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1. INTRODUCTION

The appropriate choice of the social discount rate is of tremendous importance for the evaluation
of policies with long-run impacts. This is particularly true for environmental policies such as the
optimal extraction of nonrenewable resources or the optimal reduction of greenhouse gas emissions,
for which costs and benefits are distributed over a very long time horizon and decisions today affect
the welfare of generations in the distant future. The choice of the appropriate social discount rate
dwarfs the impact of all other factors on these types of optimal environmental policies.

While much of the discussion has focused on the size of the social discount rate (SDR), a debate
about whether the SDR, should be constant or declining has also been flourishing. Recently, a panel
of leading economists in environmental economics came to the conclusion that the SDR should be
declining (Arrow et al., 2014). In short, a declining SDR is motivated by uncertain but positively
correlated shocks to the future SDR (Gollier, 2012). Thereby, either the growth rate of consumption
as a component of the SDR can be uncertain (see Gollier, 2012, for a survey) or the SDR itself
(e.g., Weitzman, 1998, 2001, 2007).

We take up these insights and introduce a declining social discount rate into macroeconomic models
with optimal extraction of non-renewable resources. We then investigate how hyperbolic discounting
affects optimal resource extraction and economic growth in comparison to exponential discounting.
In order to isolate the impact of the discounting method on resource extraction and growth, we
hold the magnitude of discounting constant for both discounting methods by assuming that for both
discounting methods an infinite constant income stream has the same net present value (Myerson
et al., 2001).

For our analysis we have to distinguish between the social discount rate, §, applying to future
monetary values (of consumption or output) and the utility discount rate, p, applying to future
instantaneous utility. Both rates are connected through the Ramsey formula § = p+ ogc, where o
denotes the inverse of the intertemporal elasticity of substitution, and g¢ is the rate of consumption
growth. In our macroeconomic model, consumption growth, gc, is endogenous and therefore also
the SDR, 6. This implies that we cannot introduce a declining SDR directly. For example, for
constant consumption growth and a constant intertemporal elasticity of substitution o, the SDR
declines if the utility discount rate p declines. In cases in which the growth rate of consumption

increases (and o is constant), the utility discount rate p has to decline sufficiently fast to achieve a
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declining SDR. We assume that the utility discount rate is declining hyperbolically, resulting in a
declining social discount rate if the consumption growth rate does not increase too rapidly.

For introducing a declining SDR caused by a declining utility discount rate we face a fundamental
problem. Either decisions of the social planner are time-inconsistent, or the planner’s preferences
are only weakly stationary. Weak stationarity in this context means that two social planners only
face the same preferences at the point in time when they initially optimize and decide on the
optimal policy path, or when the time-span between initial time of optimization and the time
of re-optimization is the same for both planners. This is reflected by the fact that preferences
depend on calendar time and not only on the distance between planning and decision time as
for exponential discounting. We follow Pezzey (2004) and Strulik (2020) and introduce a time-
consistent hyperbolic discount function which is multiplicatively separable in decision time ¢y and
pay-off time ¢ and therefore leads to time-consistent decision making (see Burness, 1976; Drouhin,
2009, 2020). These types of preferences are only weakly stationary.

In order to gain a basic understanding of how hyperbolic discounting affects optimal resource
extraction, we first compare hyperbolic and exponential discounting in a simple model of resource
extraction, which we can solve analytically. Contrary to what one might expect, resource depletion
is not faster with hyperbolic discounting compared to exponential discounting. For empirically
realistic values of the intertemporal elasticity of substitution for consumption, we find that the
extraction rate is always lower under hyperbolic discounting and, consequently, the resource stock
is always higher under hyperbolic discounting.

This seemingly counter-intuitive result can be explained by the fact that even though the discount
rate is initially higher for hyperbolic discounting, it drops below the level of the discount rate for
exponential discounting at some point and remains lower thereafter. Since complete depletion of
the resource in finite time can never be optimal, the social planner is inevitably more patient under
hyperbolic discounting from some point in time onward. This also leads to a more conservative
resource use from the beginning. In other words, the forward looking social planner anticipates his
high future patience already in the initial years and chooses low extraction rates in order to allow
for high consumption in the distant future.

We then compare resource extraction and economic growth for both discounting methods in the sem-

inal Dasgupta-Heal-Solow-Stiglitz (DHSS) model (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz,



1974). We show analytically, that a (much) lower rate of technological progress is needed in order
to achieve a positive long-run growth rate of consumption for hyperbolic discounting compared
to exponential discounting. Again, this is caused by higher patience of the social planner in the
long-run, which results in a more conservative resource use and higher accumulation of capital.

In order to solve the model numerically, we calibrate it with US data. The model predicts that the
resource extraction rate is higher for hyperbolic discounting compared to exponential discounting
in the initial years, but declines below that of exponential discounting after about 25 years and
converges towards a lower long-run ratio asymptotically. Therefore, resource use is also more
conservative in the DHSS model in the medium- and long-run.

