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Abstract

This paper estimates a non-linear Interacted VAR model to assess whether the
real effects of stimulative monetary policy shocks are milder during times of high
uncertainty. Crucially, uncertainty is modeled endogenously in the VAR, thus
allowing to take account of two unexplored channels of monetary policy trans-
mission working through uncertainty mitigation and uncertainty mean reversion.
Generalized Impulse Response Functions à la Koop, Pesaran and Potter (1996)
reveal that monetary policy shocks are significantly less powerful during uncer-
tain times, the peak reactions of a battery of real variables being about two-thirds
milder than those during tranquil times. Failing to account for endogenous uncer-
tainty would bias responses and imply twice as powerful monetary policy during
uncertain times as during tranquil times, mainly because of the non-consideration
of uncertainty mean reversion.
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"[T]he reduction in risk associated with an easing of monetary policy and the
resulting reduction in precautionary saving may amplify the short-run impact of policy
[...]. Likewise, reduced risk and volatility may provide an extra kick to capital expenditure in

the short run, as firms are more likely to undertake investments in new structures or
equipment in a more stable macroeconomic environment."

Governor Ben S. Bernanke

Remarks at the London School of Economics Public Lecture

London, England, October 9, 2003

"So when uncertainty is high, [firm] units optimally postpone hiring and investment
decisions for a few months until business conditions become clearer. [...] [U]nits evaluate the
uncertainty of their discounted value of marginal returns over the lifetime of an investment
or hire, so high current uncertainty only matters to the extent that it drives up long-run
uncertainty. When uncertainty is mean reverting, high current values have a

lower impact on expected long-run values than if uncertainty were constant."

Nicholas Bloom

The Impact of Uncertainty Shocks, Econometrica, 2009

1 Introduction

The COVID-19 shock has generated a level of uncertainty in the US economy similar to

that realized during the Great Recession. Right after such a shock, the Federal Reserve

has quickly intervened to inject liquidity in the system in an attempt of limiting the

extent of the recession which will inevitably come. The contemporaneous occurrence

of high uncertainty and policy interventions has naturally reignited the debate on the

interferences of high levels of uncertainty on the transmission of monetary policy shocks

to the business cycle. However, there is still limited empirical research on the role that

uncertainty might play in influencing the effectiveness of unexpected policy stimuli.

The earliest empirical works with an uncertainty-dependent policy focus are Aastveit,

Natvik, and Sola (2017) and Ricco, Callegari, and Cimadomo (2016), who employ non-

linear Structural VAR models to respectively show that monetary policy shocks and

fiscal policy shocks are less powerful in a context of high uncertainty.1

1There is instead plenty of research investigating whether uncertainty shocks have a state-conditional
impact, namely whether their real effects might depend on a particular phase experienced by the econ-
omy. See, among others, Nodari (2014), Caggiano, Castelnuovo, and Groshenny (2014), Caggiano,
Castelnuovo, and Nodari (2017), and Caggiano, Castelnuovo, and Figueres (2017), who employ non-
linear Structural VAR techniques to enquire whether recessionary vs. non-recessionary phases are
important in determining the impact of uncertainty shocks; Alessandri, Mumtaz, Alessandri, and
Mumtaz (2019) and Angelini, Bacchiocchi, Caggiano, and Fanelli (2019), who respectively investigate
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This work sheds new light on the uncertainty-dependent effects of monetary policy

shocks and shows that taking into account the endogenous move of uncertainty after the

monetary stimuli is key in order not to disregard important transmission channels and

hence to correctly estimate the effects of an unexpected monetary stimulus. We show

that two unexplored channels of endogenous uncertainty can affect the monetary pol-

icy transmission mechanism.2 On the one hand, uncertainty is mitigated by monetary

policy easings (Bekaert, Hoerova, and Lo Duca (2013)). This uncertainty mitigation,

according to Bernanke’s quote above, may temporarily enhance policy effectiveness by

reducing precautionary savings and by providing an extra kick to investment via a

"more stable macroeconomic environment". On the other hand, uncertainty proxies

also tend to mean revert in the short to medium run, a fact potentially playing a role in

a state-dependent analysis (or in a "non-linear territory"). According to Bloom’s quote

above, in a context of mean reverting uncertainty, high current uncertainty will have a

lower impact on expected future uncertainty than in a context of constant uncertainty,

implying that consumers’and firms’expectations, and hence decisions, will be less ex-

treme. In principle, the consequences of these two channels may be economically relevant

provided that precautionary savings play a significant role in consumption fluctuations

(Caballero (1990) and Parker and Preston (2005)), that uncertainty significantly affects

firms’"wait and see" attitude in investment and hiring (Bernanke (1983), Bertola and

Caballero (1994), Dixit and Pindyck (1994), Bloom, Bond, and Reenen (2007), Bloom

(2009)), and that expected future uncertainty is important for decision making (Guiso

and Parigi (1999) and Bloom, Davis, Foster, Lucking, Ohlmacher, and Saporta Eksten

(2017)).3 However, the literature is still silent on the importance of these two channels

whether financial or volatility regimes are important for the quantification of the real effects of uncer-
tainty shocks; and Caggiano, Castelnuovo, and Pellegrino (2017), who study the interaction between
uncertainty and the Zero Lower Bound (ZLB).

2In our study —differently from Aastveit, Natvik, and Sola (2017) —uncertainty is modeled among
endogenous (or dependent) variables in the non-linear (Structural) VAR, thus allowing it to endoge-
nously move after a monetary policy shock hits. In general, an endogenous variable in a non-linear VAR
can move because of two reasons after a shock: can move either because of the shock or irrespectively
from it (depending on its value at the time of the shock).

3Following most of the empirical literature, we do not distinguish between risk and uncertainty
although they are technically two different concepts (see Bloom (2014, p. 154)). Uncertainty is
proxied with measures of volatility, though we acknowledge these may consist in a mixture of risk
and uncertainty. Specifically, we use two baseline proxies for uncertainty, i) the Inter Quartile Range
(IQR) of sales growth, a cross sectional firm-level uncertainty proxy computed by Bloom, Floetotto,
Jaimovich, Saporta-Eksten, and Terry (2018), and ii) the VIX, a measure for the implied stock market
volatility extensively used after Bloom’s (2009) seminal paper. We also use the macro and firm-level
uncertainty indices recently developed by Jurado, Ludvigson, and Ng (2015) to check the robustness
of our main results.
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for the monetary policy transmission mechanism.4

This paper’s purpose is to quantify the uncertainty-dependent effects of monetary

policy shocks in a general framework that can take account of endogenous uncertainty so

that to also assess whether (and how) endogenous uncertainty matters for the monetary

transmission. This purpose is tackled by proposing a Self-Exciting Interacted VAR

(SEIVAR) model which we estimate with quarterly post-WWII US data. This non-

linear Interacted VAR augments an otherwise standard VAR with an interaction term

including two variables, i.e., the variable used to identify the monetary policy shock

(the policy rate) and the conditioning variable that identifies the “uncertain times”

and “tranquil times”states (the proxy for uncertainty). This framework is particularly

appealing to address our research question in that it enables us to model the interaction

between monetary policy and uncertainty in a parsimonious manner and yet to precisely

estimate the economy’s response conditional on very high/low uncertainty. Importantly,

we model both interaction variables endogenously, which is key to acknowledge not only

the fact that uncertainty may influence the effectiveness of monetary shocks, but also

that uncertainty may endogenously move after the policy shock (both because monetary

shocks themselves may affect uncertainty, on the one hand, and because uncertainty may

irrespectively mean revert, on the other hand). The latter possibility creates, de facto,

a feedback effect which makes the model Self-Exciting (or "fully" non-linear) in the

iteration after a monetary policy shock.5

To correctly take this feedback effect into account we compute fully non-linear Gen-

eralized Impulse Response Functions (GIRFs) à la Koop, Pesaran, and Potter (1996).

This modeling strategy contributes to the literature in two respects. Methodologically,

it represents a novel and more general framework in the IVAR literature that allows to

endogenize conditioning variables.6 Application-wise, it contrasts with the strategy em-

ployed by recent VAR analyses on the uncertainty-dependent effectiveness of monetary

4We review some of the other mechanisms why the monetary policy transmission mechanism may
be affected by uncertainty in the next Section.

5The term "Self-Exciting" is borrowed from the time series literature (see, e.g., the SETAR model
presented in Terasvirta, Tjostheim, and Granger (2010)) and here reflects the fact that the "state"
and the iteration of the system over time are determined by the values of the endogenous conditioning
variable.

6Contributions that have recently employed IVARs are Towbin and Weber (2013), Sá, Towbin,
and Wieladek (2014), Lanau and Wieladek (2012) and Aastveit, Natvik, and Sola (2017). Unlike the
present study, they use a fixed conditioning variable in computing empirical responses. One exception
is Caggiano, Castelnuovo, and Pellegrino (2017), who employ a fully non-linear IVAR model similar to
ours and compute GIRFs to enquire whether the real effects of uncertainty shocks are magnified at the
zero lower bound. The current paper scrutinizes for the first time the advantages and the implications
of endogenizing conditioning variables within IVARs.
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policy shocks —e.g., Aastveit, Natvik, and Sola (2017), Eickmeier, Metiu, and Prieto

(2016) and Castelnuovo and Pellegrino (2018) —, which work with non-linear VAR mod-

els featuring an exogenous conditioning variable and therefore compute conditionally-

linear IRFs for a fixed value of the uncertainty proxy. Our strategy enables us to consider

both the possibly endogenous move of uncertainty (our conditioning indicator) after the

policy shock and its feedbacks on the dynamics of the system. In this way, we are able

to capture both the effects of an endogenous move of uncertainty on precautionary sav-

ings and firms’willingness to invest and their state-dependent consequences. One of the

results of this paper is exactly that of documenting the far-from-negligible quantitative

differences that arise when modeling uncertainty as exogenous vs. endogenous. Fur-

thermore, our econometric strategy has the additional advantage of allowing temporal

initial conditions to play a meaningful role (Koop, Pesaran, and Potter (1996)), which is

important if one wants to gain further insights on the effects of monetary policy shocks

from a historical perspective.

Our main results can be summarized as follows. First, we find that the historical

effectiveness of monetary policy shocks is inversely correlated with the level of uncer-

tainty at the time of the shock, a finding robust also to unconventional monetary shocks

during the ZLB period.

Second, we find that, even after endogenizing uncertainty, there is still clear and

robust statistical evidence of weaker real effects of monetary policy shocks during un-

certain times relatively to tranquil times. More specifically, the peak reaction of real

activity, in particular GDP, is approximately two-thirds weaker when the shock occurs

in uncertain times than when it occurs in tranquil ones, an economically important

difference. We also find that uncertainty decreases after an expansionary monetary

policy shock in both states, a finding which further supports the importance of treating

uncertainty as an endogenous variable.

Third, when analyzing the role of endogenous uncertainty through counterfactual

exercises, we find that it has a non-negligible quantitative effect on the estimated state-

conditional responses. The difference between the state-dependent effects of monetary

policy gets halved when uncertainty is treated as an endogenous variable versus when

it is not. We show this difference is driven by the interaction of two endogenous un-

certainty channels which cannot be captured by conditionally-linear responses (which

are computed by assuming uncertainty to be exogenous, i.e., fixed and constant after

the shock). On the one hand, there is the "uncertainty endogenous reaction" chan-

nel that Bernanke refers to in his statement, which operates through the reduction of
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uncertainty after a monetary policy easing. Such channel, ceteris paribus, works as

an amplifier of the real effects of monetary policy shocks, irrespectively from the ini-

tial level of uncertainty. On the other hand, there is the "uncertainty mean reversion"

channel that Bloom refers to in his passage, which operates through the mean rever-

sion in uncertainty occurring after, but independently from, the monetary easing. Such

channel, whose direction of effects depend from the initial level of uncertainty, works in

favor of making state-dependent responses of real variables less extreme. Our exercises,

designed to disentangle the effects of each of these two channels, find that, although

both channels are empirically relevant, the uncertainty mean reversion channel is the

main responsible for making the real effectiveness of monetary policy shocks half as

uncertainty-dependent when uncertainty is treated endogenously. In other words, con-

sistently with theory, we find that the first channel matters for the average effect of

monetary policy shocks and the second one for the magnitude of state dependence.

Our findings are relevant both from a policy and from a modeling standpoint. From a

policy perspective, we lend support to theoretical studies that recommend more aggres-

sive stimuli in uncertain times (see, e.g., Bloom (2009) and Bloom, Floetotto, Jaimovich,

Saporta-Eksten, and Terry (2018)). While we find that, due to the two channels of en-

dogenous uncertainty, monetary policy becomes less state dependent and hence gains

some effectiveness when it is most needed, i.e., during uncertain times, we still find that

during these times monetary policy is way less effective than during tranquil times.

This suggests that policy makers should use fully non-linear empirical models when it

comes to designing monetary policies to achieve a desired real effect. From a theoret-

ical perspective, our analysis suggests that both modeling the endogenous reaction of

uncertainty to policies (rather than considering it as an exogenous process) and mod-

eling empirically-grounded mean-reverting uncertainty processes is crucial to correctly

assessing alternative policies in environments characterized by uncertainty.7

Our study is also relevant for applied researchers because it shows the perils of not

modelling endogenously the conditioning variable in a non-linear VAR. In the context of

fiscal spending shocks Ramey and Zubairy (RZ, 2018) show that the difference of their

findings on the US fiscal multipliers with respect to Auerbach and Gorodnichenko’s (AG,

2012) ones are largely driven by the simplifying assumptions about the conditioning

variable and the computation of impulse responses adopted in the latter study’s non-

7To the best of our knowledge, the only work that takes into account the endogenous uncertainty
reaction to a monetary policy shock in the context of a microfounded model is Mumtaz and Theodoridis
(2019).
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linear VAR.8 Our work adds to this applied literature by proposing both a framework

to study the relevance of endogenizing conditioning variables in non-linear VARs and

a method to investigate the specific reason why it is important. Understanding the

latter is important to build theoretical models that account for the empirically relevant

channels of propagation of a shock.

