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1 Introduction

In directed search models, the gains from trade within relationships are anticipated in ad-

vance of meetings and these opportunities direct search and help to determine who meets

whom. For example, if workers and �rms in the labor market know in advance of meetings

that there are strong complementarities between particular types of workers and �rms, di-

rected search models predict that meetings will not be random (Acemoglu (2001), Eeckhout

and Kircher (2010), Wright et al. (2018)). Directed search models also predict that pro-

ductive matches can take time to form and that not all meetings yield matches. If this is

the consequence of coordination frictions, Shimer (2005) and Shi (2001) demonstrate that

matching will not only be assortative, but will also feature dispersion in the matching sets for

individual agents types on each side of a market. Therefore, unlike the competitive bench-

mark model of sorting by Becker (1973), directed search models also predict that similar

agents can expect di�erent types of match partners over time.

Perhaps the simplest model of directed search with coordination frictions is McAfee's

(1993) model of competing auctions. The simplicity of the equilibrium pricing mechanism �

second price auctions with a reserve price equal to the seller's continuation value � is due to

the fact that sellers compete on reserve prices and that the market utility of potential buyers

in a large market is independent of the decision of each seller. Furthermore, if sellers are

heterogenous, the distribution of buyer types bidding at each seller will depend on the seller's

type. Therefore, in a labor context, the bidding game is simple Bertrand competition as in

the Postel-Vinay and Robin (2002) model of employer competition for worker services, but

in the competing auction model the distribution of o�ers facing each worker is endogenously

determined and possibly di�erent for each worker type. Another crucial di�erence between

these two models is the assumption in McAfee (1993) that time is discrete. In this case,

multilateral meetings are also possible for unmatched sellers.

The contribution of this paper is to use the directed search model of McAfee (1993) to

develop methods to identify the ranking of workers and �rms from labor market data. These

methods seek to identify if there are complementarities between di�erent types of workers

and �rms and whether the most advantaged workers are more productive in all �rm types.

We also use the model to characterize sorting and to give conditions for positive and negative

assortative matching (PAM/NAM). Our methods can be derived from a simple static model.

However, we also characterize a more complicated dynamic model where workers can climb a

job ladder. The job ladder model is useful for understanding qualititative di�erences between

the predictions of directed and undirected search models (Refer to Shimer and Smith (2000)

and Postel-Vinay and Robin (2002)).
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Our directed search model predicts that the equilibrium wage function is always mono-

tonic in �rm productivity.1 This simple classi�cation of the �rm types is consistent with the

assumption underlying �xed e�ect regressions, such as Abowd, Kramarz and Margolis (1999)

(AKM), that wages are monotone in �rm's productivity.2 Random matching models do not

o�er a robust version of this prediction. For example, in Shimer and Smith (2000), wages are

non-monotonic in �rm productivity, because higher �rm types will agree to hire a relatively

unproductive worker only if this worker accepts a su�ciently low wage to compensate the

�rm for the option value of waiting for a more productive potential hire.3 This option value

does not apply to the competing auction environment, because a lower worker type o�ers

an alternative form of compensation - an o�er of a higher probability of trade at the stage

where the �rm chooses to approach a particular worker type. Wages are also not monotonic

in �rm types in Postel-Vinay and Robin's (2002) model of random matching without capac-

ity constraints, because workers in high type �rms may initially accept low wages in return

for the future wage increases that occur by the arrival of future counter-o�ers from inferior

�rms. This second mechanism is also shut down in the competing auction environment,

because the matching of �rms to workers is directed. Therefore, on-the-job searchers can

anticipate superior o�ers from better �rms, but not bargaining power enhancing o�ers from

worse �rms.4

Our model does not predict that higher type workers are always paid better wages by

every employer. One obvious reason is our assumption that higher worker types do not have

global absolute advantage in all job types. Another reason is due to directed meetings. For

example, an unmatched low type worker might expect many o�ers from low type jobs and

few o�ers from medium job types while an unmatched high type worker might expect few

o�ers from medium type jobs but many o�ers from high type jobs and no o�ers from low

type �rms. In this case, the high type worker will also expect to earn a lower wage than the

low type worker in the medium type job. Certain random matching models, by contrast,

predict that worker types can be ordered by their expected wage at each �rm type. However,

this prediction is driven by the assumption of a meeting function whereby all workers are

given the same frequency of meetings.5

Since we do not assume global absolute advantage, we must address the crucial question

1The directed search model of Shimer (2005) does not feature this prediction, because some worker types
may have higher probabilities of trade at higher type �rms than at lower type �rms. See Abowd, Kramarz,
Perez-Duarte and Schmutte (2018) on the problem of empirical identi�cation in Shimer's (2005) model.

2The AKM model assumes, more strongly, an additive separable �rm �xed e�ect.
3See Hagedorn, Law and Manovskii (2017), for example.
4Bagger and Lentz (2018) consider a random matching model with no capacity constraints and where

workers have relatively high bargaining power, which reduces the impact of future inferior counter-o�ers on
equilibrium wages. Simulations show that wages are approximately monotonic in �rm productivity.

5See Hagedorn, Law and Manovskii (2017) and Lopes de Melo (2018).
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of how to formally rank di�erent worker types. We rank workers by their expected market

utility of engaging with the competing auction mechanism in the unmatched state. This

method of ranking workers is essential for our analysis of higher and lower worker types in

the competing auction environment, because the matching set of a higher type worker can

generally include some job types, which are also in the matching set of lower type workers,

and for which the lower type workers are more productive than higher type workers. Our

method of ranking workers is also similar to how we rank �rms. However, in the case of �rms,

our model predicts that vacancies with higher opportunity costs are also more productive

when matched to any particular worker. This prediction follows from our assumption that

each unmatched job is directed to a particular worker sub market. Therefore, if a higher

opportunity cost �rm has a lower productivity in a sub market than another �rm type with

a lower opportunity cost, the higher opportunity cost �rm will not enter.

We give a characterization of PAM and NAM.6 One complication regarding the charac-

terization of assortative matching, which is shared by other stochastic matching models, is

the equilibrium prediction that the matching sets of each worker type and each �rm type are

generally not singletons.7 This is an issue in our model, because di�erent worker types will

generally have overlapping matching sets and these di�erent worker types will also face a

unique frequency of job o�ers within each of these matching sets. Therefore, we follow Lentz

(2010) and de�ne PAM/NAM by the condition that the o�er distribution of a higher/lower

worker types stochastically dominates the o�er distribution of a lower/higher worker types.

We also require, as in Shimer and Smith (2000), that the matching sets of the higher/lower

worker types under PAM/NAM must dominate the matching sets of the lower/higher worker

types.

We establish su�cient conditions for PAM/NAM in the competing auction equilibrium.

We �rst derive the su�cient conditions on the production function between workers and

�rms in the base game of the competing auction model. We then extend this result to

the dynamic stage game of the competing auction model where the su�cient condition for

PAM/NAM then refers to the required properties associated with the equilibrium value

function of a match. Interestingly, the su�cient conditions for PAM/NAM are stronger

than super/submodularity of the production function. Instead, we o�er an alternative su�-

cient condition for PAM/NAM, which we refer to as positive non-decreasing/negative non-

increasing relative complementarity. This assumption requires that the complementarities

6Our analysis of sorting with directed search di�ers from Eeckhout and Kircher (2010) in two important
respects: we assume meetings are multilateral instead of bilateral and we assume the continuation value of
a worker is positive. The �rst assumption is premised on the existence of coordination frictions as in Shimer
(2005). The latter assumption is crucial for the extension of our results to a dynamic environment.

7This is contrasted by Becker's (1973) seminal model of frictionless sorting.
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in the value of the match are increasing/decreasing in �rm type relative to the change in the

marginal value of the match with respect to higher �rm types.

We apply the competing auction model of sorting to the problem of determining a set

of empirical methods, which can be used to identify the strength and sign of sorting, and a

test of the assumption of global absolute advantage.8 A key step in the development of the

sign of sorting test is a prediction of the competing auction model concerning the mapping

between an unmatched worker's expected utility (which is their ranking) and the distribution

of wage o�ers that each unmatched worker type can expect to earn if they are hired by the

highest ranking �rm, which is within their matching set, out of unemployment. In this way,

our identi�cation of the sign of sorting is related to Bagger and Lentz (2018).

The assumption of no global absolute advantage is related to the recent literature on

multidimensional skills and sorting (Lindenlaub (2017), Lise and Postel-Vinay (2016) and

Lindenlaub and Postel-Vinay (2017)). In these models, no global absolute advantage arises

because workers have di�erent skill bundles and jobs have di�erent skill requirements. This

literature focuses on sorting within each skill, whereas we assume only a one-dimensional

worker type that determines each worker's market utility. Our simple test for global ab-

solute advantage exploits a crucial feature of our assumed local Bertrand competition for

the worker's services. Namely, that the highest wage o�ered by each �rm type to each

worker type will always equal the worker's productivity, because the worker's wage equals

productivity whenever the �rm faces a rival o�er from a similar type �rm.

We use our empirical identi�cation to analyze sorting and absolute advantage in the

Danish labor market using register data for Denmark for 1995-2011. We �nd evidence of

positive sorting and a strength of sorting of 0.3, which is in similar to the results of Bagger

and Lentz (2018) and Lentz et al. (2018) for Denmark. We also reject the hypothesis of

global absolute advantage of higher worker types.

The paper is organized as follows. In section 2, we �rst characterize a simple static model

of competing auction with heterogenous workers and �rms. In section 3, we use the results

of the static model to characterize the solution of the stage game of an in�nitely repeated

competing auction game with random exogenous separations at the end of each period and

time discounting. In section 4, we lay out the empirical identi�cation strategy. We follow

this with numerical simulations in section 5. We then use our methods of identi�cation to

infer the pattern of sorting and production using Danish data on wages and worker to �rm

transitions in section 6. The �nal section concludes the paper.

8The problem of identifying the sign of sorting owes much to the original discussions by Eeckhout and
Kircher (2011) and Gautier and Teulings (2006). See also Bagger and Lentz (2018), Bartolucci, Devicienti
and Monzón (2018), Hagedorn, Law and Manovskii (2017), Lise, Meghir and Robin (2016), and Lopes de
Melo (2018).

5



2 The Static Model

In this section, we extend McAfee's (1993) competing auction model to an environment with

many heterogenous competing sellers (workers) and heterogenous bidders (�rms). We

maintain the same assumptions as McAfee (1993) about the private information of buyer

types, the public information of seller types, and the set of possible selling mechanisms used

in each matching round.9

2.1 Environment

The players in a matching market consist of a continuum of workers and �rms. The workers

are risk neutral, expected utility maximizers and the �rms seek to maximize expected pro�ts.

The workers are divided into types h ∈ [0,∞) with a �xed population of each type of worker

equal to n (h). The total size of the worker population is �xed and normalized to one.

The �rms are divided into types k ∈ [0,∞) . If a type k �rm employs a type h worker,

the output of the match is determined by the production function, y(k, h). If a worker

is unmatched, the worker produces output y (k, h). We use n (k, h) = n (h) to denote a

submarket consisting of all type h workers with home production k. The opportunity cost

of entry by a type k �rm into any submarket is c (k) = k, which we normalize to be linear.

We let φ (k | k, h)n (k, h) denote the number of �rm types greater than type k who enter

submarket n (k, h). We assume that y(k, h) − y (k, h) − k > 0 for some k > k. Finally, we

assume that the production function y(k, h) is increasing and concave with respect to �rm

type.

2.2 The competing auction game

The competing auction game has three stages. In the �rst stage of the game, �rms choose

to enter a submarket and each worker in the submarket then advertises a second price

auction with a reserve price equal to the worker's continuation value, y (k, h). In the second

stage of the game, there is initially φ (k | k, h)n (k, h) unmatched �rms of type greater than

k ∈ [0,∞) in submarket n (k, h). We assume a mixed strategy equilibrium where each of

these heterogenous �rm types play symmetric mixed strategies regarding their assignment

to any worker in this submarket. Therefore, the distribution of �rm types at each worker's

9A simplifying assumption of this model is to assume that buyers choose a submarket before the sellers
compete in their choice over general direct revelation mechanisms. In this case, the economic environment is
equivalent to McAfee (1993) because all sellers in a submarket are identical. We then borrow, without proving
theorems 1 and 2 of McAfee (1993), that each seller will maximize his expected utility by the advertisement
of a simple second price auction and that the reserve price of this auction is equal to the seller's continuation
value.
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auction will be determined by the Poisson distribution with parameter, φ (k | k, h). By the

theory of the Poisson distribution, the probability that the highest bidder in the auction for

a type h worker with outside option k is a type k �rm or below is given by

G1 (k | k, h) = exp (−φ (k | k, h)) (1)

Similarly, the probability that the second highest bidder in the auction for a type h worker

is a type k �rm or below is given by

G2 (k | k, h) = exp (−φ (k | k, h)) + φ (k | k, h) exp (−φ (k | k, h)) . (2)

We use k∗ (k, h) and k̂ (k, h) to denote the highest and lowest type �rms that approach

workers in the type h worker submarket. We also use G1
(
k̂ (k, h) | k, h

)
to denote the

probability that the worker gets no o�er.

In the third stage of the game, the worker obtains a wage for his labor services by

conducting his second price auction.10 The auction awards the worker's services to the

highest valuation �rm that exceeds the worker's reservation value at a wage equal to the

valuation of the second highest bidder. Letting k1 and k2 denote the highest and second

highest �rm type bidding for the worker's services, the wage earned by a worker is then

given by,

w (k1, k2 | h, k) =

{
y (k2, h) if y (k2, h) > y (k, h)

y (k, h) if otherwise
, (3)

Therefore, if k1 > k, the highest valuation �rm hires the worker and earns y (k1, h) −
w (k1, k2 | h, k) while all other �rms bidding for this worker earn zero. If k1 ≤ k, all �rms

earn zero revenue and the worker earns his continuation value, y (k, h). Applying equations

(1) and (3), the expected pro�t for a type k �rm entering submarket n (k, h) is given by11

π (k | k, h) =

∫ k

k
(y (k, h)− y (z, h)) dG1 (z | k, h)− k (4)

The free entry condition is that a �rm will enter if π (k | k, h) is positive and stay out of the

10By revenue equivalence, McAfee's (1993) competing auction equilibrium also includes the possibility of
�rst price auctions. However, if sellers use �rst price auctions, the bidding distribution will be similar to
that predicted by a buyer price posting model as in Burdett-Judd model (1983). Furthermore, if the number
of bidder types is continuous, the buyer posting model will predict an identical distribution of prices as the
seller price posting model of Shimer (2005). These results are explained in Kennes, le Maire and Roelsgaard
(2018).

11Since the worker has a positive probability of no o�er, the expected pro�t of the �rm
in terms of the density of highest competing o�ers should be written as π (k | k, h) =

(y (k, h)− y (k, h))G1
(
k̂ | k, h

)
+
∫ k
k̂(k,h) (y (k, h)− y (z, h)) dG1 (z | k, h)− k
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submarket if π (k | k, h) is negative. The expected market utility of the worker in the static

game is simply the expectation of their wage. Since workers never accept o�ers from job

types below k, the expected market utility of a worker with home production technology k,

which is both their best and second best current opportunity, is given by

W (k, k, h) =

∫ k∗(h)

k

y (z, h) dG2 (z | k, h) (5)

where dG2 (k | h) assigns the probability density that the worker's second highest bidder is

type z and the bidding function gives the worker a payo� of y (z, h) in such an event.