Our paper is most closely related to Pezzey (2004), who introduces hyperbolic discounting into
the DHSS model. His paper belongs to a strand of literature analyzing conditions under which a
maximin solution and a classical utilitarian solutions exist and are non-trivial (see e.g. Mitra, 1983;
Pezzey, 2004; or Asheim et al., 2007).! Our paper is related to this strand by an equivalence result,
i.e. under specific parameter restrictions our model is equivalent to the models in these papers. This
implies that our results with respect to resource extraction of a hyperbolic discounting economy can
be interpreted as the solution of either a maximin or classical utilitarian social planner, depending
on the exact restriction of parameter values. We do not elaborate on the equivalence result and
instead leave it for future research, because our focus is the comparison of a resource extracting
economy with a hyperbolic discounting social planner and an exponential discounting social planner,
which to our knowledge has not been analyzed in this strand of the literature so far.

In Section 2, we introduce hyperbolic discounting and apply it to a simple model of resource
extraction. We then proceed with introducing hyperbolic discounting into the DHSS model, which
we analyze in Section 3. Section 4, we calibrate it to the US and solve it numerically. In Section 5,

we conclude, and we collect the formal derivations of the DHSS model in A.

2. THE SIMPLIFIED MODEL

Before turning to the more complex DHSS model, we first study the impact of the social planner’s
discounting method on optimal resource extraction and consumption in a simple resource model,

Mitra (1983) finds that quasi-arithmetic population growth is consistent with non-trivial maximin or “optimal”
classical-utilitarian programs. Pezzey (2004) finds that there is a feasible development path that is “as if” optimal
with respect to hyperbolic utility discounting and quasi-arithmetic technological progress and obtains a maximin path
as a special case. Asheim et al. (2007) provide closed-form solutions to both the maximin and the classical utilitarian
problem with quasi-arithmetic population growth and show the equivalence to constant savings rates.
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for which we can provide an analytical solution. In the simple model, technology and population
are constant. Furthermore, we assume that there is no physical or human capital, and that final

output is produced from extracted resources only.

2.1. The social planner. A social planner maximizes households’ welfare U understood as utility
from consumption u(c(7)) experienced over an infinite time horizon and discounted to the present

using the discount function D(tg,t,7),

U— /too Dito,t, 7u(c(r))dr . (1)

For the discount function D we distinguish between three different notations of time. Time tg
denotes the initial planning time, which we assume to be fixed. Time t > ty denotes the actual
planning time. It only deviates from ¢y if the social planner reoptimizes at a later point in time
t > to. Finally, the discount function includes the decision time 7 > t for which forward-looking

decisions have to be made.

2.2. Discounting. For assessing how the discounting method affects resource extraction and con-
sumption, we solve the model for both discount functions: exponential discounting and hyperbolic

discounting. For exponential discounting we get
De(to,t,7) = e P71, (2)

For hyperbolic discounting we follow Mazur (1987) and Strulik and Trimborn (2018), and choose
the discount function?

1 —i—a(t —to)

b
—talt=th) > 1.
1+M7—m» az0, b> 3)

Dp(to,t,7) = <

Since the exponential discount function is only affected by the distance between decision time and
actual planning time 7 — ¢, preferences are independent from the actual point in time when they
are made and decisions are time-consistent (Strotz, 1956).

In contrast, two different social planners with the hyperbolic discount function (3) only have the
same discount factor if the difference between initial planning time and actual planning time t — g

is the same. In other words, when two social planners start planning at a different initial time %,

2With the normalization t = to = 0 the discount function is the same as in Pezzey (2004) and Strulik (2020).
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they only face the same discount function if the same amount of time has elapsed between initial
planning ¢y and replanning ¢. This implies that preferences are only weakly stationary (see Strulik
and Trimborn, 2018). Note that decisions are nonetheless time-consistent. When the social planner
reoptimizes at a later point in time ¢t > ¢y he choose the same allocation for all future points of
time 7 > ¢ compared to the initial plan made at tg.

The discount factor is 1 for both discounting methods at time ¢ and decreases when the decision
time 7 moves further into the future. However, the speed at which both discount functions decline
differs due to the functional form. This can best be seen by focussing on the discount rate, which
captures the speed at which the discount function declines. The discount rate is the (negative)

growth rate of the discount function. To simplify the notation we normalize ty = 0 and get that

dD./dr
5 =
dDy/dr  ab
D,  l+4ar’

Figure la shows the discount functions for exponential discounting (dashed line) and hyperbolic
discounting (solid line). By construction, both discount functions start at 1 and decline as the
time horizon increases. The hyperbolic discount function declines more steeply at first but is less
steep at points in time in the distant future. Consequently, both functions intersect. The difference
between both discount functions can also be seen by inspecting the discount rate (see Figure 1b).
It is constant for exponential discounting. In contrast, the hyperbolic discount rate declines over
time and converges to zero. If both discount functions are normalized, as we suggest in the next

subsection, the hyperbolic discount rate is initially higher than for exponential discounting.

2.3. Normalization. In order to isolate the impact of the discounting method on resource ex-
traction we apply the equivalent present-value approach (Myerson et al., 2001). The idea is to
choose parameter values such that the present value of a constant stream of, for example, utility
is the same for both discounting methods. In this way, any observed differences are not caused by

differences in the magnitude of discounting, but by the discounting method itself. If we normalize

/ e_pTdT:/ ( ) dr.
0 0 1 + at

5

to =1t =0 we get




FIGURE 1. Discount function and discount rates
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(A) Discount function for exponential discounting (B) Discount rate for exponential discounting
(dashed line) and hyperbolic discounting (solid line). (dashed line) and hyperbolic discounting (solid line).

Solving the equation analytically provides the parameter restriction

p=alb—1). (4)

2.4. Resource extraction and production. Output Y is produced from extracted resources R
with a one-to-one production technology, Y = R. Since there is no savings and capital accumulation,
all output is consumed, C = R.

