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Abstract

This paper studies wage dispersion in an equilibrium on-the-job-search model
with endogenous search intensity. Workers differ in their permanent skill level and
firms differ with respect to productivity. Positive (negative) sorting results if the
match production function is supermodular (submodular). The model is estimated
on Danish matched employer-employee data. We find evidence of positive assor-
tative matching. In the estimated equilibrium match distribution, the correlation
between worker skill and firm productivity is 0.12. The assortative matching has
a substantial impact on wage dispersion. We decompose wage variation into four
sources: Worker heterogeneity, firm heterogeneity, frictions, and sorting. Worker
heterogeneity contributes 51% of the variation, firm heterogeneity contributes 11%,
frictions 23%, and finally sorting contributes 15%. We measure the output loss due to
mismatch by asking how much greater output would be if the estimated population
of matches were perfectly positively assorted. In this case, output would increase by
7.7%.
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1 Introduction

What causes wages to vary across jobs? There is ample empirical evidence that worker

skill and firm productivity heterogeneity are both important contributors to observed

wage dispersion.1 Labor market frictions allow firm productivity heterogeneity to man-

ifest itself in wages and also provide a separate source of wage dispersion. Of particular

interest in this respect is the observation that labor markets are characterized by a large

amount of worker reallocation through job-to-job transitions, and that the transitions

tend to be in the direction of higher wages.2 Wages guide reallocation and are thus also

in part determined by it.3 Therefore, the study of wage dispersion should ideally contain

an understanding of the allocation of workers to firms that the labor market is seeking

to implement. In particular, this includes the issue of sorting. However, the impact of

labor market sorting on wages is not well understood.

In this paper we quantify the sources of wage dispersion in an equilibrium on-the-

job search model with firm and worker heterogeneity and the possibility of sorting.

Heterogeneity is single dimensional: Workers differ in their skill, firms differ in the

productivity with which they employ a given skill level worker. Wage determination

is the same as in Dey and Flinn (2005) and Cahuc et al. (2006). A worker’s current

wage depends on her skill level, her employer’s productivity as well as her bargaining

position. The latter is shorthand for the competition that arises between two firms when

a currently employed worker meets another firm. In a frictional labor market, meetings

are chance events, and individual bargaining positions, and therefore wages, evolve

stochastically, even among similar workers employed in similarly firms. Hence, labor

market frictions contribute to wage variation, over and above the dispersion that arises

via worker skill and firm productivity heterogeneity (Postel-Vinay and Robin, 2002).

Workers’ search intensity is endogenous as in Christensen et al. (2005). The core

sorting mechanism in the model is analyzed in detail in Lentz (2010). Depending on the

presence of complementarities in the production function between worker skill and firm

1See among others Abowd et al. (1999), Postel-Vinay and Robin (2002), and Cahuc et al. (2006).
2See for example Fallick and Fleischman (2001), Christensen et al. (2005), Nagypál (2005) and Jolivet

et al. (2006).
3See Burdett and Mortensen (1998), van den Berg and Ridder (1999), Bunzel et al. (2001), Postel-Vinay

and Robin (2002), Christensen et al. (2005), Cahuc et al. (2006), Hornstein et al. (2011), and Bagger et al.
(2014).
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productivity, the worker’s search intensity choice can vary with the skill level and sorting

results. For example, if there are positive complementarities in production more skilled

workers will search more intensely to move up the firm hierarchy and will tend to be

matched with more productive firms, and positive assortative matching prevails. Sorting

naturally adds to wage dispersion. The equilibrium wage distribution is affected by how

the labor market combines given distributions of worker skill and firm productivity as

well as the reallocation flows it produces in the process.

Using Danish matched employer-employee data, the match production function is

estimated to be supermodular, and the equilibrium is characterized by positive assor-

tative matching; more skilled workers tend to be matched with more productive firms.

The correlation between worker skill and firm productivity is 0.12. The strength of

the complementarities are relatively weak which is illustrated by the modest aggregate

productivity gain of 7.7% that would result from a reshuffling of firms and workers in

existing matches into a perfectly sorted, “no mismatch”, allocation.

For the estimated model, we can decompose wage dispersion into four components:

Worker heterogeneity, firm heterogeneity, labor market frictions, and sorting.4 Worker

heterogeneity is found to account for 51% of the wage variance in the data. Firm pro-

ductivity heterogeneity is responsible for 11%. Frictions account for 23%. Finally, sorting

contributes 15% of the wage variation.

As in the partnership models of Becker (1973) and Shimer and Smith (2000), our

analysis links sorting in the match distribution primarily to match production function

modularity. However, in our setup, due to an assumption of constant returns to scale

in production and workers’ opportunity to search on-the-job, neither firms nor work-

ers view the match decision to include a substantial search opportunity loss. Hence,

acceptance of a match opportunity does not require compensation for the loss of this

opportunity. In contrast, the core of the acceptance/rejection decision in Shimer and

Smith (2000) relies on a fundamental scarcity: Once matched, the agent gives up the op-

portunity to search until once again unmatched. This is not an altogether unreasonable

assumption in the study of marriage, as in Becker (1973), but the vital role of on-the-job

4Abowd et al. (1999) consider the first two components in a reduced form regression framework. Postel-
Vinay and Robin (2002) decompose dispersion into the first three components, subject to the assumption
of no sorting in the match distribution. The match production function in Postel-Vinay and Robin (2002)
is supermodular, but there is no mechanism in the model by which sorting can happen.
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search for workers and the fact that a single firm can match with many workers make

the scarcity assumption in labor market matching much less obvious.

Identification of sorting, i.e. recovering from observed data the relationship between

unobserved worker skill and unobserved firm productivity, is inherently difficult, and

is a central question in the paper. In this respect, it is joined by Eeckhout and Kircher

(2011), Lise et al. (2013), Lopes de Melo (2008), and more recently by Bartolucci and

Devicienti (2013) and Hagedorn et al. (2013). Like our paper, these papers also adopt

a maintained identifying assumption regarding match opportunity scarcity, but they go

to the other extreme benchmark and assume match opportunity scarcity at the job level

as it exists in the partnership model. That is, once a job is filled, the matching opportu-

nity capital that is embodied in the job is lost. Hence, the literature still lacks an actual

identification of match opportunity scarcity at the firm level. Our identification strat-

egy is not fully appropriate in the partnership model setting, nor are the identification

strategies used for identification in the partnership model setting appropriate in ours.

Taken together, all the mentioned papers produce a robustness of sorts to the issue of

core identifying assumptions. Like ours, both Lopes de Melo (2008) and Lise et al. (2013)

obtain results that suggest positive assortative matching in the labor market but with

substantial imperfection. Results in Bartolucci and Devicienti (2013) that add profit data

to the analysis, are also supportive of the presence of positive assortative matching.

Our framework thus emphasizes worker reallocation as the first order channel through

which sorting happens, and our identification strategy concerning sorting is focused on

worker reallocation rate heterogeneity. The sorting mechanism in the model implies that

more mismatched workers are more likely to reallocate to another job. In a frictional

labor market, in any given firm, there will be heterogeneity among its workers as to the

degree of mismatch and consequently separation rate heterogeneity. The same is true

among the population of unemployed workers; if some unemployed workers are more

mismatched than others, they will leave unemployment faster, which leads to unem-

ployment hazard heterogeneity. The identification of sorting in the paper utilizes the

presence of heterogeneity in spell hazards and links it to worker and firm type rank.

Firm type rank is identified using the composition of a firm’s worker inflow, specifically

what fraction of its hires that come directly from other firms relative to unemployment.

We only identify worker type rank for a subpopulation of workers where the model

4



predicts that wages can be used to rank individuals. This is the population of workers

hired into top rank firms directly out of unemployment.

The paper is structured as follows: The model is presented in section 2, with its

key properties discussed in section 3. Sections 4 and 5 present data and estimation,

respectively. Section 5 is divided into a discussion of the identification strategy and the

estimation which is done by Indirect Inference. Section 6 discusses the implied estimate

for efficiency loss due to mismatch and in section 7 we decompose the estimated wage

variance into its four distinct sources; worker heterogeneity, firm heterogeneity, friction,

and sorting. Section 8 concludes.

2 Model

There is a continuum of firms with measure m, and a continuum of risk neutral workers

with measure normalized at unity. Time is continuous and firms and workers discount

time at a common rate r. Workers maximize income and firms maximize profits. A

worker is characterized by his or her permanent innate skill level h ∈ [0, 1] which is

independently and identically distributed across workers according to the cumulative

distribution function Ψ(·). Firms differ with respect to their permanent productivity

realization p ∈ [0, 1] which is independently and identically distributed across firms

according to the cumulative distribution function Φ(·).
Workers can be either employed or unemployed. Regardless of employment state, a

worker generates outside employment opportunities through a choice of search intensity

s at increasing and convex cost c (s). The analysis allows that the search technology

efficiency can differ across the two employment states. Specifically, a search intensity s

results in the arrival rate of new job opportunities of (µ+ κs)λ(θ) or sλ(θ) if unemployed

or employed, respectively, where κ > 0. If κ > 1 then search is more efficient in the

unemployed state. µ ≥ 0 represents an arrival of offers that is unrelated to the search

decision of the worker. λ(θ) is the equilibrium arrival rate of offers per search unit and

θ is the market tightness to be determined in equilibrium. By assumption λ′(θ) ≥ 0. For

notational simplicity, we will often suppres θ in the expression for λ (θ) .