The present paper is organized as follows. Section 2 reviews the related literature

starting from close empirical papers. Section 3 describes our empirical methodology and

the data employed. The main results on the effectiveness of monetary policy shocks in

tranquil vs. uncertain times are presented in Section 4. Section 5 focuses on the role of

endogenous uncertainty and analyzes the two channels that arise. Section 6 concludes.

An online Appendix details the algorithm at the basis of the computation of GIRFs,

presents extra results and discusses robustness checks on the main results.

2 Related literature

The work closest to ours is Aastveit, Natvik, and Sola (2017). They estimate Bayesian

IVAR models for the US to investigate whether monetary policy is less effective when

uncertainty is high. Crucially, compared to their study, our work endogenizes uncer-

tainty in a SEIVARmodel and consistently computes fully non-linear GIRFs. Hence, we

deal with a more general framework which allows us to dig deeper on the uncertainty-

dependent effects of monetary policy shocks. First, we show that uncertainty is miti-

gated by expansionary monetary policy shocks regardless of whether uncertainty is high

or low. Second, we show that taking into account this endogenous uncertainty mecha-

nism halves the difference between state-conditional responses although such difference

remains still statistically and economically significant. Third, we use our framework to

perform a historical analysis of the effects of monetary policy shocks, something which

8AG use a Smooth-Transition VAR with conditioning variable given by (a moving average of) the
growth rate of GDP and consider it as fixed (or exogenous) in the computation of responses. In Ramey
and Zubairy’s (2014, 2018) words: i) "the [AG] assumptions imply that a positive shock to government
spending during a recession does not help the economy escape the recession" (RZ, 2014, p. 18) and ii)
"their [AG] method assumes that the economy continues in recession indefinitely" ", but it is not a good
approximation for recession states, which have a mean duration of only 3.3 quarters according to their
moving average of growth rates definition" (RZ, 2018, p. 889-890). These two missed channels (i.e.,
not taking account of the direct shock effects on GDP growth and of the GDP growth’s mean reversion
consequences) are general and are the correspondent of the two channels of endogenous uncertainty
that we study in this paper thanks to our framework. Our framework takes fully account of RZ’s (2018,
p. 888) point according to which "[c]onstructing impulse responses in nonlinear VAR models is far
from straightforward since many complexities arise when one moves from linear to nonlinear systems"
(see also Caggiano, Castelnuovo, Colombo, and Nodari (2015)).
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cannot be done in a IVAR framework with exogenous conditioning variables.

Other related recent empirical works are Eickmeier, Metiu, and Prieto (2016),

Castelnuovo and Pellegrino (2018) and Caggiano, Castelnuovo, and Nodari (2017).

The aim of the first two studies is to investigate more structurally through the New-

Keynesian framework how uncertainty influences the effectiveness of monetary policy

shocks. They establish facts with non-linear VAR models and interpret these facts via,

respectively, a state-dependent calibration or estimation of a New-Keynesian Dynamic

Stochastic General Equilibrium (DSGE) model. With respect to their conditionally-

linear Threshold VAR frameworks, this study endogenizes uncertainty and shows how

important it is for the estimation of the effects of monetary policy shocks. Caggiano,

Castelnuovo, and Nodari (2017) estimate a Smooth-Transition VAR model to investi-

gate the stabilizing role of systematic monetary policy in presence of heightened un-

certainty during recessions and expansions. Our work is complementary to theirs, in

that it focuses on the effects of monetary policy shocks conditional on different levels

of uncertainty.

Further connected empirical works are Weise (1999), Mumtaz and Surico (2015)

and Tenreyro and Thwaites (2016), who investigate the transmission mechanism of

monetary policy in good and bad economic circumstances. Their results suggest that

monetary policy shocks are less effective during bad times. Unlike these studies, ours

explicitly focuses on the relevance of uncertainty in the transmission of monetary policy

shocks. This is important for two reasons. First, because by focusing on uncertainty

we can empirically test the predictions of the theoretical papers reviewed below which

suggest uncertainty-related explanations for a state-conditional impact of monetary

policy shocks. Second, because conditioning on recessions could lead to spurious results

since recessions can have a range of causes —financial distress, oil shocks, policy switches,

and so on —and uncertainty is just one of these.9 Empirically, the fact that periods

of high uncertainty levels and recessionary periods, and vice versa, have not always

coincided in the recent US history allows us to focus on the role of uncertainty by

explicitly using uncertainty as our "conditioning" variable.

On the theoretical side, two main explanations point to a lower effectiveness of

9In the words of Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018), “[...] recessions
are periods of both first- and second-moment shocks”. Two further comments are worth making. First,
uncertainty and financial shocks can be diffi cult to discriminate (see, among others, Stock and Watson
(2012)). Second, the causal role between uncertainty and recessions has not yet been established in the
literature although it is widely recognized that unexpected increases in uncertainty have contractionary
effects on the real economy. As explored by some studies, uncertainty might also be a consequence of
recessions (see, e.g., Bachmann and Moscarini (2012)).
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monetary policy shocks when uncertainty is high. First, the presence of some form of

fixed costs or partial irreversibilities in the investment or hiring processes could give

uncertainty a role. In these cases, heightened uncertainty can increase firms’option

value of waiting to hire and invest, thus making the real economy less sensitive to any

policy stimulus (Bloom (2009)). Bloom, Bond, and Reenen (2007) propose a model

that displays a "cautionary effect" in firms’investment decisions when uncertainty is

high and provide empirical evidence at the firm level for this effect as regards firms’

demand shocks. Aastveit et al.’s (2017) work includes a stylized theoretical model that

makes explicit how the investment response to interest rate moves can depend on the

level of uncertainty due to a "caution effect" at play in a world with non-convex

adjustment costs and irreversible investment. Bloom et al. (2018) simulate their general

equilibrium model featuring time-varying volatility, non-convex adjustment costs in

both capital and labor, and firm-level idiosyncratic shocks with the aim of identifying

the effect of uncertainty on the effectiveness of a policy stimulus (which in their Real

Business Cycle model they take to be a wage bill subsidy). What they find is that

heightened uncertainty makes firms less responsive to the policy stimulus, implying that

time-variation in uncertainty leads to time-variation in policy effectiveness. According

to the authors, an implication of their exercise is that uncertainty not only impacts

the economy directly, but also indirectly changes the response of the economy to any

potential reactive stabilization policy.10 Our results, obtained with a framework which

allows for the estimation of the real effects of monetary policy shocks in phases of high

or low uncertainty, lends support to the claims of these works, even in a world with

endogenous uncertainty.

Second, uncertainty can influence firms’price setting behavior. Several authors have

developed structural calibrated models to assess whether an uncertainty motive can be

at the root of the empirical fact that both the frequency and dispersion of price changes

are higher during recessions. Vavra’s (2014) general equilibrium price setting menu

cost model suggests that a greater price flexibility induced by firm-level uncertainty can

have monetary policy shocks lose up to 50% of their effectiveness relative to tranquil

times. Baley and Blanco (2019) find that nominal shocks have smaller effects on output

10As documented by a number of studies, it is well known that uncertainty shocks have an indepen-
dent contractionary effect on the real economy too. A non-exhaustive list of such works includes Bloom
(2009), Mumtaz and Theodoridis (2015), Baker, Bloom, and Davis (2016), Gilchrist, Sim, and Zakra-
jšek (2014), Bachmann, Elstner, and Sims (2013), Leduc and Liu (2016), Colombo (2013), Mumtaz and
Zanetti (2013), Nodari (2014), Jurado, Ludvigson, and Ng (2015) and Carriero, Mumtaz, Theodoridis,
and Theophilopoulou (2015).
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during firm-specific uncertain times also in the context of a price setting model that

includes information frictions in addition to menu costs. Bachmann, Born, Elstner, and

Grimme (2013) use firm micro data and find that firms change prices more frequently

when uncertainty is high, consistently with Vavra’s model.

Notice also that, in the presence of risk averse agents, there will be higher precaution-

ary savings during uncertain times (see Bloom’s (2014) survey and references therein).

The fact that uncertainty is endogenous in our framework enables us to capture changes

in precautionary motives after the monetary policy shock and their possible influence

on the real effects of monetary policy shocks. In this way we can account for the link

between uncertainty, precautionary savings and the effectiveness of monetary policy

shocks that Bernanke refers to in his statement in the Introduction.

Lastly, turning to the other side of the interaction between uncertainty and monetary

policy, i.e., how monetary policy influences uncertainty, Bekaert, Hoerova, and Lo Duca

(2013) decompose the VIX in two components, a proxy for risk aversion and one for a

pure uncertainty component, and find that both uncertainty and risk aversion decrease

in the medium run after an expansionary monetary policy shock identified with a linear

VAR framework. Mumtaz and Theodoridis (2019) provide further empirical evidence

on the uncertainty consequences of monetary policy shocks and study them in the

context of a New-Keynesian model. Lutz (2014) works with a Factor-Augmented linear

VAR model and finds that uncertainty decreases also after an unconventional monetary

policy shock. Our framework allows to take account of both the endogenous reaction

of uncertainty and the influence it has on the effectiveness of monetary policy.

3 The empirical methodology

3.1 The Self-Exciting Interacted-VAR

Specification. We employ a fully non-linear, or Self-Exciting, Interacted VAR model
to empirically study whether the real effects of monetary policy shocks are different

across tranquil and uncertain times. This model augments an otherwise standard linear

VAR with an interaction term, which in this work involves two endogenously modeled

variables: the variable via which we identify exogenous monetary policy changes, i.e.,

the policy rate, and the variable whose influence on the effects of monetary shocks is

under assessment, i.e., uncertainty. This latter variable will serve as a conditioning

variable allowing us to obtain the impact of monetary policy shocks in tranquil versus

uncertain times. In addition to the policy rate and an uncertainty indicator, the vector

10



of endogenous variables also includes measures of real activity and prices.

The estimated SEIVAR model is the following:

Yt = α+ γ· linear trend+
L∑
j=1

AjYt−j +

[
L∑
j=1

cjRt−j · unct−j

]
+ ut (1)

unct = e
′

uncYt (2)

Rt = e
′

RYt (3)

E(utu
′
t) = Ω (4)

where Yt is the (n × 1) vector of the endogenous variables, α is the (n × 1) vector of
constant terms, γ is the (n× 1) vector of slope coeffi cients for the time trend included,
Aj are (n×n) matrices of coeffi cients, and ut is the (n×1) vector of error terms, whose
variance-covariance (VCV) matrix is Ω. The interaction term in brackets makes an

otherwise standard VAR a SEIVAR model. It includes a (n× 1) vector of coeffi cients,
cj, a measure of uncertainty, unct, and the policy rate, Rt. ey is a selection vector for

the endogenous variable y in Y. In other words, uncertainty and the policy rate are

both treated as endogenous.

The model is estimated by OLS.11 We follow Ventzislav and Kilian (2005) and select

the number of lags as suggested by the Hannan-Quinn criterion. As a result L = 2 (both

for the non-linear and the nested linear model).

The SEIVAR model presents several advantages for our purposes over alternative

non-linear specifications that also feature an observed conditioning variable like Smooth-

Transition (ST-)VARs and Threshold (T-)VARs. First, our SEIVAR directly captures

the non-linearity in which we are interested (which has to do with the interaction

between the monetary policy instrument and uncertainty) without appealing to the es-

timation of more parameterized and computationally intensive models. In this regard,

it does not require us to identify thresholds, as in TVARs, or to estimate/calibrate

transition functions, as in STVARs. The specific functional form (1)-(4) employed was

chosen based on its parsimony and to avoid instability problems.12 Second, unlike

abrupt change models featuring regime-specific coeffi cients like TVARs, the SEIVAR
11This is possible since, although non-linear in variables, the model is linear in parameters and does

not depend on unobservable variables or nuisance parameters. Conversely from some of the most
commonly used non-linear state-dependent models that reach non-linearity by combining two or more
regime-specific linear VARs (e.g., Threshold VARs and Smooth Transition VARs), the Interacted-VAR
model is non-linear because of its interaction terms.
12 An IVAR might be seen as a special case of a Generalized Vector Autoregressive (GAR) model

(Mittnik (1990)), i.e., a polynomial system involving monomials of increasing order of products of the
vector of endogenous variables, and hence might share its possible problems. In particular GAR models
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is estimated on the full sample (in other words, any regime is imposed prior to esti-

mation).13 This allows us to avoid the issue of not having enough degrees of freedom

to precisely estimate empirical responses in different states of the world referring to

the extreme events of the uncertainty distribution. This is particularly relevant for the

research question at hand.

Our IVAR directly captures the nonlinearity of one (or, potentially, more) monetary

transmission channel(s) with respect to uncertainty via a parsimonious specification. Is

this parsimony problematic? It is well known that the policy functions which represent

the solution of nonlinear DSGE frameworks feature many interaction terms involving

endogenous variables. However, a Montecarlo exercise recently proposed by Andreasen,

Caggiano, Castelnuovo, and Pellegrino (2020) shows that our IVAR is able to recover

the true impulse responses implied by a state-of-the-art nonlinear DSGE framework

solved via a third-order approximation around its stochastic steady state, a feature

of the solution which implies state-dependent dynamics. This evidence corroborates

the use of parsimonious IVAR specifications for the investigation of nonlinear dynamic

responses to identified macroeconomic shocks like the one conducted in this paper

Notice that the SEIVAR model (1)-(4) is non-linear but symmetric and hence is

not well suited to study the asymmetric effects of positive versus negative shocks.14

Without loss of generality we focus on expansionary monetary policy shocks.