The resources are extracted from a non-renewable resource stock S and the initial resource stock

So is given. Hence, the extraction equation is

S=—R, S(0)=S5.
2.5. Model solution and comparison. We parameterize the utility function u(-) with a CIES
utility function with the inverse of intertemporal elasticity of substitution denoted by ¢. The social

planner solves

00 -0 _ 1
U:/ D(to, t, 7)70(7—) dr
¢ l1-0

st. S=—-R, S(0)=Sp.

We normalize tg = t = 0 and solve the model for exponential and hyperbolic discounting. For

exponential discounting we get a constant extraction ratio R/S = p/o, i.e.



SHES)

The optimal path of resource extraction is
Re(r) = 2Spe57. (5)
o

For hyperbolic discounting optimal extraction is given by

and solving for the time path of R gives

Rp(r) = “(b;“)sou tar) s, (6)
for b > o.

We now insert the normalizing equation p = a(b — 1) and get

R(r) = W=D g —etons (7)

g

Ru(7) = a(bg_ %) So(1 4 ar) % | 8)
Note that in both cases it is optimal to stretch extraction over an infinite time horizon such that
extraction rates are always positive and converge to zero asymptotically. This results from our
assumption that resources are essential for consumption.
For 7 = 0 both discount factors are normalized to 1 and hence R.(0) > R (0) for 0 > 1 and R.(0) =
Ry, (0) for o = 1. Since Chetty (2006) argues that the intertemporal elasticity of substitution has
to be equal or less than 1 implying that ¢ > 1 we focus our analysis on this case. To illustrate the
impact of the discounting method on resource extraction we show the optimal extraction R and
the resource stock S for the border case of o = 1.
Figure 2a shows optimal resource extraction over time. It starts at the same level for both discount-
ing methods but declines faster for hyperbolic discounting. At some point in time 7* both lines

intersect and from there on resource extraction is higher for hyperbolic discounting. This inversion



in resource extraction follows from the fact that for both discounting methods it is optimal to de-
plete the entire resource stock eventually. If R, > Rj; would hold for all time, resources would not
be exhausted even in infinite time for the case of hyperbolic discounting. In the case of ¢ > 1, the
extraction path for hyperbolic discounting starts even lower compared to exponential discounting,
but otherwise the pattern of resource extraction is identical to the case of o = 1.

FIGURE 2. Resource extraction in the simple model
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The insights from the extraction paths can be used to infer how the resource stock evolves over time.
Figure 2b shows the evolution of the resource stock for both discounting methods. The resource
stock under hyperbolic discounting is always larger compared to that of exponential discounting.
The reason is that extraction is always lower under hyperbolic discounting for the initial periods
and larger afterwards. In other words, resource use will be more conservative under hyperbolic

discounting. We summarize the results for the simple model.

REsuLT 1. Consider the simple resource extraction model with the normalizing assumption that ex-
ponential discounting and hyperbolic discounting both yield the same net present value of a constant
utility stream. In this case, resource extraction is more conservative under hyperbolic discount-
ing compared to exponential discounting when the intertemporal elasticity of substitution is in the

empirically realistic range, i.e. o > 1. In this case Sp(T) > Se(7) for all T > 0 holds.

The intuition for this result is driven by the observation that hyperbolic discounting in comparison
to exponential discounting does not imply that the social planner is more impatient per se. Since

we hold constant the magnitude of discounting by our normalization, a social planner who uses
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hyperbolic discounting is more impatient initially but less impatient at later points in time as
measured by the instantaneous discount rate. This means that even when the immediate discount
rate is high initially, the social planner who uses hyperbolic discounting hesitates to choose high
extraction rates, because he anticipates that he will be much more patient at later points in time.
He saves resources for the future, when the weight on utility is higher compared to the social planner
who uses exponential discounting. This results in a more conservative resource use for the entire

extraction plan.

3. TuE DHSS MODEL

We now turn to the more complex model with capital accumulation and study how the discounting
method of the social planner affects resource extraction and long-run economic growth in the seminal
Dasgupta-Heal-Solow-Stiglitz (DHSS) model (Dasgupta and Heal, 1974; Solow, 1974; Stiglitz, 1974).
We assume constant population growth at rate n and constant exogenous technological progress
at rate g. Output is produced with labor, capital and resources with a Cobb-Douglas production
technology, implying that resources are essential for production. The social planner maximizes
the discounted stream of utility over an infinite time horizon by choosing the optimal path of

consumption and resource extraction.

3.1. The social planner’s solution. In contrast to the simplified model presented in Section 2
we now use the more general discount function

_ b
D(to,t,7) = e=#T1) . (11 - Z((j - 2)) ) | 9)

For this discount function the discount rate is

D (tot,
(aiOT a ab

"Dl tr) T Tran)

10
D(t()vt’T ( )

The general discount function nests two special cases. For a = 0 and p > 0 the discount function
collapses to the exponential discount function with the constant discount rate p (see also equation
(2)). For p = 0 and a > 0 the discount function reduces to the hyperbolic discount function (3),
for which the discount rate declines and converges towards zero. We denote this second case ‘pure’
hyperbolic discounting from now on. We denote the general discount function with p > 0 and

a > 0 ‘mixed’ discounting. It exhibits a declining discount rate that converges to p asymptotically.
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This allows us not only to compare the limiting cases of pure exponential and pure hyperbolic
discounting, but also to compare pure exponential discounting with ‘mixed’ discounting. A small
but positive discount rate p is supported by Stern (2007) who argues that a small but positive
long-run discount rate accounts for the possibility of humanity being extinguished by an exogenous
event.