A match between a worker of skill level h and a firm of productivity p produces

output f (h, p). It is assumed that f (h, p) is twice continuously differentiable with
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fp(h, p) ≥ 0 and fh(h, p) ≥ 0 for all (h, p). Hence, more skilled workers enjoy an absolute

advantage relative to less skilled workers regardless of the firm type p they are matched

with. Likewise for the ranking of firms.

Match separation occurs as the result of one of three mutually exclusive events. First,

the worker in the match may receive an offer from an outside firm with greater produc-

tivity than the current firm which will induce a quit. Second, at rate δ0λ the worker

makes a job-to-job transition where the new job is drawn randomly from the vacancy of-

fer distribution Γ(·) and the outside option in the new job is unemployment. The process

is meant to capture the possibility that some job-to-job transitions are not up the firm hi-

erarchy.5 One possible explanation is that an (to the econometrician) unobserved shock

has reduced the worker’s valuation of the current match which induces a job-to-job tran-

sition. Nagypál (2005) provides an explicit argument for such a process. Alternatively,

the worker may have to reallocate for family reasons. It may also be that the worker has

been given notice of a lay-off sufficiently far in advance that the worker got a new job

without an actual unemployment spell in between. The model does not take a stand on

the nature of the shock. Third, at rate δ1, the worker is laid off and moves into unem-

ployment. The model allows the layoff rate to be worker type dependent. Specifically,

the layoff rate can be high or low, δH > δL > 0. The layoff rate is modeled as a worker

random effect such that the probability that a worker is a high layoff rate type is given

by ξ j = Pr
(
δ1 = δj

)
, j ∈ {L, H}.

Employment contracts between workers and employers are set through a Rubinstein

(1982) style bargaining game following the same protocol as in Cahuc et al. (2006). The

exact protocol is described in detail in the online appendix. It is assumed that the

worker can use a contact with one employer as a threat point in a bargaining game

with another. The bargaining procedure is observationally equivalent to the one in Dey

and Flinn (2005), which is generalized Nash bargaining with worker bargaining power

β. Here, competition between firms is such that if two firms compete with each other

over a worker, the more productive firm will win and the worker will bargain with full

surplus extraction with the losing firm as the outside option. An employment contract

can only be re-negotiated by mutual consent. If the worker is unemployed, then the

5Christensen et al. (2005), Nagypál (2005) and Bagger et al. (2014) emphasize that this type of separation
shock is empirically important.
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value of unemployment will be the worker’s threat point.

As in Cahuc et al. (2006), denote by Vj (h, q, p) a (j, h)-type worker’s valuation of a

job with a productivity p firm given an employment contract that the worker negotiated

with an outside option of full surplus extraction with a productivity q firm. Furthermore,

define Vj (h, p) ≡ Vj (h, p, p) . This is the full value of a match between a (j, h) worker

and a productivity p firm. Since the firm is competing with an equally productive firm,

the competition between the two results in the worker extracting all the rents from the

relationship. The generalized Nash bargaining with worker bargaining power β then

implies,

Vj (h, q, p) =βVj (h, p) + (1 − β)Vj (h, q) . (2.1)

The value of unemployment, V0
j (h) , solves,

rV0
j (h) = max

s≥0

{
f (h, 0)− c(s) + (µ + κs)λβ

ˆ 1

Rj(h)

[
Vj(h, p′)− V0

j (h)
]

dΓ(p′)
}

, (2.2)

where Rj(h) is the reservation productivity level. It is defined implicitly by,

V0
j (h) = Vj

(
h, Rj(h)

)
. (2.3)

At rate λs (h, p) the worker meets an outside firm. If it is better than the current firm

who has productivity p, the worker moves to the new firm and receives a contract with

value Vj (h, p) .

An employment contract consists of a worker’s wage level and search intensity (w, s).

The wage profile is flat until it is renegotiated, which by assumption only happens if both

parties agree to do so. The analysis assumes search intensities can be contracted upon,

which results in the implementation of the jointly (between employer and employee)

efficient search intensity level, a useful benchmark.6 The outcome of the employment

contract bargaining is such that the agreed upon search intensity maximizes the joint

surplus of the match and the wage dictates the surplus split.

6Lentz (2014) studies the mechanism design problem in the case where search intensity is not con-
tractable. Here, a flat wage profile that does not deliver the entire surplus to the worker results in the
worker searching too much relative to the jointly efficient level because part of the incentive to generate
outside offers now includes rent extraction from the current match.
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The flow value equation for the value of employment can be written as,

rVj (h, q, p) = wj(h, q, p)− c(sj (h, p)) + λsj (h, p)

ˆ 1

p

[
Vj(h, p, p′)− Vj(h, q, p)

]
dΓ(p′)

+ λsj (h, p)

ˆ p

q

[
Vj(h, q′, p)− Vj (h, q, p)

]
dΓ(q′)

+
[
δj + δ0λΓ

(
Rj (h)

)] [
V0

j (h)− Vj (h, q, p)
]

+ δ0λ

ˆ 1

Rj(h)

[
Vj(h, Rj (h) , p′)− Vj (h, q, p)

]
dΓ(p′). (2.4)

If a worker meets an outside firm that has productivity greater than her current em-

ployer, p′ > p, then the worker reallocates to the new employer with a contract that

has value Vj (h, p, p′), reflecting her bargaining position of full surplus extraction with

her old employer. If she meets a firm that improves on her bargaining position but is

not more productive that her current firm, q < p′ ≤ p, then she stays with her cur-

rent employer with a renegotiated contract that has value Vj (h, p′, p) . The worker moves

into unemployment either directly through a layoff (at rate δ1) or by refusing an exoge-

nous reallocation. If she accepts the exogenous reallocation shock with a productivity

p′ firm, her contract has value Vj

(
h, Rj (h) , p′

)
because her bargaining position is now

unemployment.

The search intensity for a match between a (j, h)-type worker and productivity p firm,

sj (h, p), is the level of search intensity that maximizes the right hand side of equation

(2.4) for q = p, that is the total match value Vj (h, p). Thus, it must satisfy the first order

condition,

c′ (s (h, p)) = βλ

ˆ 1

p

[
Vj(h, p′)− Vj(h, p)

]
dΓ(p′). (2.5)

Notice, that the jointly efficient level of search does not depend on the bargaining posi-

tion of the worker, q.

The value function is characterized in Lemma 1

Lemma 1. The worker’s valuation of a match Vj(h, q, p) is for any j ∈ {L, H} strictly increasing

in all three arguments, (h, q, p).

Proof. See online appendix.
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2.1 The search choices

Integration by parts of equations (2.2) and (2.4) yields the following expressions for the

first order conditions for the unemployed and employed search, respectively,

c′(s0
j (h)) = κβλ

ˆ 1

Rj(h)

fp(h, p′)Γ̂ (p′) dp′

r + δ̂j + βλs(h, p′)Γ̂(p′)
, (2.6)

and

c′
(
sj(h, p)

)
= βλ

ˆ 1

p

fp(h, p′)Γ̂ (p′) dp′

r + δ̂j + βλsj(h, p′)Γ̂(p′)
, (2.7)

where δ̂j = δj + δ0λ and Γ̂ (p) = 1 − Γ (p). By convexity of c(·), differentiation of equa-

tion (2.7) with respect to p immediately yields that sj(h, p) is monotonically decreasing in

p, ∀h. Lemma 2 characterizes how search intensity varies across different skill workers

depending on the kind of complementarity between skill and productivity in the pro-

duction function. Specifically, if the production function is supermodular (submodular),

then a high skill worker will search more (less) intensely for outside job opportunities

than a less skilled colleague within a given firm. In the supermodular case, the relative

wage gains from upward mobility are greater for high skill workers and consequently

they invest more heavily in offer creation. In the submodular case, low skill workers have

the greater gains and so search more intensely. If the production function is modular,

then search intensity does not vary across worker skill.

Lemma 2. For either j = L, H and for any pair (h0, h1) ∈ [0, 1]2 such that h0 < h1, and for all

p ∈ [0, 1), if fhp > 0 (supermodular) then sj(h0, p) < sj(h1, p). If fhp < 0 (submodular) then

sj(h0, p) > sj(h1, p). If fhp = 0 (modular) then sj(h0, p) = sj(h1, p).

The proof of Lemma 2 is a straightforward application of the employed search in-

tensity first order conditions in equation (2.7). The reservation productivity Rj(h) is

characterized in Lemma 3

Lemma 3. For any h ∈ [0, 1], if κ ≤ 1 and µ = δ0 then Rj(h) = 0, and if κ > 1 and µ > δ0

then 1 > Rj(h) > 0. Furthermore, if the production function is modular, then Rj (h0) = Rj (h1)

for any (h0, h1) ∈ [0, 1]2.

