) when computed as suggested by Fry and Pagan (2011), while the identified
sets in the IVAR are denoted by the shaded areas. The marked solid lines denote the true responses in
the DSGE model. All responses are shown in percentage deviations, except for the policy rate where
changes in percentage points are reported.
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The results from this simulation exercise are summarized in Figure 3. Very encourag-

ingly, we find that the identified set for uncertainty shocks in the IVAR (denoted by the

shaded areas) nearly always contains the true responses in the DSGE model.7 A careful

7The exception is for the responses in uncertainty (i.e. VXO), which exceed the true responses in the
first couple of periods after the uncertainty shock. Unreported results show that this upward bias is closely
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inspection of Figure 3 also shows that the IVAR is able to generate state-dependent ef-

fects in the responses, and that they match those in the DSGE model. This is especially

the case for investment and hours, where we see large differences between recessions and

expansions.8

We draw two conclusions from this simulation exercise. First, the non-recursive iden-

tifying scheme in the IVAR is suffi ciently flexible to capture the responses of uncertainty

shocks in our DSGE model. Second, any state-dependence in the responses to uncer-

tainty shocks are well captured by the IVAR in (1). Thus, an important econometric

implication of this simulation exercise is that the GIRFs from the IVAR can be used for

a direct inference approach when estimating our DSGE model.

3 A New Keynesian Model

This section presents a New Keynesian DSGE model to explain why uncertainty shocks

have larger effects in recessions than in expansions. Our starting point is the model by

Basu and Bundick (2017) and its refinement in Basu and Bundick (2018). We extend

this model along three dimensions. First, external consumption habits are included to

capture a hump-shaded response in consumption to an uncertainty shock. Second, the

flexible formulation of recursive preferences in Andreasen and Jørgensen (2020) is adopted

to keep risk aversion at a low and plausible level. Finally, standard cost-push shocks

are introduced to match the comovement between consumption and output across the

business cycle. Given that the basic structure of this New Keynesian model is widely

known, we only present its crucial parts.

3.1 Households

We consider an infinitely lived representative household with recursive preferences as

in Epstein and Zin (1989) and Weil (1990). Using the formulation in Rudebusch and

Swanson (2012), the value function Vt is given by

Vt =

{
ut + β(Et

[
V 1−α
t+1

]
)

1
1−α when ut > 0 for all t

ut − β(Et
[
(−Vt+1)1−α]) 1

1−α when ut < 0 for all t
, (3)

where ut is the utility function and Et [·] is the conditional expectation in period t. The
parameter α ∈ R \ {1} captures households’appetite for the resolution of uncertainty,

related to the adopted simulation procedure for the VXO which is 100
√

4 max
{
Vt
[
Rmt+1

]
, 0.000026

}
as suggested by the codes related to Basu and Bundick (2018). By imposing this lower bound for
the conditional variance of stock returns Vt

[
Rmt+1

]
, we get an upward bias in the IVAR residuals for

log V XOt and subsequently also an upward bias in the impulse response functions for log V XOt.
8See also the Online Appendix, where we also plot the median target responses.
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implying preferences for early (late) resolution of uncertainty if α > 0 (α < 0) for ut > 0,

and vice versa when ut < 0. Andreasen and Jørgensen (2020) further argue that the size

of this timing attitude is proportional to α, meaning that numerically larger values of α

imply stronger preferences for early (late) resolution of uncertainty.

The expression for households’utility at time t is

ut ≡ a1−σ
t

(
1

1− σ
(
(Ct − bCt−1)η (1−Nt,)

1−η)1−σ
+ u0

)
, (4)

which depends on habit-adjusted consumption Ct − bCt−1 and leisure 1 − Nt.9 As in

Basu and Bundick (2017), at is a preference shock that evolves according to the process

at+1 = ρaat + σa,tεa,t+1 where εa,t+1 ∼ NID (0, 1). The process for stochastic volatility

σa,t is specified as σa,t+1 = (1−ρσ)+ρσσa,t+σσεσ,t+1, where the innovations in uncertainty

εσ,t+1 ∼ NID (0, 1) and uncorrelated with εa,t+1 at all leads and lags. The constant u0

captures utility from government spending and goods produced and consumed within the

household. As shown by Andreasen and Jørgensen (2020), the main reason for including

u0 is to separately control the level of the utility function and hence disentangle the

timing attitude α from relative risk aversion (RRA), which otherwise are tightly linked

in the standard formulation of recursive preferences in Epstein and Zin (1989) and Weil

(1990). To see this, note that (3) and (4) imply

RRA =
η

1− b

[
σ + α (1− σ)

((Css − bCss)η (1−Nss)
1−η)

1−σ

((Css − bCss)η (1−Nss)1−η)
1−σ

+ (1− σ)u0

]
,

at the deterministic steady state (ss) when accounting for the endogenous labor sup-

ply (see Swanson (2018)). Hence, a high timing attitude α does not necessarily imply

a high RRA, which is in contrast to the standard case with u0 = 0 where RRA =
η

1−b (σ + α (1− σ)).

The household receives labor income Wt for each unit of labor Nt supplied to the

intermediate firms. These firms are owned by the household that therefore holds their

equity shares St, which have the price PE
t and pay dividends DE

t . The household also

holds one-period real bonds with the gross return RR
t as issued by the firms, and it holds

nominal bonds issued by the government with the gross return Rt.

3.2 Firms

The final output Yt is produced by a representative final good producer using the pro-

duction function Yt =
(∫ 1

0
Yt (i)(θµ,t−1)/θµ,t di

)θµ,t/(θµ,t−1)

, where θµ,t captures a time-

varying substitution elasticity between the intermediate goods Yt(i). It is assumed that

9Following Basu and Bundick (2018), we include a1−σ
t instead of at in (4) to avoid having an asymptote

in the policy function at σ = 1, as noted by de Groot et al. (2018).
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log (θµ,t+1/θµ) = ρθµ log(θµ,t/θµ) + σθµεθ,t+1, where εθ,t+1 ∼ NID (0, 1). Cost minimiza-

tion implies that Yt(i) =
[
Pt(i)
Pt

]−θµ,t
Yt, where Pt ≡

(∫ 1

0
Pt (i)1−θµ,t di

) 1
1−θµ,t denotes the

aggregate price level and Pt (i) is the price of the ith good.