2.3 Equilibrium

For a set of worker submarkets summarized by the populations, n (k, h), an equilibrium is a

list φ (k | k, h), k∗ (k, h), k̂ (k, h), π (k | k, h), and W (k, k, h) , which satis�es the free entry

condition of each �rm type k ∈ [0,∞) and equations (1), (2), (3), (4), (5). The following

proposition characterizes the equilibrium solution.

Proposition 1. In the static game, given any distribution of workers across n (h, k) sub-

markets, the equilibrium exists, is unique, and

1. The matching set upper bound k∗ (k, h) is the solution to

y1 (k∗, h) = 1, (6)

2. The matching set lower boundk̂ (k, h) is the unique solution

k̂ (k, h) = arg max
k

((y (k, h)− y (k, h)) /k) , (7)

3. The expected number of �rms above k is given by n (k, h)φ (k | k, h) = n (k, h)φ (k | h)

where

φ (k | h) = log (y1 (k, h)) , (8)

4. The expected pro�ts of entering �rms are zero and the expected market utility of each

worker is given by equation (5).

Proof. See appendix.

8



From equations (6) and (8) the functions φ (k | k, h) and k∗ (h, k) are both independent of k.

Therefore, if two workers are otherwise identical but one worker has a higher outside opportu-

nity, the only di�erence in their job o�er function is the lowest entrant bidder type k̂ (k, h).

A higher worker outside opportunity, k, gives reduced incentives for entry by prospective

employers. Thus the worker will get fewer bidders. However, this reduction in bidders hap-

pens at the bottom end of the job o�er distribution leaving unchanged incentives for entry

at the top of the job o�er distribution.12 This result greatly simpli�es the analysis of the

dynamic matching model where the static game described here is used as a stage game in

the dynamic model. Note also that k̂ (k, h) is an increasing function of the workers outside

option, k̂1 (k, h) > 0, and that the output of working at a type k̂ (k, h) �rm is strictly greater

than the value of the outside option, k̂ (k, h) > k.
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Figure 1: Worker production function and matching set

The lower and upper bounds of the worker's matching set are illustrated in �gure 1.

The equilibrium of this labor market departs from the Walrasian market solution because

not all �rms will o�er k∗ (h) jobs. This is because coordination frictions can lead to more

than one �rm bidding for the same worker. Given that there are fewer k∗ (h) �rms than

what characterizes the Walrasian solution, there are opportunities for lower cost �rms to

12Albrecht, Gautier and Vroman (2014) relate this `o�setting business stealing' e�ect to the e�ciency
of the assignment. We extend this result to matching environments where seller heterogeneity includes
di�erences other than di�erences in outside options. In Kennes and le Maire (2010), the result is derived as
a decentralized competing auction game with a continuum of �rm types and contrasted this solution to an
equilibrium with a discrete number of �rm types.
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approach workers. The key condition for more than one job type to be o�ered in equi-

librium is that there is a comparative advantage of low type jobs over high type jobs

(y(k, h)/k > y(k∗ (h) , h)/k∗ (h)) and an absolute advantage of the k∗ (h) job over low type

jobs (y(k∗ (h) , h)− k∗ (h) > y(k, h)− k).13

In each submarket, there is a trade-o� between a higher type �rm being more productive

and having a higher probability of hiring a worker and the higher cost of participation.

Equation (8) says that more �rms will locate where the curvature of the production function

is high since this means that the production value of having a slightly higher k is increasing

less. We let p∗ (h) denote the value of k̂ (p∗ (h) , h) = k∗ (h). If k ≥ p∗ (h) the worker gets no

o�ers.

2.4 Advantage

Firms are ranked by the market utility needed to ensure their entry to the competing auc-

tion mechanism. Therefore, a type k �rm is ranked higher than a type k′ �rm if k > k′,

because making a higher investment, the higher �rm type must have higher expected returns.

Otherwise, by the free entry condition, a k �rm will never enter a submarket n (h) where

y (k, h) < y (k′, h). This implies that global absolute advantage of higher type �rms is an

equilibrium outcome.

The workers are also ranked by the market utility W (k, k, h) which ensures their partic-

ipation in the competing auction mechanism. Formally, workers are ranked according to the

following de�nition.

De�nition 1. If two workers h and h′ are allocated the (home) production technology, k,

then worker h is said to be ranked higher than h′ if the expected market utility of worker h

is higher than worker h′, i.e. W (k, k, h) > W (k, k, h′).

This market utility ranking of workers allows for the possibility that changes in the

production function with respect to higher worker types, y2 (k, h) , may not be positive for

all k. For example, a type h worker might be more productive in type a k job than a type

h′ < h worker, while the type h′ worker might be more productive in the type k′ < k job.

For example, a professional engineer has higher expected earnings in the market place for

skills than a less quali�ed service technician. However, the service technician may be more

productive than the professional engineer in one of the job types. The market utility ranking

captures whether the type h worker is more valued by the market and thus expects higher

earnings.

13See also Julien, Kennes and King (2006). Shimer (2005) o�ers a related discussion for a posted price
model of coordination frictions.
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Figure 2: Technologies with and without global absolute advantage

The left panel of �gure 2 illustrates the case where we assume that the type h worker

is more productive in all jobs compared to a type h′ worker and where the di�erence in

productivity is increasing in �rm types. This is a case of global absolute advantage. The

second example illustrates the case, which we think is most relevant to a realistic description

of the labor market, where neither worker h nor h′ has global absolute advantage since the

type h worker is more productive in high type jobs, whereas the type h′ worker is more

productive in the lower job types. The case without global absolute advantage allows for

strong complementarities between high type workers and high type jobs. Moreover, this

assumption also allows for a strong advantage in the expected earnings of high type workers.

We also note that the wage of the worker employed by the highest rank �rm is given by

w (k∗ (h) , z, h) = y (z, h) where z is the worker's second highest o�er. Integrating this wage

over possible realizations of z also gives the worker's expected value. We have

W (k, k, h) =

∫ k∗(h)

k

y (z, h) dG2 (z | h)

=

∫ k∗(h)

k

w (k∗ (h) , z, h) dG2 (z | h)

We will o�er an extension of this result in the dynamic analysis and use it as means to rank

workers, which utilizes information on the distribution of wages at the highest ranking �rm

type within each worker's matching set.

An interesting special case of global absolute advantage is the modular case where the

di�erence in productivity between two workers over all �rm types is constant. In this case,

for two workers h′ and h < h′, we have for all k that
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y (k, h′) = y (k, h) + A

where A is a scalar. The modular case is a useful benchmark since proposition 1 implies that

the two workers h and h′ have identical matching sets and identical distributions of job o�ers,

i.e. k̂ (k, h) = k̂ (k, h′), k∗ (h) = k∗ (h′), and G1 (k | h) = G1 (k | h′) for all k. Therefore, in

the special case of modular di�erences the assignment of jobs to workers will be random.

Referring to the bidding function in equation (3), the workers' wages are simply scaled by

the constant di�erence in worker productivities. Therefore, there is no advantage for any

�rm type to approach any worker type with a di�erent frequency. However, if technology is

not modular, the assignment will be directed.

2.5 Sorting

The GM game provides a model of the assignment of heterogeneous workers to heterogeneous

�rms. This section considers the restrictions on the technology that delivers either positive

or negative assortative matching (PAM/ NAM) of workers to �rms. Since the assignment

is directed, the sorting will depend both on di�erences in the matching sets and di�erences

in the expected relative frequency of jobs o�ers within overlapping matching sets. This is

unlike random search models such as Shimer and Smith (2000), where two di�erent workers

have the same expected o�er arrival rates for �rms in the intersection of their matching sets.

We use the following de�nition of sorting:

De�nition 2. The conditions for positive/ negative assortative matching (PAM/ NAM) are:

1. The lower and upper bounds of the matching sets are weakly increasing/ decreasing in

worker type.

2. First-order stochastic dominance of higher/ lower type workers in overlapping match

sets.

For overlapping matching sets, it is easy to show that when the production function is su-

per/ submodular, the assignment of higher/lower type workers stochastically dominates the

assignment of lower/higher type workers. For example, if worker h′ > h and the produc-

tion function y (k, h) is supermodular, then G1 (k | h′) < G1 (k | h) for all k in the matching

sets. This also implies that the higher type worker will be less likely to become unemployed.

Furthermore, it is clear from equation (6) that supermodularity of the production function

implies that the upper bound of the matching set, k∗ (h), is increasing in worker type. How-

ever, to establish PAM/ NAM we also have to ensure that the lower bound of the matching

12



set, k̂ (k, h), is weakly increasing/ decreasing in worker type. This requires a stronger con-

dition than supermodularity. The reason is that a higher degree of complementarity means

more competition from higher type �rms.

If we - similar Shimer and Smith (2000) - assume that the value of home production

equals zero, y (k, h) = 0, for all worker types, the proof of proposition 2 shows that the

su�cient condition for PAM/ NAM is log-supermodularity/log-submodularity of the pro-

duction function. However, we notice that under the assumptions of supermodularity and

y (k, h) = 0 for all h, we e�ectively assume global absolute advantage.

For the general case where we do not restrict the value of home production to be zero,

we need another conditon on teh production technology.

De�nition 3. The production function has positive non-decreasing/negative non-increasing

relative complementarity (PRC/NRC) if y (k, h) is super/submodular and the ratio y12(k,h)
y1(k,h)

is non-decreasing/non-increasing.

The proposition below provides the su�cient condition for PAM/ NAM and for the lower

bound of the matching set to be increasing/ decreasing in the worker type.

Proposition 2. A su�cient condition for PAM/ NAM is that production function y (k, h)

is PRC/NRC.

Proof. See appendix.

3 The Dynamic Model

The players in the matching market consist of a continuum of workers and �rms. Time

is in�nite and discrete. All agents are in�nitely lived with a common discount factor β.

The workers are risk neutral, expected utility maximizers and the �rms seek to maximize

expected pro�ts. The total size of the worker population is �xed and normalized to one. The

workers are divided into types h ∈ [0,∞) with a �xed population of each type of workers

equal to n (h). The �rms are divided into types k ∈ [0,∞) . If a type k �rm employs a type

h worker, the output of the match is determined by the production function, y(k, h). If a

worker is unmatched, the worker produces output y (k, h). The opportunity cost of entry for

a type k �rm is exogenous and normalized to be linear c (k) = k. The population of each

type of �rm is determined by free entry. At the end of the period all matches are subject to

an exogenous rate of destruction δ.

13



3.1 Regularity assumptions

We let the job value function Λ (k, h) denote the combined present value of a match

involving a type h worker and a type k �rm at the time at which the �rm negotiates a

wage with the worker. We assume that this value function satis�es the following regularity

conditions.

De�nition 4. A job value function satis�es the regularity conditions if

Λ (k, h)− k ≥ 0 for some value of k ≥ 0

Λ1 (k, h) > 0

Λ11 (k, h) < 0

The regularity condition is posited as a convenient means to solve the equilibrium of the

model by a block recursive system of equations.14 When we solve the stage game for job

entry using a job value function that satis�es the regularity condition, we will show that

there exists a unique equilibrium solution for job entry for any initial distribution of workers

into submarkets. We will also �nd that all possible equilibrium solutions for job entry can

be attained by an appropriate speci�cation of the job value function.

3.2 The stage game

At the start of each period there is an initial distribution of employed and unemployed

workers. A submarket is a population of workers n (k1, k2, h) where h is the worker's type,

k1 is the highest current bidder of the worker's services and k2 is the second highest bidder.

The assignment of new entrant �rms into these submarkets is described by a three stage

game, which is analogous to the static game of the previous section.

In the �rst stage, unmatched �rms choose to enter a submarket n (k1, k2, h) and each

matched-worker pair in this submarket advertises a second price auction with a continuation

value equal to Λ (k1, h).

In the second stage, there are φ (k | k1, h)n (k1, k2, h) �rm types greater than k ∈ [0,∞)

in submarket n (k1, k2, h). We assume a mixed strategy equilibrium such that each of group

of unmatched heterogenous �rm types play a symmetric mixed strategy regarding their

assignment to any particular worker in this submarket. Therefore, the distribution of un-

matched �rm types bidding at each worker's auction will be determined by the Poisson

14Similar to Menzio and Shi (2011) the equilibrium is block recursive as value and policy functions do not
depend on the equilibrium allocation of workers across �rms.
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distribution with parameter φ (k | k1, h). We use k∗ (k1, h) and k̂ (k1, h) to denote the high-

est and lowest type �rms that approach workers in the type h worker submarket. We also use

G1
(
k̂ (k1, h) | k1, h

)
= exp

(
−φ
(
k̂ (k1, h) | k1, h

))
to denote the probability that the type

h worker gets no o�er. We let k′1 and k
′
2 denote the �rst and second highest unmatched �rm

bidding for the worker of type h with current employer k1. Since recruitment is directed,

any o�er received by the worker will be better than the current employment. If the worker

gets only one o�er, we set k′2 = k, and if no o�er we set k′1 = k.

In the third stage of the game, the set of unmatched �rms bid for the worker's services

against the worker's current employer k1 who currently o�ers the worker an expected return

equal to Λ (k2, h). In this second price auction, the worker is awarded a surplus equal to the

second highest valuation. Therefore, the auction awards a value Z (k′1, k
′
2 | k1, k2, h) to the

worker according to the following bidding function.

Z (k′1, k
′
2 | k1, k2, h) =


Λ (k2, h) if k′1 = k′2 = k

Λ (k1, h) if k′1 > k1 and k′2 = k

Λ (k′2, h) if k′1 > k1 and k′2 > k1

, (9)

We understand this bidding function as follows. The contract at a type k1 �rm is initially

set by the second highest o�er that the worker has entertained in the past, k2. On top of

this, when the worker starts each period, he/she faces the possibility of getting additional

job o�ers. The bidding function considers three cases: 1) the event that the worker gets no

o�er, in which case k2 stays unchanged; 2) the event that the worker gets one o�er, in which

case the wage contract is now set by a second highest o�er equal to k1 - the worker's current

employer; and 3) the event that the worker gets multiple o�ers, in which case the contract

is set by the job value of the second highest of these o�ers.

If k′1 > k, the highest valuation �rm hires the worker and earns the job value Λ (k′1, h) less

the value paid to the worker Z (k′1, k
′
2 | k1, k2, h), which depends on k1 and the realization

of k′2. The equation for the expected pro�ts of a type k �rm entering a type n (k1, k2, h)

submarket if found by integrating over possible values of k′2 which are less than k. We have

π (k | k1, k2, h) = (Λ (k, h)− Λ (k1, h))G1
(
k̂ | k1, h

)
+

∫ k

k̂(k1,h)
(Λ (k, h)− Λ (z, h)) dG1 (z | k1, h)−k

(10)

where the function for G1 (z | k1, h) has the same form as (1). The free entry condition is that

a �rm will enter if π (k | k1, k2, h) is positive and stay out of the submarket if π (k | k1, k2, h)

is negative. We use k∗ (k1, h) and k̂ (k1, h) to denote the highest and lowest type �rms that

approach workers in the type h worker submarket. The worker's current employer gives

the worker's continuation value when setting wages with any future employers contacted by
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on-the-job search. At the start of each period, the expected present value of a worker in a

type k1 job with a second best o�er k2 from the time of the contract is given by

W (k1, k2, h) = Λ (k2, h)G1(k̂ (k1, h) | k1, h) +

Λ (k1, h)
(
G2(k̂ (k1, h) | k1, h)−G1(k̂ (k1, h) | k1, h)

)
+∫ k∗(h)

z=k̂(k1,h)

Λ (z, h) dG2 (z | k1, h) (11)

where the formulas for G1 (k | k1, h) and G2 (k | k1, h) have the same form as equations (1)

and (2). Again, as with the bidding function in equation (9), the three cases represent the

events that the worker gets zero, one or multiple o�ers.15 The present value of an unmatched

worker is given by W (k, k, h).