In the case where κ ≤ 1 and µ = δ0, we obtain the trivial case where accepting a job

does not involve a loss in search efficiency and consequently any job that is at least as
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productive as unemployment will be accepted by the unemployed worker. If employed

search is less efficient than unemployed search, a sufficient condition for this is κ > 1 and

µ > δ0, a job that is exactly as productive as unemployment (p = 0) will not be acceptable

to the worker since it can at most pay a wage stream equal to that of unemployment and

the value of the search option is strictly below that of unemployment. The value of a job

is monotonically increasing in the productivity of the job. Consequently, the problem is

characterized by a threshold decision rule as to whether or not to accept an employment

offer.

In the case where unemployed search is more efficient than employed search, κ > 1,

an obvious question of interest is how Rj(h) varies with h. Lemma 3 states that in the

absence of production function complementarities, Rj(h) is identical across worker skill

levels. In this case, the gains to search are independent of the worker’s own type, and the

result follows from this insight. With complementarities, and κ > 1, the model includes

many of the complications associated with the classic stopping problem as analyzed in

Shimer and Smith (2000). In particular, it is possible that Rj (h) is not monotone in h.

2.2 The wage equation

By equations (2.1) and (2.4) and integration by parts one obtains the following wage

equation,

wj(h, q, p) = (r + δ̂j)Vj(h, q, p) + c
(
sj(h, p)

)
− δjV

0
j (h)−

δ0λ

ˆ 1

Rj(h)

β fp(h, p′)Γ̂ (p′) dp′

r + δ̂j + βλsj(h, p′)Γ̂(p′)
− λsj(h, p)

[
ˆ 1

p

β fp(h, p′)Γ̂(p′)dp′

r + δ̂j + βλsj(h, p′)Γ̂(p′)

+

ˆ p

q

(1 − β) fp(h, p′)Γ̂(p′)dp′

r + δ̂j + βλsj(h, p′)Γ̂(p′)

]
. (2.8)

It is a well-known feature in a model with sequential bargaining as in Postel-Vinay

and Robin (2002) that wages are not necessarily monotone in the productivity of the

firm. As it turns out, wages are also not necessarily monotone in the worker skill index,

either. Figure 2.1 illustrates the average wage steady state wage for an (h, p) match,

E (w (h, q, p) |h, p), where model specification is given in detail in Section 5.1 and param-

eterization is given in the figure footnote.
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Figure 2.1: Non-monotone wages
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Note: The wage function is obtained for the parameterization, (c0, c1, ρ, f0, α, β, κ, δ, δ0, h, p) =
(0.01, 1,−7, 5, 0.5, 0.1, 1, 0.1, 0.05, 0.25, 0.25). In addition, the vacancy distribution is assumed
uniform and so is the worker skill distribution. h(x) indicates the xth percentile in the worker
skill distribution Ψ(h).

The figure draws the wage as a function of p for the 10th, 50th, and 90th worker

skill percentile, denoted h(10), h(50) and h(90). In the example, the production function

is supermodular and the worker’s bargaining power, β, is relatively low. A worker of

given skill level h may, on average, receive lower wages in more productive firms. For a

given outside option, a more productive firm is more valuable to a worker because of it

offers the possibility of more rent extraction in the event of future outside offers. Hence,

bargaining with a more productive firm results in an initially lower wage. However, the

realization of future higher wages may tend to take place with an even more productive

firm, making it possible that some firms pay lower wages than their less productive

peers. This is a feature of the wage determination mechanism that does not rely on the

modularity of the production function.

The example in Figure 2.1 also illustrates that, in the less productive firms, the lowest

skill worker may have the highest wage, and the highest skill worker the lowest wage.

This complete reversal of the ranking of workers by wage does stem from supermodu-
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larity. The more skilled worker is expecting greater future wage gains relative to a less

skilled worker, an effect that is amplified by the greater search effort among more skilled

workers when production is supermodular. Consequently, for identical outside options

the current wage is lower for the more skilled workers. Using wages across workers

within a given firm to identify worker types is further complicated by the possibility

that workers outside option q may vary systematically with worker skill type. In partic-

ular, in the case of a submodular production technology, low type workers search more

intensely and accumulate a better bargaining position. Low skill workers may thus end

up with higher wages within a firm.7

2.3 Vacancy creation

Permanent firm types p are distributed according to the cumulative distribution function

Φ(p). A firm’s total output Y is the sum of the output of all its matches. Hence, a firm

with n workers, recorded in an n-vector hn = (h1, h2, ..., hn)
′, produces,

Y(hn, p) =
n

∑
i=1

f (hi , p).

The total wage bill of the firm depends not only on the vector of worker types, but also

on the next best offer of each worker.

At any given time, each firm chooses a vacancy intensity ν at cost cν(ν), where cν(·)
is strictly increasing and convex. Given the choice of vacancy intensity, the firm meets a

new worker at rate ην. If a productivity p firm meets a skill h worker currently matched

with a productivity p′ < p firm, the worker will accept to match with the productivity p

firm. The bargaining will award value Vj(h, p′, p) to the worker and the firm will receive

value Vj(h, p, p)− Vj(h, p′ , p), which is the full match surplus minus the worker’s share.

The vacancy intensity choice is made so as to maximize the value of the firm’s hiring

7Ranking workers by their wages within a given firm is not an option here. In the partnership model
with Nash bargaining, wages are monotone in worker skill for a given firm type which both Hagedorn
et al. (2013) and Bartolucci and Devicienti (2013) use explicitly to rank workers.
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operation,

J0(p) = max
ν≥0

[
−cν (ν) + ην ∑

j∈{L,H}

ˆ 1

0

{[
Vj (h, p)− Vj

(
h, Rj(h), p

)]
Λ0

j (h) +

ˆ p

Rj(h)

[
Vj (h, p)− Vj

(
h, p′, p

)]
Λj

(
h, p′

)
dp′
}

dh

]
, (2.9)

Conditional on a meeting, Λj (h, p) is the likelihood of meeting an employed skill level h,

layoff rate δj worker who is currently employed with a productivity p firm. Λ0
j (h) is the

likelihood that conditional on meeting a worker, the meeting is with a skill level h, layoff

rate δj worker who is either currently unemployed or making a job-to-job reallocation,

which in either case means that the worker’s bargaining position is that of unemploy-

ment. They are complicated objects and we provide expressions for them in the online

appendix. The density of matches between type-(j, h) workers and productivity p firms

is given by gj(h, p) =
´ p

0 gj(h, q, p)dq, where gj(h, q, p) is the joint PDF of matches. uj is

the layoff rate conditional unemployment rate and Υj(h) is the CDF of worker skill in

the layoff rate conditional unemployment pool.

The firm’s hiring intensity ν (p) is the maximand of the right hand side of equation

(2.9). A firm’s hiring rate is the product of the meeting rate and the probability that the

worker in question accepts the firm’s offer,

η(p) = ην(p) ∑
j∈{L,H}

ˆ 1

0
I(Rj(h) ≤ p)

[
Λ0

j (h) +

ˆ p

Rj(h)
Λj

(
h, p′

)
dp′
]

dh. (2.10)

The expected match separation rate for a type p firm is given by,

d (p) = ∑
j∈{L,H}

ξ jδj + λ (θ) Γ̂ (p)
∑j∈{L,H} ∆j

´ 1
0 sj (h, p) gj (h, p) dh

∑j∈{L,H} ∆j

´ 1
0 gj (h, p) dh

. (2.11)

This expression comes from the result that a firm’s expected labor force composition

depends only on its productivity type, which is proven in the online appendix.

2.4 Steady state

Denote by Gj(h, q, p), the fraction of employed workers with layoff rate δj and skill level

no greater than h who are employed with firms of productivity no greater than p at

bargaining position no greater than q ≤ p. By definition, Gj (1, 1, 1) = 1. In steady state,
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the flow into this pool must equal the flow out, which leads to the following steady state

condition on the match distribution,

δ̂jGj(h, q, p) =

ˆ h

0
1(Rj(h

′) ≤ q)λ
[
Γ(p) − Γ(Rj(h

′))
][ uj

1 − uj
[µ + κs0

j (h
′)]υj(h

′)+

δ0λ

ˆ 1

Rj(h′)

ˆ 1

q′
gj(h

′, q′, p′)dp′dq′
]

dh′ −
ˆ h

0

ˆ q

Rj(h′)
λ

{
Γ̂(p)

ˆ q

q′
sj

(
h′, p′

)
dGj

(
h′, q′, p′

)
+

Γ̂(q)

ˆ p

q
sj

(
h′, p′

)
dGj

(
h′, q′, p′

)}
(2.12)

where 1(·) is an indicator function that equals one if its expression is true, zero if false. A

worker can leave the pool by moving into unemployment which happens in the case of

a layoff at rate δj and in the case where exogenous reallocation is rejected by the worker

which happens at rate δ0Γ(Rj(h) for a type-
(
h, δj

)
worker. The worker can also leave

the pool by receiving an outside offer: If a type-
(
h, δj

)
worker is currently employed

at a productivity p′ firm with bargaining position q′ such that q′ ≤ p′ ≤ q, then an

outside offer makes the worker leave the pool only if the productivity of the outside

offer is greater then p. If the outside offer is in the [q′, p] range, then the offer changes

the worker’s employment terms (and the worker possibly changes firms), but the worker

stays in the pool. If the worker is currently employed with a productivity p′ ∈ [q, p] firm,

then an outside offer that is better than q makes the worker leave the pool, because it

pushes the worker’s new bargaining position above than q. The worker enters the pool

through unemployment and exogenous reallocation if she were previously employed

outside the pool by receiving an acceptable offer no greater than p and if her reservation

level is no greater than q.