Identification and statistical motivation. To identify the monetary policy

shocks from the vector of reduced form residuals, we adopt the conventional short-run

restrictions implied by the Cholesky decomposition. The vector of endogenous vari-

ables is ordered in the following way: Y = [P,GDP, Inv, Cons,R, Unc]
′
, where, in

order, we have a price index, the GDP, investment, consumption, the policy rate, and

an uncertainty proxy (data are described in Section 3.3). Notice that, while the policy

rate is allowed to react instantaneously to the price index and the real variables, these

might feature instability when the squares or other higher moments of the endogenous variables are
included as covariates (Granger (1998) and Aruoba, Bocola, and Schorfheide (2017)) and it is diffi cult
to impose conditions to insure their stability in general (Ruge-Murcia (2015)). Our model appears not
to suffer from these problems because of its parsimonious specification that features the simple products
of the lags of the policy rate and those of the uncertainty indicator. Still the dynamics captured by our
IVAR could depend on the specific functional form employed. Section A4.2 of the Appendix further
elaborates on the specific form on nonlinearity adopted and also shows that main results are robust to
the use of a richer specification of the interaction between uncertainty and monetary policy (check iv).
13This can let the dynamics captured by the IVAR model be less dependent on the presence of

outliers in a particular regime.
14See Barnichon and Matthes (2018) for a novel approach to directly investigate the role of the sign

of shocks.
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variables are not allowed to react on-impact to policy rate changes (like in Christiano,

Eichenbaum, and Evans (1999) and Christiano, Eichenbaum, and Evans (2005)). In-

stead, uncertainty is allowed to react on-impact to policy rate moves. Here the degree

of endogeneity of uncertainty is maximized, but in the robustness checks Section we

do show, however, that our results are robust to modeling uncertainty as the first vari-

able of the vector. Our results are robust also to the case monetary policy shocks are

identified using fed funds futures surprises around policy announcements as external

instruments in a Proxy SVAR as in Gertler and Karadi (2015).

Importantly, a likelihood-ratio test for the overall exclusion of the interaction terms

from model (1)-(4) allows us to reject the null hypothesis of linearity at any conventional

level in favor of the alternative of our SEIVAR model. In particular, when uncertainty

is proxied by the IQR of sales growth, the LR test suggests a value for the test statistic

χ12 = 29.26, with an associated p-value of 0.005, whereas in the VIX uncertainty

case we have a value χ12 = 27.53, with associated p-value of 0.007. Similar evidence

relates to the Jurado, Ludvigson, and Ng (2015) uncertainty indicators that are used

for robustness.

3.2 Generalized Impulse Response Functions

Unlike existing studies employing an IVAR model, our conditioning variable, i.e., uncer-

tainty, is also included in the vector of modeled endogenous variables. This is important

to compute responses conditional on high/low uncertainty because, as shown later, un-

certainty is found to endogenously move after a monetary policy shock, both because

it directly reacts to the shock and because it mean reverts after the shock. Without

accounting for this uncertainty endogenous movement, biased responses would arise as

the feedbacks from such uncertainty movement on the dynamics of the economy would

be disregarded. In order to correctly estimate empirical responses from a non-linear

model in the presence of an endogenous conditioning variable, we compute Generalized

Impulse Response Functions (GIRFs) à la Koop, Pesaran, and Potter (1996) accounting

for an orthogonal structural shock as in Kilian and Vigfusson (2011). GIRFs take into

account the fact that, in a fully non-linear model, the state of the system and there-

fore system’s future evolution can vary endogenously after a shock. As a result, GIRFs

return fully non-linear empirical responses that depend nontrivially on the initial condi-

tions in place when the system is shocked (as well as on the sign and size of the shock).

Theoretically, the GIRF at horizon h of the vector Y to a shock in date t, δt, com-
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puted conditional on an initial history (or initial conditions), $t−1 = {Yt−1, ...,Yt−L},
is given by the following difference of conditional expectations between the shocked and

non-shocked paths of Y:

GIRFY,t(h, δt,$t−1) = E [Yt+h | δt,$t−1]− E [Yt+h |$t−1] . (5)

In principle, we have as many history-dependent GIRFs referring to a generic initial

quarter t − 1 as there are quarters in our estimation sample. Once these GIRFs are
averaged, per each horizon, over a particular subset of initial conditions of interest,

we can obtain our state-dependent GIRFs, which reflect the average response of the

economy to a shock in a given state. Consistently with Vavra (2014) and Bloom,

Bond, and Reenen (2007), we assume the "tranquil times" state to be characterized

by initial quarters with uncertainty around the first decile of its empirical distribution,

and the "uncertain times" state by initial quarters around its ninth decile (a five-

percentiles tolerance band around the top and bottom deciles is used).15 Conditioning

responses on extreme events, rather than on normal events, may be important in order

not to confound similar states and hence miss empirical responses in favor of non-

linearity (Caggiano, Castelnuovo, Colombo, and Nodari (2015)). Theoretically, our

state-dependent GIRFs can be defined as:

GIRFY,t
(
h, δt,Ω

uncertain times
t−1

)
= E

[
GIRFY,t

(
h, δt,

{
$t−1 ∈ Ωuncertain times

t−1
})]

(6)

GIRFY,t

(
h, δt,Ω

tranquil times
t−1

)
= E

[
GIRFY,t

(
h, δt,

{
$t−1 ∈ Ωtranquil times

t−1

})]
(7)

where Ωi
t−1 denotes the set of histories characterizing regime

i = {uncertain times, tranquil times}. The algorithm at the basis of the simula-

tion of our history-dependent and state-dependent GIRFs is provided in Section A1 of

the Appendix.

An alternative methodology to GIRFs to compute non-linear empirical responses

would be to use Local Projections à la Jordà (2005). Similarly to GIRFs, this method-

ology allows estimated responses to implicitly incorporate the average evolution of the

economy between the time the shock hits and the time the shock effects are evaluated.

In a recent work, Owyang, Ramey, and Zubairy (2013) use Local Projections to extract

empirical responses to an exogenously identified shock from a univariate Threshold Au-

toregressive model. This strategy is not, however, used here as the tool to estimate

15This definition allows both each given state to feature a number of GIRFs large enough to ob-
tain representative state-conditional responses and to have results that do not depend on particularly
extreme observations.
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empirical responses for three reasons. First, Local Projections IRFs are not as infor-

mative as GIRFs because they provide just the average reaction of the economy in a

given state, whereas GIRFs allow us to obtain fully non-linear empirical responses for

each given initial quarter in the sample. Second, they produce responses that are often

erratic and that display oscillations at long horizons (as documented and explained in

Ramey (2012)). Third, in our application they would suffer significantly from the issue

of insuffi cient degrees of freedom to estimate precisely the empirical responses referring

to extreme events.

3.3 Data

Our VAR jointly models an indicator of uncertainty, measures of US real activity, the

GDP deflator and the monetary policy instrument. Real activity is captured by real

GDP, real gross private domestic investment and real personal consumption expen-

ditures. Investment and consumption are considered in addition to GDP since they

allow us to investigate the different transmission mechanism of monetary policy shocks

between uncertain and tranquil times. In theoretical models uncertainty influences in-

vestment through real-option effects and consumption through precautionary savings.

The federal funds rate (FFR) is meant to be the instrument of monetary policy as

commonly assumed in the empirical literature studying the impact of monetary shocks.

For the part of our sample that overlaps with the binding zero lower bound period in

the U.S. we use the commonly used Wu and Xia’s (2016) "shadow rate" instead of

the FFR and label shocks as "unconventional" monetary policy shocks. The Wu and

Xia’s shadow rate turned negative since July 2009 (or quarterly, since 2009Q3) and

consequently we take this as an indication that the ZLB constraint became actually

binding.16 Both real variables and prices are taken in logs and multiplied by 100. This

implies that their VAR responses can be interpreted as percent deviations from trend.

The sample period starts in 1971Q1.17 Further details on the data sources are available

in Section A6 of the Appendix.

16The shadow rate is a model-implied interest rate that Wu and Xia (2016) estimate on the basis of
a multifactorial shadow rate term structure model. It is allowed to turn negative over the ZLB period
and they show that it can be used to proxy unconventional monetary policy at the ZLB. The quarterly
Wu-Xia shadow rate was 75 and 22 basis points (bp) in 2009Q1 and 2009Q2, respectively, whereas the
FFR value was 18 bp in both quarters.
17The starting date is dictated by the availability of the uncertainty measures (i.e., to have a common

initial date across all the four uncertainty indicators employed). It also proves useful, given our
employment of the series for inflation expectations that we use in our robustness check (available since
1970Q2).
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Uncertainty is measured by a number of different indicators proposed in the lit-

erature. As baseline indicators we use alternatively a micro-level and a macro-level

uncertainty measure. Regarding the first indicator, we use a cross sectional firm-level

measure of uncertainty constructed by Bloom, Floetotto, Jaimovich, Saporta-Eksten,

and Terry (2018), i.e., the interquartile range (IQR) of sales growth for a sample of

Compustat firms, which is available up to 2009Q3. Unlike aggregate volatility indica-

tors, this disaggregate indicator is also likely to capture idiosyncratic (i.e., firm-specific)

shocks. These firm-level factors, it is suggested by several studies, constitute one of the

most important factors in explaining both firms’investment behavior (see, among oth-

ers, Bernanke (1983), Bertola and Caballero (1994), Dixit and Pindyck (1994)) and

price setting behavior (see Vavra (2014) and references therein), and an important

driver behind aggregate time-varying volatility (Carvalho and Grassi (2015)).

Our second indicator of uncertainty is the stock market Volatility IndeX (VIX) used

by Bloom (2009). We update the Bloom’s series up to 2015Q4. The VIX index has been

widely used in the empirical literature on the impact of uncertainty shocks and repre-

sents the degree of real-time implied volatility as quantified by financial markets. Along

with these baseline uncertainty indicators, for which detailed results are presented, we

also use the macro and firm-level uncertainty indices developed by Jurado, Ludvigson,

and Ng (2015) to check the robustness of our main results. These indices are based on

the purely unforecastable components extracted from two large US datasets.

Figure 1 plots the baseline uncertainty indicators against their mean (represented by

dashed green lines) and NBER recessionary periods (represented by grey vertical bars).

Two considerations follow. First, the uncertainty proxies tend to fluctuate around their

mean. Typically, they remain very high/low only for a while before mean reverting. Our

econometric strategy allows us to take this empirical feature into account in the compu-

tation of the uncertainty-dependent responses to monetary stimuli. Second, periods of

high uncertainty and recessionary periods have not always coincided in the recent US

history and hence in principle they are empirically distinguishable, a fact that allows

us to have enough empirical identification to study the influence of "uncertainty" as

opposed to "recessions". In fact, although the global maximum of both uncertainty

indicators occurred during the recent Great Recession, and, more generally, uncertainty

is on average higher in recessions, many spikes occurred during expansions.18 More-

18Referring to the VIX case (for which we can use the major volatility episodes identified by Bloom
(2009, Table A.1)), see, among others, the spikes associated with the Black Monday Market crash at
the end of 1987, the Asian crisis in 1997, the Worldcom and Enron financial scandals in 2002 and the
Gulf War in 2003.
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over, some recessions, e.g., the 1980 and 1990-91 ones, have not been characterized by

particularly high levels of uncertainty.

4 The uncertainty-dependent effects of monetary
policy shocks

4.1 Historical evidence for the full sample

We start our empirical analysis by examining whether the effectiveness of monetary

policy shocks have evolved through time according to the level of historical uncertainty.

One characteristic of endogenously modeling uncertainty and computing fully non-linear

responses is indeed the possibility to recover an empirical response for each given quar-

ter in the sample. Consider a fixed-size monetary shock equal to a 25 basis points

unexpected decrease in the policy rate hitting each quarter. Figure 2 presents summary

evidence of time-variation of GIRFs (whereas the full evidence is available in the form

of a tridimensional graph in Figure A1 in the Appendix).19 The upper panels of Figure

2 present the temporal evolution of the peak (i.e., maximum) and cumulative percent

response of real GDP for the expansionary monetary shock happening in quarter t and

put this response in comparison with the initial level of uncertainty in the previous

quarter. The lower panels use a scatter plot to further analyze the relation between

the initial level of uncertainty at time t − 1 and the GDP peak response for a shock
happening in t. Left (right) panels refer to the case the IQR of sales growth (VIX) is

used as the uncertainty proxy.

Two considerations are in order. First, the real effects of monetary policy shocks

depend on the initial level of uncertainty. The shape of time variation of the GDP

peak and 5-year cumulative effects in the upper panels of Figure 2 tracks closely the

historical behavior (with the reversed sign) of uncertainty. This evidence suggests that

the effects of policy shocks are less powerful, and hence monetary policy is less effective,

if the shock hits the economy in an uncertain phase relative to a tranquil one.

Second, as lower panels of Figure 2 show, the relationship between initial uncertainty

and the effectiveness of monetary policy shocks is not perfect —although clearly negative

on average—, in the sense that once a given initial level of uncertainty is selected, we

can observe different quantitative responses to an equally sized monetary policy shock.

19Our estimated SEIVAR model is in-sample stable, meaning that we are able to obtain a non-
diverging GIRF for each initial quarter in our sample.
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The linear correlation coeffi cient between the peak effect of monetary policy shocks

and the initial level of uncertainty is -0.70 (-0.52) for the IQR of sales growth (VIX).

This is a clear indication that historical initial conditions (besides just uncertainty)

play a meaningful role in our responses.20 Thanks to our framework we are able to find

that, among other historical conditions, the period of binding ZLB and unconventional

monetary policy shocks clearly introduced an important instability in the effects of

monetary policy shocks (a result suggesting that the effects of a cut in the FFR and

an equally-sized cut in the shadow rate are not easily comparable).21 Interestingly for

us, even in the binding ZLB period we can observe a clear negative relation between

uncertainty and the power of (unconventional) monetary policy shocks (refer at the VIX

case for which we have a longer sample).