3.3 Stage game equilibrium

Consider any initial distribution of workers into submarkets n (k1, k2, h) and a job value

function Λ (k, h) that satis�es the regularity conditions. An equilibrium to the stage game

is a list φ (k | k1, h), k∗ (k1, h), k̂ (k1, h), π (k | k1, h), and W (k1, k2, h) , which satis�es the

free entry condition of each �rm type k ∈ [0,∞) and equations (1), (2), (9), (10), (11). The

following lemma characterizes the equilibrium solution.

Lemma 1. In the stage game, for any distribution of workers across n (k1, k2, h) submarkets,

the equilibrium exists, is unique, and

1. The matching set upper bound k∗ (k1, h) is the solution to

Λ1 (k∗, h) = 1,

2. The matching set lower bound k̂ (k1, h) is the unique solution

k̂ (k1, h) = arg max
k

((Λ (k, h)− Λ (k1, h)) /k) ,

3. The expected number of �rms above k is given by n (k1, k2, h)φ (k | k1, h) = n (k1, k2, h)φ (k | h)

where

φ (k | h) = log (Λ1 (k, h)) ,

15Note that the probability of receiving exactly one o�er above k̂ is given by
(

1−G1(k̂ | h)
)
−(

1−G2(k̂ | h)
)

= G2(k̂ | h)−G1(k̂ | h).
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4. The expected pro�ts of entering �rms are zero and the expected market utility of each

worker is given by equation (11).

Proof. The proof of items 1-3 is the same as the proof of proposition 1. The only step is to

substitute the production function y (k, h) in the proof for the value function Λ (k, h)

As in the static game the k∗ (k1, h) = k∗ (h) is independent of the current employment. We

let p∗ (h) denote the value of k̂ (p∗, h) = k∗ (h). If the worker's current employer type is

k1 ≥ p∗ (h), then the worker gets no new o�ers from rival �rms as long as the current match

continues. Otherwise, workers will continue to move up the job ladder as better o�ers appear

and are accepted by the worker.

A potential question regarding the properties of the competing auction equilibrium is

whether some of these properties are associated with an ine�cient assignment of workers

to �rms. We show in the appendix that the equilibrium meeting function, φ (k | k1, h), is

constrained e�cient. Furthermore, the auction mechanism ensures that highest valuation

�rms always employ a worker. Therefore, both meetings and matchings are constrained

e�cient.

3.4 Wages and the ranking of �rms

The wage contract of each worker is solved as follows. If the worker enters the period with

wage contract w (k1, k2, h) and then the worker realizes new bid values, {k′1, k′2} the wage

contract is then set to w(k′1, k
′
2, h). The workers are then contracted to be employed at the

wage of the winning bid until either the match terminates exogenously or the worker gets

an additional job o�er from another employer. Given that the wage contract is determined

by auction, the present value of a worker with a type k1 employer and a type k2 second best

o�er is Λ (k2, h). Therefore, after �rms are assigned and contracts are set by bidding, the

present value of the worker with a wage contract w(k1, k2, h) will satisfy the following asset

equation,

Λ (k2, h) = w(k1, k2, h) + β [(1− δ)W (k1, k2, h) + δW (k, k, h)]

where the present value of rewards is given by W (k1, k2, h) if the worker is not displaced

and by W (k, k, h) otherwise. Rearranging, we can express the equilibrium wage as,

w(k1, k2, h) = Λ (k2, h)− β [(1− δ)W (k1, k2, h) + δW (k, k, h)] (12)

Since W (k1, k2, h) and W (k, k, h) are characterized by equation (11), which is a function of

Λ (k, h) by lemma 1, the equilibrium wage is solved as part of a block recursive solution of

the equilibrium.
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In general the second best o�er of a worker at any particular job type is disperse. There-

fore, by equation (12), an important implication of the competing auction model is that the

wages of workers at each job type are also disperse.16 If k1 = k2, the worker 'owns' the job

and is given a wage equal to output. Therefore, we have

w(k, k, h) = y (k, h) . (13)

We can then use equation (12) to express the production function y (k, h) as a function of

job value function Λ (k, h) . We

y (k, h) = Λ (k, h)− β [(1− δ)W (k, k, h) + δW (k, k, h)] (14)

We derive the following results. Firstly, there exist a job type k such that Λ (k, h) > k if we

assume (y (k, h)− y (k, h)) / (1− β (1− δ)) > k. This condition is needed to ensure that an

equilibrium with positive job entry exists. As noted with the wage equation (12), the RHS

of equation (14) is a function of Λ (k, h). Therefore, we di�erentiate this expression twice to

obtain the following results.

Lemma 2. If Λ1 (k, h) > 0 and Λ11 (k, h) < 0 , then y1 (k, h) > 0 and y11 (k, h) < 0.

Proof. See appendix

One implication of lemma 2 concerns the ranking of �rm. If a type k �rm has a higher

opportunity cost than a type k′ �rm, then it is higher ranked. However, by lemma 2 the

higher type k �rm is also more productive. Therefore, we can rank �rm type k over �rm

type k′ by the following condition.

y (k, h) > y (k′, h)

Moreover, since each �rm type's opportunity cost is common to all workers, this ranking

applies to sub-markets involving all of the di�erent worker types. Therefore, in equilibrium,

higher ranked �rms are more productive when matched to any worker type than less pro-

ductive �rms. Lemma 2 also shows that the assumed concavity of the job value function

also implies concavity of the production function, which is assumed in the static game.

We derive an expression for the equilibrium wage at each labor auction by taking equation

(12) for any pair {k1, k2} and subtracting the same equation evaluated at {k1, k1} where the
wage is equal to y (k1, h). We have:

16Julien, Kennes and King (2006) and Kennes and le Maire (2010) apply the competing auction model as
a tool for understanding observed wage dispersion between similar workers. The general conclusion is that
the competing auction model can closely �t observed wage distributions.
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w (k1, k2, h) =

{
y (k2, h) if k ≥ p∗ (h)

y (k1, h)− [1− β (1− δ) /Λ1 (k1, h)] [Λ (k1, h)− Λ (k2, h)] if k < p∗ (h)
(15)

This equation is indexed by whether or not the worker is in a su�ciently high type job

such that the worker can expect not to receive rival o�ers. If the employed worker is in a

type k ≥ p∗ (h) job and does not expect rival o�ers, then the worker's wage is simply the

productivity of the second highest valuation �rm, which is the same as the static model.

However, if the employed worker is in a lower type job and expects rival o�ers (i.e. the

worker expects o�ers via on-the-job search), then the wage is reduced since the �rm now

expects that the worker will have a shorter tenure and thus is of less value to the bidding

�rm. We use equation (15) and lemma 1 to derive the following lemma.

Lemma 3. Wages are monotonically increasing in the �rm type.

Proof. See appendix.

By Lemma 3, wages can be used to rank �rms.

3.5 Wages and the ranking of workers

The workers are ranked by their expected market utility when unmatched at the start of the

period. An unmatched type h worker with home production technology k has an expected

market utility given by

W (k, k, h) =

∫ k∗(h)

z=k

Λ (z, h) dG2 (z | h)

where Λ (z, h) is the present value of a worker and type z �rm match, and G2 (z | h) is the

distribution of second highest valuations. Therefore, if W3 (k, k, h) > 0, the workers are

ranked by h.

The following lemma provides the su�cient condition on the job value function for the

expected market utility W (k, k, h) to be monotonically increasing in h.

Lemma 4. When Λ2 (k, h) > 0 for all k, the workers are ranked by h.

Proof. See appendix.

By lemma 4 and equation (14), we notice that even though Λ2 (k, h) > 0, this does not

imply that y2 (k, h) > 0. This simply says that even though a worker in expectation is more

19



productive than another, there might be some jobs where he is not. Therefore, the case of

no global absolute advantage in �gure 2 (b) is still possible under the assumption of lemma

4.

As in the analysis of the static game, we can relate how to use the distribution of wages

at the highest type employer as a means to solve for the expected market utility.

Lemma 5. The expected market utility of a type h worker in the unmatched state is given

by

W (k, k, h) =
1

1− β

∫ k∗(h)

z=k

w (k∗ (h) , z, h) dG2 (z | h)

Proof. See appendix.

We use lemma 5 in the empirical identi�cation section as a means to rank workers using

data on the distribution of wages for the worker's highest type employer.

3.6 Steady state equilibrium

The block recursive solution for equilibrium employment transitions, wages, and pro�ts ap-

plies to any initial distribution of jobs to worker types. This section solves for the steady

state. A steady state equilibrium imposes the additional requirement that the distribution

of workers to di�erent jobs and unemployment in any period is equal to the distribution

of workers to jobs and unemployment in the next period. The steady state equilibrium is

solved as follows. The probability that an unmatched worker moves into employment at

the start of the period is equal to the probability that the worker has at least one o�er,

1 − G1
(
k̂ (k, h) | h

)
. At the end of the period there is a probability δ of moving into the

unmatched state. The steady-state unemployment rate u(h) of a type h worker after the

bidding stage is found by equating the �ows into and out of unemployment. We have

u (h) =
δG1

(
k̂ (k, h) | h

)
1− (1− δ)G1

(
k̂ (k, h) | h

) (16)

We let n (k | h) denote the density of type h workers employed in a type k job where

n (k | h) =
∫ k
k

(n (k, k2, h)) dk2/
∫ k∗
k

(∫ k∗
k̂(k,h)

(n (k1, k2, h)) dk1

)
dk2 and N (k | h) denote the

distribution of type h workers with job types less than k. In equilibrium, in�ow to the mass
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N (k | h) must equal out�ow

u (h)
(
G1 (k, h)−G1

(
k̂ (k, h) | h

))
+ (1− u (h)) (1−N (k | h)) δ

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))
= (1− u (h))N (k | h) δ

[
1−

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))]
+ (1− δ) (1− u (h))

∫ k

k̂(k,h)

n (z | h)
[
1−G1

(
max

(
k̂ (z, h) , k

)
| h
)]
dz

There are two types of in�ow to the mass N (k | h). First, we have the in�ow from unem-

ployment. Second, some jobs with a higher type than k are exogenously destructed and some

of the workers are approached by �rms of type k or less. There are two types of out�ow.

First, jobs in the mass N (k | h) are destructed and some stay unemployed whereas other

�nd employment at �rms of k or above. Second, some workers whose jobs are not destructed

leave �rms of type k or less to join �rms above type k. In the appendix we show that

N (k | h) =

[
δ +

u (h)

1− u (h)

](
G1 (k, h)−G1

(
k̂ (k, h) | h

))
+ (1− δ)

∫ k

k̂(k,h)

n (z | h)G1
(

max
(
k̂ (z, h) , k

)
| h
)
dz (17)

3.7 Sorting

In the analysis of the static game we considered su�cient conditions to ensure that the

distribution of o�ers is assortative across di�erent types. In this section, we apply our

de�nition of PAM/NAM to the analysis of the steady state distribution of �rms to workers.

The steady state distribution of workers is complicated by the possibility of on-the-job search

in the stage game whereby workers climb a �rm type ladder. Therefore, in order to analyze

sorting in the dynamic competing auction game, we evaluate the steady state equilibrium

allocation N (k | h) and the lower and upper bounds of the matching set. By the de�nition

of sorting, if worker h′ is a higher type than worker h, PAM is characterized by N (k | h′) <
N (k | h), k̂ (k, h′) > k̂ (k, h), and k∗ (h′) > k∗ (h), and NAM is characterized by N (k | h′) >
N (k | h), k̂ (k, h′) < k̂ (k, h), and k∗ (h′) < k∗ (h). We then derive the following su�ciency

condition for PAM/NAM in the steady state equilibrium.

Proposition 3. A su�cient condition for PAM/ NAM in the steady state equilibrium is

that the job value function Λ (k, h) is PRC/NRC.

Proof. See appendix
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The role of PRC/NRC (See de�nition 3) is due to the complicating factor that the

continuation value of the worker, Λ (k, h) is not generally zero, which means that log-

supermodularity/log-submodularity of Λ (k, h) is not a su�cient condition for PAM/NAM.

The stronger assumption of a PRC/NRC job value function is a means to ensure that the

steady state equilibrium assignment is PAM/NAM.

We can also relate complementarities in the job value function between higher/lower

worker and �rm types to the complementarities between these worker and �rm types in the

primitive production function. The functions Λ12 (k, h) and y12 (k, h) are related (with some

manipulation given in the appendix) as follows:

y12 (k, h)

y1 (k, h)
=

Λ12 (k, h)

Λ1 (k, h)
+

 0 if k ≥ p∗ (h)

β(1−δ)
Λ1(k̂(k,h),h)−β(1−δ)

∫ k̂(k,h)
k Λ12(z,h)dz∫ k̂(k,h)
k Λ1(z,h)dz

if k < p∗ (h)
(18)

where all term of the r.h.s. are positive/negative if and only if Λ (k, h) is super/sub-modular.

Furthermore, If Λ12(k,h)
Λ1(k,h)

> 0 and nondecreasing in k, y12(k,h)
y1(k,h)

> 0 will be nondecreasing in k,

since β(1−δ)
Λ1(k̂(k,h),h)−β(1−δ)

is increasing in k. If Λ12(k,h)
Λ1(k,h)

< 0 and decreasing in k, y12(k,h)
y1(k,h)

< 0 will

be decreasing in k, since β(1−δ)
Λ1(k̂(k,h),h)−β(1−δ)

is increasing in k.

Proposition 4. If the job value function Λ (k, h) is PRC/NRC, the production function

y (k, h) is PRC/NRC.

Proof. Follows directly from equation (18) and de�nition 3.

Therefore, if the steady state assignment is assortative, then there are also complemen-

tarities in production between workers and �rms.

3.8 The non-monotonicity of worker wages

As we noted in section 3.5, the wage equation (15) is not generally informative about the

worker ranking. From equation (15), there are two ways that this non-monotonicity in the

wages can arise. First, no absolute advantage implies that the production function y (k1, h)

is not monotonic in h, whereby w (k1, k2, h) may be non-monotonically in h. Second, the

second term of equation (15) is negative and is numerically largest with a high degree of

submodularity or supermodularity of the job value function. This may lead to the wage

being non-monotonic under PAM, but not under NAM. We summarize the di�erent cases

by the table below.17

17The results are derived in the appendix.
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Global absolute advantage No global absolute advantage
NAM Monotonically increasing in h Non-monotonic in h
PAM May be non-monotonic in h Non-monotonic in h

Table 1: PAM/NAM and the monotonicity of wages in worker type

The non-monotonicity of wages under PAM and global absolute advantage can be easily

understood by a simple example. In this example, a higher type worker h frequently gets

o�ers from higher type �rms but infrequently gets o�ers from medium type �rms while a

lower type worker h′ frequently gets o�ers from lower type �rms but infrequently gets o�ers

from medium type �rms. This gives the following implications for wages. The high type

workers expects a low wage o�er from a medium type �rm, because there are no counter

o�ers from lower type �rms when the worker's best o�er is a medium type �rm (the case of

a medium type �rm counter o�er is also rare). However, the low type worker expects a high

wage from a medium type �rm, because the worker also expects o�ers from low type �rms

when the worker's best o�er is a medium type �rm. Therefore, the medium type �rm pays

the lower type worker higher wages.

It is also interesting to note that the results summarized in Table 1 do not imply a similar

logic when higher type workers have global absolute advantage and the assignment is NAM.