The social planner’s maximisation problem now reads

oo l—o _ B _ b
ma,x/ cr-l 1e_"’(7_t) 1+alt —t) dr,
C.R Jy -0 1+ a(r —to)

with CIES utility function and o denoting the inverse of the elasticity of intertemporal substitu-
tion. The social planner takes two constraints into account. The first constraint is the capital

accumulation equation which describes the evolution of capital K over time:
K=AK“L'" " "RY —C - K, O0<a,y<1,

where we assume the production function is Cobb-Douglas and has constant returns to scale. The
elasticity of capital in final output production is denoted by «, and the elasticity of resources in
output production is denoted by 7. The size of the labor force L and technology A are assumed to
grow exogenously at rate n and g, respectively, i.e., % =n and % = g hold. The initial values of
the capital stock K (0) = Ky, the labor force L(0) = Ly, and technology A(0) = Ay are given.

We assume that the parameter restriction (1 — a)p > (1 —0)(g9 + (1 — a@ — v)n) holds, ensuring
finite lifetime utility. For reasonable parameter values this restriction is always fulfilled.

The second constraint describes the evolution of the resource stock S:

Naturally, resource extraction and the resource stock have to be non-negative, i.e., R > 0and S > 0
have to hold.
Setting ty = 0, the social planner’s optimization problem reads

O 14at\’
maaz/ Pt +a dr (11)
C.R J, l—0 1+ar

st. K = AKCLY""RY — O — 6K
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S=-R.

3.2. Model solution and scaling. The dynamic system (derived in A) reads:

C Yy (¢

5._ a—17l—a—y pvy ~ — -

= AKCTILTOTR - 2 5= - =8 (12a)
S R

= 12
=7 (12b)
g _AK*TIRY -0 —p— e _ ok —0—p— 1 (12¢)
c o B o

R a C (1-a 1

The variables of system (12) are either converging to infinity or to zero. For analyzing the system we
have to convert it into a stationary form such that the variables converge to finite, interior values.
However, because the model, and hence system (12), is non-autonomous, it does not exhibit a
balanced growth path in finite time. This means we cannot apply the usual procedures which
are applied to conventional growth models for converting the system into a stationary form (see
Trimborn, 2018). Therefore, we extend a procedure called scale-adjustment, which is frequently
used to analyze models of balanced growth, to systems without balanced growth.

The idea of scale-adjustment is to slow down the growth of variables by the respective balanced
growth rate such that the resulting system is stationary (see Trimborn, 2018). Assume that variable
X grows with constant rate gx in the long-run. Then the scale-adjusted variable z is defined as
=X e 9xt,

For our model, the growth rate of X may change over time. In fact, the dynamic system converges
asymptotically to that of the standard DHSS model with discount rate p > 0, implying that the
growth rates also converge towards that of the standard model asymptotically. In order to facilitate
the analysis of the model, we aim at scaling the model with scaling factors that are close to the
solution under study. For this purpose, we extend the definition of scale-adjustment and introduce

time dependent scaling factors according to
zi=X e Joox(midr (13)

For deriving the asymptotic and time-dependent growth factors for scale-adjustment, we proceed as
follows. We first derive ratios to which the variables converge asymptotically. Then, we insert these
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ratios into system (12) for deriving asymptotic growth rates of the model variables. Finally, having
derived asymptotic growth rates, we apply scale adjustment to define variables that are stationary
in the long-run (analogous to scale-adjustment in Trimborn, 2018) and convert the dynamic system
into its scale-adjusted counterpart.

We find that, in the long-run, two groups of variables grow with the same rate. The first group
consists of output, Y, consumption, C, and capital, K, and the second group consists of extraction
rates, R, and the resource stock, S. We use this insight for deriving the level to which the ratios
Y/K, C/K, and R/S converge asymptotically.

By denoting the growth rate of variable X by gx, we get from the production function
(I-a)gx =v9r + g+ (1 —a—7y)n. (14)

Substituting % and % into this equation we get

Y l1—-a—-~vC 1-« 1
l-a)m=—o T 1—a—y)n). 1
1-a)p T K+1_,Yf5+1_,y(g+( o —y)n) (15)

Equating equations (12a) and (12c) gives a second relation for Y/K and C/K,

Y = b
K K o ‘
Equating (15) and (16) and solving for £ and £ yields the following asymptotic relations

Y , l—a—xv _ ba 1 o(g+ (1 —a—v)n)
lim— =1 —0 17
iy tﬁ&[(l—a—’y—i—a’y)a <p+1+at>+a * al—a—-y+oy) |’ (7)

(1=9)(1-a) B ba 11—« (c—a)(g+(1—-—a—")n)
[a(l—a—*y—i—a’y) <p+1+at>+ o o a(l—a—vy+07) } 18)

ltm — = lim
t—oo K t—o00

Equating gr and gs and substituting for C'/ K results in

1-— b 1-— 1—a-—
imE i | — 17 Gy b Y _(zolg+(-a=yn)) (19)
tw0S  tooo |l —a—v+o0y 1+ at l—a—v+oy