Since the purpose of the next part of our analysis is to study the average response

of the economy to a monetary policy shock conditional on the state of uncertainty

(high versus low), from now on we exclude from our estimation sample the period with

unconventional monetary policy shocks (i.e., shocks to the Wu and Xia (2016) shadow

rate for its implied period of binding ZLB 2009Q3-2015Q4) and focus on shocks to the

FFR. We do this for three reasons. First, given the clear instability documented in

Figure 2, it would be diffi cult to obtain a representative state-conditional, i.e., averaged

over uncertainty levels, response of the effects of monetary policy shocks if we mix shocks

to the FFR with shocks to the shadow rate. Second, Bauer and Rudebusch (2016) find

that estimated shadow rates are quite sensitive to several modeling assumptions and

hence argue that the use of shadow rates as indicators of monetary policy at the ZLB

may be problematic. Some exercises conducted in the Appendix (Figure A3) document

that the power of unconventional monetary policy shocks depends on the specific shadow

rate used, something that affects also the power of conventional monetary policy shocks

and that hence would be reflected with a bias in the averaged response. Third, the

presence of the binding ZLB period itself complicates the comparison between the effects

of conventional and unconventional monetary policy shocks, as the mitigating power of

20Notice that, if instead uncertainty was exogenously modeled, and therefore conditionally-linear
IRFs were computed, we would observe a perfect relationship between initial uncertainty and the
effectiveness of monetary policy shocks (given that no temporal dimension could be associated with
responses, as shown in Figure A2 of the Appendix).
21The findings suggest that unconventional monetary policy has been apparently more effective on

average than conventional monetary policy shocks. This is consistent with Wu and Xia (2016, Fig.
9, p. 271) that find a cut in their shadow rate to be more effective in affecting unemployment than
an equally-sized cut in the FFR. However, this result is beyond the purposes of this paper and the
investigations of the reasons behind it are left to future research.
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expansionary monetary policy shocks on uncertainty (that we will show in the next

Section) may be more beneficial for the economy in ZLB, when, as documented by

Caggiano, Castelnuovo, and Pellegrino (2017), the effects of heightened uncertainty are

particularly strong.

4.2 Average evidence for conventional monetary policy shocks

Baseline results. This Section analyzes the state-dependent effects of monetary pol-
icy shocks. We start with the empirical quantification of the averaged effects in our

"uncertain times" and "tranquil times" states (which refer to the extreme deciles of

uncertainty as defined in Section 3.2) and then turn to test their statistical difference.

Figure 3 presents the point estimates for the state-conditional GIRFs of real GDP to-

gether with the corresponding IRFs coming from the linear VAR nested in our SEIVAR

model (throughout the analysis we consider the same 25 basis points expansionary shock

in the FFR). Two results can be drawn from the figure. First, the GIRFs suggest that

monetary policy shocks are on average less effective during uncertain times. Specifically,

focusing on peak (cumulative) reactions, real GDP reacts on average 47% (55%) and

74% (75%) more during tranquil times for the IQR of sales growth case and the VIX

case, respectively. Second, linear responses are within our state-conditional responses.

Hence, standard linear VARs are likely to capture average effects of a monetary policy

shock, which, however, underestimate (overestimate) the impact of monetary policy

shocks in tranquil (uncertain) times.

We now consider the state-dependent evidence for all our six endogenous variables in

our SEIVAR. Figure 4 (5) show baseline results conditional to the use of the IQR of sales

growth (VIX) as the uncertainty indicator. These figures present the GIRFs conditional

on the uncertain times (left panels) and tranquil times states (right panels) along with

their 68 and 90% bootstrapped confidence bands.22 Looking first at real variables,

GDP, investment and consumption all increase in both states after the expansionary

shock. However, both the magnitude and the persistence of this increase depend on

the state of the economy. During tranquil times investment increases by a maximum

of around 1% and consumption and GDP by around 0.25% . During uncertain times,

instead, their maximum reactions are around two-thirds weaker than during tranquil

times. This suggests not only that monetary policy shocks are less effective when they

occur during economic phases characterized by high uncertainty, but also that they are

22The bootstrapped confidence bands take full account of sampling variability, i.e., of parameters
uncertainty.
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so in an economically important manner.

Figures 4 and 5 also document a significant decrease in uncertainty in response

to the considered expansionary monetary policy shock. To appreciate the size of the

decrease in uncertainty, notice that a one standard deviation monetary policy shock

would cause a maximum decrease in uncertainty of around 1/3 of the standard deviation

of uncertainty shocks when uncertainty is proxied by the IQR of sales growth and

of around 1/6 when uncertainty is proxied by the VIX.23 This significant and sizable

decrease in uncertainty confirms the necessity of modeling uncertainty as an endogenous

variable and, accordingly, that of computing GIRFs à la Koop et al. (1996). The next

Section digs in depth on the role of endogenous uncertainty and shows its relevance

for the estimated responses. There we will see that our estimated GIRFs for real

variables take also implicitly into account the fact that uncertainty mean reverts after

the monetary stimulus.24

Turning to the response of prices, Figure 4 and 5 document the appearance of

a "price puzzle". The price response predicts, contrary to conventional wisdom, a

significant short-run decrease in prices following a monetary policy expansion, with

prices starting to increase with respect to trend only later. This is a result often found in

the monetary VAR literature.25 The literature has proposed two main ways to interpret

this apparent puzzle. One way is to interpret the reaction of prices as a VAR-fact while

the other one is to interpret it as a VAR-artefact due to omitted variables.26 In Section

A4 of the Appendix we perform a check considering inflation expectations and Divisia

money as further variables in our VAR (following, respectively, Castelnuovo and Surico

23The fact that the VIX is less endogenous to monetary policy shocks is consistent with the findings
by Ludvigson, Ma, and Ng (2015) according to which financial uncertainty is more exogenous to the
business cycle.
24This is not directly evident from the uncertainty responses in Figures 4 and 5 since the GIRF

represents the deviation of uncertainty from its mean reversion path as caused by the monetary policy
shock (see equation 5). Hence, for example, the negative response of uncertainty during tranquil times
in the figures implies that, because of the monetary policy shock, uncertainty will mean revert more
slowly to its higher unconditional level.
25The price puzzle is a common finding especially for sample periods that include Pre-Volcker ob-

servations (as ascertained in our checks below). As our robustness checks show, it occurs also in case
we identify monetary policy shocks by means of an external instrument following Gertler and Karadi
(2015).
26As regards the "fact" interpretation, Christiano, Eichenbaum, and Evans (2005) rationalize the

price puzzle via a working capital channel which justifies the presence of a short-term interest rate in
firms’marginal costs due to the fact that firms must borrow money to finance their wage bill before the
goods market opens. The reduction in marginal costs after an expansionary monetary policy shocks
could hence be at the root of the price puzzle. As regards the "artefact" interpretation, Sims (1992)
and Castelnuovo and Surico (2010) attribute the price puzzle evidence to variables that are omitted in
the VAR but that are instead considered by the monetary authority in taking their policy decisions.
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(2010) and Keating, Kelly, and Valcarcel (2014)). The puzzling response of prices

is significantly mitigated and the non-linear response of real activity to a monetary

policy shock documented with our benchmark analysis turns out to be robust. A

further consideration on the reaction of prices is that notwithstanding the very different

responses of real activity indicators, price responses hardly exhibit any different behavior

between states. This is, at a first glance, evidence against the empirical relevance

of Vavra’s (2014) mechanism centered on price setting as the main driver behind our

results. In Section A2 of our online Appendix we clarify some reasons why it is important

to be cautious in this respect when interpreting our results — e.g., our VAR setting

and our use of aggregate data —, and conclude on the need of more research using

microeconomic data (following, e.g., Bachmann, Born, Elstner, and Grimme (2017)).

Finally, to examine whether the response of real variables is statistically different

between states, a test is proposed in Figure 6, both for the IQR of sales growth (left

panels) and the VIX case (right panels). The computation of this test is based on the

distribution of the difference between state-conditional responses stemming from the

bootstrap procedure used. This allows us to take into account the correlation between

the estimated impulse responses. We report the percentiles referring to the 68 and 90

percent confidence levels. The confidence bands point to a statistically different response

of real activity between uncertain and tranquil times in the medium run, i.e., in the

period in which monetary policy exerts the maximum of its power before becoming

neutral in the long run.

Robustness checks. The robustness of our baseline results is assessed along several
dimensions in Section A4.1 of our online Appendix (summary in Figure A4 and first row

of Figure A6). We employ alternative uncertainty measures (such as Jurado, Ludvigson

and Ng’s (2015) macro- and firm-level uncertainty indexes), sharpen the identification

of the monetary policy shocks (by considering either inflation expectations or a different

Cholesky ordering with uncertainty first) and consider a NBER dummy as a potentially

relevant omitted variable.

Section A4.2 motivates and presents the results from additional robustness checks

we performed (summary in Figure A5 and last two rows of Figure A6). It is shown

that baseline results are robust to: i) the estimation over the post-Volcker sample; ii)

the case of a break in the variance-covariance matrix that accounts for lower volatility

during the Great Moderation period; iii) the employment of a richer specification of

our SEIVAR model that allows for higher order interaction terms between the policy

rate and uncertainty; iv) the case where the linear trend is not included; v) the case
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trending variables are modelled in growth rates; vi) the estimation of a smaller-scale

SEIVAR; vii) the employment of an alternative Cholesky ordering in which uncertainty

is allowed to contemporaneously react to real activity but not to monetary policy; viii)

the ordering of prices as last variable so that to allow for its on-impact response to the

policy shock; ix) the case the CPI is used instead than the GDP deflator price index;

and x) the case monetary policy shocks are identified using high frequency surprises

around policy announcements as external instruments as in Gertler and Karadi (2015).

Section A4.3 contains further material: Figure A7 uses a wider tolerance band

in defining the two states; Figure A8 proposes a statistical test for the difference of

the cumulative effect of monetary policy shocks which is more directly related to the

overall policy effectiveness; Figure A9 shows the decrease in uncertainty for the checks

considered in Section A4.1.

5 The role of endogenous uncertainty

This Section shows why modeling uncertainty as an endogenous variable in the non-

linear VAR is crucial to properly estimate the real effects of monetary policy shocks.

Figure 7 makes a comparison between our baseline state-conditional GIRFs and the

IRFs obtained from a counterfactual exercise based on the same estimated baseline

SEIVAR model but where responses are computed by keeping the level of uncertainty

at its pre-shock value (i.e., by treating uncertainty as exogenous).27 As the figure doc-

uments, state-conditional responses of real variables get more distant between states

when uncertainty is kept fixed in the computation of (conditionally-linear) counter-

factual responses than when its endogenous reaction is considered in computing (fully

non-linear) responses. Table 1 and Figure 8 complement the findings in Figure 7 by

making a comparison between the difference in the state-conditional real effects of the

monetary shock for the cases of endogenous and exogenous uncertainty (black solid and

green starred lines in Figure 8, respectively).28 Overall, we find that the difference be-

tween both peak and cumulative state-dependent responses of real variables gets halved

27Following the same logic of the counterfactual exercises in Sims and Zha (2006b), we perform
this exercise by making uncertainty completely unresponsive to other variables in the system (i.e.,
uncertainty remains fixed to its pre-shock value during all the iterations needed to compute the GIRFs).
The response we get is technically a conditionally-linear response for which starting conditions do not
play any role.
28Figure 8 does not report the confidence bands for clarity reasons. Even though they are not helpful

to assess statistical significance (provided results come from a counterfactual exercise), counterfactual
responses are outside the 68% baseline confidence bands (results available upon request).
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when uncertainty is treated as endogenous versus when is not, implying that with en-

dogenous uncertainty monetary policy effectiveness becomes half as state-dependent as

with exogenous uncertainty.

To ensure that the counterfactual exercise above fully captures what happens when

uncertainty is exogenously modelled in the non-linear VAR (as in, e.g., Aastveit, Natvik,

and Sola (2017)), Figure A10 in the Appendix shows IRFs obtained from an alternative

estimated IVAR comparable to equation (1) where uncertainty, which serves as our

conditioning variable, is not modeled in the vector of endogenous variables, i.e.,:

Ỹt = α+ γ·linear trend +
L∑
j=1

AjỸt−j +

L∑
j=1

Bjunct−j +

[
L∑
j=1

cjRt−j × unct−j

]
+ ut,

where Ỹ does not include unc. In order to obtain the impulse responses, uncertainty is

fixed either to its 9th decile value or to its 1st decile one —consistently with our baseline

IVAR and similarly to Aastveit, Natvik and Sola (2013, 2017) —and the conditionally-

linear system is iterated onwards.29 As Figure A10 shows, virtually the same results as

in Figure 7 are obtained.30

The finding that under exogenous uncertainty monetary policy is erroneously found

twice as powerful during uncertain times as during tranquil times is mechanically ex-

plained by the neglect of the endogenous moves of uncertainty after the monetary policy

shock hits. Specifically, the finding arises because conditionally-linear IRFs neglect to

consider the two reasons why uncertainty can move after the monetary shock, or in

other words because they neglect the interaction between two endogenous uncertainty

channels. Figure 9 digs deeper into the drivers of the results in the first row of Figure

7 on the real effects of monetary stimuli (in particular, the first panel of Figure 9 coin-

cides with the first panel of Figure 7). As the first row of Figure 9 documents, treating

uncertainty as an exogenous variable —like in Figure 7 —both i) shuts down the (endoge-

nous) reaction of uncertainty to the monetary policy shock and ii) prevents uncertainty

to mean revert after the shock (second and third column, respectively). These are two

different endogenous channels that can influence the GDP response to monetary policy

shocks in different ways. In what follows we disentangle the effect of each of them. The

29A similar iterated procedure to get IRFs from a linear VAR is illustrated in Hamilton (1994, p.
319). Notice that this model is fully linear conditional on an uncertainty value and hence, unlike our
baseline IVAR, the starting conditions do not matter.
30This reassures us against the relevance of the Lucas critique for the counterfactual exercise per-

formed. We prefer to work with the counterfactual analysis in the main paper because allows us to
distinguish between the two endogenous uncertainty channels, what we do next.
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aim is to decompose and rationalize the move from conditionally-linear IRFs —which

do not take account of endogenous uncertainty —to our baseline GIRFs —which do take

account of it.

On the one hand, the reduction in uncertainty induced by the expansionary mon-

etary shock works in favor of enhancing, ceteris paribus, the response of real variables

in each state with respect to a scenario with unreactive uncertainty. This is the "un-

certainty endogenous reaction" channel that Bernanke refers to in his statement in the

Introduction, according to which "the reduction in risk associated with an easing of

monetary policy [...] may amplify the short run impact of policy". The decrease in

uncertainty will increase monetary policy effectiveness via reduced precautionary sav-

ings and the shrinkage of firms’inaction regions. The second row of Figure 9 presents

a counterfactual exercise that allows us to isolate the role played by this channel. Pro-

vided that this is the only channel shut down (i.e., uncertainty still mean reverts as

in the baseline analysis), the passage from these counterfactual responses to baseline

responses will only be explained by this channel. Consistently with Bernanke’s pre-

dictions — and consistently with the short run baseline decrease in uncertainty after

the monetary shock —, the real effectiveness of monetary policy shocks increases in the

short run in the passage from counterfactual GDP responses to baseline ones, for both

uncertain and tranquil times.