In this special case, the expected wage paid by each �rm type will increase monotonically

with respect to higher worker types. In the example, we would have a NAM assignment if

h′ > h. The wage will be increasing in �rm type because the higher type worker is more

productive in each �rm type and the higher type worker has higher expected counter o�ers

when matched to each �rm type.

L M HMLH

Figure 3: Sorting example

Consider the example with two worker types and three �rm types, which is illustrated
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in �gure 3. Relative to the high type worker, the low type worker is more productive in

the low type �rm, equally productive in the medium type �rm, and less productive in the

high type �rm. The mapping of productivities into expected wages and matching sets is

summarized in the right panel of �gure 3. The example illustrates the general feature of the

model that higher �rm types pay higher expected wages to each worker type. The example

also illustrates the possibilibility that within the intersection of the matching sets of the two

worker types, the higher type worker is paid lower wages. The key problems of empirical

identi�cation here are to ensure that the high type workers are correctly ordered and that

we can identify �rm types for which the high type workers are less productive than low type

workers.

4 Empirical Identi�cation

This section derives the predictions of the model that are used to identify worker and �rm

rankings, the sign and strength of sorting, and a test of global absolute advantage in pro-

duction.

4.1 Identifying the ranking of �rms

By Lemma 3, wages can be used to rank �rms. This is in contrast to some prominent other

models. One of important reason for this di�erence is the assumption of directed matching.

In the related sequential auctions model with undirected search, Postel-Vinay and Robin

(2002), higher type �rms may initially o�er workers lower wages than lower type �rms,

because in the future they will be able to match outside o�ers by bidding up the wage. With

directed recruitment, less productive �rms never poach more productive �rms and, hence,

the wage is not bid up during the worker's tenure. Even without on-job search, wages may

not be monotonic with random search. If the number of participants in the matching market

is �xed, as in Shimer and Smith (2000), a high type �rm may agree to hire a relatively low

type worker if the worker accepts a su�ciently low wage to compensate the �rm for the

option value of waiting for a more productive potential hire. This does not occur in our

model, because the number of �rms for each worker submarket is determined by free entry.

The general problem of non-monotonic wages is described by Eeckhout and Kircher (2011).

4.2 Identifying the strength of sorting

We follow Eeckhout and Kircher (2011) and Bartolucci et al. (2018) and estimate the

strength of sorting (degree of complementarity) by examining whether each worker is em-
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ployed in similar ranked �rms. We only use workers with at least one unemployment spell

and exploit that observations before and after the unemployment spell are not related due

to on-the-job search. While the correlation of the average �rm rank before and after an un-

employment spell measures the strength of sorting, it will not determine the sign of sorting

since a high degree of PAM or NAM both lead to high correlations in within-worker �rm

ranks. Under PAM/NAM, the distribution of higher/lower type workers stochastically dom-

inates the distribution of lower/higher type workers. Therefore, when letting the number

of time periods go to in�nity, measuring the worker type by the average �rm ranking will

approximately give us the correct ranking under PAM, but the inverse ranking under NAM.

4.3 Identifying the sign of sorting

It is a di�cult task to identify the ranking of workers in particular when we are not assuming

global absolute advantage. For example, high type workers may earn lower wages at low type

�rms than lower type workers simply because they are less productive in these jobs. To isolate

the worker ranking we will use lemma 4 and rank workers based on their expected market

utility. Obviously, expected market utility is not observed in data and we need to relate this

to the workers' assignment and observed wages. Lemma 5 shows how to use the distribution

of wages at the highest type employer as a means to solve for the expected market utility.

We have

W (k, k, h) =
1

1− β

∫ k∗(h)

z=k

w (k∗ (h) , z, h) dG2 (z | h) (19)

Our identi�cation result is related to the worker ranking of Bagger and Lentz (2018). They

show that they can use wages in the highest �rm type immediately after an unemployment

spell to rank workers. In our setting with multiple bidders, we need isolate the distribution

of second best o�ers in order to calculate the expected market utility. Therefore, we need

to reweight the wages by worker type using G2 (k | h). Given the de�nitions of G1 (k | h)

and G2 (k | h), it straightforward to show that g2 (k | h) = −g1 (k | h) lnG1 (k | h). In the

algorithm below, we lay out how to rank workers and determine the sign of sorting.

Algorithm 1: Ranking workers and identifying the sign of sorting.

1. Rank workers by using the average �rm rank a worker is employed by and group workers

into groups according to this ranking.

2. Consider each group l = 1, 2, ..., L of workers separately and estimate the distribu-

tion of wages for those leaving unemployment to join their highest ranking �rm, i.e.

G1,est (w | hl) and g1,est (w | hl).
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3. Calculate

g2,est (w | hl) = −g1,est (w | hl) lnG1,est (w | hl)

4. Calculate

W̃ est (k, k, hl) =

∫ ∞
−∞

w (w | hl) g2,est (w | hl) dw

where we have omitted the term 1/ (1− β) from equation (19).

5. Repeat 2-4 for each worker group l.

6. Examine the relationship between W est (k, k, hl) and hl. If we have an increasing rela-

tionship, workers employed in the highest type �rms have the highest market value, so

the labor market features PAM. If we have a decreasing relationship, workers employed

in the highest type �rms have the lowest market value, so we have NAM.

4.4 Identifying global absolute advantage

Finally, we need to be able to identify whether the labor market is characterized by global

absolute advantage in production. If the assignment is assortative, Proposition 4 established

that when Λ12 (k, h) > / < 0 we know that y12 (k, h) > / < 0 . However, in either case, it is

also possible that y2 (k, h) < 0 even when Λ2 (k, h) > 0. Thus under both PAM and NAM,

we do not necessarily assume global absolute advantage.

From equation (15), it is clear that when k1 = k2 = k we have that the wage is equal to

the productivity of the match w (k, k, h) = y (k, h). If using only worker-�rm observations

where k1 = k2 = k, it would be trivial to examine the sign of w3 (k, k, h) = y2 (k, h) and

tell whether the labor market features global absolute advantage as this would imply that

w3 (k, k, h) > 0 for all (k, h). Alternatively, if we observe that w3 (k, k, h) > 0 for some �rms

whereas w3 (k, k, h) < 0 for other �rms, we would conclude that the labor market is not

characterized by global absolute advantage. Unfortunately, as k2 is unobserved we can never

tell when k1 = k2. Furthermore, we do not observe each worker enough times to be sure

that the highest wage for each worker in each �rm correspond to k1 = k2. Therefore, for

the identi�cation strategy for global absolute advantage we need to group both similar �rms

and similar workers such that we can hope that k2 at least is close to k1.

Algorithm 2: Identifying global absolute advantage

1. Aggregate workers in L groups according to the average �rm rank the worker has

visited as in algorithm 1.

2. Aggregate �rms in M groups according to the �rm ranking.
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3. Estimate the following equation by quantile regression using a high quantile, say the

95th quantile, separately for the observations for each �rm group m = 1, 2, ..,M

lnwit = γ0 + γ1l
est
it + ξj(i,t) + εit

where the worker ranking from algorithm 1,lestit , is included linearly and ξj(i,t) are �rm

�xed e�ects for the �rms in group m = 1, 2, ..,M .

4. If γest1 > 0 for all groups of �rms m = 1, 2, ..,M , then the labor market features global

absolute advantage. If γest1 > 0 for low type �rms and γest1 < 0 for high type �rms,

this is evidence against global absolute advantage. Both PAM and NAM implies that

γest1 is increasing in �rm type since the workers' average �rm rank will be increasing/

decreasing in worker type under PAM/ NAM.

5 Simulations

In this section, we simulate the dynamic model to gain additional insights on how parameters

controlling complementarity and advantage a�ect the estimation in �nite samples using our

strategies for the identi�cation of sorting and the identi�cation of global absolute advantage.

For the simulations it is useful to specify the job value function Λ (k, h) since by lemma 4

workers are ranked by h when restricting focus to job value functions where Λ2 (k, h) > 0.

We use the following speci�cation of the job value function Λ (k, h)

Λ (k, h) = A0 + A1k
α1 + A2h

α2 + A3k
α1hα2 (20)

where we set A0 = 25, A1 = 1.5, α1 = α2 = 0.3.18 We vary A2 between 0.0 and 2.1 and A3

between −0.7 and 1.9 and in total we have 112 combinations of A2 and A3. However, we

only consider the 108 cases where the regularity conditions are met, that is Λ1 (k, h) > 0,

Λ2 (k, h) > 0 and Λ11 (k, h) ≤ 0 for all k, h. The remaining four cases for which these

regularity conditions are not met correspond to the white areas in �gures 4-10.

We assume 40 di�erent worker types with hl for l = 1, 2, ..., 40 being evenly distributed

between 0.5 and 3.0 and that there exist 1000 persons of each type. We assume 800 �rms.

This gives us an average number of workers per �rm per time period of 50 (abstracting from

unemployment). Given equation (20) and the assumed parameter values, we can determine

k∗ (hl) for each of the worker types and �x k such that all worker types can search on the

18For each simulation, we initially set A0 = 25, but then subsequently adjust A0 upwards if any wages are
negative such that we can take the log of the wages.
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job.19 We set the exogenous job destruction rate δ = 0.16 and the discount factor β = 0.96.

In each of the 108 simulation, we observe each worker for 25 time periods.

Figure 4 shows the true rank correlation between worker and �rm types for each of the

108 simulated economies. It is clear that the sign of A3 controls the complementarity of the

job value function and, hence, determines whether the economy exhibits PAM/NAM and

also the strength of sorting. A positive/negative A3 gives PAM/NAM. The larger positive/

negative A3, the stronger strength of sorting. A2 impacts solely the advantage of di�erent

workers but does not induce more or less complementarity and, hence, has no e�ect on the

sorting.
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Figure 4: True rank correlations

In �gure 5, we depict the rank correlations between AKM �rm and worker �xed e�ects

against their true values. From lemma 3, we know that wages are monotonically increasing

in �rm type. Panel (A) of �gure 5 shows that the rank correlations between the estimated

AKM �rm �xed e�ects and the true �rm types are very close to 1 in the simulations. In

contrast to this, panel (B) shows that the wage may not be monotonic in the worker type

and that the correlation between the estimated AKM worker �xed e�ect and the true worker

type can easily be negative in particular when the advantage parameter A2 is small and the

complementarity parameter A3 is large and positive. Below, we will show that these cases

with negative correlations between the true worker type and the estimated AKM worker

�xed e�ect do not feature global absolute advantage.

19We set k = min
l

1
2

(
k̂−1

(
k̂−1 (k∗ (hl))

))
.
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(A) Correlation between true and 
 estimated firm effects
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(B) Correlation between true and 
 estimated worker effects

0.0 0.6 1.2 1.8 A 2

-0.7

-0.3

0.1

0.5

0.9

1.3

1.7
A 3

-1 -0.5 0 0.5 1

Figure 5: Rank correlations between estimated AKM �xed e�ects and true worker and �rm
types

Under PAM/NAM, the allocation of higher/lower type workers across �rms stochastically

dominate the allocation of lower/higher type workers. Therefore, we compute the worker

ordering as the average �rm rank the worker obtains in the sample window. Figure 6 shows

how well the average �rm rank (using AKM �rm �xed e�ects) correlate with the true worker

ranking. We report the absolute value of the rank correlations. In panel (A) we use all

observations. It is clear that when the degree of complementarity is high, i.e. when A3

is not too close to zero, the matching sets of di�erent workers are quite di�erent and we

obtain high rank correlations between the average �rm rank visited and the true worker

type. However, when the matching sets of di�erent worker types are very much alike, the

average �rm rank is a poor measure of worker type and in the special case of a modular

production function, where all workers have identical matching sets and identical job o�er

distributions, our measure of worker type is uninformative.
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(A) Using all observations 
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(B) Using only observations after 
 first incidence of unemployment
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Figure 6: Rank correlations between true worker e�ect and estimated average �rm rank

To assess the strength of sorting, we simply correlate a worker's estimated �rm rankings

before and after an unemployment spell. In panel (B) of �gure 6, we only used observations

following an unemployment spell to estimate the worker ranking using the average �rm

ranking visited. With fewer observations used, we naturally obtain a slightly lower correlation

with the true worker ranking than when using all observations as in panel (A).

Using the estimate of the worker type in panel (B) of �gure 6, we obtain an estimate

of the strength of sorting by correlating this with the estimated �rm ranks of the �rms the

worker visits before the unemployment spell. In panel (A) of �gure 7, we show the estimated

strength of sorting. As expected, the lowest and highest values of A3 give the highest rank

correlations. However, panel (B) also shows that the estimated correlations are generally

lower than the true absolute correlations. The di�erences between the estimated strength of

sorting and the absolute value of the true correlation are between -0.15 and -0.02.
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(A) Strength of sorting estimates  
 worker and firm effects
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(B) Difference to absolute true correlation 
 between worker and firm effects
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Figure 7: The strength of sorting

In �gure 8 we examine how well we are able to determine the sign of sorting. For this,

we need to �gure out whether the estimated worker ranking in �gure 6 is positively or

negatively related to the estimated expected market utility ranking based on W̃ (k, k, h)

using algorithm 1. This identi�cation strategy works well in all but the few cases where the

advantage parameter, A2, is low and the complementarity parameter, A3, is negative. In

these cases the small advantage and the low submodularity works against each other, leaving

the true expected market utility to only di�er marginally between di�erent worker types.

The reason is that high type workers will tend to have slightly higher wages in most jobs,

but the distribution would be slightly more favorable for low type workers. Notice that when

A3 > 0, the e�ect of advantage and supermodularity work in the same direction by both

increasing the expected market utility for high type workers relative to low type workers.
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(A) True sign of sorting
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(B) Estimated sign of sorting

0.0 0.6 1.2 1.8 A 2

-0.7

-0.3

0.1

0.5

0.9

1.3

1.7
A 3

Negative Positive

Figure 8: The sign of sorting

The test of global absolute advantage is computed using algorithm 2. We divide �rms

into 25 groups based on the AKM �rm �xed e�ect. For each group we regress the wage on

the worker's average �rm rank using quantile regression in the 95th quantile. If all these 25

estimated γ1 coe�cients have the same sign, this is evidence of absolute advantage. However,

estimation noise can imply that a few of the γ1 estimates are signi�cant with the opposite sign

even under global absolute advantage. We need a simple rule to avoid any estimation noise

leading us to mistakenly conclude that such cases do not feature global absolute advantage.20

We know that under no global absolute advantage, the true γ1 will have opposite signs

for low type and high type �rms, so consequently opposite signs for the estimated γ1 for

only a few intermediate �rm types is likely to be due to estimation noise. Hence, we also

classify the simulated economy as featuring global absolute advantage if less than 10 percent

of the estimated γ1 coe�cients are signi�cant positive (negative) and the lowest �rm group

with a signi�cant positive (negative) γest1 is not among the bottom or top 10 percent of the

�rm groups. Our test of global absolute advantage works quite well as shown in �gure 9

and in most cases we correctly detect whether a simulated economy features global absolute

advantage or not.

20In an empirical application, plotting the estimated γ1 coe�cients against the �rm groups is likely to be
more useful, but with 108 cases, we need a simple and general rule.
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(A) Absolute advantage/ no absolute advantage
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(B) Test of absolute advantage

0.0 0.6 1.2 1.8 A 2

-0.7

-0.3

0.1

0.5

0.9

1.3

1.7
A 3

No global absolute advantage Global absolute advantage

Figure 9: Absolute advantage

Finally, it is relevant to examine how the deviation from the assumption of absolute

advantage impacts the estimated AKM correlation between worker and �rm �xed e�ects.