Intermediate firms produce Yt(i) using the Cobb-Douglas production function with

fixed costs, i.e., Yt(i) = (Kt−1(i)Ut(i))
αp (ZtNt(i))

1−αp − Φ, where Kt−1(i) is the capital

stock, Ut(i) is the utilization rate, and Zt captures productivity shocks as logZt+1 =

ρZ logZt + σZεZ,t+1 with εZ,t+1 ∼ NID (0, 1). The capital stock evolves as Kt(i) =(
1− δ(Ut(i))− φK

2
(It(i)/Kt−1(i)− δ)2

)
Kt(i) + It(i), where φK introduces adjustment

costs and It(i) is investment. The depreciation costs are given by δ(Ut(i)) = δ+δ1(Ut(i)−
Uss) + δ2

2
(Ut(i) − Uss)2. Intermediate firms operate in a market with monopolistic com-

petition and face quadratic adjustment costs as in Rotemberg (1982). The expression for

real dividends therefore reads

Dt(i)

Pt
=

[
Pt(i)

Pt

]1−θµ,t
Yt −

Wt

Pt
Nt(i)− It(i)−

φP
2

(
Pt(i)

ΠssPt−1(i)
− 1

)2

Yt

where Wt is the wage and Πss denotes inflation in the deterministic steady state. Each

intermediate firm finances a fraction ν of its capital stock by issuing one-period riskless

bonds, i.e., Bt(i) = νKt−1(i). As a result, the real dividend payments to equity holders

are DE
t (i) /Pt = Dt (i) /Pt − ν(Kt−1 (i)−Kt (i) /RR

t ).

3.3 Monetary Policy and Stock Market Volatility

The central bank adjusts the nominal interest rate Rt to stabilize inflation around its

target Πss and output growth according to the rule

ln(Rt/Rss) = ζΠ log (Πt/Πss) + ζ∆Y log(Yt/Yt−1), (5)

where Πt ≡ Pt/Pt−1 denotes gross inflation.10

As in Basu and Bundick (2017), the gross stock market return is defined as Rm
t =(

DE
t + PE

t

)
/PE

t−1. The model-implied measure for stock market volatility is then given

by V XOt = 100
√

4× Vt
[
Rm
t+1

]
, where Vt

[
Rm
t+1

]
is the quarterly conditional variance of

Rm
t+1.

3.4 Equilibrium

We focus on the symmetric equilibrium, where all intermediate firms choose the same

price Pt(i) = Pt, employ the same amount of labor Nt(i) = Nt, and choose the same level

10Unreported results show no evidence of interest rate smoothing in (5) when using the estimator
presented in Section 5.1.
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of capital Kt(i) = Kt and utilization rate Ut(i) = Ut. Consequently, all firms have the

same cash flows and are financed with the same mix of bonds and equity. The markup

of the price in relation to marginal cost is µt = 1/Ξt, where Ξt denotes the marginal cost

of producing one additional unit by the intermediate firm.

4 Model Solution

This section derives a third-order approximation to DSGEmodels around the risky steady

state and study some of its implications. Section 4.1 describes a general class of DSGE

models that includes the New Keynesian model presented above. The third-order Taylor

approximation around the risky steady state is derived in Section 4.2, and we discuss a

pruned version of this approximation in Section 4.3. The accuracy and execution time of

various approximations are studied in Section 4.4.

4.1 General Model

We consider the class of models where the equilibrium conditions are given by

Et [f (yt+1,yt,xt+1,xt)] = 0. (6)

The states appear in xt with dimension nx × 1, while the control variables of dimension

ny ×1 are collected in yt, with n ≡ nx + ny. We also let xt ≡
[

x′1,t x′2,t

]′
, where x1,t

refers to the endogenous states and x2,t to the exogenous states, which evolve as

x2,t+1 = h2 (x2,t) + η̃εt+1, (7)

where εt+1 ∼ IID (0, Inε), and nε is the number of elements in the vector of shocks εt+1.11

The assumption that the innovations enter linearly in (7) is without loss of generality,

because the state vector may be extended to account for nonlinearities between xt and

εt+1, as needed when including stochastic volatility in the exogenous states (see Andreasen

(2012) for further details). The exact solution to this class of models is given by

yt = g (xt) (8)

xt+1 = h (xt) + ηεt+1 (9)

where η ≡
[

0 η̃′
]′
has dimension nx × nε. The functions g (·) and h (·) are generally

unknown and must be approximated.

11All eigenvalues of ∂h2 (x2,t) /∂x2,t must have modulus less than one, implying that trends may only
be included if the model after re-scaling has an equivalent representation without trending variables.
The procedure of re-scaling a DSGE model with trends is carefully described in King et al. (2002).
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4.2 A Third-Order Approximation at the Risky Steady State

Let xt = x̄ denote the risky steady state. This long-term equilibrium point is character-

ized by the absence of structural shocks (i.e., εt+1 = 0) but agents nevertheless respond

to their probability distribution. This makes the risky steady state different from the

widely used deterministic steady state, where agents do not respond to the probability

distribution of the structural shocks.

The considered third-order approximation around x̄ is given by

yt = g (x̄) + gx (x̄) (xt − x̄) + 1
2
gxx (x̄) (xt − x̄)⊗2 + 1

6
gxxx (x̄) (xt − x̄)⊗3

xt+1 = h (x̄) + hx (x̄) (xt − x̄) + 1
2
hxx (x̄) (xt − x̄)⊗2 + 1

6
hxxx (x̄) (xt − x̄)⊗3 + ηεt+1,

(10)

where (xt − x̄)⊗2≡ (xt − x̄)⊗ (xt − x̄) and (xt − x̄)⊗3≡ (xt − x̄)⊗2⊗ (xt − x̄). The first-

order derivative of g (xt) with respect to xt is denoted gx (x̄) when evaluated at x̄. A

similar notation is used for h (xt) and for higher-order derivatives.12 The procedure we

use to compute the required derivatives of g (·) and h (·) is similar to the one applied in
Collard and Juillard (2001a) for a simple endowment model and in Collard and Juillard

(2001b) for a DSGE model solved by a second-order approximation. Hence, we substitute

(8) and (9) into (6) to get

Et [F (xt, εt+1)] ≡ Et
[
f
(
g
(
h (xt) + ηεt+1

)
,g (xt) ,h (xt) + ηεt+1,xt

)]
= 0. (11)

We then compute a third-order Taylor approximation of F (xt, εt+1) at xt = x̄ and εt+1 =

0. Evaluating the expectations with respect to terms that involve εt+1 and using the

method of undetermined coeffi cients, we obtain the following conditions (derived in our

Online Appendix):

[F (x̄,0)]i +
1

2
[Fεε (x̄,0)]iφ1φ2 [V [εt+1]]

φ1
φ2

+
1

6
[Fεεε (x̄,0)]iφ1φ2φ3

[
m3

ε

]φ1
φ2φ3

= 0 (12)

[Fx (x̄,0)]iα1 +
3

6
[Fεεx (x̄,0)]iφ1φ2α3 [V [εt+1]]

φ1
φ2

= 0 (13)

[Fxx (x̄,0)]iα1α2 = 0 (14)

[Fxxx (x̄,0)]iα1α2α3 = 0, (15)

where the tensor notation is used with i = {1, 2, ..., n}, φ1, φ2, φ3 = {1, 2, ..., nε}, and
α1, α2, α3 = {1, 2, ..., nx}. Also, V [εt+1] is the covariance matrix of εt+1 (which equals

Inε), and m3
ε with dimensions nε × nε × nε contains all third order moments of εt+1. The

derivatives of F (xt, εt+1) are denoted with subscripts and evaluated at the risky steady

12Note that x̄ is a fixed-point in h (·), i.e. h (x̄) = x̄, and that the ergodic mean E [xt] generally differs

from the risky steady state x̄ because E [xt+1 − x̄] = E
[

1
2hxx (x̄) (xt − x̄)

⊗2
+ 1

6hxxx (x̄) (xt − x̄)
⊗3
]
6=

0.
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state, e.g., Fx (x̄,0) = ∂F (xt, εt+1) /∂x′t|xt=x̄,εt+1=0.