On the other hand, the mean reversion in uncertainty occurring after —but inde-

pendently from —the monetary shock works in favor of making the state-dependent real

responses less different between states with respect to a scenario of non mean reverting

uncertainty. This is the mean reversion channel that Bloom refers to in his passage in

the Introduction, according to which "when uncertainty is mean reverting, high current

[uncertainty] values have a lower impact on expected long-run [uncertainty] values than

if uncertainty were constant." Assuming non mean reverting uncertainty implies that

uncertainty will be forever high or low. Since agents take decisions based on expected

future uncertainty, then it is reasonable to expect that allowing uncertainty to mean

revert will imply a less extreme agents’response in each state. The third row of Figure 9

confirms these intuitions with a counterfactual that isolates this "mean reversion" chan-

nel by shutting it down.31 Consistently with what expected, in the passage from these

31 In order to properly isolate this mean reversion channel, the right panels in Figure 8 plot
the average non-shocked uncertainty path following the shock at time t, for each given state, i.e.,

E
[
unct+h | {$t−1 ∈ Ωuncertain times

t−1 }
]
and E

[
unct+h | {$t−1 ∈ Ωtranquil times

t−1 }
]
(see equation 5).

In this way the mean reversion in uncertainty is independent from the uncertainty endogenous reaction
to monetary policy shocks and only depends from the initial level of uncertainty.
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counterfactual responses to baseline ones, the real effects of monetary policy shocks in-

crease in uncertain times —provided that initially-high uncertainty mean reverts toward

a lower value —and decrease in tranquil times —provided that initially-low uncertainty

mean reverts toward an higher value.

Figure 8 also shows the difference in the state-conditional real effects of the monetary

shock for the cases in which, with respect to the baseline case of endogenous uncertainty,

either the Bernanke’s or the mean reversion channels are shut down (purple crossed and

orange circled lines, respectively).

Overall, this Section’s findings suggests two considerations. First, both channels can

be quantitatively relevant. As Figure 9 documents, in case uncertainty is proxied by the

IQR of sales growth, their neglect would induce quantitatively important biases in the

estimated real responses to monetary policy shocks.32 ,33 Second, as Figure 8 documents,

the mean reversion channel is the main responsible for halving the difference between

state-dependent responses of real variables when uncertainty is treated as endogenous.

Indeed, when the channel is the only channel shut down the difference is similar to

the (fully) exogenous uncertainty case, whereas when it the only channel active the

difference is similar to the baseline case of endogenous uncertainty. This is consistent

with the fact that the mean reversion channel, as seen above, is the only channel that

32An attentive reader may wonder why both channels can be empirically relevant for GDP response
even though the changes they induce in uncertainty are of very different magnitude (probably he/she
would have compared Figure 8 second and third columns vertical axis scales). Remember, however, that
the GDP response is given by its average shocked minus non-shocked path (see equation 5). As regards
the Bernanke channel, the decrease in uncertainty induced by the shock will be directly translated into
the responses (since uncertainty will decrease only in the shocked path). Instead, the mean reversion in
uncertainty is something present in both uncertainty paths (shocked and non-shocked) and hence only
part of it would be indirectly transmitted into the response, via the non-linear interaction terms (think
to the fact that only the interest rate would be different between paths —by definition of monetary
policy shock —and that it would be multiplied with mean reverting uncertainty in the interaction term).
Basically, in loose terms and over-simplifying on notation, the response of GDP for the endogenous
uncertainty case at horizon h ahead for a time t shock to the policy rate R (δR shock at horizon h = 0)
conditional on an history ωt−1 can be seen as:

∂GDP (h)

∂R(0)

∣∣∣∣end. unc.
$t−1

=
∂GDP (h)

∂R(0)

∣∣∣∣ex. unc.+∂GDP (h)∂unc

(
∂unc

∂R(0)
+

∂unc

∂time
·
[

∂ (R · unc)
∂ (R(0) & time)

− ∂ (R · unc)
∂ (time)

])∣∣∣∣
$t−1

, for h = 0, 1, ...,H. It is easy to see that when uncertainty is exogenously modeled and fixed to a
constant to recover state-dependent responses, then both endogenous uncertainty channels are shut
down, i.e., ∂unc

∂R(0) = 0 (Bernanke’s channel turned off) and ∂unc
∂time = 0 (mean reversion turned off).

Notice that in a non-linear model the two channels may also interact (think to a negligible extra term
in the parenthesis which our baseline GIRFs can also capture).
33In case uncertainty is instead proxied by the VIX, the only channel that would induce a quantita-

tively relevant bias is the mean reversion channel (see Figure A11 in the Appendix). This is consistent
with the fact that the decrease in the VIX induced by the monetary policy shock is of smaller relevance
than the one induced in the IQR of sales growth (as documented in Section 4.2).
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makes responses less distant between the two states.

6 Conclusion

We propose a non-linear VAR framework in order to study the macroeconomic effects

of monetary policy shocks during tranquil versus uncertain times while taking into

account that uncertainty may endogenously move after monetary stimuli. We show that

modeling uncertainty as endogenous is key, both economically and econometrically, in

order not to disregard important transmission channels and hence to correctly estimate

the effects of unexpected monetary stimuli. We find that, on average, an unexpected

monetary policy shock has real effects around two-thirds smaller during uncertain times

than during tranquil times. While being an important difference, we show that it is

considerably smaller than what one would get by disregarding the endogenous move

of uncertainty after the stimulus. Our results lend support to real option effects in

investment and durable goods as a potential theoretical explanation behind the reduced

effectiveness of monetary policy shocks. Further, our results point to the existence of two

novel endogenous uncertainty channels, Bernanke’s "uncertainty endogenous reaction"

and "uncertainty mean reversion" channels, which we find empirically relevant for the

propagation of monetary policy shocks. The uncertainty mean reversion channel is the

one connected to monetary policy effectiveness becoming half as state-dependent with

endogenous uncertainty as with exogenous uncertainty.

Our findings have implications for policy because they suggest that, even when con-

sidering the “endogenous uncertainty”channels, monetary policy remains significantly

less effective during uncertain times than tranquil times. Hence our evidence lends

empirical support to the call for more aggressive policies in uncertain times (Bloom

(2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018)). Our find-

ings also offer some suggestions for theoretical modeling, in particular pointing to the

relevance of developing non-linear micro-founded models where uncertainty can play

a state-conditional role and possibly where, instead of being a completely exogenous

process, it can react to policy stimuli while at the same time displaying empirically-

grounded mean reversion.
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Difference between state-conditional:
peak effects cumulative effects

GDP Inv. Cons. GDP Inv. Cons.
IQR of sales growth

endogenous uncertainty -0.10 -0.38 -0.11 -1.13 -4.63 -1.48
exogenous uncertainty -0.19 -0.69 -0.21 -1.99 -8.02 -2.59

endog. unc./exog. unc. 0.53 0.55 0.53 0.57 0.58 0.57

VIX
endogenous uncertainty -0.11 -0.43 -0.10 -1.18 -4.19 -1.12
exogenous uncertainty -0.22 -0.84 -0.21 -2.23 -7.70 -2.05

endog. unc./exog. unc. 0.49 0.52 0.48 0.53 0.55 0.55

Table 1: Difference of the state-conditional peak and cumulative real effects of
monetary policy shocks between uncertain and tranquil times: endogenous
vs. exogenous uncertainty. The difference is computed as the effects in uncertain
times minus the effects in tranquil times.
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Figure 1: Uncertainty indicators. Orange dashed line: IQR of sales growth (sample:
1971Q1-2009Q3). Peach solid line: VIX (sample: 1971Q1-2015Q4). Grey areas: NBER
recessionary quarters.
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Figure 2: Time-varying peak and cumulative response of GDP (shock: 25 basis
points unexpected decrease in the policy rate). Left (right) column: IQR of sales
growth (VIX) as uncertainty proxy. Upper row: temporal evolution of the GIRFs
peak and cumulative response (blue solid and cyan dotted lines respectively) along
with the previous-quarter level of uncertainty. The cumulative effects and uncertainty
measures are standardized to the mean and standard deviation of the peak effects.
Lower row: GIRFs peak response in relation with the initial level of uncertainty (with
a differentiation between conventional and unconventional monetary policy shocks).
Unconventional monetary policy shocks are shocks to the Wu and Xia’s (2016) shadow
rate in the period of binding ZLB (i.e., of negative shadow rate).
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in comparison to linear responses (shock: 25 basis points unexpected decrease in
the FFR). Left (right) column: IQR of sales growth (VIX) as uncertainty proxy. Solid
blue (red dotted) line: state-conditional GIRF for the tranquil times (uncertain times)
state. Black starred line: IRF from the nested linear VAR. Note: x -axis in quarters.
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Figure 4: Uncertain vs. tranquil times state-conditional GIRFs (uncertainty
proxy: IQR of sales growth). Blue solid lines, light blue bands and grey areas: point
estimates, 68% and 90% bootstrapped confidence bands for the GIRFs conditional to a
tranquil times state, respectively. Red dashed lines, dark red dotted and light red solid
bands: point estimates, 68% and 90% bootstrapped confidence bands for the GIRFs
conditional to a uncertain times state, respectively. Note: x -axis in quarters.
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Figure 5: Uncertain vs. tranquil times state-conditional GIRFs (uncertainty
proxy: VIX). Blue solid lines, light blue bands and grey areas: point estimates, 68%
and 90% bootstrapped confidence bands for the GIRFs conditional to a tranquil times
state, respectively. Red dashed lines, dark red dotted and light red solid bands: point
estimates, 68% and 90% bootstrapped confidence bands for the GIRFs conditional to
a uncertain times state, respectively. Note: x -axis in quarters.

38



IQR sales gr. as uncertainty proxy

5 10 15 20

GD
P

­0.2

­0.15

­0.1

­0.05

0

0.05

68% confidence bands
90% confidence bands

5 10 15 20

In
ve

st
m

en
t

­0.8

­0.6

­0.4

­0.2

0

5 10 15 20

Co
ns

um
pt

io
n

­0.25

­0.2

­0.15

­0.1

­0.05

0

VIX as uncertainty proxy

5 10 15 20

­0.3

­0.2

­0.1

0

5 10 15 20

­1

­0.5

0

5 10 15 20

­0.3

­0.2

­0.1

0
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Figure 9: Comparison among counterfactual exercises to study the role of
"Bernanke"’s and "Mean reversion" channels (uncertainty proxy: IQR of sales
growth). Upper row: Baseline results vs. results obtained from the counterfactual in
Figure 7. Middle row: Baseline results vs. results obtained from a counterfactual that
leaves inactive only "Bernanke’s" channel (i.e., starting from baseline GIRFs compu-
tation, fictitious shocks to uncertainty are used to zeroing the uncertainty response,
similarly to Kilian and Lewis (2011)). Lower row: Baseline results vs. results obtained
from a counterfactual that leaves inactive only the "Mean reversion" channel (i.e., start-
ing from the counterfactual explained in footnote 27, fictitious shocks to uncertainty are
used to replicate the baseline uncertainty response). The legend explains the different
lines. Lines in the first two columns refer to responses while lines in the last column
refer to the non-shocked uncertainty average (level) paths as explained in footnote 31.
Note: x -axis in quarters.
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Appendix
"Uncertainty andMonetary Policy in the US: A Journey into

Non-Linear Territory" by Giovanni Pellegrino

A1 Computation of the Generalized Impulse Re-
sponse Functions

This Section documents the algorithm employed to compute the GIRFs and their con-

fidence intervals. The algorithm follows Koop, Pesaran, and Potter (1996), with the

modification of considering an orthogonal structural shock, as in Kilian and Vigfusson

(2011).

The theoretical GIRF of the vector of endogenous variables Y, h periods ahead, for

a starting condition $t−1 = {Yt−1, ...,Yt−L} , and a structural shock in date t, δt, can
be expressed —following Koop, Pesaran, and Potter (1996) —as:

GIRFY,t(h, δt, $t−1) = E [Yt+h | δt, $t−1]− E [Yt+h | $t−1] , h = 0, 1, . . . , H

where E[·] represents the expectation operator. The algorithm to estimate our his-

tory and state-conditional GIRF reads as follows:

1. pick an initial condition $t−1 = {Yt−1, ...,Yt−L}, i.e., the historical values for the
lagged endogenous variables at a particular date t = L + 1, . . . , T . Notice that

this set includes the values for the interaction terms;

2. draw randomly (with repetition) a sequence of (n-dimensional) residuals {ut+h}s,
h = 0, 1, ..H = 19 , from the empirical distribution d(0, Ω̂), where Ω̂ is the

estimated VCV matrix. In order to preserve the contemporaneous structural

relationships among variables, residuals are assumed to be jointly distributed, so

that if date t’s residual is drawn, all n residuals for date t are collected;

3. conditional on $t−1 and on the estimated model (1)-(4), use the sequence of

residuals {ut+h}s to simulate the evolution of the vector of endogenous variables
over the following H periods to obtain the path Ys

t+h for h = 0, 1 . . . H. s denotes

the dependence of the path on the particular sequence of residuals used;

4. conditional on $t−1 and on the estimated model (1)-(4), use the sequence of resid-

uals {ut+h}s to simulate the evolution of the vector of endogenous variables over

A1



the following H periods when a structural shock δt is imposed to ust . In particular,

we Cholesky-decompose Ω̂= CC′ , where C is a lower-triangular matrix. Then,

we recover the structural innovation associated to ust by ε
s
t = C−1ust and add a

quantity δ < 0 to the scalar element of εst that refers to the FFR, i.e. ε
s
t,ffr . We

then move again to the residual associated with the structural shock us,δt = Cεs,δt

to proceed with simulations as in point 3. Call the resulting path Ys,δ
t+h;

5. compute the difference between the previous two paths for each horizon and for

each variable, i.e. Ys,δ
t+h −Ys

t+h for h = 0, 1 . . . , H ;