Figure 10 compares the true correlations between worker and �rm types (panel A) to the

estimated estimated AKM correlations between worker and �rm �xed e�ects (panel B).

Since the AKM estimation estimates the �rm e�ects very well, the AKM correlation between

worker and �rm �xed e�ects is only approximately correct when the worker e�ect is precisely

estimated and this is essentially only true for NAM cases. Panel (C) reveals that the AKM

correlation is wrongly signed for all cases with PAM and no absolute advantage. However,

panel (C) also shows that an estimated positive AKM correlation implies PAM since the

estimated correlations are downward biased.
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(A) True correlation
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(B) Estimated AKM correlation
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(C) Sign of true correlation and 
 estimated AKM correlation
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(D) Estimated AKM correlation - 
 true correlation
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Figure 10: True and AKM estimated correlations

6 Estimation

In this section we apply our methodology to Danish register data for 1995-2011. We �nd that

the Danish labor market features PAM and that the production function does not satisfy

global absolute advantage.
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6.1 Data

The data set is extracted from the Integrated Database for Labor Market Research (IDA),

which covers the entire Danish population aged 15�74. IDA associates each person with

his/her unique identi�er, and provides annual data on many of the individual's socioeconomic

characteristics, such as hourly wage, education, and occupation. We measure the hourly

wage rate as annual labor income plus mandatory pension fund payments divided by annual

hours.21 To match our �rm data with our worker data we draw on the Firm-Integrated

Database for Labor Market Research, or FIDA, which links every �rm with every worker in

IDA who is employed by that �rm in the last week of November of each year. Using this

matched worker-�rm data, we can consistently track virtually every person in the Danish

economy over time regardless of his/her employment status or employer identity.

We make two sample restrictions on the dataset. First, we only consider workers and �rms

in the private sector. About 40% of workers in Denmark work in the public sector. Second,

we only focus on the largest connected set of �rms. This is because in AKM regressions

person �xed e�ects and �rm �xed e�ects can be identi�ed separately only for �rms in the

largest connected sets. The largest connected set in our sample includes over 99.4% of the

workers and over 99.6% of the observations, so this restriction has little e�ect on our sample

size. We end up with a sample of 19,161,478 observations with 2,232,547 workers and 242,659

�rms.

6.2 Ranking �rms

We rank �rms using the �rm �xed e�ects from the two-way �xed e�ects as in Abowd,

Kramarz and Margolis (1999) and more recently in Card, Heining and Kline (2013). We

estimate the following regression:

lnwit = ψJ(i,t) + αi + θt + x′itβ + εit

where ψJ(i,t) is a vector of �rm �xed e�ects, αi is a vector of worker �xed e�ects, and θt

and xit are year �xed e�ects and time varying individual characteristics, respectively. As in

Card, Heining and Kline (2013), we include in xit an unrestricted set of year dummies as

21Information about annual hours comes from the pension fund, Arbejdsmarkedets Tillægspension (ATP),
which collects a relatively modest mandatory pension fund payment from all workers in the Danish labor
market. The payment depends on the number of hours worked in the following way: (i) no payment if
working 0�9 hours per week, (ii) 1/3 of full-time payment if working 9�18 hours per week, (iii) 2/3 of full-
time payment if working 18�27 hours per week, and (iv) full-time payment if working 27 or more hours per
week. The hours worked are then imputed from knowledge about a worker's ATP group. If the worker
is registered as having paid full-time ATP, then the hours worked are measured as the number of hours
corresponding to the standard 37-hour workweek.
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well as quadratic and cubic terms in age fully interacted with educational attainment. Firms

are ranked using the estimated �rm �xed e�ects ψJ(i,t).

As a robustness check, we also rank �rms using the poaching index as in Bagger and

Lentz (2016). The poaching index is de�ned by the fraction of hires that is poached from

other �rms, and a higher-ranked �rm hires relatively more from other �rms instead of from

the unemployment pool. We do not use poaching index in the main analysis over the period

1995-2011 because we only have monthly employment data to precisely measure job �ows

after 2007. The two �rm rankings are positively correlated: correlation between AKM �rm

�xed e�ects and the poaching index is 0.27.

6.3 Strength of sorting

Wemeasure the strength of sorting using the correlation between the �rm rank before the �rst

observed unemployment for each person and the average �rm rank after this unemployment

spell. We use the unemployment spell to reset the climbing of the �rm productivity ladder

to avoid the spurious correlation due to on-the-job search. The estimated correlation is

0.30, which is much higher than the correlation between AKM �rm �xed e�ects and worker

�xed e�ects, 0.08. This is consistent with studies showing that the correlation between

AKM �xed e�ects underestimate the true correlation between worker type and �rm type

(see for example, Andrews et al. 2008; Borovicková and Shimer 2017; Woodcock 2015). This

correlation between worker type and �rm type is close to the estimate of 0.37 in Bagger

and Lentz (2018), who also use Danish register data but use di�erent methods to measure

�rm types and worker types. Our estimate is also close to the estimate of 0.28 in Lentz,

Piyapromdee and Robin (2018).

6.4 Worker ranking and sign of sorting

We follow Algorithm 1 to rank workers and determine the sign of sorting. First, we put

workers in 50 groups based on the average ranked �rm each worker is matched with. Second,

we estimate for each worker group the expected market utility.

Figure 12 shows the expected market utility of the worker groups. The horizontal axis

is worker group ranked by the average matched �rm type. The expected utility is almost

linearly increasing in the worker type, therefore higher-ranked workers are also employed by

higher-ranked �rms. This indicates that the Danish labor market features PAM.
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Figure 11: Sign of Sorting

6.5 Testing global absolute advantage

Finally, we follow Algorithm 2 to test global absolute advantage. We put all the �rms in 25

bins based on AKM �rm �xed e�ects, and Figure 13 plots the estimated coe�cient γest1 in

the quantile regression of the 95th percentile log wage for each �rm bin.22 In the regression,

we include year �xed e�ects, industry �xed e�ects, as well as quadratic and cubic terms in

age fully interacted with educational attainment.

The graph shows that global absolute advantage fails to hold in the Danish labor market.

The coe�cients are negative and signi�cant for the lowest 7 �rm bins, which is about 28%

of the �rms. For instance, for the lowest �rm type, a coe�cient of -0.0006 means that the

productivity of workers at the 75th percentile is 3% lower than the productivity of workers at

the 25th percentile. Since 95th wage percentile approximates the productivity, this suggests

that for the lowest ranked �rms higher ranked workers are less productive.

In the Appendix we apply the test of global absolute advantage separately for di�erent

observable characteristics, including region, years, gender, age and industry. We �nd that

the result of no global advantage is pervasive across the di�erent breakdowns besides for the

industries of �nance and knowledge services. Furthermore, we also �nd evidence of no global

absolute advantage using the poaching index of Bagger and Lentz (2018) as a means to rank

�rms.

22We choose 95th percentile rather than 99th percentile because it's less noisy.
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Figure 12: Testing Global Absolute Advantage

7 Conclusion

McAfee's (1993) model of mechanism design by competing sellers is a foundational model

of directed matching (Wright et al., 2017). The application of this model to the sale of

labor o�ers a microeconomic foundation for the analysis of unemployment, wage dispersion,

on-the-job search and sorting. The model predicts that higher valuation bidders (�rms) will

always pay higher wages to the sellers of labor (workers) than lower valuation bidders. This

prediction is driven by the directed assignment of the bidders to di�erent worker submarkets

and the equilibrium bidding strategy of the higher valuation �rms to always win the worker's

services in head to head competition with lower valuations �rms. The model also predicts,

with the exception of the case of NAM and global absolute advantage, that higher worker

types will not generally earn higher wages than lower worker types in all job types. This

result is driven not only by the endogeneity of the number of bidders at each submarket,

but also the possibility that higher type workers are less productive than low type workers

in low type jobs.

While �rms can be ranked by wages (and/or by a poaching index), the key challenge

for the empirical assessment of labor market sorting is to rank workers. If there are strong

complementarities between high type workers and high type �rms and the high type workers

do not have a global absolute advantage (features of the labor market that we suggest are

important), the wages of workers will generally not be monotonic in worker type at each

�rm, and the more capable workers may not always outshine less capable workers in all jobs
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that employ them. Since these workers cannot be ranked by either their productivity or their

wage at any particular �rm, our proposal was to rank the workers by their expected market

utility. We then use the predictions of the competing auctions model to identify how this

worker expected market utility ranking can be empirically identi�ed from the distribution of

wages the workers obtain in the best jobs that they can �nd. Using the estimated expected

market utility ranking, we can estimate the sign of sorting.

We propose a simple test of global absolute advantage. This test assumes that the highest

wages a given worker type receives in a given �rm type approximate the productivity of this

worker type. As input to this test we essentially only need estimated �rm rankings and wage

observations for a matched employer-employee data set. Therefore, the test can also serve as

speci�cation test of the AKM model using a �rm ranking based on AKM �rm �xed e�ects.

We �nd evidence that the labor market is both highly sorted and that high type workers

are sometimes poorly assigned to jobs where they are less productive than less capable

workers. Therefore, the directedness of matching �rms to workers is clearly important and

also imperfect. We have considered only some of the challenges associated with empirical

modelling the directedness of matching in the labor market. We have used the predictions of

competing auction theory to address these challenges and we can speculate that this theory

will o�er additional solutions to other problems of empirical identi�cation both in the labor

market and in other contexts.
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A Theory Appendix

Derivation of equation (4)

We need to derive the conditional density of the second best o�er, k2, given a best o�er, k1.

g (k2|k1, k, h) =
g (k1, k2|k, h)

g1 (k1|k, h)

Therefore, we begin by deriving the joint density of the best and second best o�er.

Suppose a worker receives n job o�ers. The probability that j of these are below k2 and that

n− j o�ers are above than k1 where k ≤ k2 ≤ k1 ≤ k∗ is given by(
n

j

)(
φ (k)− φ (k2|k, h)

φ (k)

)j (
φ (k1|k, h)

φ (k)

)n−j

where

(
n

j

)
= n!

(n−j)!j! . Taking the negative cross-derivative of this delivers the joint density

of the j'th and j + 1'th order statistics

gj,j+1 (k1, k2|n, k, h) =

[(
n

j

)
j

(
φ (k)− φ (k2|k, h)

φ (k)

)j−1

(n− j)
(
φ (k1|k, h)

φ (k)

)n−j−1
φ′ (k1|k, h)

φ (k)

φ′ (k2|k, h)

φ (k)

]

=
n!
(
φ(k)−φ(k2|k,h)

φ(k)

)j−1 (
φ(k1|k,h)
φ(k)

)n−j−1
φ′(k1|k,h)
φ(k)

φ′(k2|k,h)
φ(k)

(n− j − 1)! (j − 1)!

We are only interested in the best and second best o�ers, so we set j = n− 1 and j + 1 = n.

This gives us

g (k1, k2|n, k, h) =
n!
(
φ(k)−φ(k2|k,h)

φ(k)

)n−2
φ′(k1|k,h)
φ(k)

φ′(k2|k,h)
φ(k)

(n− 2)!
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Summing over all possible number of job o�ers we obtain

g (k1, k2|k, h) =
∞∑
n=2

e−φ(k)φ (k)n

n!

n!
(
φ(k)−φ(k2|k,h)

φ(k)

)n−2
φ′(k1|k,h)
φ(k)

φ′(k2|k,h)
φ(k)

(n− 2)!

=
φ′ (k1)

φ (k)

φ′ (k2|k, h)

φ (k)
φ (k)2 e−φ(k)

∞∑
n=2

(φ (k)− φ (k2|k, h))n−2

(n− 2)!

= φ′ (k1|k, h)φ′ (k2|k, h) e−φ(k)

∞∑
n=2

(φ (k)− φ (k2|k, h))n−2

(n− 2)!

= φ′ (k1|k, h)φ′ (k2|k, h) e−φ(k2|k,h)e−(φ(k)−φ(k2|k,h))

∞∑
n=2

(φ (k)− φ (k2|k, h))n−2

(n− 2)!

= φ′ (k1|k, h)φ′ (k2|k, h) e−φ(k2|k,h)

∞∑
n=0

e−(φ(k)−φ(k2|k,h)) (φ (k)− φ (k2|k, h))n

n!

= φ′ (k1|k, h)φ′ (k2|k, h) e−φ(k2|k,h)

Using this, we can write

g (k2|k1, k, h) =
g (k1, k2|k, h)

g1 (k1|k, h)

=
φ′ (k1|k, h)φ′ (k2|k, h) e−φ(k2|k,h)

−φ′ (k1|k, h) e−φ(k1|k,h)

=
−φ′ (k2|k, h) e−φ(k2|k,h)

e−φ(k1|k,h)

=
g1 (k2|k, h)

G1 (k1|k, h)

A �rm approaching a worker of type h will hire the worker with probability G1 (k|k, h) and

have the following expected pro�ts

π (k|k, h) =G1 (k|k, h)

∫ k

k

(y (k, h)− y (z, h)) dG (z|k, k, h)− k

=

∫ k

k

(y (k, h)− y (z, h)) dG1 (z|k, h)− k
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Proof of proposition 1

The lowest job type in the worker's matching set is k̂ (k, h) and the productivity associated

with this job is y(k̂ (k, h) , h) . Satisfaction of the free entry condition implies

e−φ(k̂(k,h),h)
(
y
(
k̂ (k, h) , h

)
− y(k, h)

)
= k̂ (k, h)

Since the the lowest quality job type k̂ (k, h) for a worker of type h earns a positive

return of y(k̂ (k, h) , h) if and only if there is no other �rm at the local market of this worker,

φ(k̂ (k, h) , h) is also the measure of jobs greater than k̂ (k, h) for workers of type h. We then

�nd k̂ (k, h) by solving for the maximum number of jobs consistent with free entry. Thus

φ(k̂ (k, h) , h) = arg max
{
φ (k, h) | e−φ(k,h) (y (k, h)− y(k, h)) = k

}
The total mass of jobs can also not exceed φ(k̂ (k, h) , h), because the argmax operator in

equation (7) looks for the largest possible value of φ(k, h) that satis�es free entry of low

type jobs. Likewise, the total mass of jobs cannot be less than φ(k̂ (k, h) , h) since this would

imply positive pro�ts for type k̂ (k, h) jobs.
The number of jobs above this threshold (and also the maximum job type) is derived as

follows. It is useful to discretize the number of job types and take the limit as the number
of job types gets large. The payo� of each �rm type entering the matching market is a
function of its productivity and the probability that it faces a competitor of type k. Given
the distribution of �rm types over a discrete set of �rm types, we have a simple expression
for the payo� of a type k �rm. Thus the expected return of a type ki �rm who enters the
type n(k) submarket in the free entry equilibrium (when φ(k | k) is positive) is given by

ki =

i∑
j=1

(y (ki)− y (kj−1)) exp (−φ (ki | k)) (1− exp (− (φ (kj−1 | k)− φ (kj | k))))

where k1 = k̂ (k), k0 = k and φ (k | k) =∞. Di�erencing the payo�s and opportunity costs
of any pair of adjacent job types, we get the following di�erence equation

kj+1 − kj = (y(kj+1, h)− y (kj , h)) e−φ(kj+1,h) (21)

which must be satis�ed for all job types o�ered in equilibrium. Let 4 = kj − kj-1 denote
the interval of successive job types for which equation (21) holds. Our functional form for
φ (k) follows by taking the limit of equation (21) as the interval 4 becomes small. We note
that the function φ (k) gives a positive density of wages over the support of this job o�er
distribution if [

−y11 (k, h)

(y1 (k))
2

]
[log (y1 (k, h))] < 0.
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Obviously, we require y11 (k, h) < 0.