To understand the implications of (12) to (15), let us first consider the case without

uncertainty by letting V [εt+1] = 0 and m3 (εt+1) = 0 to obtain the certainty equiva-

lence solution. The n × 1 equations in (12) then simplifies to [F (x̄,0)]i = 0, implying

that x̄ = xss and ȳ = yss. We also have that (13) reduces to [Fx (xss,0)]iα1 = 0, which

gives the well-known quadratic system for computing the first-order derivatives gx (xss)

and hx (xss), as shown in Schmitt-Grohe and Uribe (2004). Moreover, (14) reduces to

[Fxx (xss,0)]iα1α2 = 0 and (15) to [Fxxx (xss,0)]iα1α2α3 = 0, which are the linear sys-

tems exploited by the standard perturbation method to compute the second-order terms

gxx (xss) and hxx (xss) and the third-order terms gxxx (xss) and hxxx (xss), respectively

(see Schmitt-Grohe and Uribe (2004) and Andreasen (2012)). Thus, without uncertainty,

the conditions in (12) to (15) are identical to those used by the standard perturbation

method to obtain the certainty equivalent part of this approximation.

In the presence of uncertainty, condition (12) still determines x̄ and ȳ, but in this case

x̄ 6= xss and ȳ 6= yss. Given (x̄, ȳ), condition (13) allows us to determine the first-order

derivatives of g (·) and h (·) by solving a quadratic system that includes the variance term
3
6

[Fεεx (x̄,0)]iφ1φ2α3 [V [εt+1]]
φ1
φ2
. This adjustment has two important implications. First, it

implies that the first-order derivatives gx (x̄) and hx (x̄) contain an uncertainty correction

for variance risk. Second, the Blanchard-Kahn conditions for getting unique and stable

first-order derivatives have to hold for a risk-adjusted version of the model. Hence, uncer-

tainty may contribute to violate or satisfy the Blanchard-Kahn conditions, unlike in the

standard perturbation method where these conditions are evaluated at the deterministic

steady state. Importantly, the uncertainty correction 3
6

[Fεεx (x̄,0)]iφ1φ2α3 [V [εt+1]]
φ1
φ2
is of

third order and therefore not present in the second-order approximation around the risky

steady state as studied in Collard and Juillard (2001b).

The condition in (14) for the second-order terms gxx (x̄) and hxx (x̄) is similar to the

one used in the standard perturbation method, except that all derivatives of F (·), g (·),
and h (·) are evaluated at the risky steady state. This implies that gxx (x̄) and hxx (x̄)

contain a correction for uncertainty, which is essential for our analysis, because it enables

us to obtain impulse response functions for uncertainty shocks that are state-dependent.

Finally, the condition in (15) allows us to determine gxxx (x̄) and hxxx (x̄) by solving a

linear system, where all derivatives of F (·), g (·), and h (·) are evaluated at the risky
steady state. As a result, gxxx (x̄) and hxxx (x̄) are also adjusted for uncertainty for the

same reasons as mentioned for gxx (x̄) and hxx (x̄).13 For the New Keynesian model we

consider, nearly all of the uncertainty correction in the higher-order derivatives comes

13Very loosely, one can think of gx (x̄) ≈ gx (xss)+0.5gσσx (xss) and hx (x̄) ≈ hx (xss)+0.5hσσx (xss),
where σ is the perturbation parameter as defined in Schmitt-Grohe and Uribe (2004). In the standard
perturbation method, only gx (xss) and hx (xss) are used to compute the higher-order derivatives. In
contrast, the procedure we use implies that gx (xss)+0.5gσσx (xss) and hx (xss)+0.5hσσx (xss) are used
to compute the higher-order derivatives, which therefore include an adjustment for uncertainty.
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from the risk adjustment in gx (x̄) and hx (x̄), meaning that a third-order approximation

is needed for our model to get visible state-dependence in the impulse response functions

for an uncertainty shock.14

Unfortunately, the moment conditions in (12) to (15) do not imply a recursive struc-

ture for computing the required terms in (10). This is because Fεε (x̄,0), Fεεx (x̄,0),

and Fεεε (x̄,0) depend on (x̄, ȳ) and the derivatives of g (·) and h (·). We therefore use
an iterative procedure, where Fεε (x̄,0), Fεεx (x̄,0), and Fεεε (x̄,0) are computed using

derivatives of g (·) and h (·) from the standard perturbation method in the first iter-

ation and afterwards from the previous iteration to recursively solve (12) to (15). Our

Online Appendix summarizes this algorithm, which basically iterates on the solution rou-

tine for the standard perturbation approximation until convergence (typically with five

iterations).15

4.3 A Pruned State-Space Representation

The system for a standard third-order perturbation approximation obviously reduces

to the system in (10) when all derivatives of the g- and h-functions with respect to the

perturbation parameter are equal to zero. This means that the pruning scheme introduced

in Andreasen et al. (2018) can also be applied to (10) with all derivatives of the g- and h-

functions with respect to xt evaluated at x̄ instead of xss. The Blanchard-Kahn condition

related to (13) ensures that hx (x̄) is stable and hence that this pruned approximation is

stable. Thus, the closed-form solution for unconditional moments and GIRFs derived in

Andreasen et al. (2018) can also be applied to our third order approximation at the risky

steady state. This greatly facilitates its use in a formal estimation routine that matches

unconditional first and second moments, impulse response functions, or a combination of

the two, as considered below in Section 5.