By substituting the limits of equations (17) and (18) into equation (12a) we get

¢ Y [_ y < ba >+(g+(1—a—7)n)

tli@?:tlgrgoaztllz?o?:tli@o l—a—vy+~0o p+1+at l—-a—-—vy+n~0o

| e
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Substituting equation (19) into equation (12b) gives

' ' 1-— 1-— 1—a-—
lim 2 = lim S = lim [— - <ﬁ+ ba >+( olg+(l-a 7)")] . @)
l—a—v+o0y 1+ at l—a—-—vy+oy

t—o0 t—o0 S t—o0

From these equations we define the scaling factors for the variables according to

dic) = si:0) = | el (et R et ) IR Y

p+1+at

_1—a—'y—|—'ya l—-a—v+n0o

1 -« _ ba (I1-0)(g+ (1 —a—~)n)
=t ) = |- —M — . 22b
gR() gS() 1a’y+07<p+1+at>+ l—a—vy+oy ( )

Using equations (22) we introduce the scale-adjusted variables k, ¢, r, s, and derive the system

k_y c .

%—%—E—5—9K (23a)

5 T

L _ gt 23b

s s 987 (23b)
- ba

¢ ap—0- (p+1+at)

g — gF 23

v e 9o (23¢)

7 a ¢ (1-a 1 .

L < 1—a—7)n)— 2

" % 1_75+1_7(9+( a—7)n) — gr (23d)

with y = k%r7.

3.3. Normalization. Just like in the simplified model, we apply the equivalent present-value ap-
proach (Myerson et al., 2001) to compare exponential and hyperbolic discounting. This means that
the parameters have to be chosen such that the present value of a constant utility stream is the
same for both discounting methods:
9] 0o b
/ oplt—t0) gy — / o—lt—to) (HatO> Qb (24)
to to 1+ at

Setting ty = 0 and solving this equation for p yields:

P
) A (25)

I'(1—0b,5)ea(5)

where I'(+, -) is the incomplete gamma function. This equation, while more complex than its coun-

Qo

terpart in the simplified model (4), is numerically solvable.
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3.4. Long-run growth and sustainability. We now focus on long-run economic growth and
derive the conditions under which the social planner chooses a consumption path exhibiting positive
growth asymptotically. We then compare these conditions for both discounting methods.

From limy_, g5 (1) é 0 we derive the condition vp < (¢ + (1 — a — 7)n) for positive growth of
total consumption. Converting this into a relation for positive per-capita consumption growth in

the long-run gives

Yo <g—(a+y)n. (26)

For pure exponential discounting, this equation turns into vp < g — (a + y)n with a large p. For
pure hyperbolic discounting, the equation reduces to (o 4+ v)n < g and, because a + v < 1 holds,
it is always fulfilled if g > n holds. If g = n = 0 holds, consumption is asymptotically constant at
some positive level under pure hyperbolic discounting.

We now investigate the parameter restrictions under which positive consumption growth is possible
for mixed discounting. Results for pure exponential and pure hyperbolic discounting then follow
immediately by setting p = 0 and p = p, respectively. For the analysis we focus on the growth
rate of technology, g, and the population growth rate n. First, we derive the minimum rate of
technological progress needed for positive consumption growth under both discounting methods,
and second, we derive the maximum rate of population growth which can be supported with a
positive growth rate of consumption at the same time.

Focusing on the growth rate of technology we get
g>yp+ (a+7y)n. (27)

Plugging in p = p and p = 0 for both discounting methods shows that under hyperbolic discounting
a (much) smaller (i.e., by vp) rate of technological progress is needed for supporting positive per-
capita consumption growth than under exponential discounting. If population growth is zero, any
positive growth rate of technology leads to positive per-capita consumption growth asymptotically
under hyperbolic discounting.

For focussing on population growth we rearrange the condition to

g—p
a—+y

n <

(28)
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Because p enters the right hand side with a negative sign, a much higher population growth rate can
be supported for hyperbolic discounting compared to exponential discounting (i.e., the difference
is vp/(a+7)).

Since these are only asymptotic results and the optimal consumption path chosen by the social
planner is endogenous in our model, we take a closer look at the social discount rate §. The
social discount rate is connected to the growth rate of consumption via the modified Ramsey rule
(6=p+ % + 0gc) and is thus also endogenous in our model. The left panel of Figure 3 shows
the social discount rate for different initial values Ky and Sy. While the SDR is monotonically
declining for most combinations of initial values, there are some paths for which the SDR rises in

the first years.

FIGURE 3. Social discount rate
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lines) indicates the utility discount rate.

In the right panel of Figure 3 we focus on one exemplary path for a SDR which initially rises and
only declines afters some years, and decompose it according to the modified Ramsey rule. The

solid line depicts the social discount rate. The dotted line shows the second part of the Ramsey

formula, ogc, and the shaded area indicates the utility discount rate p + %. Even though

the utility discount rate declines monotonically, the steeply increasing growth rate of consumption

dominates the shape of the SDR in the first years. However, after a few years, when most of the

rapid convergence subsided, the declining utility discount rate dominates and the SDR is declining.
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4. QUANTITATIVE ANALYSIS

4.1. Parametrization. In this section, we parameterize the model to the US. The capital share in
the Cobb-Douglas production function is set to o = 0.3, which is in line with literature suggesting
a plausible range for the capital share of 0.3 to 0.4 (e.g. Maddison, 1987; Englander and Gurney,
1994). The output elasticity of resources, v, is set to 0.046, which is in line with previous studies (see
Acemoglu and Rafey, 2018, Hassler and Krusell, 2012 and Golosov et al., 2014). The depreciation
rate, 0, is set to 0.08. The growth rates of population and technology are set to n = 1% and
g = 1.5%, respectively.