Proof of proposition 2

It is straightforward to show that the higher bound of the matching set is increasing/ decreas-

ing in h when the production function is supermodular/submodular. Instead, we consider

the distribution of employment and the lower bound of the matching set.

Part 1: The distribution of employment.
The distribution of employed workers across �rms of k ≥ k̂ (k, h) is given by

N (k | h) =
G1 (k | h)−G1

(
k̂ (k, h) | h

)
1−G1

(
k̂ (k, h) | h

)
Di�erentiating with respect to h gives us

N2 (k | h) =

 [
G1

2 (k | h)−G1
2

(
k̂ (k, h) | h

)] [
1−G1

(
k̂ (k, h) | h

)]
+
[
G1 (k | h)−G1

(
k̂ (k, h) | h

)]
G1

2

(
k̂ (k, h) | h

) 
[
1−G1

(
k̂ (k, h) | h

)]2
=
G1

2 (k | h)
[
1−G1

(
k̂ (k, h) | h

)]
−G1

2

(
k̂ (k, h) | h

) [
1−G1 (k | h)

]
[
1−G1

(
k̂ (k, h) | h

)]2
=

y12(k̂(k,h),h)
[y1(k̂(k,h),h)]

2

[
1−G1 (k | h)

]
− y12(k,h)

[y1(k,h)]2

[
1−G1

(
k̂ (k, h) | h

)]
[
1−G1

(
k̂ (k, h) | h

)]2
Since we only consider k ≥ k̂ (k, h), we always have that G1 (k | h) ≥ G1

(
k̂ (k, h) | h

)
.

If y12(k,h)
y1(k,h)

is increasing in k, we have that y12(k,h)

[y1(k,h)]2
>

y12(k̂(k,h),h)
[y1(k̂(k,h),h)]

2 . This will imply that

N2 (k | h) < 0 such the distribution of employment for high type workers stochastically

dominate the distribution of employment for lower worker types. When y12(k,h)
y1(k,h)

< 0 is

decreasing in k, N2 (k | h) > 0.

Part 2: The lower bound of the matching set.
The �rst-order condition of equation (7) is given by

y1

(
k̂ (k, h) , h

)
k̂ (k, h) = y

(
k̂ (k, h) , h

)
− y (k, h)

Di�erentiate with respect to h

45



[
y12

(
k̂ (k, h) , h

)
+ y11

(
k̂ (k, h) , h

)
k̂2 (k, h)

]
k̂ (k, h) + y1

(
k̂ (k, h) , h

)
k̂2 (k, h) =

y2

(
k̂ (k, h) , h

)
− y2 (k, h) + y1

(
k̂ (k, h) , h

)
k̂2 (k, h)⇔

k̂2 (k, h) =
1

y11

(
k̂ (k, h) , h

)
y2

(
k̂ (k, h) , h

)
− y2 (k, h)

k̂ (k, h)
− y12

(
k̂ (k, h) , h

)⇔
k̂2 (k, h) =

y1

(
k̂ (k, h) , h

)
y11

(
k̂ (k, h) , h

)
y2

(
k̂ (k, h) , h

)
− y2 (k, h)

y
(
k̂ (k, h) , h

)
− y (k, h)

−
y12

(
k̂ (k, h) , h

)
y1

(
k̂ (k, h) , h

)
⇔ (22)

k̂2 (k, h) =
−y1

(
k̂ (k, h) , h

)
y11

(
k̂ (k, h) , h

)
y12

(
k̂ (k, h) , h

)
y1

(
k̂ (k, h) , h

) − ∫ k̂(k,h)

k
y12 (z, h) dz∫ k̂(k,h)

k
y1 (x, h) dx


The �rst term is positive because y11

(
k̂ (k, h) , h

)
< 0. De�ne a function Ψ(k, h) ≡

y12(k,h)
y1(k,h)

. We can then write

k̂2 (k, h) =
−y1

(
k̂ (k, h) , h

)
y11

(
k̂ (k, h) , h

)
Ψ(k̂ (k, h) , h)y1

(
k̂ (k, h) , h

)
y1

(
k̂ (k, h) , h

) −

∫ k̂(k,h)

k
Ψ(z, h)y1 (z, h) dz∫ k̂(k,h)

k
y1 (x, h) dx

⇔
k̂2 (k, h) =

−y1

(
k̂ (k, h) , h

)
y11

(
k̂ (k, h) , h

)
Ψ(k̂ (k, h) , h)−

∫ k̂(k,h)

k

Ψ(z, h)
y1 (z, h) dz∫ k̂(k,h)

k
y1 (x, h) dx


When Ψ(k, h) ≡ y12(k,h)

y1(k,h)
is non-decreasing in k, the second term must be positive since the

last term of the squared bracket is simply a weighted average of Ψ(k, h) in between k and

k̂ (k, h). Hence, when Ψ(k, h) is non-decreasing in k, we have that k̂2 (k, h) > 0, while

k̂2 (k, h) < 0 if Ψ(k, h) is non-increasing in k.

Furthermore, from equation 22, it is clear that setting y (k, h) = 0 for all h implies

k̂2 (k, h) =
y1

(
k̂ (k, h) , h

)
y11

(
k̂ (k, h) , h

)
y2

(
k̂ (k, h) , h

)
y
(
k̂ (k, h) , h

) − y12

(
k̂ (k, h) , h

)
y1

(
k̂ (k, h) , h

)
⇔

k̂2 (k, h) =
−1

y
(
k̂ (k, h) , h

)
y11

(
k̂ (k, h) , h

) [y (k̂ (k, h) , h
)
y12

(
k̂ (k, h) , h

)
− y1

(
k̂ (k, h) , h

)
y2

(
k̂ (k, h) , h

)]

which is positive/negative if the production function is log-supermodular/log-submodular.

Proof of constrained e�ciency

To prove that the decentralized solution is constrained e�cient, we need only to show that the

solution to the planner's problem for a particular �rm of type k approaching a type h worker
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employed in a type k1 �rm correspond to the free entry condition. We consider the planner's

problem for the case of discrete �rm distribution. De�neζ (k, h) = φ (k, h)−φ (k − 1, h) such

that φ (k, h) =
∑k∗(h)

z=k ζ (z, h). Then, we can write the planner's problem as

Λ (k1, h) e−φ(k̂(k1,h),h) +

k∗(h)∑
z=k̂(k1,h)

[
Λ (z, h) e−φ(z+1,h)

[
1− e−ζ(z,h)

]
− ζ (z, h) z

]

Λ (k1, h) e−φ(k̂(k1,h),h) +

k∗(h)∑
z=k̂(k1,h)

[
Λ (z, h)

(
e−φ(z+1,h) − e−φ(z,h)

)
− ζ (z, h) z

]
Di�erentiate with respect to ζ (k, h)

−Λ (k1, h) e−φ(k̂(k1,h),h) −
k−1∑

z=k̂(k1,h)

Λ (z, h)
(
e−φ(z+1,h) − e−φ(z,h)

)
+ Λ (k, h) e−φ(k,h) − k = 0⇔

[Λ (z, h)− Λ (k1, h)] e−φ(k̂(k1,h),h) −
k−1∑

z=k̂(k1,h)

[Λ (k, h)− Λ (z, h)]
(
e−φ(z+1,h) − e−φ(z,h)

)
− k = 0⇔

In the limit where the distribution of �rms is continuous, we have

[Λ (z, h)− Λ (k1, h)] e−φ(k̂(k1,h),h) −
∫ k

k̂(k1,h)

[Λ (k, h)− Λ (z, h)]
[
−φ1 (z, h) e−φ(z,h)

]
dz − k = 0⇔

[Λ (k, h)− Λ (k1, h)]G1
(
k̂ (k1, h) |k1, h

)
−
∫ k

k̂(k1,h)

[Λ (k, h)− Λ (z, h)] dG1 (z|k1, h)− k = 0

Hence, the planner's �rst order condition is identical to the �rm's free-entry condition in

equation (10).

Proof of lemma 2

The job value function for a worker of type h employed in a type k ≥ p∗ �rm soG1
(
k̂ (k, h) | h

)
=

1 and with a second-best o�er also being k is given by

Λ (k, h) = y (k, h) + β (1− δ) Λ (k, h) + βδW (k, k, h)

Di�erentiating with respect to k and re-arranging gives

y1 (k, h) = (1− β (1− δ))Λ1 (k, h)
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For k < p∗ consider �rst equation (11) for a worker employed in a type k �rm and with a
second-best o�er also being k

W (k, k, h) = Λ (k)G2
(
k̂ (k, h) | h

)
+

∫ k∗(h)

k̂(k,h)

Λ (z, h) dG2 (z | h)

Di�erentiating this with respect to k gives

W1 (k, k, h) = Λ1 (k, h)G2
(
k̂ (k, h) | h

)
+ Λ (k, h)G2

1

(
k̂ (k, h) | h

)
k̂1 (k, h)

− Λ
(
k̂1 (k, h) , h

)
G2

1

(
k̂ (k, h) | h

)
k̂1 (k, h)

= Λ1 (k, h)G2
(
k̂ (k, h) | h

)
+
(

Λ (k, h)− Λ
(
k̂1 (k, h) , h

))
G2

1

(
k̂ (k, h) | h

)
k̂1 (k, h)

Using this in the di�erentiated version of equation (12) for a worker employed in a type k

�rm and with a second-best o�er also being k delivers

Λ1 (k, h) = y1 (k, h) + β (1− δ)

 Λ1 (k, h)G2
(
k̂ (k, h) | h

)
+
(

Λ (k, h)− Λ
(
k̂ (k, h) , h

))
G2

1

(
k̂ (k, h) | h

)
k̂1 (k, h)


= y1 (k, h) + β (1− δ)

 Λ1 (k, h)G2
(
k̂ (k, h) | h

)
−Λ1

(
k̂ (k, h) , h

)
G2

1

(
k̂ (k, h) | h

)
k̂ (k, h) k̂1 (k, h)

 (23)

where we have used that k̂1 (k, h) =
Λ(k̂(k,h),h)−Λ(k,h)

Λ1(k̂(k,h),h)
. Di�erentiating k̂1 (k, h) with respect

to k delivers

k̂1 (k, h) Λ1

(
k̂ (k, h) , h

)
+ k̂ (k, h) Λ11

(
k̂ (k, h) , h

)
k̂1 (k, h) = Λ1

(
k̂ (k, h) , h

)
k̂1 (k, h)− Λ1 (k, h)⇔

k̂ (k, h) Λ11

(
k̂ (k, h) , h

)
k̂1 (k, h) = −Λ1 (k, h)⇔

k̂ (k, h) k̂1 (k1, h) =
−Λ1 (k, h)

Λ11

(
k̂ (k, h) , h

) (24)
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Besides this, we also plug in G2
(
k̂ (k, h) | h

)
=

1+log(Λ1(k̂(k,h),h))
Λ1(k̂(k,h),h)

and G2
1

(
k̂ (k, h) | h

)
=

−Λ11(k̂(k,h),h) log(Λ1(k̂(k,h),h))
(Λ1(k̂(k,h),h))

2 in equation (23) and re-arrange to obtain

Λ1 (k, h) = y1 (k, h) + β (1− δ)

 Λ1 (k, h)
1+log(Λ1(k̂(k,h),h))

Λ1(k̂(k,h),h)

−Λ1

(
k̂ (k, h) , h

) −Λ11(k̂(k,h),h) log(Λ1(k̂(k,h),h))
(Λ1(k̂(k,h),h))

2
−Λ1(k,h)

Λ11(k̂(k,h),h)

⇔

y1 (k, h) = Λ1 (k, h)− β (1− δ)Λ1 (k, h)


1+log(Λ1(k̂(k,h),h))

Λ1(k̂(k,h),h)

−
(

log(Λ1(k̂(k,h),h))
Λ1(k̂(k,h),h)

)
⇔

y1 (k, h) =

1− β (1− δ) 1

Λ1

(
k̂ (k, h) , h

)
Λ1 (k, h) (25)

Di�erentiating this with respect to k yields

y11 (k, h) =

1− β (1− δ) 1

Λ1

(
k̂ (k, h) , h

)
Λ11 (k, h) + β (1− δ)

Λ11

(
k̂ (k, h) , h

)
k̂1 (k, h)

Λ1

(
k̂, h
) Λ1 (k, h)

Then, using the equation for k̂1 (k, h) and (24), we obtain

y11 (k, h) =

1− β (1− δ) 1

Λ1

(
k̂ (k, h) , h

)
Λ11 (k, h)

+β (1− δ)
Λ11

(
k̂ (k, h) , h

)
Λ1

(
k̂ (k, h) , h

)
k̂ (k, h)

−Λ1 (k, h)

Λ11

(
k̂ (k, h) , h

)Λ1 (k, h)

=

1− β (1− δ) 1

Λ1

(
k̂ (k, h) , h

)
Λ11 (k, h)− β (1− δ) [Λ1 (k, h)]

2

Λ
(
k̂ (k, h) , h

)
− Λ (k, h)

where both terms on the right hand side are negative.

Proof of lemma 3.

The proof consists of four parts. In the �rst and second parts, we sign ∂w(k1,k2,h)
∂k1

and
∂w(k1,k2,h)

∂k2
. Next, we show that the k1 and k2 are positively correlated. Finally, we show

that for any worker type h, the expected wage in a k1 �rm is higher than the expected wage

in a k′1 < k1 �rm.

Part 1: Signing w1 (k1, k2, h)

Di�erentiating equation (15) with respect to k1 delivers
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w1 (k1, k2, h) = y1 (k1, h) + β (1− δ)G1
1

(
k̂ (k1, h) | h

)
k̂1 (k1, h) [Λ (k1, h)− Λ (k2, h)]

−
[
1− β (1− δ)G1

(
k̂ (k1, h) | h

)]
Λ1 (k1, h)

Using equation (25) to substitute y1 (k1, h) , we can write

w1 (k1, k2, h) = β (1− δ)G1
1

(
k̂ (k1, h) | h

)
k̂1 (k1, h) [Λ (k1, h)− Λ (k2, h)] (26)

In order to show that this is positive, we need to show that k̂1 (k1, h) > 0. In the

derivation for equation (25) we derived that k̂ (k, h) k̂1 (k1, h) = −Λ1(k,h)

Λ11(k̂(k,h),h)
, so k̂1 (k1, h) >

0 since Λ11

(
k̂ (k, h) , h

)
< 0. Obviously, G1

1

(
k̂ (k1, h) | h

)
> 0 so we always have that

w1 (k1, k2, h) > 0.

Part 2: Signing w2 (k1, k2, h).
Di�erentiate equation (15) with respect to k2

w2 (k1, k2, h) =
[
1− β (1− δ)G1

(
k̂ (k1, h) | h

)]
Λ1 (k2, h) (27)

which is always positive.

Part 3: Showing that k1 and k2 are positively correlated.