4.4 Accuracy and Execution Time

We evaluate the accuracy of Taylor approximations around the deterministic and risky

steady state by computing unit-free Euler-equation errors for the considered New Key-

nesian model along a simulated sample of 10, 000 observations for the states. The two

14As shown in the Online Appendix, the expressions for Fεε (x̄,0), Fεεx (x̄,0), and Fεεε (x̄,0) are
identical to those provided for Fσσ, Fσσx, and Fσσσ, respectively, in Schmitt-Grohe and Uribe (2004)
and Andreasen (2012), when setting all derivatives of g (·) and h (·) with respect to the perturbation
parameter σ equal to zero. The conditions in (12) to (15) are therefore easy to implement from existing
results and computer packages on the standard perturbation method. In our case, we modify the highly
effi cient Matlab codes of Binning (2013).
15The proposed solution in (10) is, strictly speaking, not a perturbation approximation, because it

does not perturb a known solution. Instead, it corresponds to a projection approximation that only
exploits local properties of the model solution, and it is therefore best characterized as a local projection
approximation.
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estimated versions of the New Keynesian model presented below in Table 4 are considered

for this exercise, where the states are simulated using a standard third-order perturbation

approximation, i.e., by a Taylor approximation around the deterministic steady state.

Table 3: Accuracy and Execution Time

Panel A in this table reports the mean absolute unit-free Euler-equation errors (MAEs) and the root
mean squared unit-free Euler-equation errors (RMSEs) in a second-, third-, and fourth-order Taylor
approximation around the deterministic steady state, and in a second- and third-order Taylor approxi-
mation around the risky steady state. All model equations are included when computing the MAEs and
the RMSEs, except for the link-equations related to lagged controls and the equations for the exogenous
shocks, where the errors always are zero. The Euler-equations errors are reported in percent and com-
puted using a simulated sample path of 10,000 observations for the states. For each estimated version
of the model, the simulated sample path is computed using a third-order Taylor approximation around
the deterministic steady state. Conditional expectations in the Euler-equations are evaluated by Gauss-
Hermite quadratures using five points per shock, giving a total of 54 = 625 points. The considered model
parameters are those reported in Table 4. Panel B shows the execution time in seconds for obtaining
the approximated model solutions and for simulating 10,000 observations using each of the considered
approximations. The computations are done on a standard laptop with an Intel(R) Core(TM) i7-7600
CPU processor with 2.80GHz.

Taylor approximations Taylor approximations
at deterministic steady state at risky steady state
2nd 3rd 4th 2nd 3rd

Panel A: Accuracy (in pct.)
Benchmark MAEs 1.19 1.10 0.65 1.06 0.79

RMSEs 3.26 3.03 2.27 3.10 2.44

Standard EZ MAEs 1.41 1.22 0.79 1.16 0.87
RMSEs 3.98 3.44 5.61 3.45 3.44

Panel B: Execution time (in sec.)
Benchmark Model solution 0.03 0.60 12.0 0.45 3.50

Simulation of 0.13 1.04 22.4 0.13 1.04
of 10,000 observations

For the benchmark model, panel A in Table 3 shows that the standard perturbation
method performs fairly well, as the mean absolute Euler errors (MAEs) across all en-

dogenous equations in the model are only 1.19% at second order, 1.10% at third order,

and 0.65% at fourth order. We find a similar monotone improvement in accuracy by in-

creasing the approximation order when computing the root mean squared Euler-equation

errors (RMSEs), that penalize large errors more heavily than the MAEs. For approxi-

mations around the risky steady state, the second-order approximation of Collard and

Juillard (2001b) provides a small improvement when compared to the standard pertur-

bation method at second order, as the MAEs falls from 1.19% to 1.06% and the RMSEs

from 3.26% to 3.10%. We see more notable reductions in the Euler errors by using the

proposed third-order approximation around the risky steady state, as the MAEs falls from

1.10% to 0.79% and the RMSEs from 3.03% to 2.44% when compared to a third-order

approximation around xss. Thus, the accuracy of our approximation clearly outperforms

19



the standard perturbation method at third order and is close to providing the same level

of accuracy as the fourth-order Taylor approximation around xss with a MAE of 0.65 and

a RMSE of 2.27.

Table 3 shows that we broadly find the same results for the estimated version of the

New Keynesian model with standard Epstein-Zin preferences, i.e., u0 = 0. The only

exception is that the RMSEs for the fourth-order Taylor approximation around xss is

5.61% and hence higher than both third-order approximations with RMSEs of 3.44%.

The execution time for the various approximations are provided in panel B of Table
3. The standard third-order perturbation approximation is obtained in just 0.60 seconds,

while it takes 12 seconds to compute a fourth-order approximation using the codes of

Levintal (2017). The required time for computing our third-order approximation around

the risky steady state depends mainly on the number of iterations needed to obtain

convergence, but the execution time is typically around 4 seconds. Thus, we get an

approximated model solution with state-dependent impulse response functions following

an uncertainty shock that is about three times faster than the existing alternative of using

a fourth-order approximation. In addition, it is also more costly to use a fourth-order than

a third-order approximation when simulating the model. This is illustrated at the bottom

of Table 3, where it takes one second to simulate 10, 000 observations from a third-order

approximation but about 22 seconds when using a fourth-order approximation.

To summarize, the proposed third-order Taylor approximation around the risky steady

state delivers a high level of accuracy that is comparable to a fourth-order perturbation

approximation but is computationally much more effi cient than this fourth order alter-

native. This is particularly convenient when it comes to estimating DSGE models like

ours, where uncertainty shocks are allowed to have state-dependent effects.16

5 Empirical Results for the New Keynesian Model

This section presents our empirical findings for the New Keynesian model. We introduce

the adopted estimation methodology in Section 5.1, and discuss the estimated parameters

in Section 5.2 and the model fit in Section 5.3.

5.1 Estimation Methodology

To describe our estimation approach, let the vector γ contain the structural parameters of

the New Keynesian model. As in Basu and Bundick (2017), we estimate γ using two sets

of moments. The first set includes the MT responses from the IVAR for the first 20 periods

16de Groot (2016) highlights another shortcoming of the third-order Taylor approximation at the
deterministic steady state, as none of its terms account for the conditional standard deviation of volatility
shocks, i.e. σσ. Unreported results show that our third-order Taylor approximation around the risky
steady state corrects for σσ and hence also addresses this limitation of the standard solution method.
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following an uncertainty shock in expansions ψ̂EXP and in recessions ψ̂REC as presented in

Section 2. The second source of information is a vector of unconditional sample moments

m̂T , which ensures that the model also matches stylized unconditional properties of the

US economy in addition to the conditional moments following an uncertainty shock.