Equation (2.12) implies that the steady state unemployment rate for the population

of layoff rate δj workers satisfies,

uj =

[
ˆ 1

0

(
1 +

Γ̂(Rj(h
′))[µ + κs0

j (h
′)]λ

δ0λΓ(Rj(h′)) + δj

)
dΥj(h

′)

]−1

. (2.13)

In steady state, the mass of productivity p firms with n workers mn(p) must be

constant. Hence, the steady state firm size distribution satisfies,

0 = η (p) mn−1 (p) + d (p) (n + 1)mn+1 (p)− (η (p) + d (p) n) mn (p) , (2.14)
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for all n ≥ 1 and p. In the online appendix we show that the firm’s expected labor force

composition is independent of its size. Hence, the expected destruction rate of matches

is d(p) for any firm size. Also, in steady state the number of firm births (firms enter with

one worker) must equal the number of deaths,

η(p)m0(p) = d(p)m1(p). (2.15)

An alternative interpretation of equation (2.15) is that firms do not exit, but they just

have no economic activity during periods where they have no workers. During such

periods they act like potential entrants. In the estimation we do not use entry and

exit information from the data, and so, we do not have to take a stand on the issue.

Furthermore, it is given that
∞

∑
n=0

mn(p) = mφ(p), (2.16)

where φ(p) is the firm productivity distribution PDF. Equations (2.14)-(2.16) imply that

the type conditional firm size distribution mn(p)/(mφ(p)) is Poisson with arrival rate

η(p)/d(p),

mn(p) =

(
η (p)

d (p)

)n 1
n!

exp
(
−η (p)

d (p)

)
mφ (p) , (2.17)

for all n ≥ 0.

2.5 Steady state equilibrium

The equilibrium vacancy offer distribution is given by,

Γ (p) =

´ p
0 ν (p′) dΦ (p′)
´ 1

0 ν (p′) dΦ (p′)
. (2.18)

In equilibrium, the meeting rates of both workers and firms must balance which implies,

λ(θ) = θη(θ), (2.19)

where by proportional matching,

θ =
m
´ 1

0 ν (p′) dΦ (p′)

∑j∈{L,H} ξ j

[
uj

´ 1
0 [µ + κs0

j (h)]dΥj (h) +
(
1 − uj

) ´ 1
0

´ 1
0 [δ0 + sj (h, p)]dGj (h, p)

] ,

(2.20)

15



and

Gj (h, p) = Gj (h, p, p) .

The worker skill distribution is related to the employment state conditional worker skill

distributions by, Ψ(h) = (1 − uj)Gj(h, p̄) + ujΥj(h) which together with the steady state

conditions on Gj(h, q, p) and uj produce (see detailed derivations in the online appendix),

Υj (h) =

´ h
0

δ0Γ(Rj(h
′))+δj/λ(θ)

δ0Γ(Rj(h′))+δj/λ(θ)+Γ̂(Rj(h′))[µ+κs0
j (h

′)]
dΨ (h′)

´ 1
0

δ0Γ(Rj(h′))+δj/λ(θ)

δ0Γ(Rj(h′))+δj/λ(θ)+Γ̂(Rj(h′))[µ+κs0
j (h

′)]
dΨ (h′)

, j ∈ {L, H}. (2.21)

With these conditions, steady state equilibrium can be defined.

Definition 1. A steady state equilibrium is a collection
{

Gj(h, q, p),Υj(h),Γ(p),uj ,sj(h, p),

s0
j (h),Rj(h),η,wj(h, q, p)

}
j∈{L,H} that satisfies equations (2.3), (2.6), (2.7), (2.8), (2.13), (2.12),

(2.18), (2.20), and (2.21).

It is a convenient feature of the model that the composition of the unemployment

pool can be expressed analytically as a function of the worker type distribution, a model

fundamental, and the worker type conditional flow rates in and out of the unemploy-

ment pool. The search behavior that dictates the flow out of unemployment is in turn

dictated by the offer distribution. The offer distribution is an equilibrium object defined

in equation (2.18), which in turn is a simple transformation of firm type distribution

Φ (·), also a model fundamental. Existence and uniqueness of steady state equilibrium

reduces to an examination of the existence of a fixed point of a mapping from the offer

distribution into itself.

3 Properties of steady state equilibrium

The steady state equilibrium may or may not display sorting depending on the charac-

teristics of the production function. In this section, we make the simplifying assumption

that µ = δ0. This assumption implies that the unemployed and employed states do not

differ in terms of exogenous reallocation, which is helpful for the characterization of

the worker reservation level. Our notion of sorting is focused on how worker skill and
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firm productivity are allocated in steady state equilibrium. Our worker types are two-

dimensional so we discuss allocation patterns conditional on the worker’s layoff rate

type. Proposition 1 states sufficient conditions for positive sorting to occur. First, define

the worker type conditional CDF of firm types by,

Ωj(p|h) =
´ p

0 gj(h, p′)dp′
´ 1

0 gj(h, p′)dp′
, j ∈ {L, H}. (3.1)

One can then state the central characterization of sorting in steady state equilibrium.8

Proposition 1. For any h ∈ [0, 1] and j ∈ {L, H}, Ωj(0|h) = 0 and Ωj(1|h) = 1. Consider

any j ∈ {L, H} and pair (h0, h1) ∈ [0, 1]2 such that h0 < h1. If κ = 1 then for all p ∈ (0, 1),

• fhp(h, p) > 0 ∀(h, p) ⇒ Ωj(p|h0) > Ωj(p|h1) (supermodular).

• fhp(h, p) < 0 ∀(h, p) ⇒ Ωj(p|h0) < Ωj(p|h1) (submodular).

• fhp(h, p) = 0 ∀(h, p) ⇒ Ωj(p|h0) = Ωj(p|h1) (modular).

The result generalizes to any κ > 0 as long as Rj(h) is weakly increasing (decreasing) in

h when the production function is supermodular (submodular).

Proof. See Lentz (2010).

If the production function is supermodular, it is for given populations of jobs and

workers efficient to match high skill workers together with high productivity firms and

low skill workers with low productivity firms. This is for example the case in Postel-

Vinay and Robin (2002) and Cahuc et al. (2006). However there is no mechanism in these

models to make the agents act on the gains to efficient matching and so these papers

have no sorting.

The firms in our model are multi-worker constant returns to scale firms. They are not

discriminating between which worker types they match with because hiring a worker

at a given point in time does not preclude the firm from engaging in job recruitment

in the future. The worker’s job acceptance strategy is similarly trivial in a model where

employed search is no less efficient than unemployed search. In this case, workers accept

any match regardless of firm productivity as long as it is better than the current match.

8This proposition is given in Lentz (2010). We state it here for completeness.
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The worker then continues to search for better opportunities from the new match. A mis-

matched worker has relatively larger gains to upward movement than a better matched

worker for a given position in the firm hierarchy. The search intensity choice allows

mismatched workers to act on the economic incentives in the model, and the more mis-

matched they are, the more intensely they will search for better opportunities. So, if

the production function is supermodular more skilled workers will at any rung on the

firm ladder search more intensely for outside options than a less skilled worker. Hence,

the more skilled worker will in a stochastic dominance sense end up higher on the firm

ladder than a less skilled worker. In the submodular case, it is the low skill workers that

have larger relative gains to upward movement and so they search more intensely and

end up higher on the firm ladder.9

As noted above the statements on sorting are within layoff rate types. As we go

across layoff rate types it is possible that the elasticity of the search intensity with respect

to a change in the layoff rate is not constant across worker skill levels, in which case

layoff rate heterogeneity can drive a particular allocation pattern of worker skill to firm

productivity in steady state. In our estimation, this point turns out to be moot because

the high layoff rate type accounts for only about 1 percent of the employed workers.

4 Data

Our empirical analysis is conducted using Danish register-based matched employer-

employee (MEE) panel dataset.

4.1 Data sources

The backbone of our data is individual level labor market spells recorded at a weekly

frequency during 1985-2003 for the entire Danish population aged 15-70. Workers and

firms are identified via unique IDs. Spells are constructed from administrative registers

with information on public transfers, hourly wages, and start and end dates for all jobs

reported by employers to tax authorities, and mandatory employer pension contribu-

tions.
9It is worth noting that the stochastic dominance results in Proposition 1 do not cleanly extend to the

firm productivity conditional worker skill distribution.
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The raw data identify five labor market states: employment (jobs), unemployment,

retirement, self-employment and non-participation. By construction, non-participation

is a residual state reflecting that an individual is neither employed nor self-employed

nor receiving any kind of public transfer that would categorize him/her as unemployed

or retired. Hence, in addition to genuine out-of-the-labor-force spells, non-participation

captures imperfect take-up rates of public transfers, reception of transfers not used in

the construction of the spell data and misreported start and end dates of spells.

Using person and firm IDs we merge the spells data with information on individual

education and wages, and firm’s sector of operation from IDA (Integreret Database for

Arbejdsmarkedsforskning), an annual population-wide (age 15-70) Danish MEE panel

constructed and maintained by Statistics Denmark from several administrative registers.