6. repeat steps 2-5 for a number of S = 500 different extractions for the residuals

and then take the average across s. Notice that in this computation the starting

quarter t−1 does not change. In this way we obtain a consistent point estimate of
the GIRF for each given starting quarter in our sample , i.e. ĜIRF Y,t(δt, $t−1) ={
Ê [Yt+h | δt, $t−1]− Ê [Yt+h | $t−1]

}19
h=0
. If a given initial condition $t−1 brings

an explosive response (namely if this is explosive for most of the sequences of

residuals drawn {ut+h}s, in the sense that the response of the variable shocked
diverges instead than reverting to zero), it is discarded and not considered for the

computation of state-conditional responses at the next stepA1;

7. repeat steps 2-6 to obtain an history-conditional GIRF for each initial condition

$t−1 of interest. In particular, we select two particular subsets of initial condi-

tions related to the historical level of uncertainty to define two states. An initial

condition $t−1 = {Yt−1, ...,Yt−L} is classified to belong to the “uncertain times”
state if unct−1 is within a 5-percentiles tolerance band from the top decile of the

uncertainty empirical distribution (i.e. within its 85th and 95th percentiles) and

to the “tranquil times”state if unct−1 is within the same band around the bottom

decile of the uncertainty distributionA2 ;

A1While we allow this to happen for bootstrapped simulated responses, we make sure that this does
not happen for point-estimated responses (i.e. our responses estimated on actual data) so that to back
up the stability of the estimated IVAR . The nonlinear DSGE literature has developed the pruning
method in order to preserve stability (see Andreasen, Fernández-Villaverde, and Rubio-Ramírez (2017))
but this is not currently available for nonlinear VARs.
A2This choice is motivated on the basis of two arguments. First, in this way we are consistent

with other works in the literature that estimate the response of the economy referring to the extreme
deciles of the uncertainty distribution (see, e.g., Vavra (2014) and Bloom, Bond, and Reenen (2007)).
Conditioning responses on extreme events might be important in finding empirical responses in favor of
nonlinearities, which might be missed when conditioning on normal events (see Caggiano, Castelnuovo,
Colombo, and Nodari (2015) and Pellegrino (2017)). Second, this choice allows each given regime both
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8. history-dependent GIRFs obtained in step 7 are then averaged over the state

they belong to to produce our estimate of the state-dependent GIRFs, i.e., our

ĜIRF Y,t

(
δt,Ω

tranquil times
t−1

)
and ĜIRF Y,t

(
δt,Ω

uncertain times
t−1

)
;

9. confidence bands around the point estimates obtained in point 8 are computed

through bootstrapA3. In particular, we simulate R = 2000 datasets statistically

equivalent to the actual sample and for each of them interaction terms are con-

structed coherently with the simulated series. Then, for each dataset, (i) we esti-

mate our Interacted-VAR model and (ii) implement steps 1-8 . In implementing

this procedure this time we have that the starting conditions and the VCV matrix

used in the computation depend on the particular dataset r used, i.e. $r
t−1 and

Ω̂r. Of the resulting distribution of state-conditional GIRFs, we take the 5th and

95th (16th and 84th) percentiles to construct the 90% (68%) confidence bands.

A2 The response of prices and the price channel
explanation

Analyzing the price response in Figures 4 and 5 in the paper can in principle help us to

empirically assess Vavra’s proposed mechanism centered on firms price-setting behavior.

More reactive prices during firm-level uncertain times would directly translate into

smaller real effects of monetary shocks. Is the reduced monetary policy effectiveness we

find during uncertain times due to more flexible prices? If this was the case, we would

expect to see a different response of prices in the two regimes, together with an higher

price level during uncertain times. However, looking at Figures 4 and 5, this is not

what we observe from our responses. Even though we find very different responses of

real activity indicators, price responses hardly exhibit any different behavior between

states. This is, at a first glance, evidence against Vavra’s (2014) mechanism. However,

before drawing a conclusion here, it is important to be cautious about three things when

interpreting our results.

to feature a number of GIRFs large enough to obtain representative state-conditional responses and to
have results that do not depend on particularly extreme observations. Figure A7 presents a robustness
check for a wider definition of the two regimes.
A3The Matlab code for generating bootstrap artificial draws for the endogenous

variables is built on that provided in the VAR Toolbox by Ambrogio Cesa-Bianchi
https://sites.google.com/site/ambropo/MatlabCodes. The bootstrap used is similar to the one
used by Christiano, Eichenbaum and Evans (1999, footnote 23). Our code repeats the explosive
artificial draws to be sure that exactly 2000 draws are used. In our simulations, this happens only a
negligible fraction of times.
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First, as already documented in the paper, our IVARs display a "price puzzle",

something very frequent in the monetary VAR literature.A4 In principle, the price

response makes the results diffi cult to be interpreted in light of the theoretical model

proposed by Vavra (2014). However, as shown in some of the checks in the Section A4

of this Appendix, even when the puzzling response of prices is significantly mitigated

and results are shown to be robust (e.g., by controlling for inflation expectations and

Divisia money as further variables in our VAR), there is still no detectable difference in

the response of prices between regimes.

Second, our recursive identification precludes a contemporaneous reaction of prices

to monetary policy shocks, which is instead what Vavra’s (2014) predictions mostly

pertain to.A5 However, two comments are worth making. First, even when using

alternative identification assumptions it is hard to find that prices react in the same

quarter to monetary policy shocks. Rather, they display an inertial behavior (see, e.g.,

Romer and Romer (2004) and Gertler and Karadi (2015)).A6 The same is confirmed in a

check in the next Section of this Appendix once we order prices after the FFR in a VAR

that considers also inflation expectations as the first ordered variable. Second, Vavra’s

model is a stylized model with little internal propagation which, more than fitting

the macro data response to a monetary shocks well, aims at proposing a transmission

channel based on some micro-data related evidence he finds on firms’ price setting

behavior during uncertain times.

Third, studying the aggregate response of prices to a monetary policy shock may not

carry enough information to unveil the importance of an uncertainty-dependent firms’

price-setting behavior, both because monetary shocks account little for the observed

aggregate fluctuations of prices and because firms react sluggishly to them. Boivin,

A4The persistence of the price puzzle we find is consistent with the literature too. For example,
Hanson (2004) finds that after two years from a contractionary monetary shock prices are still above
trend (see his Figure 1, last row). He also shows that the persistence of the price puzzle is a function
of the sample period considered. Consistent with his findings, a robustness check in the Section A4
of this Appendix that considers only the post-Volcker sample period delivers no evident price puzzle.
This is also consistent with Castelnuovo and Surico (2010).
A5In the most realistic, calibrated version of Vavra’s (2014) model, he finds that the price level reacts

as much as 36% more on-impact during firm-level uncertain times than tranquil times.
A6Romer and Romer (2004) construct a monthly series of narratively identified monetary policy

shocks by the changes in the FFR around FOMC meetings that are orthogonal to the real time
Fed’s information set, consisting in several variables. When evaluating the effects of these shocks
on the price level (fig. 4) they find that prices hardly move in the short-run. Gertler and Karadi
(2015) identify monetary policy shocks using high frequency surprises around policy announcements
as external instruments and show that this methodology produces responses in output and inflation
that are typical in monetary VAR analysis. Interestingly for us, they find that the price level does not
move statistically in the same quarter of monetary policy shocks (fig. 1).
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Giannoni, and Mihov (2009) find that disaggregated prices appear sticky in response to

macroeconomic and monetary disturbances, but flexible in response to sector-specific

shocks, implying that the flexibility of disaggregated prices is perfectly compatible with

stickiness of aggregate price indices. Further, they find that sector-specific shocks ac-

count on average for 85 percent of the monthly fluctuations of disaggregated prices.

Thus, even though firms may change prices more frequently in presence of high firm-

level uncertainty (as Bachmann, Born, Elstner, and Grimme (2013) find), this fact can

be mostly driven by firms’response to micro-level shocks, rather than to macro-level

ones like monetary policy shocks.

To wrap up, our findings suggest that Vavra’s price-setting mechanism does not seem

a main driver at the macro level to explain the very different reactions of real aggregate

variables to a monetary policy shock between uncertain and tranquil times. However,

this does not imply that the mechanism is not at play during uncertain times.A7 Further

research focusing on microeconomic data is needed in this dimension. Klepacz (2017)

studies whether individual prices in Producer Price Index micro data are more likely

to move in the same direction when aggregate volatility is high, which would increase

aggregate price flexibility and reduce the effectiveness of monetary policy. In line with

my results, his findings suggest that increases in aggregate volatility do not substantially

reduce the ability of monetary policy to stimulate output via the pricing channel.

A3 Supplementary results for Section 4.1

This Section presents extra results and material to the ones in Section 4.1 of the main

paper. Figure A1 presents the full evidence of time-variation of the GDP GIRF sum-

marized in Figure 2 in the paper. Figure A2 shows how Figure 2 would look like in

case uncertainty was kept fixed to its pre-shock level in the computation of responses

(on the basis of the same counterfactual in Section 5). In this case, the relation be-

tween the power of monetary policy shocks and the initial level of uncertainty becomes

perfect given that in a conditionally-linear model only the initial level of uncertainty

A7We admit that alternative specifications of our SEIVAR can provide different answers as regards
the price-channel explanation (for example, in some of the checks we perform in Section A4 — like,
e.g., the JLN macro uncertainty case —the response of prices appears more state-dependent than our
baseline responses). For the purposes of our work we only make sure that our baseline results regarding
the uncertainty-dependent effects of monetary policy shocks are robust across modelling scenarios. A
deeper study of the price-channel explanation for the lower real effects of monetary policy shocks is
left to future research.
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matters (historical initial conditions of other variables do not play any role).A8 Figure

A3 shows how the lower panels of Figure 2 would have appeared in case we had used two

alternative shadow rates available in the literature (in particular the Krippner’s (2015)

one made available on the website of the Reserve Bank of New Zealand and Bauer and

Rudebush’s (2016) Y Z(3, rmin = 0) one).A9A10 The findings suggests that, even though

in each case the period of binding ZLB introduces an important instability in the effects

of monetary policy shocks, the magnitude of this instability —as well as the real effect

of both conventional and unconventional monetary policy shocks —is sensitive to the

shadow rate used. Figure A4 contrasts our baseline GIRFs with the IRFs obtained

from an alternative IVAR where uncertainty, which serves as our conditioning variable,

is not modeled in the vector of endogenous variables and hence where conditionally-

linear IRFs are computed (as so far done in the literature, e.g., in Aastveit, Natvik, and

Sola (2017)).A11 The same results of the counterfactual in Figure 7 are obtained.

A4 Robustness checks

A4.1 First round of robustness checks

In this Section we consider perturbations of the baseline specification of our SEIVAR

model to check the robustness of our baseline results for real activity, along several

dimensions. We employ alternative uncertainty indicators, sharpen the identification

of the monetary policy shocks and consider potentially relevant omitted variables. To

A8Pellegrino (2017) shows that, in a context in which initial conditions matters, it is possible to
construct a counterfactual historical decomposition for monetary policy shocks in order to investigate
the empirical relevance of the influence of uncertainty for the effectiveness of monetary stimuli.
A9Bauer and Rudebusch (2016) find that estimated shadow rates are quite sensitive to both the

specific short-term yields included in the model used and the assumption about the numerical lower
bound for interest rates.
A10Krippner’s shadow rate was downloaded from the Reserve Bank of New Zealand website
(https://www.rbnz.govt.nz/-/media/ReserveBank/Files/Publications/Research/Additional%20research/Leo%20Krippner/US-
monthly-update-April-2016-reference-only.xlsm?la=en). The Bauer and Rudebusch’s shadow
rate was downloaded for the website of the Federal Reserve Bank of San Francisco
(http://www.frbsf.org/economic-research/economists/shadow_rates.csv). Quarterly averages have
been taken.
A11For more details on the alternative model and how IRFs are computed please refer to the Figure
notes. Notice that, in the working paper version of Aastveit, Natvik, and Sola (2017), e.g., Aastveit,
Natvik, and Sola (2013), where the authors perform the analysis also for Canada, UK and Norway,
they adopt an IVAR specification more dissimilar from ours and find more different responses between
states with respect to their published version.
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support our conclusions in Section A2 we also present the response of prices.A12 Figure

A4 shows the results for the robustness checks we consider. Each row reports the

GIRFs from each of the alternative specifications considered and the confidence bands

for baseline responses. We comment on these checks below.

JLN uncertainty indexes. In the baseline analysis we have used the IQR of sales
growth and the VIX as uncertainty indicators. Even though for our purposes we are

not interested in identifying exogenous movements (shocks) in uncertainty, which is

rather the territory of empirical studies on the real impact of unexpected heightened

uncertainty, we do need an uncertainty measure which is relevant for economic decision

making. In this regard, what really matters for economic decision making, according

to Jurado, Ludvigson, and Ng (2015) (JLN henceforth), is whether the economy has

become more or less predictable, rather than whether particular economic indicators

have become more or less variable or disperse per se. Hence, in this case, if the volatility

captured by our baseline uncertainty proxies were in large part forecastable, our results

could be spurious. To control for this eventuality we employ the macro and firm-level

uncertainty indicators constructed by Jurado, Ludvigson, and Ng (2015), which are

computed as the common factor of the time-varying volatility of the estimated h-steps-

ahead forecast errors of a large number of economic time series. Their macro dataset

embeds the information of 132 macroeconomic and financial indicators, while their

firm-level dataset consists of 155 firm-level observations on profit growth normalized by

sales.A13

Figure A4 (first two rows) documents that baseline results are confirmed for JLN

alternative uncertainty indicators. For the JLN macro uncertainty indicator, the peak

response of investment becomes even more distant between the two states.