For the calibration of the inverse of the elasticity of intertemporal substitution, o, we use a meta-
analysis of 2735 published estimates of the elasticity of intertemporal substitution by Havranek
et al. (2015). They find the average value of the elasticity of intertemporal substitution to be 0.5,
and thus we set ¢ = 2 accordingly. In order to calibrate the discount rate for the model with
exponential discounting, p, we use the assumption that the average growth rate of consumption is
1.6%. From equation (20) we get, in conjunction with the other parameter values, that p = 2.4%.
For calibrating the preference parameters for hyperbolic discounting, a,b and p we follow Stern
(2007) and set p to 0.1% to account for the possibility of humanity being extinguished by an
exogenous event. The parameters a and b have to be chosen such that the present value of a
constant utility stream is the same for both discounting methods, see equation (24). However,
this condition is not sufficient to get unique values for a and b. Therefore, we use values which
additionally provide a good fit to the responses Weitzman (2001) obtained from asking over two
thousand PhD-level economists “what real interest rate should be used to discount over time the
(expected) benefits and (expected) costs of projects being proposed to mitigate the possible effects
of global climate change”. The forward rates he suggested are presented in Table 1. Using equation

(24) and Table 1, we obtain b =2 and a = 0.02.

TABLE 1. Forward Discount Rate Schedule, Source: Weitzman (2001)

Time Period Name Marginal Discount Rate (Percent)
Within years 1 to 5 hence Immediate Future 4
Within years 6 to 25 hence Near Future 3
Within years 26 to 75 hence Medium Future 2
Within years 76 to 300 hence Distant Future 1
Within years more than 300 hence Far-Distant Future 0
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For the calibration of Ky we take the estimate from FRED, Federal Reserve Bank of St. Louis
(2020) which amounts to 56 trillion dollars. The initial resource stock is calibrated by adding up
the worth of the United States’ proved crude oil (EIA, 2020b) and natural gas (EIA, 2020c) reserves
which yields a worth of approximately 5 trillion dollars. We normalise Sy to unity and scale K\

accordingly, yielding Sy = 1 and Ky = 11. All parameter values are collected in table 2.

TABLE 2. Parameter values used for numerical simulation

Parameter Description Value
« Output elasticity of capital 0.3

I} Output elasticity of labour 0.6

0% Output elasticity of resources 0.1

1) Depreciation rate 0.08
o Inverse of the intertemporal elasticity of substitution 2

g Growth rate of the level of technology 0.015
n Growth rate of population 0.01
p Discount rate (exponential discounting) 0.024
a Parameter for the discount rate (hyperbolic discounting) 0.021
b Parameter for the discount rate (hyperbolic discounting) 2

p Parameter for the discount rate (hyperbolic discounting) 0.001

4.2. Resource extraction under hyperbolic and exponential discounting. We now turn to
the quantitative solution of the DHSS model and show that resources are exploited more conser-
vatively under hyperbolic discounting compared to exponential discounting. For that purpose we
solve the model numerically using the Relaxation algorithm Trimborn et al. (2008). The method
does not use local approximation around the steady state but solves for the exact adjustment path
globally, up to a user specified error. Therefore, it is particularly useful for solving highly non-linear
adjustment paths far away from the steady state, just as for the model at hand. For the solution
we employ the method of (Trimborn, 2013) to ensure that non-negativity constraints for resource
extraction and investment hold.

The method can only be applied to stationary systems. This is why we proceed in two steps. In
a first step, we employ the Relaxation method to solve transitional dynamics of the scale adjusted
system (23) given the initial conditions. In a second step, we convert the scale adjusted variables
back into their original counterparts by using equation (13).

Figure 4a shows the resource extraction path for hyperbolic discounting (solid line) and exponen-

tial discounting (dashed line). In the initial period, resource extraction is higher for hyperbolic
17



discounting, but after about 16 years, extraction under exponential discounting overtakes and re-
mains higher than under hyperbolic discounting until about year 70. From then on, extraction

under hyperbolic discounting is again higher for the remaining time.

FiGure 4. Comparison of resource extraction levels
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The race of resource exploitation under both discounting methods can be also illustrated by focusing
on the extraction rate, R/S, which we show in Figure 4b. While the extraction rate is initially
higher under hyperbolic discounting (solid line), it is soon overtaken be the extraction rate under
exponential discounting (dashed line). From the intersection point onwards, both extraction rates
follow strikingly different paths and converge towards different levels asymptotically. From equation
(19) we can derive that the rate converges towards 5.1% under exponential discounting and towards
3.0% under hyperbolic discounting, i.e. asymptotically the rate is only 58% of that under exponential
discounting.

Finally, we compare the evolution of the resource stock under both discounting methods. Figure 5a
shows the evolution of the resource stock for hyperbolic discounting (solid line) and exponential
discounting (dashed line). By construction, both stocks start at 1. Caused by initially higher
extraction under hyperbolic discounting, the resource stock is lower compared to exponential dis-
counting in the first years. After 22 years, the gap starts narrowing and after about 42 years, the
ranking switches and the stock remains higher for hyperbolic discounting thereafter.