Consider an unemployed worker searching for a job. Conditional on becoming employed

in a �rm at k1 or below, we want to examine the relationship between the �rst and second

best o�ers, k1 and k2. To begin with, we examine the �rst period of employment after

being unemployed. Below, we also consider the relationship between k1 and k2 after search

while employed. We derive the conditional distribution function of k2 given k1 to show that

the conditional distribution of k2 for a given k1 stochastically dominates the conditional

distribution of k2 for a k′1 < k1.
We want to calculate the probability of leaving unemployment to a job with best and

second best o�ers (k1, k2), where k1 ≥ k2. When leaving unemployment, we know that the
best o�er is at k̂ (k, h) or above, whereas the second best o�er only needs to be at k or above.
The probability is given by

G (k1, k2 | h)−G
(
k̂ (k) , k̂ (k) | h

)
= (1 + φ (k2, h)− φ (k1, h)) exp (−φ (k2, h))− exp

(
−φ
(
k̂ (k, h) , h

))
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The conditional distribution of k2 given k1 and k1 ≥ k̂ (k) is given by

G
(
k2 | k1, k1 ≥ k̂ (k) , h

)
=
G (k1, k2 | h)−G

(
k̂ (k, h) , k̂ (k, h) | h

)
G (k1, k1 | h)−G

(
k̂ (k, h) , k̂ (k, h) | h

)
=

(1 + φ (k2, h)− φ (k1, h)) exp (−φ (k2, h))− exp
(
−φ
(
k̂ (k, h) , h

))
exp (−φ (k1, h))− exp

(
−φ
(
k̂ (k, h) , h

))
Since φ (k, h) = log (Λ1 (k, h)), we have that

G
(
k2 | k1, k1 ≥ k̂ (k) , h

)
=

(1 + log (Λ1 (k2, h))− log (Λ1 (k1, h))) 1
Λ1(k2,h) −

1

Λ1(k̂(k,h),h)
1

Λ1(k1,h) −
1

Λ1(k̂(k,h),h)

Di�erentiating with respect to k1 delivers

G2

(
k2 | k1 ≥ k̂ (k, h) , h

)

=

−Λ11(k1,h)
Λ1(k1,h)

1
Λ1(k2,h)

[
1

Λ1(k1,h)
− 1

Λ1

(
k̂(k,h),h

)
]

+
Λ11(k1,h)
Λ1(k1,h)

[
(1 + log (Λ1 (k2, h))− log (Λ1 (k1, h))) 1

Λ1(k2,h)
− 1

Λ1

(
k̂(k,h),h

)
]

[
1

Λ1(k1,h)
− 1

Λ1

(
k̂(k,h),h

)
]2

=
Λ11 (k1, h)

Λ1 (k1, h)


− 1

Λ1(k2,h)

[
1

Λ1(k1,h)
− 1

Λ1

(
k̂(k,h),h

)
]

+

[
(1 + log (Λ1 (k2, h))− log (Λ1 (k1, h))) 1

Λ1(k2,h)
− 1

Λ1

(
k̂(k,h),h

)
]

[
1

Λ1(k1,h)
− 1

Λ1

(
k̂(k,h),h

)
]2


=

Λ11 (k1, h)

Λ1 (k1, h)

1[
1

Λ1(k1,h)
− 1

Λ1

(
k̂(k,h),h

)
]2

 1

Λ1 (k1, h)
−

1

Λ1

(
k̂ (k, h) , h

)
(1−

1

Λ1 (k2, h)

)
+

log (Λ1 (k2, h))− log (Λ1 (k1, h))

Λ1 (k2, h)



=
Λ11 (k1, h)

Λ1 (k1, h) Λ1 (k2, h)

1[
1

Λ1(k1,h)
− 1

Λ1

(
k̂(k,h),h

)
]2

 1

Λ1 (k1, h)
−

1

Λ1

(
k̂ (k, h) , h

)
 (Λ1 (k2, h)− 1) + log

(
Λ1 (k2, h)

Λ1 (k1, h)

)

which is negative since all terms on the r.h.s. are positive besides the �rst term, Λ11(k1,h)
Λ1(k1,h)Λ1(k2,h)

<

0. This shows that the distribution of k2 given k1 stochastically dominates the distribution

of k2 given k′1 for k′1 < k1.
We want to extend this result of the distribution of k2 given k1 following any period of

employment. There are three cases to consider. Let the workers' current best o�er be given
by k. First, with the event that the workers receive no o�ers above k̂ (k, h), nothing happens
and the stochastic dominance result from the unemployed search still holds. Second, when
a worker receives two or more o�ers above k̂ (k, h), we can simply replace k with k in the
proof above and, hence, the stochastic dominance result holds. Third, when the worker only
receives one o�er above k̂ (k, h), the new o�er becomes k1 and k2 = k. This is straightforward
to show since the conditional distribution of k1 given k2 (i.e. the previous period's best o�er)
when only getting a single new o�er at k̂ (k, h) or above is

F (k1 | k2, h) =
G1 (k1 | h)−G1

(
k̂ (k2, h) | h

)
1−G1

(
k̂ (k2, h) | h

)
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Di�erentiating with respect to k2 delivers

∂F (k1 | k2, h)

∂k2

=
−G1

1

(
k̂ (k2, h) | h

)
k̂1 (k2, h)

[
1−G1

(
k̂ (k2, h) | h

)]
+G1

1

(
k̂ (k2, h) | h

)
k̂1 (k2, h)

[
G1 (k1 | h)−G1

(
k̂ (k2, h) | h

)]
[
1−G1

(
k̂ (k2, h) | h

)]2
=
G1

1

(
k̂ (k2, h) | h

)
k̂1 (k2, h)

[
−1 +G1

(
k̂ (k2, h) | h

)
+G1 (k1 | h)−G1

(
k̂ (k2, h) | h

)]
[
1−G1

(
k̂ (k2, h) | h

)]2
= −

G1
1

(
k̂ (k2, h) | h

)
k̂1 (k2, h)

[
1−G1 (k1 | h)

]
[
1−G1

(
k̂ (k2, h) | h

)]2 < 0

Part 4: With the results established in part 1-3 of this proof, we can now examine whether
the expected wage in a k1 �rm is higher than in a k′1 < k1 �rm (conditional on worker type,
h). Denoting the conditional density of second best o�ers by f (k2 | k1, h), we can write this
as ∫ k1

k

w (k1, z, h) f (z | k1, h) dz −
∫ k′1

k

w (k′1, z, h) f (z | k′1, h) dz

=

∫ k1

k

w (k1, z, h) f (z | k1, h) dz −
∫ k1

k

w (k′1, z, h) f (z | k′1, h) dz

=

∫ k1

k

w (k1, z, h) f (z | k1, h) dz −
∫ k1

k

w (k′1, z, h) f (z | k′1, h) dz

+

∫ k1

k

w (k′1, z, h) f (z | k1, h) dz −
∫ k1

k

w (k′1, z, h) f (z | k1, h) dz

=

∫ k1

k

[w (k1, z, h)− w (k′1, z, h)] f (z | k1, h) dz +

∫ k1

k

w (k′1, z, h) [f (z | k1, h)− f (z | k′1, h)] dz

The �rst term on the r.h.s. is positive because when k1 > k′1 we have that w (k1, k2, h) >

w (k′1, k2, h). The second term is positive since w (k′1, k2, h) is increasing in k2 and since the

distribution of second best o�ers given k1 stochastically dominates the distribution of second

best o�ers given k′1 < k1, i.e. F (z | k1, h) ≤ F (z | k′1, h).

Proof of lemma 4.

The proof is divided into the case of Λ12 (k, h) > 0 and the case of Λ12 (k, h) ≤ 0.
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1) Assume that Λ12 (k, h) > 0 for all (k, h):

W (k, k, h) = Λ (k, h)G2
(
k̂ (k, h) |h

)
+

∫ k∗(h)

k̂(k,h)
Λ (z, h) dG2 (z|h)

= Λ (k, h)G2
(
k̂ (k, h) |h

)
+
[
Λ (z, h)G2 (z|h)

]k∗(h)

k̂(k,h)
−
∫ k∗(h)

k̂(k,h)
Λ1 (z, h)G2 (z|h) dz

= Λ (k, h)G2
(
k̂ (k, h) |h

)
+ Λ (k∗ (h) , h)− Λ

(
k̂ (k, h) , h

)
G2
(
k̂ (k, h) |h

)
−
∫ k∗(h)

k̂(k,h)
Λ1 (z, h)G2 (z|h) dz

= Λ (k, h)G2
(
k̂ (k, h) |h

)
+ Λ

(
k̂ (k, h) , h

) [
1−G2

(
k̂ (k, h) |h

)]
+
[
Λ (k∗ (h) , h)− Λ

(
k̂ (k, h) , h

)]
−
∫ k∗(h)

k̂(k,h)
Λ1 (z, h)G2 (z|h) dz

= Λ (k, h)G2
(
k̂ (k, h) |h

)
+ Λ

(
k̂ (k, h) , h

) [
1−G2

(
k̂ (k, h) |h

)]
+

∫ k∗(h)

k̂(k,h)
Λ1 (z, h)

[
1−G2 (z|h)

]
dz

Di�erentiate with respect to h

W3 (k, k, h) = Λ2 (k, h)G2
(
k̂ (k, h) |h

)
+ Λ (k, h)

∂G2
(
k̂ (k, h) |h

)
∂h

+ Λ1

(
k̂ (k, h) , h

) [
1−G2

(
k̂ (k, h) |h

)]
k̂2 (k, h)

+ Λ2

(
k̂ (k, h) , h

) [
1−G2

(
k̂ (k, h) |h

)]
− Λ

(
k̂ (k, h) , h

) ∂G2
(
k̂ (k, h) |h

)
∂h

+ Λ1 (k∗ (h) , h)
[
1−G2 (k∗ (h) |h)

]
k∗1 (h)− Λ1

(
k̂ (k, h) , h

) [
1−G2

(
k̂ (k, h) |h

)]
k̂2 (k, h)

+

∫ k∗(h)

k̂(k,h)
Λ12 (z, h)

[
1−G2 (z|h)

]
dz −

∫ k∗(h)

k̂(k,h)
Λ1 (z, h)

∂G2 (z|h)

∂h
dz

= Λ2 (k, h)G2
(
k̂ (k, h) |h

)
+
[
Λ (k, h)− Λ

(
k̂ (k, h) , h

)] ∂G2
(
k̂ (k, h) |h

)
∂h

+ Λ2

(
k̂ (k, h) , h

) [
1−G2

(
k̂ (k, h) |h

)]
+

∫ k∗(h)

k̂(k,h)
Λ12 (z, h)

[
1−G2 (z|h)

]
dz

−
∫ k∗(h)

k̂(k,h)
Λ1 (z, h)

∂G2 (z|h)

∂h
dz

The �rst and third terms are positive since Λ2 (k, h) > 0. The second term is positive

since
[
Λ (k, h)− Λ

(
k̂ (k, h) , h

)]
< 0 and

∂G2(k̂(k,h)|h)
∂h

< 0. The fourth term is positive as

Λ12 (k, h) > 0, while the �fth term is positive because ∂G2(z|h)
∂h

< 0. Hence, W3 (k, k, h) > 0

when Λ12 (k, h) > 0 for all (k, h) (as well as Λ1 (k, h) > 0, and Λ2 (k, h) > 0 for all (k, h)).

2) Assume that Λ12 (k, h) ≤ 0 for all (k, h):
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W (k, k, h) is given by

W (k, k, h) = Λ (k, h)G2
(
k̂ (k, h) |h

)
+

∫ k∗(h)

k̂(k,h)
Λ (z, h) dG2 (z|h)

= Λ (k, h)G2
(
k̂ (k, h) |h

)
+
[
Λ (z, h)G2 (z|h)

]k∗(h)

k̂(k,h)
−
∫ k∗(h)

k̂(k,h)
Λ1 (z, h)G2 (z|h) dz

= Λ (k, h)G2
(
k̂ (k, h) |h

)
+
[
Λ (z, h)G2 (z|h)

]k∗(h)

k̂(k,h)
−
∫ k∗(h)

k̂(k,h)
(1 + log (Λ1 (z, h))) dz

= Λ (k∗ (h) , h) +
[
Λ (k, h)− Λ

(
k̂ (k, h) , h

)]
G2
(
k̂ (k, h)

)
−
∫ k∗(h)

k̂(k,h)
(1 + log (Λ1 (z, h))) dz

= Λ (k∗ (h) , h) +
[
Λ (k, h)− Λ

(
k̂ (k, h) , h

)] 1 + log
(

Λ1

(
k̂ (k, h)

))
Λ1

(
k̂ (k, h) , h

) −
∫ k∗(h)

k̂(k,h)
(1 + log (Λ1 (z, h))) dz

= Λ (k∗ (h) , h)− k̂ (k, h)
(

1 + log
(

Λ1

(
k̂ (k, h) , h

)))
−
∫ k∗(h)

k̂(k,h)
(1 + log (Λ1 (z, h))) dz

where we have used that k̂ (k, h) =
Λ(k̂(k,h),h)−Λ(k,h)

Λ1(k̂(k,h),h)
and G2 (k|h) = 1+log(Λ1(k,h))

Λ1(k,h)
. Then,

di�erentiating W (k, k, h) with respect to h delivers

W3 (k, k, h) = Λ1 (k∗ (h) , h) k∗1 (h) + Λ2 (k∗ (h) , h)− k̂2 (k, h)
(

1 + log
(

Λ1

(
k̂ (k, h) , h

)))
− k̂ (k, h)

Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

)
Λ1

(
k̂ (k, h) , h

)
− (1 + log (Λ1 (k∗ (h) , h))) k∗1 (h) +

(
1 + log

(
Λ1

(
k̂ (k, h) , h

)))
k̂2 (k, h)−

∫ k∗(h)

k̂(k,h)

Λ12 (z, h)

Λ1 (z, h)
dz

= k∗1 (h) + Λ2 (k∗ (h) , h)− k̂ (k, h)
Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

)
Λ1

(
k̂ (k, h) , h

)
− k∗1 (h)−

∫ k∗(h)

k̂(k,h)

Λ12 (z, h)

Λ1 (z, h)
dz

= Λ2 (k∗ (h) , h)− k̂ (k, h)
Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

)
Λ1

(
k̂ (k, h) , h

) −
∫ k∗(h)

k̂(k,h)

Λ12 (z, h)

Λ1 (z, h)
dz

where we have used that Λ1 (k∗ (h) , h) = 1. The �rst term is positive and the third term
is positive when Λ12 (k, h) < 0 for all (k, h). The sign of the second term depends on the

sign of Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

)
. When the sign of this term is nega-

tive, W3 (k, k, h) > 0. To show that it is negative, di�erentiate k̂ (k, h) Λ1

(
k̂ (k, h) , h

)
=

Λ
(
k̂ (k, h) , h

)
− Λ (k, h) with respect to h. This delivers

 k̂2 (k, h) Λ1

(
k̂ (k, h) , h

)
+ k̂ (k, h) Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h)

+k̂ (k, h) Λ12

(
k̂ (k, h) , h

)  =

 Λ2

(
k̂ (k, h) , h

)
+Λ1

(
k̂ (k, h) , h

)
k̂2 (k, h)− Λ2 (k, h)

⇔
k̂ (k, h)

[
Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

)]
= Λ2

(
k̂ (k, h) , h

)
− Λ2 (k, h)⇔

Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

)
=

∫ k̂(k,h)

k
Λ12 (z, h) dz

k̂ (k, h)
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where the r.h.s. is negative when Λ12 (k, h) < 0 for all (k, h).

Proof of lemma 5.