Uncertainty ordered first. In our baseline analysis we have ordered uncertainty
last in order to maximize its degree of endogeneity in the VAR. Uncertainty was al-

lowed to react contemporaneously to monetary moves while the policy rate could not

A12A part from the checks that consider alternative uncertainty indicators, robustness checks are
based on the IQR of sales growth as uncertainty proxy. Given its firm level nature it will be helpful to
evaluate the response of prices (as explained in Section 3.3). Using the IQR of sales growth has also
the advantage of dealing with an IVAR specification that remains more stable to perturbations.
A13Both uncertainty indicators were downloaded from the data section in Sydney Ludvigson’s webpage
(i.e. http://www.econ.nyu.edu/user/ludvigsons/). Both indicators used refer to a forecasting horizon
equal to 1 quarter. We take quarterly averages to pass to quarterly frequencies. In order to use the
firm-level indicator as conditioning variable we HP-filter it (lambda=1600) to avoid instability problems
due to the non-stationary features of the series. The use of the macro index forces us to use a longer
sample (up to the end of 2010) with respect to our baseline sample (up to mid 2009) in order to avoid
maxima at the end of the sample and hence in-sample instability of some quarter-specific GIRFs.
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react contemporaneously to uncertainty moves. However, in case the monetary policy

systematic conduct responded also to uncertainty (as recently argued by Evans, Fisher,

Gourio, and Krane (2015) and Caggiano, Castelnuovo, and Nodari (2017)), its missed

consideration may potentially affect our results. Here, we perform a robustness check

where uncertainty is ordered first in the VAR so that to identify monetary policy shocks

which are safely purged from moves in all variables, included the uncertainty measure.

As the third row of Figure A4 clarifies, our baseline results continue to hold.

Inflation expectations and Divisia money. Our baseline analysis displays a
puzzling response of prices. As explained in Section 4.2, several explanations have been

suggested in the literature for this quite common empirical fact, but one which surely

deserves further investigation here is the omitted variables explanation. As argued

by Sims (1992), the monetary authority when setting its policy rate could have more

information about future inflation than that which is embedded in a simple VAR. Hence,

to the extent that the Fed in anticipation of future inflation systematically reacts by

raising the interest rate, something which for the VAR-econometrician would constitute

a policy shock, we would observe that prices increase after a contractionary policy shock,

i.e., the emergence of the price puzzle. To tackle these issues and possibly mitigate the

price puzzle, we follow Castelnuovo and Surico (2010) and add a measure of inflation

expectations to our VAR as first-ordered variable.A14 Furthermore, we also add Divisia

M2 in the vector of endogenous variables and order it after the policy rate to allow

for a on-impact liquidity effect.A15 According to Keating, Kelly, and Valcarcel (2014)

Divisia money helps to solve the price puzzle. Figure A4 (forth row) shows that while

this alternative IVAR specification does not alter our baseline results, it prevents the

appearance of a significant and persistent price puzzle. There is only an insignificant

evidence of a short-run price decrease, while it is now evident that prices increase

above their trend faster, i.e., starting from two years from the expansionary monetary

A14In particular we use expectations for one-year-ahead annual average inflation, measured by the
GDP price index, available in the Survey of Professional Forecaster (SPF) by the Federal Reserve
Bank of Philadelphia (http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-
professional-forecasters/historical-data/inflation.xls). The series used is INFPGDP1YR and is available
since 1970Q2.
A15Divisia M2 has been proposed by Barnett (1980) to account for the fact that the offi -
cial measure M2 employed by the Federal Reserve is constructed by considering the simple sum
of monetary aggregates. Divisia money instead accounts for the imperfect degree of substitu-
tion characterizing different assets featuring different returns with the intent of tracking varia-
tions in the flow of monetary services in a more accurate manner. Data were downloaded from
http://www.centerforfinancialstability.org/amfm/Divisia_Narrow.xls . Quarterly averages of monthly
levels are taken.
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policy shock.A16 Also in this case there is, however, no detectable difference in the

response of prices between uncertain and tranquil times. This result confirms that an

uncertainty-dependent price-setting channel does not seem a key driver of the weaker

effects of monetary policy shocks in presence of high uncertainty.

NBER recession dummy indicator. As discussed in the paper, several studies
(e.g., Weise (1999), Tenreyro and Thwaites (2016) and Mumtaz and Surico (2015))

find that monetary policy shocks are less effective during bad times, defined in terms

of economic downturns. One could then argue that economic recessions is an omitted

variable from our IVAR model and that this omission is partially driving our results.

If this were the case we would expect that its addition to the model would make the

coeffi cients referring to uncertainty, particularly those inside the interaction terms, less

relevant. Therefore, our uncertainty-conditional responses would get closer between the

uncertain and tranquil times states. To check for this eventuality we add the NBER

recession dummy indicator as an exogenous variable to our VAR. Figure A4 (last row)

delivers results similar to baseline ones also along this dimension.A17

A4.2 Additional checksA18

Here we motivate and discuss additional robustness checks for baseline results. The

results obtained are summarized in Figure A5.

i) Post-Volcker sample / Break in the VCV matrix. Our sample spans both pre- and
post-Great Moderation periods. This notwithstanding, our baseline IVAR has not ac-

counted for possible structural breaks in economic relationships that may have occurred

over time. We propose two checks that consider some adjustments in the conditional

mean and variance of our IVAR model to account for the two main explanations that

have been proposed in the literature for the Great Moderation period, i.e., "good policy"

A16Hanson (2004) shows that even when considering most potentially relevant omitted variables it is
not possible to solve the price puzzle for a sample that includes the pre-Volcker period. Consistently
with Hanson (2004) and Castelnuovo and Surico (2010), in a check below we find that by considering
only the post-Volcker sample the price-puzzle disappears.
A17We note that having the Great Recession period in the sample sharpens the identification on the
effects of monetary policy shocks in presence of high uncertainty. This because the Great Recession was
characterized both by a dramatic jump in uncertainty and by a spectacular drop in the FFR engineered
by the Federal Reserve in the attempt of slowing down the fall of real GDP. Indeed, these are the facts
that motivated this paper. Unsurprisingly, the exclusion of the the Great Recession period would
drastically reduce the precision of the estimated impulse responses and blur the difference between the
cumulative effects of monetary policy shocks in the two states considered in this study.
A18We thank both the referees and the editor for their questions and suggestions which led us to
conduct several new checks documented here.
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vs. "good luck". Regarding the first, and somewhat related to our research question,

Boivin and Giannoni (2006) investigate the effects of monetary policy shocks in and

before the Great Moderation period and find that monetary shocks are less effective

in the Great Moderation period because monetary policy has stabilized the economy

more effectively in the post-1980 period by responding more strongly to inflation ex-

pectations.A19 To control for the possibility that our results spuriously depend on that,

we estimate an IVAR model on a sample starting from 1979:q3 (i.e., from the break

date considered in Boivin and Giannoni (2006) as well as in Lubik and Schorfheide

(2004)). Figure A5 (first row) shows that even though the GIRFs documenting the

reaction of real variables get closer between states (consistently with Boivin and Gi-

annoni (2006)), results are still consistent with baseline ones.A20 Further, consistently

with Hanson (2004) and Castelnuovo and Surico (2010), the price puzzle disappears

when considering this starting date.A21

Turning to the "good luck" explanation, it seems appropriate to account for the

fact that the volatility of shocks may have changed in the sample, in particular having

been lower with the starting of the Great Moderation period. According to Stock

and Watson (2002) and Sims and Zha (2006a), among others, the Great Moderation

consisted mostly in a change in the volatility of aggregate variables rather than in their

conditional mean behavior. To account for this possibility, we estimate an IVAR model

with a break in the VCV matrix in 1984:1 (the temporal break estimated by Kim

and Nelson (1999) and McConnell and Perez-Quiros (2000)).A22 This break, through

the Cholesky decomposition, also allows for a different contemporaneous relationship

between variables in the two sub-periods.A23 As Figure A5 (second row) clarifies our

A19This is consistent with the findings in Clarida, Galí, and Gertler (2000).
A20The FFR residuals implied by this IVAR are more volatile right at the beginning of the sample.
This is due to the targeting of non borrowed reserves by Volcker in the ’79-82 period. Starting the
sample in 1983 avoids this problem and imply a bigger difference of the state-conditional effects of
monetary policy shocks.
A21These last two studies consider when Paul Volcker was appointed as Chairman of the Federal
Reserve Board and split the sample accordingly. This means we should consider 1979:q4 as starting
quarter, but a check (not shown) confirms that virtually the same results would be obtained.
A22For the sake of simplicity we are considering the period after the Great Recession as inside the
Great Moderation period. However, a look at the quarterly growth rate of real GDP reassures us that
the volatility in the series is still overall consistent with the Great Moderation period, and anyway
much lower than the volatility in the pre-Great Moderation period.
A23More precisely, we estimate the following reduced-form model: (1’) Yt = α+ γ· linear
trend+

∑L
j=1 AjYt−j +

[∑L
j=1 cjunct−j ·Rt−j

]
+ ut , (2’) E(utu

′
t) = Ωr with r = 1 if t < 1984 : 1

and r = 2 if t ≥ 1984 : 1. The estimation of (1’) is performed by feasible GLS after the estimation
of Ωr, r = 1, 2, from the residuals referring to the relevant sub-sample periods obtained from equa-
tionwise OLS estimation of (1’) (see Lütkepohl (2013, equation 9 and previous one)). The Cholesky
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results turn robust also to this check.

ii) No time trend / Trending variables in first difference. Our baseline VAR mod-
els a time trend and trending variables in (log-)levels. The specification of the VAR

in levels allows for implicit cointegrating relationships in the data (Sims, Stock, and

Watson (1990)). Figure A5 (third and forth rows) shows results in case the time trend

is excluded and in case trending variables (i.e., P , GDP , Inv and Cons) are modelled

in growth rates and then cumulated responses are obtained.A24 Since first differencing

variables is equivalent to the imposition of a unit root in the level of the series, cu-

mulated responses now are more persistent than our baseline ones. Notwithstanding

the possibility of a misspecified VAR, monetary policy shocks are still found to be less

effective during uncertain times.

iii) Smaller-scale VAR. Figure A5 (fifth row) displays a check assessing the robust-
ness of our results when a smaller-scale VAR is estimated. A common choice in the

literature is to employ a VAR with a measure of prices, GDP and the policy rate. Our

check considers just uncertainty on top of these variables since its endogenous role has

been shown to be crucial for our results.

iv) Higher-order interaction terms. The SEIVAR model that we adopt in this

study assumes a specific functional form of nonlinearity. With respect to an otherwise

standard linear VAR model, we considered to add, in each equation of the VAR, the

simple products of the lags of the policy rate and those of the uncertainty indicator. We

must admit though that if the aim is to reach nonlinearity by adding polynomial terms to

an otherwise standard linear VAR, several options are available. This makes the choice

of the non-linear specification a non trivial choice. However, two main reasons, both

related to the concept of parsimony, brought us to rely on our baseline model (1)-(4).

First, the interaction term between uncertainty and the policy rate is strictly related to

our research question. The focus on this interaction term indeed allows us to directly

ask whether the dynamic responses to a monetary policy shock depend on the level of

uncertainty in the economic system.A25 Second, the adoption of simple products rather

than squares or higher order polynomial terms allows on the one hand to maximize the

degrees of freedom in the estimation and on the other hand to minimize the possibility

decomposition of Ω1 and Ω2 allows to recover the effects of the structural monetary shock depending
on the time t of the shock. In computing GIRFs the series of future shocks with which the non-linear
system is hit (point 2. of the algorithm in section A1) also considers the initial time t of the shock and
residuals are extracted from the ones belonging to the subsample in which t belongs.
A24The VAR with growth rates misses one observation. It does not include a time trend. Growth
rates are computed as the difference between logarithmic values.
A25Notice that, abstracting from the deterministic part, and assuming for simplificity Y =
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of instability problems (as already notices in the second footnote of section 3.1). To

the extent that there is evidence in the data that the effects of monetary policy shocks

are less effective under high uncertainty, we think that our SEIVAR model can capture

it, even though admittedly perhaps not in the richest manner. In order to be sure that

our model is not missing important dynamics in the uncertainty-conditional response

to a monetary policy shock we conducted a check with a richer specification of the

interaction between monetary policy and uncertainty that considers also higher-order

terms related to the monetary policy stance and uncertainty.A26 As it can be seen from

Figure A5 (second part, first row), findings are similar to baseline ones, if not stronger.

v) Alternative ordering. Our baseline ordering and the check with uncertainty or-
dered first have not considered the case in which uncertainty contemporaneously reacts

to real activity but not to monetary policy. To this end we conducted a check in which

uncertainty and the policy rate are the last two variables, so that monetary policy may

contemporaneously react to uncertainty. Results are displayed in Figure A5 (second

part, second row).

vi) P last (and inflation expectations). Our baseline recursive ordering does not

allow the price level to react contemporaneously to monetary policy shocks. We perform

a check where we order prices as the last variable in our VAR to allow their on-impact

response to the shock. To be sure that monetary shocks are anyway correctly identified

we consider also (the previous indicator of) inflation expectations and order it as first

ordered variable to allow the policy rate to contemporaneously react to it (consistently

with a Taylor-type conduct of monetary policy). Results, displayed in Figure A5 (second

part, third row), are similar to baseline ones. Consistently with what explained in

Section A2, we do not find any evidence that prices react on impact.

[GDP,R,Unc]
′
, we can rewrite the SEIVAR model in equations (1)-(3) in the following form: GDPt

Rt
Unct

 =

L∑
j=1

 aj,11 aj,12 aj,12
aj,21 aj,22 aj,23
aj,31 aj,32 aj,33

 GDPt−j
Rt−j
Unct−j

+

 L∑
j=1

 cj,1
cj,2
cj,2

Rt−j · unct−j

+ ut

=

L∑
j=1

 aj,11 aj,12 + cj,1 · unct−j aj,12
aj,21 aj,22 + cj,2 · unct−j aj,23
aj,31 aj,32 + cj,3 · unct−j aj,33

 GDPt−j
Rt−j
Unct−j

+ ut.