Our wage measure is an estimate of the average hourly wage for jobs that are active in

the last week of November. No wage information is available for job spells that do not

overlap with a last week of November.

4.2 Analysis panel

A number of selection criteria and data manipulations are imposed in order to rid the

data of invalid observations and to reduce un-modeled heterogeneity as well as other

features of the data that our model is not designed to deal with.

First, we truncate individual labor market histories at age 55 and discard any labor

market history that predates labor market entry as measured by date of graduation from

highest completed education. Second, we discard all workers ever observed in employ-

ment in the public sector, in self-employment, in retirement or in Agriculture. Third, we

recode non-participation spells as unemployment spells.10 We recode unemployment

spells with duration no greater than 13 weeks followed by recall of the worker back to

the same employer as part of the original employment spell.11 In addition, we recode un-

employment spells of duration 2 weeks or less in between two employment spells with

10Our model features two labor market states and we must decide how to treat the empirical observa-
tion of nonparticipation in relation to the model’s notion of unemployment. Coding nonparticipation as
unemployment implies a broad definition of unemployment. This is appropriate as our model allows for
layoff rate heterogeneity across workers. High layoff type workers will have weak labor force attachment,
akin to non-particiaption.

11We effectively treat workers on recall unemployment as being employed. This is in line with recent
evidence presented in Fujita and Moscarini (2014).
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Table 1: Analysis data—summary statistics

All years 1994 2003
Number of observations 6,815,884 658,465 703,707
Number of individuals 782,951 552,869 588,643
Number of job spells 1,698,990 490,309 511,604
Number of unemployment spells 608,065 168,155 192,102
Number of firms 117,847 53,537 58,210
Number of firm-years 559,920 53,537 58,249

different employers as a transition between two job spells within a single employment

spell. Fourth, We select the period 1994-2003 for our analysis. Our structural model

assumes permanent worker and firm types. We want to have a long enough panel to be

able to effectively measure worker flows, but do not want to push the type permanence

assumption too much. Fifth, we trim the annual individual hourly wage at the 1st and

99th percentiles, and trend them to 2003 levels using their implicit deflators.

Table 1 provides basic summary statistics on the final analysis panel and also shows

statistics for the first (1994) and last (2003) annual cross section in the data.

5 Model estimation

5.1 Parameterization and estimation

We adopt a cost function specification where c (s) = c′ (s) = 0 for some s ≥ 0. The

worker’s choice of offer arrival rate is in the range s ∈ [s, ∞[. This is done to allow

the possibility that worker search intensity is not an essential good in the creation of

matches. The firm’s recruitment cost function is cν(ν) for recruitment intensity ν ∈ [0, ∞[.

The cost functions are given by increasing and convex functions,

c(s) =
(c0 (s − s)) 1+1/c1

1 + 1/c1
and cν(ν) =

(cν0ν) 1+1/cν1

1 + 1/cν1
. (5.1)

where c0 > 0 and cν0 > 0 are scale parameters and c1 > 0 and cν1 > 0 set curvatures.

The match production function specified as,

f (h, p) = f0

(
α
(
h + h

)ρ
+ (1 − α)

(
p + p

)ρ
) 1

ρ
, (5.2)

where f0 is a scale parameter, and α ∈ [0, 1] sets the weight that is put on the skill

index relative to the firm productivity index. h and p are lower support bounds that are
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relevant only because of our parametric specification of the h and p distributions. The

modularity of the CES function is governed by ρ. If ρ < 1, then the production function

is supermodular. It is submodular for ρ > 1, and it is modular for ρ = 1.

We parameterize the firm productivity distribution, Φ (p), as a Beta distribution with

parameters
(

βΦ
0 , βΦ

1

)
and the worker skill distribution is assumed to be a Beta distribu-

tion with parameters
(

βΨ
0 , βΨ

1

)
.12 We allow for classical measurement errors εw in annual

individual wage observations, with εw
∽ N (

0, σ2
w

)
.

The discount rate is fixed at r = 0.05 and equilibrium market tightness is normal-

ized at λ (θ) = 1. Furthermore, c0 and cv0 are not separately identified so we normalize

cν0 = 1. Finally, we set h = p = 0.1 to avoid extreme behavior in cases where the pro-

duction function treats h and p as essential goods. This leaves us with 18 free structural

parameters ω =
(
c0, c1, κ, cν1, δ0, δL, δH, ξL, βΨ

0 , βΨ
1 , βΦ

0 , βΦ
1 , β, f0, α, ρ, σw, s

)′, which we esti-

mate by Indirect Inference (Gourieroux et al., 1993).

The Indirect Inference estimator is

ω̂ = arg min
ω

[a(ω0)− aS(ω)]′Ŵ−1[a(ω0)− aS(ω)],

where a(ω0) is a vector of specific auxiliary statistics and data moments computed on

real data, a function the true parameter value ω0, aS(ω) = 1
S ∑

S
s=1 as(ω) is the same

vector, but computed on S simulated datasets from the structural model at some pa-

rameter value ω, and Ŵ is an estimate of the variance-covariance matrix of a(ω0).

For suitable choices of a, and under some regularity conditions, see Gourieroux et al.

(1993),
√

N(ω̂ − ω0) →d N (0, Ω) where N is the number of observations in the data,

Ω = (1 + S−1)(J′Ŵ−1J)−1, and J = ∂a(ω)/∂ω. We report standard errors from an

estimate of Ω.13

12This means that we are solving for the equilibrium fixed point vacancy offer distribution Γ (p) in each
simulation iteration.

13We compute Ŵ by block-bootstrapping worker careers in the real data (200 bootstrap repetitions). J

is estimated by numerically differentiating the simulated vector of moments aS(ω) with respect to ω (at
ω = ω̂). When the model is simulated, we replicate that there are 8.84 workers per firm in the data, which
directly determines the size of the firm population for a given number of simulated workers. The estimate
is obtained by simulating economies with a worker population of 100,000 over 10 years, S = 288 times.
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5.2 Identification

Identification of sorting requires auxiliary models or data moments that rank workers

and firms in terms of their unobserved skills and productivities h and p. Such statistics

are difficult to find. Given a matched employer-employee dataset, one might think that

worker and firm fixed effects from a log wage regression would provide such rankings.

However, in general, wage data alone does not suffice for identification of sorting. In-

deed, as pointed out in section 2.2, as well as in Eeckhout and Kircher (2011), Lopes de

Melo (2008), and Lise et al. (2013), because wages are not monotone in the productivity

indices, worker and firm fixed effects obtained from wage regressions do not correctly

rank workers and firms in terms skill levels and productivities, h and p.14 The impli-

cation is that the correlation between estimated worker and firm fixed effects does not

identify the correlation between worker skill and firm productivity indices in the steady

state match distribution.

In Appendix A we document how the wage non-monotonicity bias the correlation

between worker and firm fixed effects downward relative to the correlation between h

and p. This suggests that the fixed effects correlation provides a lower bound on the true

degree of assortative matching between productivity types in the equilibrium.15

At this point it is worth emphasizing that non-monotonicity extends to a measure

like the firm’s measured labor productivity, Y (hn, p) /n, because of the way that the

expected labor force composition changes across firms with different productivity levels.

It is a feature of the model that the equilibrium firm productivity conditional worker skill

distribution

Ωj(h|p) =
´ h

0 gj(h
′, p)dh′

´ 1
0 gj(h′, p)dh′

, j ∈ {L, H}

is not necessarily stochastically increasing (decreasing) in p when the production func-

tion is supermodular (submodular); see Lentz (2010). Hence, firm level output data does

not solve the firm rank identification problem.

Instead of a relying on wage regressions or output data for identification, we uti-

lize that in our model sorting is fundamentally driven by reallocation rate heterogeneity

14Of course, the mechanisms by which non-monotonicity arise are different in the partnership model
relative to the one in this paper.

15For β = 1 one obtains trivially that w (h, q, p) = f (h, p), which by construction is monotone, and
indeed wages are fully reflective of the match production function.
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across different types of workers. Our identification strategy consequently puts consid-

erable emphasis on the reallocation aspect of the data.

In what follows, we detail the key parts of the identification strategy. First, we discuss

how we rank firms based on worker reallocation, and subsequently proceed to discuss

the various auxiliary statistics and data moments we use in our Indirect Inference pro-

cedure.