These unconditional moments are constructed using the same data as applied to estimate

the IVAR. That is, we use inflation, the shadow rate of Wu and Xia (2016), output,

investment, consumption, and hours (with the four latter series detrended as in Hamilton

(2018)). The included moments are the mean of inflation and the policy rate, as well as

the covariances and auto-covariances related to the standard deviations and correlations

listed in Table 5. Hence, the adopted estimator is given by

γ̂ = arg min
γ∈Γ

(
ψ̂EXP −ψEXP (γ)

)′
V−1
EXP

(
ψ̂EXP −ψEXP (γ)

)
+(

ψ̂REC −ψREC (γ)
)′

V−1
REC

(
ψ̂REC −ψREC (γ)

)
+

Λ (m̂T −m (γ))
′
W−1 (m̂T −m (γ)) ,

(16)

where VEXP ,VREC , and W are diagonal matrices containing bootstrapped standard

errors for the related moments and Γ denotes the feasible domain of γ. The moments

in the New Keynesian model are denoted by ψEXP (γ), ψREC (γ), and m (γ), which we

compute using the third-order pruned approximation around the risky steady state. The

impulse responses to an uncertainty shock are here obtained using a procedure similar

to the one applied in the IVAR. That is, for each γ, we simulate 10, 000 observations for

output in the New Keynesian model to find the set of states where output is below its 10%

percentile (denoted XREC) and above its 90% percentile (denoted XEXP ). The impulse

response functions are then computed as the average of the GIRFs across these selected

states, i.e., ψm (γ, h) = 1
250

∑250
i=1GIRFY(h, δunc,x

(i)) for x(i) ∈ Xm, where ψm (γ) ≡
{ψm (γ, h)}20

h=1 and m = {EXP,REC} using 250 selected states. The expression for
GIRFY(h, δunc,x

(i)) is here evaluated in closed form using the observation in Section 4.3,

which greatly reduces the computational costs in relation to the estimation.17 Finally, we

set Λ to ensure that the model implies a reasonable fit to the unconditional moments, and

hence replicates both the impulse responses from the IVAR and the selected unconditional

macro moments.

While most of the structural parameters in the model are estimated, we calibrate a few

parameters that would be hard to pin down by our estimation procedure. Following Basu

and Bundick (2017), we calibrate ν = 0.9 for firm leverage, αp = 1/3 in the production

function, δ = 0.025 for steady state capital depreciations, δ2 = 0.0003 in the function for

17Given that a simulated sample is needed to find the two sets Xrec and Xexp, we settle by only
computing unconditional means in m (γ) in closed form, while all unconditional second moments in
m (γ) are obtained from the simulated sample to avoid the more computational evolved expression for
these moments provided in Andreasen et al. (2018).
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depreciation costs (with δ1 = 1/β− 1 + δ), and the fixed cost Φ to remove pure profit for

intermediate firms using the procedure in Basu and Bundick (2017). For households, the

values of Nss and η are set to match a steady state Frisch labour supply of two.

5.2 Estimated Structural Parameters

The estimation results for our preferred version of the model are reported in the first

column of Table 4, where RRA is constrained to a plausible level of ten. We find a

standard value for the subjective discount factor (β = 0.994), and evidence in favor of

habit formation in consumption (b = 0.26). The preference parameter σ is somewhat

high at 39.06, but this reflects the low calibrated value of η = 0.017, and we therefore

find a fairly standard exponent for consumption of η (1− σ) = −0.64 in (4). These

estimates imply that Vt < 0, meaning that negative values of α reflect preferences for

early resolution of risk. We find α = −138, which is very similar to the estimate reported

in Andreasen and Jørgensen (2020) when RRA = 10. Our estimate of α is also extremely

precise, with a bootstrapped standard error of 3.89. To aid the interpretation of the

estimated price adjustment parameter φP = 163, Table 4 reports the corresponding

Calvo parameter ξCalvo that implies the same slope of the aggregate supply relation as

φP . We find ξCalvo = 0.84, which corresponds to an average price duration of about 6

quarters. The substitution elasticity θµ between intermediate goods is 6.45, which gives

an average price markup of about 18%. Finally, the central bank assigns more weight to

stabilizing inflation than output growth with ζΠ = 1.04 and ζ∆Y = 0.39.
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Table 4: Estimated Structural Parameters

This table reports the estimated structural parameters in the New Keynesian model using (16) with
Λ = 105, where bootstrapped standard errors are shown in parenthesis. These standard errors are
obtained by simulated 196 samples of the same length as in the data from the IVAR model by drawing
with replacement from the estimated residuals η̂t, From these samples, the required sample moments
for the estimator in (16) are generated, where the median target impulse responses, i.e. BMT , are used
to identify uncertainty shocks. The results in column (1) are for the benchmark model where RRA
= 10, which implies u0 = −1.01. The results in column (2) are for the standard formulation of recursive
preferences with u0 = 0, where the estimates imply an RRA of 124. The estimates of φP are reported
as the corresponding Calvo parameter ξCalvo, i.e. the probability of not adjusting prices, that gives the
same slope of the aggregate supply relation.

(1) (2)
Description Benchmark Standard specification of

model recursive preferences (u0 = 0)
β Subjective discount factor 0.994

(0.002)
0.994
(0.002)

b Habit formation 0.26
(0.04)

0.27
(0.04)

σ Preference parameter 39.06
(0.30)

38.93
(0.29)

α Timing attitude −137.75
(3.08)

−144.37
(3.58)

φK Investment adjustment costs 5.50
(0.90)

5.46
(0.90)

ξCalvo Price stickiness 0.84
(0.06)

0.84
(0.05)

θµ Substitution elasticity of goods 6.45
(1.59)

6.27
(1.63)

ζΠ Weight on inflation gap 1.04
(0.02)

1.04
(0.02)

ζ∆Y Weight on output growth 0.39
(0.05)

0.39
(0.05)

Πss Steady state inflation rate 1.015
(0.001)

1.015
(0.001)

Stochastic processes
ρσ Persistence of uncertainty shock 0.69

(0.08)
0.69
(0.08)

σσ Volatility of uncertainty shock 1.04
(0.03)

1.05
(0.006)

ρa Persistence of demand shock 0.96
(0.01)

0.96
(0.01)

σa Volatility of demand shock ×103 0.20
(0.04)

0.22
(0.04)

ρz Persistence of technology shock 0.63
(0.06)

0.62
(0.08)

σz Volatility of technology shock 0.005
(0.0006)

0.006
(0.0009)

ρθµ Persistent of markup shock 0.68
(0.06)

0.66
(0.06)

σθµ Volatility of markup shock 0.20
(0.007)

0.20
(0.006)

The second column in Table 4 shows the corresponding estimates when applying the

standard formulation of recursive preferences with u0 = 0. We find that the estimates

are very similar (but not identical) to those reported for our preferred specification.
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The key difference relates to RRA, which is 124 when u0 = 0 and hence comparable to

other estimates in the macro literature as in Binsbergen et al. (2012) and Rudebusch

and Swanson (2012) but much larger than implied by micro evidence (see, for instance,

Barsky et al. (1997)).