The different evolution of the resource stock under both discounting methods can also be illustrated
by focusing on the ratio of both stocks. We show the ratio of the stock between exponential

discounting and hyperbolic discounting in Figure 5b. The ratio starts at 1, peaks in year 12 and
18
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declines monotonically afterwards. From year 60 onwards, the ratio is below 1, indicating that the
stock is higher under hyperbolic discounting.

To summarize, the overall picture is that resource extraction is faster in the initial years under hy-
perbolic discounting compared to exponential discounting. However, in the medium- and long-run,
resource use is more conservative under hyperbolic discounting, leading to a higher resource stock
in the medium- and long-run. The intuition behind this finding is driven by the different weight
that both discounting methods give to instantaneous utility over time. Initially, the social planner
using hyperbolic discounting is very impatient compared to the social planner using exponential
discounting, measured by the high initial discount rate. Consequently, resource extraction is faster
in the first years under hyperbolic discounting. This changes, however, after a few years when
the hyperbolic discount rate declines to low levels and the social planner employing hyperbolic
discounting becomes very patient. Resource extraction rates slow down and converge towards a
much lower long-run level.

The different impact of both discounting methods can also be seen by focusing on the second
intertemporal decision of the social planner: the accumulation of capital. Figure 6a shows the ratio
of the capital stock for both discounting methods. By construction, it starts at 1. Since the savings
rate of the social planner using exponential discounting is higher initially, the ratio increases but
peaks already after about 15 years. Thereafter, the savings rate of the planner using hyperbolic

discounting is higher and the ratio declines monotonically. Just like for resource extraction, the
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social planner using hyperbolic discounting only behaves less conservatively in the initial years and

more conservatively thereafter.

FIGURE 6. Comparison of capital stock and consumption
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Finally, we compare consumption under both discounting methods. The overall picture is that,
maybe surprisingly, consumption is higher under hyperbolic discounting, except for a short period
between year 10 and year 65. This results from the fact that the higher savings rate and lower

resource extraction under hyperbolic discounting soon allow for a higher level of consumption.

4.3. Sensitivity Analysis. Because we can only solve the DHSS model numerically, we cannot
provide a formal proof for our results. Therefore, we counter the uncertainty associated with
the choice of parameters with a sensitivity analysis. In order to do so, we vary the values of
parameters ceteris paribus and check how these changes affect the depletion of the resource stock

S, the extraction rate % and the initial resource extraction Ry. More precisely, we analyse how the

it

5 , which indicate the time it takes until the lines
intersect

changes affect the key figures S;ntersect and
of the resource stock and the extraction rate intersect for exponential and hyperbolic discounting.
Additionally, we will check how changes in the parameter values affect the ratio of initial resource

extraction, R;™/ ngp . Table 3 shows S; and R;™"/ ngp for each scenario.

R
ntersects 'S intersect

In our first scenario, we increase the value of the output elasticity of resources v from 0.046 to

0.06 (v+) and decrease it to 0.03 (y—). The effect on our key figures is minimal, Sintersect and
R

Fintersect POTH change by approximately one year while the ratio of initial resource extraction does

not change at all.
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TABLE 3. Sensitivity analysis

Scenario Sjntersect %intersec . R/ ngp

- 40.93 22.33 0.92
Y+ 39.90 21.91 0.92
y— 42.07 22.80 0.92
o+ 48.64 26.44 0.93
o— 27.38 15.23 0.93
g+ 43.51 23.45 0.92
g— 34.54 19.34 0.93
n+ 47.14 24.92 0.92
n— 36.96 20.51 0.93
a+ 22.98 13.33 0.94
a— 105.81 50.69 0.92
b+ 30.07 17.17 0.94
b— 56.37 28.99 0.90
£— 45.66 21.77 0.91

Next, we vary the value of the inverse of the elasticity of intertemporal substitution, o. An increase
of o0 to 2.5 increases Siptersect Dy almost 8 years, a decrease of o to 1.5 decreases Sintersect DY

more than 13 years. £

Fintersecy CRANEes by 3 and 7 years, respectively. The ratio of initial resource

extraction is similar to the benchmark case for both scenarios.

Changes in the growth rate of technology g and the growth rate of population n have similar effects
on the key figures as they only appear together in the expression (g + n) in the dynamic system
(23a)-(23d). Varying g between 0.01 and 0.02 and n between 0.005 and 0.2 leads to changes in

R

: : ezxp ; phyp
S intersect of up to 7 years. In these scenarios, too, the changes in R;™/R,* are

Sintersect and
minimal.

We next investigate the effects of changes in the parameters a and b, which determine the discount
function in the hyperbolic model. For this analysis we stick to our calibration strategy and re-
calibrate p such that the normalization for both discounting methods keeps holding. Increasing a
drastically to 0.03, which corresponds to an increase in p from 2.4% to 3.3%, significantly reduces

both Singerseet and £ to 22.98 and 13.33 years, respectively. A decrease in a to 0.01 (yielding

Sintersect

R

p = 1.25%) increases Sintersect and g, . .

to 105.81 and 50.69 years, respectively. The impact of

R

changes in b is smaller. Varying b between 1.75 and 2.25 leads to changes in S;tersect and S intersect
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of up to 16 years. The ratio of initial resource extraction is similar to the benchmark case for all
scenarios.