5.2.1 Firm ranking

We can identify a firm’s position within the hierarchy by measuring the origin compo-

sition of its worker inflow. Specifically, the fraction of the worker inflow that comes

directly from other firms as opposed to from the unemployment pool. Assuming κ ≤ 1,

by the proportional matching assumption, the probability that a hire comes directly from

another firm is given by

ι (p) =

∑
j∈{L,H}

ξ j(1 − uj)
´ 1

0

[
δ0gj(h) +

´ p
0 s(h, p′)gj(h, p′)dp′

]
dh

∑
j∈{L,H}

ξ j(1 − uj)
´ 1

0

[
uj

1−uj
[µ + s0

j (h)]υj(h) + δ0gj(h) +
´ p

0 sj(h, p′)gj(h, p′)dp′
]

dh
,

where uj is the layoff rate conditional unemployment rate (see (2.13)), gj(h) =
´ 1

0 gj(h, p)dp,

and from which it trivially follows that ιp (p) ≥ 0 with strict inequality if, for any

j ∈ {L, H},
´ 1

0 sj (h, p) gj (h, p) dh > 0. Hence, the measure of the fraction of the inflow

that comes directly from other firms is monotonically increasing in the productivity in-

dex of the firm.16

In terms of empirical implementation, for all firms in our analysis data, we collect all

hires they make during the 10 year window and calculate the fraction that come directly

from other firms.17 The inflow rank is measured only for firms with a total inflow of

more than 15 hires, and at least one hire from unemployment; effectively truncating

observations on very small firms for statistics involving firm rank measures. Given

the prevalence of exogenous job-to-job reallocation in the data, the noise in the inflow

16In the case where κ > 1, the match acceptance decision, as represented by the productivity threshold
Rj (h), must be taken into account. Monotonicity does not necessarily hold in cases where Rj (h) varies
across h and j. The case κ < 1 turns out to be the empirically relevant one.

17We replicate the same selection in our model simulation, as well as the average firm size in the data
so as to emulate the noise in the firm rank measure that is related to small numbers.
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measure is considerable for very small firms, and consequently, the conditioning on

extreme realizations (either low or high) of the inflow measure over selects the very small

firms. The inflow measure of large firms is a less noisy reflection of their underlying

propensity to hire from other firms. In the following we refer to a firm’s measured inflow

rank as ι̂ ∈ [0, 1]. It is the firm’s percentile position in the inflow measure distribution.

We next turn to a description of the auxiliary statistics and data moments we base our

estimation on. These fall in three broad categories, namely statistics related to worker

reallocation, cross sectional heterogeneity, and unemployment duration and starting

wages.

5.2.2 Worker reallocation

From the analysis panel we extract a flow and a stock dataset. For the flow data, we

select all employment spells not initiated in the final year of our data period with non-

missing inflow rank measure ι̂. The unit of observation in the flow data is a spell, and

the data is {ti, eei, eui, ι̂i} for i = 1, 2, ..., I, where ti is spell duration, eei is a job-to-job

transition indicator, and eui is a job-to-unemployment indicator. The stock data contains

a sequence of annually stock sampled employment spells. The unit of observation is a

given spell in a given year. Let I(n) be the index set of employment spells active in the

last week of November in year n. The stock data is {eeit, euit, mit, n} for n = 1, 2..., 10 and

i ∈ I(n), where min is the number of jobs in the employment cycle that spell i is part of,

a statistic that is easy to compute from the analysis panel.

Kaplan-Meier job hazard functions: We include Kaplan-Meier estimates of the un-

conditional job-to-job and job-to-unemployment transition hazard functions from the

flow data. Heterogeneity in search intensities exhibits itself through negative dura-

tion dependence in the Kaplan-Meier job-to-job hazard function. A similar dynamic

selection on layoff rate types produce negative duration dependence in the estimated

job-to-unemployment hazard function. We measure the hazard functions at a quarterly

frequency over a 10 year period. Let R(t∗) be the set of spells at risk of ending within

quarter t∗ = 1, 2, ...., 40, and E(t∗) and U (t∗) the sets of spells that end in a job-to-job,

respectively job-to-unemployment, transition within quarter t∗. The Kaplan-Meier esti-
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Figure 5.1: Quarterly Kaplan-Meier job hazards.

0.00

0.04

0.08

0.12

0.16

0 2 4 6 8 10

Job-to-job transition hazard

Spell duration (years)

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10

Job-to-unemployment transition hazard

Spell duration (years)

mates of the two quarterly hazard functions are

hee(t∗) =
|E(t∗)|
|R(t∗)| and heu(t∗) =

|U (t∗)|
|R(t∗)| ,

for t∗ = 1, 2, ..., 40.

Figure 5.1 plots hee(t∗) and heu(t∗); both empirical Kaplan-Meier hazards exhibit clear

negative duration dependence.

Inflow rank conditional job-to-job transition hazard rates: To directly discipline the

model estimate to fit the empirical firm ladder, we include as an auxiliary statistic to

be matched the job-to-job transition hazard rate as function of inflow rank ι̂, computed

on the flow data. Let dee
i and deu

i be binary indicators for spell i ending in a job-to-

job, respectively job-to-unemployment, transition within a quarter of its initiation. We

estimate P̂ee(ι̂) = ̂Pr(dee
i = 1|ι̂) and P̂eu(ι̂) = ̂Pr(deu

i = 1|ι̂) by non-parametrically regress-

ing dee
i and deu

i on ι̂i. We transform the estimated job-to-job transition probabilities into

hazard rates, thus including in the estimation

hee(ι̂) = −
P̂ee(ι̂) ln

{
1 − P̂ee(ι̂)− P̂eu(ι̂)

}

P̂ee(ι̂) + P̂eu(ι̂)

evaluated at ten equidistant values in ι̂ ∈ [0, 1].
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Figure 5.2: Quarterly inflow rank conditional job-to-job hazard rates
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Figure 5.2 plots hee(ι̂) and shows a clear negative relationship between the EE-transition

rate and firm rank with workers in less productive firms transitioning to other firms at

greater rates than workers that are placed with more productive firms.18 Furthermore,

at the top rank firms, search intensity is near zero, and the observed job-to-job transition

rate at these firms provide information on δ0, the exogenous job-to-job reallocation rate.

Duration dependence and the firm ladder: If search intensity heterogeneity varies over

the firm ladder, as would be the case if there is sorting, we should observe differences

in the duration dependence of job-to-job transition hazards across the firm ladder. To

utilize any such variation in the estimation, we split the flow data job spells into ten bins

according to the deciles of the firm-level distribution of ι̂. Within each bin we compute

the Kaplan-Meier estimate of the quarterly job-to-job transition hazard function, denoted

hee
k (t

∗) for bin k = 1, 2, ..., 10, where t∗ = 1, 2, ..., 40 index quarters over our 10 year

window of observation. We now consider β̂0k and β̂1k estimated from the regression

ln hee
k (t

∗) = β0k + β1k ln t∗ + ǫt∗k, (5.3)

18It is important to note that because of noise in the firm rank measure one would expect substantial
attenuation bias if this is to be interpreted as actual firm ladder conditional job-to-job hazards.
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Figure 5.3: Duration dependence and the firm ladder
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which are rendered graphically in Figure 5.3 for bins k = 1, 2, ..., 10. The left panel, pre-

senting β̂0k, shows a declining pattern across the deciles of the inflow rank distribution.

The right panel, showing β̂k1, trace out an increasing-towards-zero profile. That is, the

duration dependence of the job-to-job transition hazard function is weakens towards the

top of the firm ladder, suggesting that search intensity variation declines towards the

top of the firm ladder.

The observed negative duration dependence of the Kaplan-Meier EE hazards within

firm type will require the model to produce variation in the search intensity choices

across worker within these bins of roughly identical types of firms. Part of this varia-

tion can come from measurement noise in the firm’s rank and our simulation procedure

will replicate this mechanism. But, of course, by introducing complementarities in pro-

duction, the model can induce search choice variation in worker skill for worker within

identical type firms and thereby seek to match the negative duration dependence this

way.

Employment cycles: In the stock data, within a given cross section n, each ongoing job

i ∈ I(n) is part of an employment cycle, a sequence of employment spells with no in-

tervening unemployment spells. The number of jobs in each of these employment cycles
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is min. Let mn = 1
|I(n)| ∑i∈I(n) min be the average number of employment jobs in em-

ployment cycles ongoing in cross section n, and se(m)n =
[

1
|I(n)| ∑i∈I(n)(min − mn)

2
]1/2

the standard error. We include m = 1
10 ∑

10
n=1 mn and se(m) = 1

10 ∑
10
n=1 se(m)n in the set

of moments to be matched. In the data, m = 2.182 and se(m) = 1.541. These statistics

are a particular aggregation of the job-to-job hazards relative to the layoff hazards, but

measured in the stock data, and thu provide additional identification of these rates.

Record statistics: To provide additional information on the exogenous reallocation

rate δ0 we consider the probability that a randomly stock sampled job spell ends in

a layoff. In a constant offer arrival rate, on-the-job search model without exogenous

job-to-job reallocation, Barlevy and Nagaraja (2013) show that the statistic is bounded

below by 1/2.19 From the stock data, we know the exit transition type (job-to-job or

job-to-unemployment) of all jobs ongoing at cross section n. I(n) is the index set of

employment spells in cross section n, and now let U (n) be the set of spells that end in a

job-to-unemployment transition. We include in the vector of moments to be fitted in the

estimation S
eu

= 1
10 ∑

10
n=1 |U (n)| / |I(n)|, the average share of matches in a cross section

that ends in a job-to-unemployment transition. Empirically, S
eu

= 0.338, inconsistent

with a pure on-the-job search model where all job-to-job transitions are from lower to

higher ranked firms.