5.3 Model Fit

Figure 4 shows the ability of the New Keynesian model to reproduce the median tar-

get responses in the IVAR following an uncertainty shock of the same size in recessions

and expansions. We find that the model successfully matches the drop in output, con-

sumption, and the substantially larger reduction in investment, which is more severe in

recessions than in expansions. This ability of the model to generate state-dependent ef-

fects of an uncertainty shock is seen clearly from Figure 5, which compares the responses

in the New Keynesian model across expansions and recessions. The model produces also

a larger contraction of hours in recessions than in expansions, though it does not quan-

titatively replicate the contraction estimated with the IVAR.18 The effects on the price

level are well matched in recessions, whereas the responses in expansions are at the lower

end of the 90% confidence band. The negative response in the policy rate on impact is

perfectly captured by the model, but it generally predicts a less accommodating path for

the policy rate following uncertainty shocks than implied by the IVAR.

18It is well known that without modeling labor market frictions, the response of hours in this type of
model tends to be weaker than in the data. See Basu and Bundick (2017) and Fernández-Villaverde and
Guerron-Quintana (2020) for discussions on this point.
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Figure 4: New Keynesian Model: IRFs to an Uncertainty Shock
This figure shows the impulse response functions following a positive one-standard deviation shock to
uncertainty in the IVAR at the median target responses and their 90 percentage confidence bands. The
corresponding responses in the the New Keynesian model are computed for εσ,t = 1 using the estimates
in column (1) of Table 4. The responses are shown for strong expansions (charts to the left) and deep
recessions (charts to the right). All responses are shown in percentage deviations, except for the policy
rate where changes in percentage points are reported.
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Table 5 reports the means and a scaled version of the second moments that also enter

in the estimation. We find that the model closely matches the average level of inflation

and the policy rate, while the mean of detrended output, consumption, investment and

hours are (by construction) zero and therefore not included. The model is also successful

in matching all standard deviations and autocorrelations, and it also captures the cross-

correlations of consumption, investment, hours, inflation, and the policy rate with respect

to detrended output.

Accordingly, this model goes a long way in reproducing the different impulse responses
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Figure 5: New Keynesian Model: A State-Dependent Uncertainty Shock
This figure shows the impulse response functions following a positive one-standard deviation uncertainty
shock (i.e. εσ,t = 1) in the New Keynesian model using the estimates in column (1) of Table 4. The
responses are shown for strong expansions and deep recessions. All responses are shown in percentage
deviations, except for the policy rate where changes in percentage points are reported.
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of real activity to an uncertainty shock in expansions and recessions, while providing a

fairly accurate description of a variety of other macroeconomic moments. Crucially, the

differences in these impulse responses between the two states of the business cycle are

not explained by changes in the structural parameters or by larger uncertainty shocks in

recessions than in expansions. Instead, these asymmetric responses are due to different

initial conditions, as captured by the states xt, which through the model’s endogenous

propagation mechanisms make an uncertainty shock more severe in recessions than in

expansions.
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Table 5: New Keynesian Model: Fit to Unconditional Moments

This table reports the means along with the standard deviations and correlations that are related to the
covariances and auto-covariances included in the estimator in (16). The data moments are computed
using quarterly US data from 1962Q3 to 2017Q4, while the corresponding model-implied moments are
computed in closed form for the means and using a simulated sample of 10, 000 observations for the second
moments. Moments for output, consumption, investment, and hours are in deviation from steady state,
as indicated by the "hat" notation, while the moments for inflation and the policy rate are annualized.
The detrending of the moments in US data are done using the procedure in Hamilton (2018).

(1) (2) (3)
Moments Data Benchmark Standard specification of

Model recursive preferences (u0 = 0)
Means
log Πt 0.034 0.034 0.033
logRt 0.051 0.055 0.056

Standard deviations
Ŷt 0.034 0.036 0.036
Ĉt 0.022 0.022 0.022
Ît 0.101 0.098 0.099
N̂t 0.032 0.030 0.030
log Πt 0.022 0.025 0.026
logRt 0.041 0.025 0.026

Cross-correlations
corr(Ŷt, Ĉt) 0.86 0.68 0.65
corr(Ŷt, Ît) 0.86 0.93 0.93
corr(Ŷt, N̂t) 0.90 0.96 0.96
corr(Ŷt, log Πt) -0.38 -0.04 -0.05
corr(Ŷt, logRt) -0.04 0.03 0.02

Auto-correlations
corr(Ŷt, Ŷt−1) 0.92 0.97 0.97
corr(Ĉt, Ĉt−1) 0.90 0.97 0.96
corr(Ît, Ît−1) 0.91 0.97 0.97
corr(N̂t, N̂t−1) 0.91 0.96 0.96
corr(log Πt, log Πt−1) 0.99 0.92 0.92
corr(logRt, logRt−1) 0.97 0.96 0.96

6 Inspecting the Mechanisms

This section identifies the mechanisms in the New Keynesian model that generate larger

effects of an uncertainty shock in recessions than in expansions. We first show in Section

6.1 that the state-dependent effects of an uncertainty shock are primarily generated by

the upward nominal pricing-bias channel. The economic interpretation of this channel is
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presented in Section 6.2, while Section 6.3 provides some external validation that supports

the importance of this channel.

6.1 Channels for an Uncertainty Shock

As emphasized by Bianchi et al. (2019), each of the intertemporal Euler-equations in

the model reflects expectations to uncertain realizations of state and control variables in

the future and hence introduce different channels for an uncertainty shock to affect the

economy. This implies that our model has the following channels for uncertainty shocks:

i) the precautionary savings channel as captured by the consumption Euler-equation; ii)

the nominal upward pricing bias channel as captured by the New Keynesian Phillips curve

(NKPC) related to firms’optimality condition for the nominal price; iii) the inflation risk

premium channel related to the Fisherian equation; and iv) the investment adjustment

channel, that arises due to investment adjustment costs.19

We evaluate the relative importance of each channel by solving the model as described

in Section 4, except that each Euler-equation is linearized one at the time to eliminate its

implied channel for uncertainty shocks. For each of these modified solutions, we calculate

the differences in the impulse responses between recessions and expansions, and compare

them to the baseline case where all channels are active. Our findings are summarized in

Figure 6. The results show that omitting the nominal pricing bias channel (the green

line with stars) removes nearly all of the asymmetry in the responses between recessions

and expansions, whereas none of the other channels have similar profound effects. This

shows that the upward nominal pricing bias channel is the crucial channel to generate

larger responses of output, consumption, investment, and hours to uncertainty shocks in

recessions than in expansions.20

19The Euler-equation for stock returns may also imply an equity risk premium channel for uncertainty
shocks. However, this channel is not present in our New Keynesian model because it omits feedback
effects from the stock market to the real economy.
20In the Online Appendix we draw the same conclusion by considering the reverse exercise, where only

the upward nominal pricing bias channel is active in the model. The Online Appendix also shows that
the upward nominal pricing bias channel does not affect the overall magnitude of the impulse responses
to an uncertainty shock but only the state-dependence of these responses.
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6.2 A State-Dependent Upward Nominal Pricing Bias Channel

This upward nominal pricing bias channel arises because firms’profit function is asymmet-

ric around the optimum in absence of uncertainty.21 Hence, in the presence of uncertainty

and sticky prices, it is beneficial for firms to set a relatively high nominal price. That

is, firms respond to higher uncertainty by biasing their prices upwards. Our results show

that firms bias their prices upward relatively more in recessions than in expansions and

hence display a state-dependent upward nominal pricing bias. This effect is also evident

from Figure 5, as prices in the baseline responses increase by more in recessions than in

expansions following the first quarters after the uncertainty shock, whereas this difference

disappears in Figure 6 when omitting the upward nominal pricing bias channel. To un-

derstand the state-dependent nature of this pricing bias, we first study the firm’s pricing

problem in a stylized two-period partial equilibrium setting, where the various effects are

very transparent. The following subsection then shows that these insights carry over to

the full general equilibrium model studied above.