Evaluating equation (15) in k1 = k∗ (h), we obtain

Λ (k2, h) = w (k∗ (h) , k2, h) + β (1− δ) Λ (k2, h) + βδW (k, k, h)⇔

w (k∗ (h) , k2, h) = [1− β (1− δ)] Λ (k2, h)− βδW (k, k, h)

Next, integrate from k to k∗ (h) over G2 (k | h)

∫ k∗(h)

k

w (k∗ (h) , k2, h) dG2 (k2 | h) = [1− β (1− δ)]
∫ k∗(h)

k

Λ (k2, h) dG2 (k2 | h)− βδW (k, k, h)⇔∫ k∗(h)

k

w (k∗ (h) , k2, h) dG2 (k2 | h) = (1− β)W (k, k, h)

Derivation of equations (16) and (17)

Setting the in�ow into unemployment equal to the �ow out of unemployment delivers

(1− u) δG1
(
k̂ (k, h) | k, h

)
= u (h)

[
1−G1

(
k̂ (k, h) | k, h

)]
⇔

δG1
(
k̂ (k, h) | k, h

)
= u (h)

[
1−G1

(
k̂ (k, h) | k, h

)
+ δG1

(
k̂ (k, h) | k, h

)]
⇔

u (h) =
δG1

(
k̂ (k, h) | k, h

)
1− (1− δ)G1

(
k̂ (k, h) | k, h

)
Setting in�ow into the mass N (k | h) equal to out�ow from the same mass, we have that

u (h)
(
G1 (k, h)−G1

(
k̂ (k, h) | h

))
+ (1− u (h)) (1−N (k | h)) δ

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))
= (1− u (h))N (k | h) δ

[
1−

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))]
+ (1− δ) (1− u (h))

∫ k
k̂(k,h)

n (z | h)
[
1−G1

(
max

(
k̂ (z, h) , k

)
| h
)]
dz ⇔

u(h)
1−u(h)

(
G1 (k, h)−G1

(
k̂ (k, h) | h

))
+ (1−N (k | h)) δ

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))
= N (k | h) δ

[
1−

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))]
+ (1− δ)

∫ k
k̂(k,h)

n (z | h)
[
1−G1

(
max

(
k̂ (z, h) , k

)
| h
)]
dz ⇔

u(h)
1−u(h)

(
G1 (k, h)−G1

(
k̂ (k, h) | h

))
+δ
(
G1 (k | h)−G1

(
k̂ (k, h) | h

))
−N (k | h) δ

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))
= N (k | h) δ

[
1−

(
G1 (k | h)−G1

(
k̂ (k, h) | h

))]
+ (1− δ)

∫ k
k̂(k,h)

n (z | h)
[
1−G1

(
max

(
k̂ (z, h) , k

)
| h
)]
dz ⇔[

δ +
u(h)

1−u(h)

] (
G1 (k, h)−G1

(
k̂ (k, h) | h

))
= N (k | h) δ + (1− δ)

∫ k
k̂(k,h)

n (z | h)
[
1−G1

(
max

(
k̂ (z, h) , k

)
| h
)]
dz

N (k | h) =
[
δ +

u(h)
1−u(h)

] (
G1 (k, h)−G1

(
k̂ (k, h) | h

))
+ (1− δ)

∫ k
k̂(k,h)

n (z | h)G1
(

max
(
k̂ (z, h) , k

)
| h
)
dz
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Proof of proposition 3

Di�erentiate equation (17) with respect to h

N2 (k | h) =
∂( u(h)

1−u(h) )
∂h

(
G1 (k, h)−G1

(
k̂ (k, h) | h

))
+
[
δ + u(h)

1−u(h)

](
∂(G1(k,h)−G1(k̂(k,h)|h))

∂h

)
− (1− δ) k̂2 (k, h)n

(
k̂ (k, h) | h

)
g1
(

max
(
k̂
(
k̂ (k, h) , h

)
, k
)
| h
)

+ (1− δ)
∫ k
k̂(k,h)

n2 (z | h)G1
(

max
(
k̂ (z, h) , k

)
| h
)
dz

+ (1− δ)
∫ k
k̂(k,h)

n (z | h)
∂G1(max(k̂(z,h),k)|h)

∂h dz

(28)

When Λ12 (k, h) > 0, Λ1 (k, h) > 0, Λ11 (k, h) < 0 and Λ112 (k, h) ≥ 0, then the �rst three

terms and the �fth term of equation (28) are negative. When Λ12 (k, h) < 0, Λ1 (k, h) > 0,

Λ11 (k, h) < 0 and Λ112 (k, h) ≤ 0, then the �rst three terms and the �fth term are positive.

We will consider each of the terms in turn.
Consider the �rst term of equation (28). Since k ≥ k̂ (k, h) the �rst term has the same

sign as
∂( u(h)

1−u(h))
∂h

. We can write u(h)
1−u(h)

=
δG1(k̂(k,h)|h)

1−G1(k̂(k,h)|h)
. Di�erentiating gives us

∂
(

u(h)
1−u(h)

)
∂h

=
δ
∂G1(k̂(k,h)|h)

∂h

[
1−G1

(
k̂ (k, h) | h

)]
+

∂G1(k̂(k,h)|h)
∂h δG1

(
k̂ (k, h) | h

)
[
1−G1

(
k̂ (k, h) | h

)]2
=

δ
∂G1(k̂(k,h)|h)

∂h[
1−G1

(
k̂ (k, h) | h

)]2
=
−δΛ11(k̂(k,h),h)k̂2(k,h)+Λ12(k̂(k,h),h)

Λ1(k̂(k,h),h)[
1−G1

(
k̂ (k, h) | h

)]2
To sign Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

)
, we di�erentiate k̂ (k, h) with respect to

h

k̂2 (k, h) Λ1

(
k̂(k, h), h

)
+ k̂ (k, h) Λ11

(
k̂(k, h), h

)
k̂2 (k, h) + k̂ (k, h) Λ12

(
k̂(k, h), h

)
= Λ2

(
k̂(k, h), h

)
+ Λ1

(
k̂(k, h), h

)
k̂2 (k, h)− Λ2 (k, h)⇔

k̂2 (k, h) Λ1

(
k̂(k, h), h

)
+ k̂ (k, h)

[
Λ12

(
k̂(k, h), h

)
+ Λ11

(
k̂(k, h), h

)
k̂2 (k, h)

]
= Λ2

(
k̂(k, h), h

)
− Λ2 (k, h) + Λ1

(
k̂(k, h), h

)
k̂2 (k, h)⇔
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k̂ (k, h)
[
Λ12

(
k̂(k, h), h

)
+ Λ11

(
k̂(k, h), h

)
k̂2 (k, h)

]
= Λ2

(
k̂(k, h), h

)
− Λ2 (k, h)⇔

Λ12

(
k̂(k, h), h

)
+ Λ11

(
k̂(k, h), h

)
k̂2 (k, h) =

Λ2

(
k̂(k, h), h

)
− Λ2 (k, h)

k̂ (k, h)
⇔

Λ12

(
k̂(k, h), h

)
+ Λ11

(
k̂(k, h), h

)
k̂2 (k, h) =

∫ k̂
z=k

Λ12 (z, h) dz

Λ
(
k̂(k, h), h

)
− Λ (k, h)

Λ1

(
k̂(k, h), h

)
(29)

where the right hand side is positive when Λ12 (k, h) > 0 and negative when Λ12 (k, h) < 0

. Therefore, the �rst term of the r.h.s. of equation (28) is negative when Λ12 (k, h) > 0 and

positive when Λ12 (k, h) < 0 .
To sign the second term of equation (28), we need to sign

∂
(
G1 (k, h)−G1

(
k̂ (k, h) | h

))
∂h

=
−Λ12 (k, h)

Λ1 (k, h)
−
−
(

Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h) + Λ12

(
k̂ (k, h) , h

))
Λ1

(
k̂ (k, h) , h

)
= −

Λ12 (k, h)

Λ1 (k, h)
−

Λ12

(
k̂ (k, h) , h

)
Λ1

(
k̂ (k, h) , h

)
+

Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h)

Λ1

(
k̂ (k, h) , h

)
Under the assumptions that Λ12 (k, h) > 0, Λ1 (k, h) > 0, Λ11 (k, h) < 0 and Λ112 (k, h) ≥ 0,
Λ12(k,h)
Λ1(k,h)

≥ Λ12(k̂(k,h),h)
Λ1(k̂(k,h),h)

since k ≥ k̂ (k, h) and hence the �rst term is negative. The second

term is also negative since Λ11

(
k̂ (k, h) , h

)
< 0 and k̂2 (k, h) > 0 under the maintained

assumptions (see proposition 2). Under the assumptions that Λ12 (k, h) < 0, Λ1 (k, h) > 0,

Λ11 (k, h) < 0 and Λ112 (k, h) ≤ 0, Λ12(k,h)
Λ1(k,h)

≤ Λ12(k̂(k,h),h)
Λ1(k̂(k,h),h)

since k ≥ k̂ (k, h) and hence the �rst

term is positive. The second term is also positive since Λ11

(
k̂ (k, h) , h

)
< 0 and k̂2 (k, h) < 0.

The third term of equation (28) is negative when Λ12 (k, h) > 0, Λ1 (k, h) > 0, Λ11 (k, h) <

0 and Λ112 (k, h) ≥ 0 due to proposition 2. Furthermore, the third term of equation (28) is

positive when Λ12 (k, h) < 0, Λ1 (k, h) > 0, Λ11 (k, h) < 0 and Λ112 (k, h) ≤ 0.

The �fth term of equation (28) is negative when Λ12 (k, h) > 0 following the argument

for the �rst term of equation (28). The �fth term is positive when Λ12 (k, h) < 0.

Finally, we turn to the fourth term of equation (28). Suppose that Λ12 (k, h) > 0,

Λ1 (k, h) > 0, Λ11 (k, h) < 0 and Λ112 (k, h) ≥ 0 such that the �rst three terms and the

�fth term on the r.h.s. of equation (28) are negative. The remaining question is whether

the fourth term could be positive and imply that the right hand side becomes positive as

well. Therefore, suppose that (1− δ)
∫ k
k̂(k,h)

n2 (z | h)G1
(

max
(
k̂ (z, h) , k

)
| h
)
dz > 0, then

we must have that N2 (k | h) > (1− δ)
∫ k
k̂(k,h)

n2 (z | h)G1
(

max
(
k̂ (z, h) , k

)
| h
)
dz, which
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is not possible as the remaining terms on the right hand side of the equation are negative,

i.e. a contradiction. A similar argument can be made for the case where Λ12 (k, h) < 0,

Λ1 (k, h) > 0, Λ11 (k, h) < 0 and Λ112 (k, h) ≤ 0.

Derivation of equation (18)

The values of y1/Λ1, Λ1/Λ̂1 and
[
Λ̂− Λ

]
are all positive. The terms Λ12 and Λ̂2 − Λ2 =∫ k̂

z=k
Λ12 (z, h) dz are positive if and only if Λ (k, h) is super-modular. The result is straight-

forward to derive for k ≥ p∗, so here we only consider the case where k < p∗. Di�erentiate
equation (25) with respect to h to obtain

y12 (k, h) =

1− β (1− δ) 1

Λ1

(
k̂ (k, h) , h

)
Λ12 (k, h)

+β (1− δ)
Λ1 (k, h)

[
Λ12

(
k̂ (k, h) , h

)
+ Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h)

]
(

Λ1

(
k̂ (k, h) , h

))2

=

1− β (1− δ) 1

Λ1

(
k̂ (k, h) , h

)
Λ12 (k, h)

+β (1− δ)
Λ1 (k, h)

[
Λ12

(
k̂ (k, h) , h

)
+ Λ11

(
k̂ (k, h) , h

)
k̂2 (k, h)

]
(

Λ1

(
k̂ (k, h) , h

))2

Using equations (25) and (29), we can write

y12 (k, h) =
[
y1(k,h)
Λ1(k,h)

]
Λ12 (k, h) + β (1− δ) Λ1(k,h)

Λ1(k̂(k,h),h)
Λ2(k̂(k,h),h)−Λ2(k,h)

Λ(k̂(k,h),h)−Λ(k,h)
⇔

y12(k,h)
y1(k,h) = Λ12(k,h)

Λ1(k,h) + β(1−δ)Λ1(k,h)

y1(k,h)Λ1(k̂(k,h),h)

∫ k̂(k,h)
k Λ12(z,h)dz∫ k̂(k,h)
k Λ1(z,h)dz

⇔

y12(k,h)
y1(k,h) = Λ12(k,h)

Λ1(k,h) + β(1−δ)
Λ1(k̂(k,h),h)−β(1−δ)

∫ k̂(k,h)
k Λ12(z,h)dz∫ k̂(k,h)
k Λ1(z,h)dz

Signing w3 (k1, k2, h).

Di�erentiate equation (15) respect to h

w3 (k1, k2, h) = y2 (k1, h) + β (1− δ)
∂G1

(
k̂(k, h) | h

)
∂h

[Λ (k1, h)− Λ (k2, h)]

+
[
1− β (1− δ)G1

(
k̂ (k, h) | h

)]
[Λ2 (k1, h)− Λ2 (k2, h)]

= y2 (k1, h) + β (1− δ)
∂G1

(
k̂(k, h) | h

)
∂h

[Λ (k1, h)− Λ (k2, h)]

−
[
1− β (1− δ)G1

(
k̂ (k, h) | h

)] ∫ k1

k2

Λ12 (z, h) dz (30)
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The �rst term of equation (30) is always positive, whereas we know from the proof of proposi-

tion 2 that
∂G1(k̂(k,h)|h)

∂h
< 0 if Λ12

(
k̂(k, h), h

)
> 0 and

∂G1(k̂(k,h)|h)
∂h

> 0 if Λ12

(
k̂(k, h), h

)
< 0

. The implication is that the second and third terms are negative/ positive if PAM/ NAM.

The right hand side is positive whenever the job value function is super-modular and nega-

tive when the job value function is positive. This implies that
∂G1(k̂(k,h)|h)

∂h
< 0 when the job

value function is super-modular whereas ∂G1
(
k̂(k, h) | h

)
> 0 when the job value function

is sub-modular Therefore, super-modularity of the job value function implies that the second

and third terms of equation (30) are negative. This is reversed if the job value function is

sub-modular.

59



B Additional Results of Global Absolute Advantage Test

We conduct the following robustness checks for the global absolute advantage test:

• In Figure A1 we use poaching index to rank �rms and workers;

• In Figure A2 we conduct the global absolute advantage test for each of the �ve geo-

graphical regions in Denmark: Hovedstaden, Midtjylland, Nordjylland, Sjælland and

Syddanmark;

• In Figure A3 we conduct the global absolute advantage test for each four-year time

period from 1995 to 2010;

• In Figure A4 we conduct the global absolute advantage test for male and female workers

separately;

• In Figure A5 we conduct the global absolute advantage test for di�erent age groups.

In all of these tests, we �nd that the lowest �rm types have negative coe�cients, suggesting

that global absolute advantage fail to hold within regions, time periods, and gender and age

groups.

In Figure A6 we test global absolute advantage for each industry sector. Most sectors

do not have global absolute advantage, but there are two exceptions: �nance and knowledge

services. These are high-skilled sectors and the results suggest that for high-skilled jobs we

do have global absolute advantage, that is, workers who are employed at better �rms are

also more productive in high-skilled jobs.

Figure A1: Global absolute advantage test: rank �rms using poaching index
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(a) Region 1 (b) Region 2 (c) Region 3

(d) Region 4 (e) Region 5

Figure A2: Testing Global Absolute Advantage by Regions

(a) 1995-1998 (b) 1999-2002

(c) 2003-2006 (d) 2007-2010

Figure A3: Testing Global Absolute Advantage by Year
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(a) Male (b) Female

Figure A4: Testing Global Absolute Advantage by Gender

(a) Age 25-29 (b) Age 30-39

(c) Age 40-49 (d) Age 50-59

Figure A5: Testing Global Absolute Advantage by Age

62



(a) Manufacturing (b) Retail and Wholesale (c) Finance

(d) Knowledge Services (e) Construction

Figure A6: Testing Global Absolute Advantage by Industries
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