5.2.3 Cross section heterogeneity

The analysis data provides annual measurements on workers’ wages. Wage measure-

ments are available for all jobs ongoing in the last week of November. Hence, slightly

changing the notation, I(n) is now the index set of workers with employment spells

ongoing in the last week of November in year n. For the cross section heterogene-

ity moments we extract {win, ueinitin, i, K(i, n)} for n = 1, 2, ..., 10 and i ∈ I(n). Here,

ueinitin indicates whether or not win is the first wage observation in a job initiated via a

19Hence, we take information about δ0 both from this record type statistics as well as from the job-to-job
transition hazard at top rank firms as described above. The use of the latter statistic to identify δ0 is
possibly sensitive to the assumption that all workers agree on the ranking of firms. This is for example
not the case in the partnership sorting model in Shimer and Smith (2000) if there are complementarities
in the production function. However, the use of the Barlevy and Nagaraja (2013) statistic to inform δ0 is
robust to this issue since it is primarily a reflection of the relative rates by which workers move up their
respective ladders.
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unemployment-to-job transition, and K(i, n) indicates the employer of worker i in cross

section n. That is, K(i, n) = k if worker i is employed by firm k in cross section n.

Raw moments: We include the first and second moment of the empirical distribution of

log wages. Let ln wn = 1
|I(n)| ∑i∈I(n) ln win and se(ln w)n = 1

|I(n)| ∑i∈I(n)(ln win − ln wn)2.

We include ln w = 1
10 ∑

10
n=1 ln wn and se(ln w) = 1

10 ∑
10
n=1 se(ln w)n as moments to be

matched in the estimation. To capture the firm ladder effect on wages, we also include

the first and second moments of the empirical distribution of starting wages in jobs

initiated from unemployment, denoted ln wueinit and se(ln wueinit). Empirically, ln w =

5.254 and ln wueinit = 5.167, and se(ln w) = 0.168 and se(ln wueinit) = 0.222. These

measurements are consistent with a job ladder model where on-the-job search implies

ln w > ln wueinit and se(ln w) < se(ln wueinit).

To discipline the estimated model in relation to firm sizes, we include average firm

size, as well as the ratio of firms to workers. Let Kn be the number of firms with em-

ployees in cross section n. For each firm k = 1, 2, ..., Kn in November cross section

n, let Njn be a simple count of the number of employed workers. Average firm size

is computed as N = 1
10 ∑

10
n=1

1
Kn

∑
Kn
k=1 Nkn. We also include the ratio of firms to the

workforce as a moment to be matched. Let N∗
n be the size of the workforce in cross

section n, i.e. N∗
n = ∑

Kn
k=1 Nkn + Un where Un is the number of unemployed workers.

Then we include 1
10 ∑

10
n=1 Kn/N∗

n as a target in the estimation. We find N = 8.646 and
1

10 ∑
10
n=1 Kn/N∗

n = 0.091.

The model links search behavior and within-job wage growth. The quantitative effect

of on-the-job search on within-job wage growth depends on workers bargaining power

parameter. We add average annual within-job wage growth to the vector of auxiliary

statistics. Let ∆ ln win = ln win − ln wi,n−1 be the year n year-on-year wage growth for

individual i. Our vector of moments to be fitted includes

∆Within ln w =
∑

N
n=2 ∑i∈I(n) ∆ ln win1{K(i,n)=K(i,n−1)}

∑
N
n=2 ∑i∈I(n) 1{K(i,n)=K(i,n−1)}

.

The data reveals ∆Within ln w = 0.009.

Mean-min ratio: Hornstein et al. (2011) propose the mean-min ratio as a useful and

parsimonious measure of wage dispersion, and argue that a basic wage search model
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without worker heterogeneity cannot generate enough wage dispersion as reflected in

the mean-min ratio. However, the wage process we employ may in fact produce too

much dispersion as measured by the mean-min ratio because initial wages can be very

low. The extent to which this occurs is driven by workers’ bargaining power parameter

β, and the mean-min ratio thus serves to disciplineβ in the estimation.20 The data used

for computing the mean-min ratio is the same as that used for estimation of the auxiliary

log wage regression. We estimate the minimum wage as the average wage among the

lower 5 percentiles in the wage distribution. Denote the estimate minimum wage by

w, and the mean wage by w. Then we include Mm = w/w in the vector of auxiliary

statistics. The empirical mean-min ratio is 1.854.

Log wage regression: We include a restricted version of the Abowd et al. (1999) log

wage regression in our set of auxiliary models. Specifically, consider the following log

wage regression

ln win = ϕ0 + χi + ϕK(i,n) + ǫin (5.4)

where χi is a worker effect, ϕK(i,n) is a firm effect, and εin is a residual. When estimating

(5.4) we impose the following restrictions:

E [χiǫin] = 0, E
[

ϕK(i,n)ǫin

]
= 0, (5.5)

and

E
[
χi ϕK(i,n)

]
= 0 (5.6)

The first two assumptions in (5.5) impose “exogenous mobility” in the terminology of

Abowd et al. (1999), allowing for estimation of the parameters in (5.4), including the

fixed effects, by OLS. The third restriction (5.6), not imposed in Abowd et al. (1999),

implies uncorrelated firm and worker effects, as estimated from (5.4). Let K, I and N be

the total number of firms, workers and observations, respectively. We estimate (5.4) by

OLS and include the average firm effect ϕ = ϕ̂0 +
1
N ∑

I
i=1 ∑

10
n=1 ϕ̂K(i,n) and their standard

deviation se(ϕ) =
[

1
N ∑

I
i=1 ∑

10
n=1(ϕ̂K(i,n) − ϕ)2

]1/2
, as well as the standard deviations

of the estimated worker effects and the residuals, se(χ) =
[

1
N ∑

I
i=1 ∑

10
n=1(χ̂i − χ)2

]1/2

20In the extreme, if β = 1 the worker simply gets w (h, p) = f (h, p). For lower bargaining power, the
initial wage in an employment relationship will be reduced by the expectation of future wage gains.
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and se(ǫ) =
[

1
N ∑

I
i=1 ∑

10
n=1(ǫ̂in − ǫ)2

]1/2
. Besides ϕ = 5.238, we find se(ϕ) = 0.179,

se(χ) = 0.218 and se(ǫ) = 0.134. The auxiliary log wage regression implies a variance

decompositions of Var(ln win) where firm effects account for 33%, worker effects for

49%, and residual variation for 18%.

5.2.4 Unemployment duration and starting wages

Consider the initial wages of workers that are hired out of unemployment into top rank

firms, i.e. firms of type p = 1. For κ ≤ 1 and with s = 0 such wages are direct reflections

of the model object,

w(h, 0, 1) = (1 − β)rV0(h) + β f (h, 1). (5.7)

These particular wages are monotonically increasing in h. Observed initial wages within

this group of workers therefore provide a ranking of these workers by skill level. With

a supermodular production technology, ∂s0
j (h) /∂h > 0; that is, unemployed search in-

tensity is increasing in h. Absent any other sorting forces, supermodular production

functions induce a negative correlation between unemployment duration and subse-

quent initial wages among workers hired into top rank firms.21 If sorting is negative the

correlation has the opposite sign.

Layoff rate heterogeneity affects this statistic. A high layoff rate implies reduced in-

centives to search, a low value of unemployed search, and thus, lower wages due to a

reduced bargaining position. Layoff rate heterogeneity manifest itself as a spurious neg-

ative correlation between unemployment duration and initial wages out of unemploy-

ment into top ranked firms. Since the identification of layoff rate heterogeneity comes

from other sources, in particular duration dependence in the job-to-unemployment haz-

ard function, this does not present an identification problem. Moreover, to anticipate

some of our empirical results, the high layoff type workers are hardly ever employed,

and the confounding effect of layoff heterogeneity on labor market sorting is minimal.

Exogenous search s > 0 introduces an option value to employment in the most pro-

ductive firms where the efficient contract otherwise is designed to eliminate on-the-job

search. This implies that initial wages in the top ranked firms may not be monotone in

21If κ > 1, unemployed search is more efficient than employed search. With a supermodular production
function, high skill workers may now reject offers from the bottom of the firm ladder and unemployment
durations may be increasing in the worker skill type. Empirically we find κ ≤ 1.
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worker skill level h. As a result, the correlation between unemployment duration and

initial wages in top ranked firms may formally no longer correctly reflect modularity

of the production function. In practice, we found that this bias is minimal, and are not

concerned that exogenous search s is impacting our conclusions.

For each worker in the analysis panel ever observed in unemployment we compute

the individual average unemployment duration. We can use our inflow rank measure ι̂

to identify top rank firms. Specifically, we take firms in the 95th percentile or above in the

distribution of ι̂ as “top ranked”. We then extract all unemployment-to-job transitions

into these firms (index these observation by i = 1, 2, ..., I) and, for each transition i,

record the individual average unemployment duration, denoted tu
i, and the starting

wage, denoted w0
i .22 The resulting dataset is

{
tu

i, w0
i

}
for i = 1, 2, ..., I, and the moment

of interest is

Corr(t
u, w0|ι̂ ≥ 0.95) =

1
I ∑

I
i=1(t

u
i − tu) · (w0

i − w0)

se(tu) · se(w0)
,

where tu = 1
I ∑

I
i=1 tu

i, se(tu) =
[

1
I ∑

I
i=1(t

u
i − tu)2

]1/2
, w0 = 1

I ∑
I
i=1 w0

i and se(w0) =
[

1
I ∑

I
i=1(w

0
i − w0)2

]1/2
are the mean and standard errors of unemployment duration and

starting wage, respectively. We include also these statistics in the estimation. Empirically,

we find tu = 57 weeks with se(tu) = 70 weeks, w0 = 186DKK with se(w0) = 62DKK, and

finally Corr(t
u, w0|ι̂ ≥ 0.95) = −0.168 . This moment points towards positive sorting.