6.2.1 A Two-Period Setting

Consider the following setting for the ith firm, which generalizes the static example in

Fernández-Villaverde et al. (2015) and Born and Pfeifer (2020) to two periods and with

quadratic price adjustment costs. The firm lives for two periods, and is initially at the

deterministic steady state where Πss = 1 and Pss = 1. No shocks affect real quantities,

meaning that marginal costsMCt (i) and aggregate output Yt are constant at (θµ − 1) /θµ

and 1, respectively. The objective of the firm is to set the current price Pt (i) and the

future price Pt+1 (i) when accounting for uncertainty about the aggregate price level in

the next period, i.e., Pt+1, whereas the current price level is known at Pt = 1. The

expression for real profit is otherwise identical to the one provided in the full model,

except that future profits are discounted by β. Hence, the firm solves the problem

Max
Pt(i),Pt+1(i)

∑
j={0,1}

Etβj
[(

Pt+j(i)

Pt+j
− θµ − 1

θµ

)(
Pt+j(i)

Pt+j

)−θµ
− φP

2

(
Pt+j(i)

Pt−1+j(i)
− 1

)2
]
.

(17)

Suppose that the firm expects an aggregate price level in period t+ 1 of either Pt+1 =

Pt+σ or Pt+1 = Pt−σ with equal probability. Without price adjustment costs (φP = 0),

it is easy to see that (17) reduces to two static optimization problems, where the current

optimal price is Pt (i) = 1 (because Pt is known), and the optimal price in the next

period Pt+1 (i) displays the familiar upward pricing bias due to uncertainty about Pt+1

(see Fernández-Villaverde et al. (2015) and Born and Pfeifer (2020)). To illustrate the

21As clarified by Fernández-Villaverde et al. (2015) and Born and Pfeifer (2020), the asymmetry of
the profit function is due to the combination of the isoelastic Dixit-Stiglitz demand function and the
assumption that demand always has to be satisfied.
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effects of accounting for price stickiness, we let θµ = 6, φP = 163, and β = 0.994 as

implied by our estimates in Table 4. The first chart in Figure 7 shows the profit function

for different values of the current price Pt (i) around the optimum of Pt+1 (i). The novel

observation is that this profit function is asymmetric around one as φP > 0, despite

the aggregate price level Pt is known. In contrast, without price stickiness φP = 0, the

profit function is perfectly symmetric around one with a known price level, as shown

in the Online Appendix. The second chart in Figure 7 plots the entire profit function

and reveals that both Pt (i) and Pt+1 (i) display upwards pricing biases. Thus, although

there is no uncertainty about the current price level Pt, the presence of price stickiness

makes it optimal for the firm to bias its current price upwards to smooth out its price

adjustment costs. In other words, uncertainty about the aggregate price level in the next

period is suffi cient to generate an upward pricing bias in the current price Pt (i). This

is an important observation because it corresponds to the situation in the full general

equilibrium model, as firms realize that uncertainty will be higher in the next period but

already in the current period decide to bias their prices upwards.

Figure 7: The Firm’s Profit Function
This figure plots the firm’s profit function as stated in (17), where Pt = 1 and the aggregate price level in
the next period is uncertain and given by either Pt+1 = Pt + σ or Pt+1 = Pt − σ with equal probability.
The applied values are θµ = 6, φP = 163, and β = 0.994.

Figure 7 also shows that these pricing biases are increasing in the amount of uncer-

tainty about Pt+1 - and hence future inflation Πt+1 ≡ Pt+1/Pt - as captured by higher

values of σ. This finding is closely related to the result in Born and Pfeifer (2020), who

show that higher uncertainty about the aggregate price level generates a higher upward
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pricing bias within their static setting. Unreported results also reveal that the pricing

biases in Pt (i) and Pt+1 (i) are increasing for higher values of β, because it increases the

importance of the price adjustment costs. Hence, in a more elaborated setting where

firms discount profits by a stochastic discount factor, higher values of this discount factor

in recessions (due to low consumption and high marginal utility) will increase the pric-

ing bias in Pt (i), and vice versa for expansions with a low discount factor (due to high

consumption and low marginal utility).

6.2.2 The Full Model

To understand the determinants behind this state-dependent pricing bias in the full

model, let us look at the NKPC which reads

φP

(
Πt

Πss

− 1

)
Πt

Πss

= (1− θµ,t) +
θµ,t
µt

+ Et
[
Mt+1φP

Yt+1

Yt

(
Πt+1

Πss

− 1

)
Πt+1

Πss

]
. (18)

An uncertainty shock enters in this equation through the term with the conditional ex-

pectation, i.e., Et
[
Mt+1φP

Yt+1
Yt

(
Πt+1
Πss
− 1
)

Πt+1
Πss

]
, which captures the nominal pricing bias.

To simplify the interpretation of this term, we show in the Online Appendix that the pres-

ence of Yt+1/Yt does not affect the impulse responses for an uncertainty shock, implying

that it is suffi cient to study the term PΠ
t ≡ Et

[
Mt+1φP

((
Πt+1
Πss

)2

− Πt+1
Πss

)]
. One way

to analyze this term is to note that PΠ
t is equivalent to the price of a hypothetical as-

set with pay-off φP
(
(Πt+1/Πss)

2 − Πt+1/Πss

)
. This pay-off increases monotonically for

higher values of Πt+1 (with slope coeffi cient φP (2Πt+1/Π
2
ss − 1/Πss)), implying that PΠ

t

represents the price for the firm of buying protection against high inflation in the future.