Finally, we analyze changes in the initial capital-resource ratio Is%)- Since we only consider proved
resource reserves in our benchmark scenario, we only decrease the initial capital-resource ratio in our
sensitivity analysis. In particular, we recalculate the initial capital-resource ratio taking estimates
of technically recoverable resource reserves (EIA, 2020a) instead of proven reserves. This changes
the initial capital-resource ratio drastically from approximately 11 to less than 2. Nevertheless,
changes in our indicators are small, with changes in Sj,tersect Of around 5 years. %mtwsm changes
by less than one year and R;™"/ ngp hardly changes at all. Considering the large difference in initial
capital-resource ratio, the sensitivity of the results with respect to the initial capital-resource ratio
seems to be rather small.

Concluding, it can be said that the results are robust with respect to changes in some of the key
parameters such as the output elasticity of resources, v, and the initial capital-resource ratio Ig—g.
Other parameters, such as a and b, do impact the quantitative results quite significantly when
changed drastically. However, none of the parameter alterations changed the qualitative results of
the model. Initial resource extraction is always higher with hyperbolic discounting, which means
that the resource stock declines faster in the short-run. In the medium-term, the level of resource
extraction in the model with hyperbolic discounting drops below the level of resource extraction in
the model with exponential discounting. Therefore, the resource stock declines slower in the model
with hyperbolic discounting and remains higher after a unique point of intersection, Sjntersect-
Initially, the extraction rate is also higher in the model with hyperbolic discounting, but falls below

R

the extraction rate of the model with exponential discounting after . .
intersect

5. CONCLUSION

In this paper, we proposed a time-consistent method of hyperbolic utility discounting implying a
declining social discount rate and introduced it into macroeconomic models of resource extraction.
We compared the implications for growth and resource extraction between hyperbolic and expo-
nential discounting holding constant the magnitude of discounting for both discounting methods.

We found that in a small model of pure resource extraction, for a reasonable intertemporal elasticity
of consumption, hyperbolic discounting leads to a more conservative resource use resulting in lower

extraction rates at all times and a higher resource stock at all times. The intuition for this result is
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that the forward looking social planner anticipates from the beginning that the discount rate will
be much lower in the future giving a high weight to future generations’ utility. This leads to an
already low optimal rate of resource extraction in the initial years.

We also introduced hyperbolic discounting into the Dasgupta-Heal-Solow-Siglitz model. First, we
showed analytically that compared to exponential discounting, a (much) lower rate of technolgical
progress is necessary under hyperbolic discounting to achieve positive consumption growth in the
long-run. Second, we calibrated the model to the US and showed that resource extraction is more
conservative in the medium- and long-run. Again, this can be motivated by the social planner’s
foresight concerning future low discount rates.

Our analysis complements papers asking for a declining social discount rate (Arrow et al., 2014).
It contradicts the intuition that the initially higher discount rates in comparison with exponential
discounting might lead to much faster resource extraction, thereby neglecting the need of future
generations. Instead, we showed that resource use is more conservative in the medium- and long-run
implying that long-run growth is higher.

Although we focused on extraction of non-renewable resources, a similar mechanism might apply
to climate change. Since most of the damages of climate change occur in the far future, a social
planner using hyperbolic discounting rates those damages at a higher weight than a social planner
using exponential discounting, and will probably advocate stronger measures against climate change

(see e.g. Karp, 2005 for a theoretical analysis). We leave this analysis for future research.
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APPENDIX A. SOLUTION OF DHSS MODEL

In the case of mixed discounting, the present value Hamiltonian given by

w1 \'Ccr7—1
H=c" <1+at> - + A (AK®LPRY — C = 0K) — AsR + AagA + AnL.
— 0

The first order conditions (FOCs) are given by

OH S 1\

_— = —pt _ -0 _ =

9C 0<e <1+at> C )\K 0 (298,)
H arfB -1

S5 =08 MKAKLIRT — A =0 (29b)
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ZZ _ )\KKQL,BR’Y 4 >\Ag — _)\'A (296)
H .

ZT = BARAK®L(3 — 1)RY + A\pn= —\p (29f)

together with the initial conditions and the four transversality conditions:

tliToAKK =0 (30a)
tlirgo)\sS =0 (30b)
limAsA=0 (30c)
t—00
tlirgo)\LL =0. (30d)

The Keynes-Ramsey rule. In order to derive the Keynes-Ramsey rule, we take the logarithm of

equation (29a) and differentiate the result with respect to time:

Ak ba C
K98 s o2 1
e  1+at 7T %C (31)

Dividing equation (29¢) by A\x yields

— = aAKYTIRY - 6. (32)
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Combing equation (31) and equation (32) we get the Keynes-Ramsey rule

C  QAK“T'RY —6—p— 2%
o= . : (33)

The R-equation. In order to get the R-equation, we combine the growth rates of \g and k.
Equation (32) gives us the growth rate of A\x. Equation (29b) establishes a relation between the
two costate variables Ag and Ag. The equation can be converted to growth rates by taking the
logarithm of each side and their derivatives with respect to time yielding

As Ak

K R
oo 2K — —1)=. 4
o )\K+g+aK+Bn—|—(7 )R (34)

By substituting the growth rates of A and Ag and K into equation (34) and solving this equation

for % we get

R a C (1-a 1
E__l—")/?—i_ 1_fy5+1_7(g+6n). (35)
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