Contrary to a standard linear VAR model, the coeffi cients attached to the policy rate in each equation
are time-varying according to the level of uncertainty. Since the policy rate is the shocked variable
considered, i.e., the variable which change ∆R we are interested in, this parsimonous SEIVAR allows
us to obtain the real effects of a monetary policy shock depending on the historical level of uncertainty.
A26To be more precise, the model on which this check is based is the following: Yt = α+ γ· linear
trend+

∑L
j=1 AjYt−j +

[∑L
j=1(cjunct−j ·Rt−j + djunc

2
t−j ·Rt−j + ejunct−j ·R2t−j)

]
+ ut , L = 2.
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vii) CPI. In our baseline we have use the GDP price index as a measure of prices.
In the fourth row of Figure A5 (second part) we check the robustness of our results to

the case the CPI is used. It turns out that our results for real variables are still robust,

even tough the price puzzle is now bigger.

viii) Proxy SVAR. In our baseline we identified monetary policy shocks by means
of a recursive (Cholesky) strategy following Christiano, Eichenbaum, and Evans (1999)

and Christiano, Eichenbaum, and Evans (2005). Recently the identification of monetary

policy shocks by means of external instruments have gained popularity after the pro-

posal of Proxy SVARs (Stock and Watson (2012), Mertens and Ravn (2013)). Gertler

and Karadi (2015) show that monetary policy shocks identified using high frequency

surprises around policy announcements as external instruments produce responses in

output and inflation that are typical in monetary VAR analysis. We follow their ap-

proach and use as instrument the quarterly average of their three month ahead fed

funds futures monthly surprises series (FF4) that spans the period 1991m1—2012m6.A27

The last row of Figure A5 (second part) shows that our baseline results are robust also

to this alternative identification scheme.

Figure A6 puts in comparison the differences of the responses of real variables for

each of the checks performed in this section with the baseline confidence bands for

the same differences. In all the cases the differences are within baseline bands. The

only exception is the difference of investment for the JLN macro index, where an even

stronger difference is found.

A4.3 Further checks and material

Figure A7 is the alternative of Figure 3 in case a wider tolerance band is used to define

the two states, i.e. a ten-percentiles tolerance band. It shows that ours results do not

depend on the use of our baseline five-percentiles tolerance band. Figure A8 proposes

a further statistical test for the difference of the effects of monetary policy shocks. It

asks whether the cumulative effect of monetary policy shocks is statistically different

between uncertain and tranquil times in the period in which the real effects of monetary

policy shocks are statistically relevant (which Figures 4 and 5 suggest not being longer

than 4 years). As the figure shows, we can statistically reject the fact that the GDP

cumulative effect of monetary policy shocks is the same between states. Finally, Figure

A27Taking quarter averages of the monthly FF4 instrument may cause important losses of information,
e.g., since there are more FOMC meetings than quarters in a year. Based on this consideration, we
preferred to adopt a Cholesky decomposition in our baseline analysis.
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A9 shows the decrease in uncertainty for the checks considered in Section A4.1. It makes

clear that our results on the decrease of uncertainty after an expansionary monetary

policy shock is very robust, also when considering alternative uncertainty measures like

the Jurado, Ludvingson and Ng’s (2015) indicators.

A5 Supplementary results for Section 5

This Section presents extra results and material to the ones in Section 5 of the main

paper. Figure A10 shows IRFs obtained from an alternative IVAR where uncertainty,

which serves as our conditioning variable, is not modeled in the vector of endogenous

variables and hence where conditionally-linear IRFs are computed (as done so far in the

literature). As Figure A10 shows, the same results as in Figure 7 in the main paper are

obtained. This ensures that the counterfactual exercise in the main paper fully captures

what happens when uncertainty is exogenously modelled in the nonlinear VAR (as in,

e.g., Aastveit, Natvik, and Sola (2017)). Figure A11 digs deeper into the drivers of the

results in the second row of Figure 7, i.e., it is the equivalent of Figure 9 in the main

paper when uncertainty is proxied by the VIX. In this case, the only channel that would

induce a quantitatively relevant bias is the mean reversion channel. This is consistent

with the fact that the decrease in the VIX induced by the monetary policy shock is of

smaller relevance than the one induced in the IQR of sales growth (as documented in

Section 4.2 of the main paper).

A6 Data sources

This section complements Section 3.3 of the main paper with more details on the data

used for the baseline analysis, in particular as regards sources and series construction.

• US real variables, price index and FFR. The data source is the Federal
Reserve Bank of St. Louis’database (FRED2 database). The precise names of

the series we use are the following: Real Gross Domestic Product, Billions of

Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate; Real Gross

Private Domestic Investment, 3 decimal, Billions of Chained 2009 Dollars, Quar-

terly, Seasonally Adjusted Annual Rate; Real Personal Consumption Expendi-

tures, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual

Rate; Effective Federal Funds Rate, Percent, Quarterly, Not Seasonally Adjusted;

Gross Domestic Product: Implicit Price Deflator.
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• Shadow rate. For the part of our sample that overlaps with the binding zero
lower bound period in the U.S. we use the Wu and Xia’s (2016) "shadow rate"

instead of the FFR and label shocks in it as "unconventional" monetary policy

shocks. Data source: Cynthia Wu’s websiteA28. We take quarterly averages of the

series.

• Interquartile range (IQR) of sales growth. This is a cross sectional firm-level
measure of uncertainty constructed by Bloom, Floetotto, Jaimovich, Saporta-

Eksten, and Terry (2018) and represents the interquartile range (IQR) of sales

growth for a sample of Compustat firms, which is available up to 2009Q3. The

IQR of sales growth is constructed on 2,465 publicly quoted firms spanning all

sectors of the economy. It is available on-line at Nick Bloom’s websiteA29.A30

• Stock Market Volatility Index. We update the Bloom’s Stock Market Volatil-
ity Index series up to 2015Q4 by using the VXO series available at the Federal

Reserve Bank of St. Louis database (FRED2 database, mnemonic VXOCLS). The

volatility index is constructed by Bloom (2009) by splicing the Chicago Board Op-

tions Exchange VXO index for the period after 1986 with the quarterly standard

deviation of the daily S&P500 for the period before that.A31 The uncertainty

monthly series is obtained from Nick Bloom’s websiteA32 and is available up to

the end of 2012. Quarterly data are obtained by quarterly averages.

As regards the data used in robustness checks, all the details are given in the ro-

bustness checks section.

A28https://sites.google.com/site/jingcynthiawu/home/wu-xia-shadow-rates
A29https://people.stanford.edu/nbloom/sites/default/files/census_data.zip (data_table1_sales.csv)
A30The IQR of sales growth is the only non-financial high-frequency uncertainty indicator referring to
disaggregated firm-level data used by Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2018)
for their results in Table 1.
A31The VXO is an index of percentage implied volatility on a hypothetical at the money S&P100
option 30 days to expiration.
A32https://people.stanford.edu/nbloom/sites/default/files/r.zip
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Figure A1: Temporal evolution of point estimated GIRFs for GDP (shock:
25 basis points unexpected decrease in the policy rate). Left (right) column:
IQR of sales growth (VIX) as uncertainty proxy. Upper row: temporal evolution of the
point estimated GIRFs. Colors ranging from blue (GIRFs peak values) to red (GIRFs
trough values). The figure is best seen in color.
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Figure A2: Time-varying peak and cumulative response of GDP for a coun-
terfactual that keeps the level of uncertainty at its pre-shock value. (shock:
25 basis points unexpected decrease in the policy rate). Left (right) column:
IQR of sales growth (VIX) as uncertainty proxy. Upper row: temporal evolution of the
GIRFs peak and cumulative response (blue solid and cyan dotted lines respectively)
along with the previous-quarter level of uncertainty and NBER recessions (shaded ar-
eas). The cumulative effects and uncertainty measures are standardized to the mean
and standard deviation of the peak effects. Lower row: GIRFs peak response in rela-
tion with the initial level of uncertainty (with a differentiation between conventional and
unconventional monetary policy shocks). Unconventional monetary policy shocks are
shocks to the Wu and Xia’s (2016) shadow rate in the period of binding ZLB. Note: see
Section 5 for more details on the counterfactual exercise. Practically the same results
are obtained in case uncertainty is exogenously modeled.
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Figure A3: Time-varying peak response of GDP for alternative shadow rates
(shock: 25 basis points unexpected decrease in the policy rate; VIX as
uncertainty proxy). GIRFs peak response in relation with the initial level of uncer-
tainty (with a differentiation between conventional and unconventional monetary policy
shocks). Unconventional monetary policy shocks are shocks to the shadow rate in the
period of binding ZLB. Note: To ease comparison between panels the period of binding
ZLB is the same and has been identified with the Wu and Xia’s (2016) shadow rate (i.e.,
starting from 2009q3). The shadow rate by Bauer and Rudebush (2016) is available up
to 2014q4.
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Figure A4: Robustness checks for several perturbations of the baseline
SEIVAR (shock: 25 basis points unexpected decrease in the FFR). Each
row corresponds to a different SEIVAR specification. Grey areas (areas identified by
red solid lines): 90% bootstrapped confidence bands for the GIRFs conditional to a
tranquil times (uncertain times) state of the baseline SEIVAR with the IQR of sales
growth as the uncertainty proxy. Blue (red) stars: tranquil times (uncertain times)
state-conditional GIRF for the alternative SEIVAR specification considered. Note: x -
axis in quarters.
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Figure A5: Robustness checks for further perturbations of the baseline
SEIVAR (shock: 25 basis points unexpected decrease in the FFR). Each
row corresponds to a different SEIVAR specification. Grey areas (areas identified by
red solid lines): 90% bootstrapped confidence bands for the GIRFs conditional to a
tranquil times (uncertain times) state of the baseline SEIVAR with the IQR of sales
growth as the uncertainty proxy. Blue (red) stars: tranquil times (uncertain times)
state-conditional GIRF for the alternative SEIVAR specification considered. Note: x -
axis in quarters.
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Figure A5: Continued.
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Figure A6: Difference of state-conditional GIRFs between uncertain and tran-
quil times for further perturbations of the baseline SEIVAR. IQR of sales
growth as uncertainty proxy. Solid black lines: baseline difference between point esti-
mated state-conditional GIRFs (uncertain times conditional GIRF minus tranquil times
conditional GIRF). Interior dark grey areas: 68 percent confidence bands for the base-
line difference (from the distribution of the difference stemming from the 2000 bootstrap
draws). Exterior light grey areas: 90 percent confidence bands for the baseline differ-
ence. The other lines with different colors and markers refer to the difference for further
perturbations of the baseline IVAR model (see the legend). Each row corresponds to a
different set of five checks. Note: x -axis in quarters.
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Figure A7: Robustness to a wider definition of uncertain vs. tranquil times
states (shock: 25 basis points unexpected decrease in the FFR). Left (right)
column: IQR of sales growth (VIX) as uncertainty proxy. Solid blue (red dotted) line:
baseline state-conditional GIRF for the tranquil times (uncertain times) state. Blue
diamonds (red circles) line: state-conditional GIRF for the tranquil times (uncertain
times) state when states are defined by a ten-percentiles tolerance band around the first
and ninth deciles of the distribution of uncertainty. Note: x -axis in quarters.
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Figure A8: Average difference between the cumulative effects of monetary
policy shocks on GDP. Red dashed line: Kernel density of the difference of the
cumulative effects of the monetary policy shock between tranquil times and uncertain
times (the density is based on the 2000 bootstrapped draws). Interior dark (exterior
light) grey shaded area: 68% (90%) confidence interval for the difference. Black solid
line: mean of the difference distribution. Green solid line: zero-vertical line identifying
the "no difference" value. Note: the test is computed for the 4-year cumulative effect
of monetary policy shocks.
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Figure A9: Uncertainty response from robustness checks (shock: 25 basis
points unexpected decrease in the FFR). Each row corresponds to a different
SEIVAR specification. Grey areas (areas identified by red solid lines): 90% boot-
strapped confidence bands for the GIRFs conditional to a tranquil times (uncertain
times) state of the baseline SEIVAR with the IQR of sales growth as the uncertainty
proxy. Blue (red) stars: tranquil times (uncertain times) state-conditional GIRF for
the alternative SEIVAR specification considered. Note: for comparability reasons base-
line confidence bands are shown just for specifications that do not consider alternative
uncertainty indicators. Note: x -axis in quarters.
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Figure A10: Comparison among several state-conditional responses: Baseline
GIRFs from SEIVAR with endogenous uncertainty vs. IRFs from IVAR
with exogenous uncertainty. Upper (lower) row: IQR of sales growth (VIX) as
uncertainty proxy. Blue solid and red dashed lines: baseline GIRFs conditional to a
tranquil and uncertain times state, respectively. Starred blue lines and starred red
points: point estimated GIRFs conditional respectively to a tranquil and uncertain
times state for the case uncertainty is not endogenously modeled in the IVAR. Notes.
All the VARs for which responses are reported are estimated on a similar number of
lags and sample period (equal to our baseline ones) for comparison purposes. Price
responses are not reported. In order to obtain the (conditionally-linear) responses
when uncertainty is not modeled endogenously, we estimate the following IVAR model
comparable to eqt. (1): Ỹt = α+ γ·linear trend+

∑L
j=1 AjỸt−j +

∑L
j=1 Bjunct−j +[∑L

j=1 cjRt−j × unct−j
]
+ ut, where this time Ỹ does not include unc. Then, in order

to obtain responses, uncertainty is fixed either to its 9th decile value or to its 1st decile
one (a choice similar to Aastveit, Natvik and Sola (2013, 2017) ) and the conditionally-
linear system is iterated on (a similar iterated procedure to get IRFs from a linear VAR
is illustrated in Hamilton (1994, p. 319 and around)) . Notice that this model is fully
linear conditional on an uncertainty value and hence, unlike our baseline IVAR, the
starting conditions do not matter. Note: x -axis in quarters.
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Figure A11: Comparison among counterfactual exercises to study the role
of the "Bernanke’s" and "Mean reversion" channels (uncertainty proxy: VIX).
Upper row: Baseline results vs. results obtained from the counterfactual in Figure 7.
Middle row: Baseline results vs. results obtained from a counterfactual that leaves
inactive only "Bernanke’s" channel (i.e., starting from baseline GIRFs computation,
fictitious shocks to uncertainty are used to zeroing the uncertainty response, similarly
to Kilian and Lewis (2011)). Lower row: Baseline results vs. results obtained from
a counterfactual that leaves inactive only the "Mean reversion" channel (i.e., starting
from the counterfactual explained in footnote 23 of the main paper, fictitious shocks to
uncertainty are used to replicate the baseline uncertainty response). The legend explains
the different lines. Lines in the first two columns refer to responses while lines in the
last column refer to the non-shocked uncertainty average (level) paths as explained in
footnote 25 of the main paper. Note: x -axis in quarters.
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