The value of this asset can be decomposed as

PΠ
t =

1

RR
t

Et

[
φP

((
Πt+1

Πss

)2

− Πt+1

Πss

)]
︸ ︷︷ ︸

Risk-neutral price

+ Covt

[
Mt+1, φP

((
Πt+1

Πss

)2

− Πt+1

Πss

)]
︸ ︷︷ ︸

Risk premium

, (19)

where RR
t = 1/Et [Mt+1] denotes the gross real interest rate. The first term on the right

hand side in (19) is the risk-neutral price of this hypothetical asset with its expected pay-

off discounted by the real rate. The second term is the additional price that a risk-averse

investor is willing to pay for inflation protection and constitutes a risk premium. The

unconditional mean of this risk premium is 1.9% in the model, but it displays considerable

counter-cyclical variation with a low mean of 0.9% in expansions and a high mean of 3.7%

in recessions.

The top row of Figure 8 shows that the asymmetric responses of prices and inflation

to an uncertainty shock go hand in hand with the asymmetric response of the price

of this hypothetical asset PΠ
t . In the bottom row of this figure, we further show that
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Figure 8: New Keynesian Model: Determinants of the Upward Pricing Bias
This figure shows the impulse response functions following a positive one-standard deviation uncer-
tainty shock (i.e. εσ,t = 1) in the New Keynesian model using the estimates in column (1) of Ta-
ble 4. The responses are shown for strong expansions and deep recessions. The risk premium in

PΠ
t is given by Covt

[
Mt+1, φP

((
Πt+1

Πss

)2

− Πt+1

Πss

)]
, the inflation volatility risk premium is defined as

Covt
[
Mt+1, φP

(
Πt+1

Πss

)2
]
, and inflation volatility is measured by Vt [Πt+1]. The responses of prices and

inflation are shown in percentage deviations, whereas the other response are scaled by 100 and shown in
absolute deviations.
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these asymmetric responses in PΠ
t are generated by the risk premium. The dominating

term in this risk premium is the squared term for inflation, i.e., Covt
[
Mt+1, φP

(
Πt+1
Πss

)2
]
,

which can be interpreted as an inflation volatility risk premium. To understand why

this conditional covariance displays larger responses in recessions than in expansions, we

exploit two insights from the simplified two-period setting discussed above.

First, the inflation volatility risk premium is closely related to the amount of inflation

volatility, which increases the pricing bias as shown in Section 6.2.1. One way to mea-

sure the degree of inflation volatility is to compute the conditional variance of inflation

Vt [Πt+1]. We find that the mean of Vt [Πt+1] in recessions is 19% higher than the mean

in expansions, showing that recessions in the New Keynesian model are characterized by

much more inflation volatility than expansions.22 The process for stochastic volatility

22This is consistent with empirical evidence, both when measuring inflation volatility by the interquar-
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σa,t contributes in two important ways to generate this asymmetry. First, recessions have

a higher value of σa,t than expansions, implying that an equal-size preference shock εa,t+1

is expected to have a larger impact on inflation in recessions than in expansions. Second,

the bottom right chart in Figure 8 shows that an uncertainty shock increases inflation

volatility by more in recessions than in expansions.

Second, another key driver of the inflation volatility risk premium is the dynamics

of the stochastic discount factor Mt+1. In the New Keynesian model, we find that the

realized values of Mt+1 have a higher level in recessions than in expansions due to lower

consumption and higher marginal utility than in expansions. As shown in Section 6.2.1,

a higher value of the discount factor increases the weight in the profit function to the

intertemporal smoothing of the pricing bias, and as a result helps to generate a larger

upward pricing bias in recessions than in expansions.

Thus, the economic intuition behind the state-contingent upward nominal pricing bias

is as follows. With price stickiness as in Rotemberg (1982), firms can reset their prices in

every period but face costs when doing so. In this multiperiod setting, inflation volatility

affects the current price, because it is optimal for firms to set higher prices after an

uncertainty shock to avoid large expensive future increases in prices. Two effects help to

make this pricing bias stronger in recessions than expansions. First, inflation volatility

is higher in recessions than in expansions. Second, firms discount future profits by the

stochastic discount factor, which has a higher level in recessions than in expansions. This

implies that firms assign more weight to future profits, which also helps to increase their

pricing bias by more in recessions than in expansions.

6.3 External Validation of the Key Mechanism

The reduction in real activity following uncertainty shocks implies that wages and the

rental rate of capital also fall in the New Keynesian model (not shown). With higher

prices, we therefore see a higher price markup, which Fernández-Villaverde et al. (2015)

and Basu and Bundick (2017) show is the key driver behind the real effects of uncertainty

shocks in the model, although Born and Pfeifer (2020) challenge this effect. Our finding

that the upward nominal pricing bias is state-contingent helps to clarify how this channel

works across the business cycle. This is illustrated in Figure 9, which shows that the

price markup increases by more in recessions than in expansions (top chart to the left),

and that this difference disappears when we omit the state-contingent nominal pricing

bias (top chart to the right).

Thus, a simple way to validate the key mechanism in the New Keynesian model for

generating asymmetric responses to an uncertainty shock is to explore if the price markup

tile range of the one quarter ahead forecast of inflation in the Survey of Professional Forecasts or by a
GARCH(1,1) model applied to the residuals of an autoregression with four lags for CPI inflation.
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in the US displays asymmetric effects across the business cycle. We implement this

external validation of the model by extending the IVAR with the price markup, which

we measure by the inverse of the labor share in the business sector as in Fernández-

Villaverde et al. (2015). Similar to our baseline analysis in Section 2, we allow the

responses of the price markup and the other variables in the IVAR to change across the

business cycle. The middle row in Figure 9 reports the median target responses for the

price markup in expansions and recessions alone with their 90 percent confidence bands.

The responses in recessions are much larger than in expansions, in particular after the

first four quarters. This is seen clearly from the bottom left chart in Figure 9, which

shows that the median target response in recessions is substantially above the response

in expansions. The bottom right chart shows that the differences in these median target

responses are significant at the 90% level. Thus, the dynamic responses of the price

markup in the US appear to be consistent with the predictions from the New Keynesian

model, which leaves further support for the presence of a state-contingent upward nominal

pricing bias.23

7 Conclusion

This paper employs a nonlinear VAR and a non-recursive identification strategy using a

combination of narrative, correlation, and sign restrictions to show that the real effects

of an uncertainty shock are stronger when growth is low (as in recessions) than when

growth is high (as in expansions). An estimated medium-scale New Keynesian model

approximated to third order around the risky steady state goes a long way in reproducing

these state-dependent impulse responses to an uncertainty shock. The key mechanism is

that firms display a stronger nominal upward pricing bias in recessions than in expansions,

as firms face more inflation uncertainty and have a higher value of the discount factor in

these states of the business cycle. This leads firms to post higher prices through higher

markups in recessions when compared to expansions, which then worsens the real effects

of an uncertainty shock in recessions. This prediction is supported by a nonlinear VAR

that produces a larger response in an empirical measure of the price markup in recessions

than in expansions following an uncertainty shock.

23In the Online Appendix, we further show that the only channel that eliminates the state-dependent
responses of the price markup to an uncertainty shock is the nominal upward pricing bias channel.
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