5.3 Model estimate

The estimated structural parameters are presented in Table 2. The structural parameters

are all precisely estimated. With an annual layoff rate of δL = 0.063, the expected dura-

tion between unemployment spells for the low layoff rate type worker is 16 years. The

estimated rate for the high layoff type is δH = 1.905, leading to an expected duration

between unemployment spells of about 5 months. Workers improve their bargaining po-

sition by accumulating job offers, but this search capital depreciates completely at entry

into unemployment. Hence, the returns to search are substantially lower for the high

layoff type workers. In the population, high layoff types account for 14 percent, but are

22We measure the starting wage as the wage on record at the first post-transition November cross section
date. For the estimation, we reproduce this observation scheme in the simulations.
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almost completely absent from the steady state population of employed workers, where

they account for only 1%.

The estimated search cost function c(s) implies an elasticity of search cost to search

effort of 1.077. The recruitment cost function cν(ν) is highly convex, with an elasticity

with respect to recruitment intensity at 84.333. The elasticity is driven up to ensure that

the more productive firms do not take over the market, a result that would be at odds

with the data. The endogenous arrival rate of job offers is supplemented in two ways.

First, job offers arrive at an annual exogenous rate s = 0.034, independent of search

effort. Second, workers are hit by reallocation shocks at an annual rate δ0 = 0.106.

Our estimate of κ = 0.845, below unity, implies employed job search is slightly more

efficient than unemployed job search. With κ < 1, unemployed workers accept any job

offer they receive, independent of their skill level h, and sorting through differential

reservation productivities does not arise.

The estimated parameters of the firm productivity and worker skill CDFs, Φ(p) and

Ψ(h), are difficult to interpret. The estimated Φ(p) has mean 0.274, standard deviation

0.193, and is right skewed and excess kurtosis with skewness 0.740 and kurtosis 3.598.

The estimated Ψ(h) has mean 0.141 and standard deviation 0.079. Ψ(h) is right skewed

and excess kurtosis with skewness 0.884 and kurtosis 4.077. The left panel of Figure 5.4

plots the estimated heterogeneity distributions Φ(p) and Ψ(h).

With respect to the CES match production function, we focus attention on ρ, which

governs modularity. At an estimate of ρ = −2.045 the estimated production function

is supermodular. Hence, conditional on layoff type and employer productivity p, more

skilled workers search more intensely than less skilled workers. The resulting equilib-

rium match distribution is such that skilled workers tend to match with more produc-

tive firms. As can be seen from the right panel of Figure 5.4, among the low layoff

type workers, making up 99% of the employed workers, the equilibrium distribution of

firm productivity p for high skilled workers stochastically dominates that of low skilled

workers. For low layoff type workers, the estimated correlation between worker skill

and firm productivity in the steady state equilibrium is 0.12. Given the absence of high

layoff type workers among employed workers, the unconditional (on layoff type) steady

state correlation also comes out at 0.12.

The bargaining parameter is estimated at β = 0.177. The parameter takes identifica-
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Table 2: Structural parameter estimates

Annual job destruction rate, low type, δL 0.063
(0.0004)

Annual job destruction rate, high type, δH 1.905
(0.0007)

Job destruction type distribution, ξL = Pr(δ = δL) 0.858
(0.0001)

Search cost function c(s) = (c0s)1+1/c1

1+1/c1

c0 54.420
(0.0026)

c1 12.911
(0.0007)

Recruitment cost function cν(ν) =
ν1+1/cν1
1+1/cν1

cν1 0.012
(0.0004)

Exogenous search, s 0.034
(0.0004)

Annual reallocation rate, δ0 0.106
(0.0004)

Off-the-job to on-the-job relative search efficiency, κ 0.845
(0.0004)

Firm productivity CDF on p ∈ [0, 1], Φ(p) = Beta(βΦ
0 , βΦ

1 )
βΦ

0 (scale) 1.188
(0.0006)

βΦ
1 (shape) 3.151

(0.0007)

Worker skill CDF on h ∈ [0, 1], Ψ(h) = Beta(βΨ
0 , βΨ

1 )
βΨ

0 (scale) 2.638
(0.0050)

βΨ
1 (shape) 16.022

(0.0053)

Match production function, f (h, p) = f0

(
α
(
h + h

)ρ
+ (1 − α)

(
p + p

)ρ
) 1

ρ

ρ −2.045
(0.0004)

α 0.311
(0.0005)

f0 931.169
(0.0020)

Workers’ bargaining power, β 0.177
(0.0291)

Std. deviation, wage measurement error, σw 0.094
(0.0019)

Note: Standard errors in parentheses.
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Figure 5.4: Firm productivity- and worker skill CDFs, and sorting
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Note: Right panel: The black solid line shows the estimated population firm productivity CDF Φ(p).
The dashed line shows the estimated population worker skill CDF Ψ(h). Left panel: h(x) is
the xth percentile in Ψ(h). The match distribution CDFs of the 20th skill percentile worker,
GL(p|h(20)), is drawn in solid and those of the 80th percentile worker, GL(p|h(80)), is drawn
with dashed line. The match distributions refer to low layoff type workers.

tion from a number of dimensions in the auxiliary model such as the mean-min wage

ratio, and the difference between wages of newly hired workers out of unemployment

relative to the steady state wage distribution. As we shall see shortly, the estimate is

consistent with the data along all of these dimensions, and is also broadly consistent

with other estimates reported in Bagger et al. (2014) and Bagger et al. (2014).

As expected, wages are measured with error although with an estimate σw = 0.094

measurement errors are of modest importance.

In the online appendix, we present the estimation results from a stratification of the

data on worker education along with details comments. We stratify the data into two

groups: One with less than 15 years of education and one with more than 15 years. Qual-

itatively, the auxiliary data moments do not vary substantially across the two groups and

so it is not surprising that the main conclusions of the pooled sample replicate in the

stratified estimations. To the extent that they differ, the high education estimation shows

slightly less sorting with a correlation between worker skill and firm productivity of
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0.11 whereas the low education group is a bit more sorted at a correlation of 0.15. Less

educated workers are estimated to have a somewhat higher bargaining power parameter

than high educated workers. The estimated productivity distributions are such that the

high education group of workers are on average paid more. Frictions are estimated to

play a greater role for the high education group. We quantify the impact of frictions

on wages in Section 7 and in that decomposition, frictions turn out to contribute sub-

stantially more to high education wage dispersion than to that of the low education

workers.

5.4 Model fit

The estimated model’s fit to the moment of auxiliary statistics is reported in Table 3 and

Figures 5.5. Overall the model fits the data well.

5.4.1 Worker reallocation

Kaplan-Meier hazard functions: Figure 5.5, panels (a) and (b), plot Kaplan-Meier

job-to-job and job-to-unemployment hazard rates for real and simulated data. The es-

timated model reproduces the empirical negative duration dependence in the Kaplan-

Meier job-to-job transition hazard function through search intensity heterogeneity in-

duced by layoff, skill and firm productivity heterogeneity, and in the Kaplan-Meier

job-to-unemployment transition hazard function, through layoff heterogeneity. Figure

5.5 reveals a good fit to the empirical job-to-job transition hazard, although we under-

estimate the hazard rate for durations less than 5 years, and overestimate it at longer

durations. The model delivers an impressive fits to the empirical job-to-unemployment

transitions, especially at shorter job duration of less than 3 years.

We did not use the unemployment-to-job transition hazard rate as a target in the es-

timation; in fact, our estimation is minimally disciplined with respect to unemployment

data. It is therefore reassuring to see from Figure 5.5, panel (c), that the estimated model

does a good job in reproducing the observed unemployment-to-job transition hazard

rate. Both the empirical and the simulated unemployment-to-job transition hazard func-

tion exhibits negative duration dependence, generated by the supermodular production

function and layoff rate heterogeneity. If the focus of the model were to fully capture the
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Figure 5.5: Model fit
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unemployment-to-job transition rate heterogeneity in the data, Figure 5.5, panel (c) does

suggest a role for heterogeneity in the exogenous arrival of job offers across workers so

that some workers have close to a zero job finding rate.

Inflow rank conditional job-to-job transition hazard rates: The model’s fit to the in-

flow rank conditional job-to-job transition hazard is generally good. As seen in Figure

5.5, panel (d), the model captures well the declining relationship between firm rank and

job-to-job separations. The estimated job separation rate falls a bit too fast with firm

rank and underestimates the job separations for the middle firm ranks.

Within-firm job-to-job transition hazard rate duration dependence: Consider coeffi-

cients β0k and β1k from (5.3) across inflow rank bins k = 1, 2, ..., 10 to assess how the

Kaplan-Meier job-to-job hazard rate changes over the firm ladder. In the model, these

changes are primarily driven by changes in worker skill heterogeneity over the firm lad-

der, that is, by sorting. Figure 5.5, panels (e) and (f), plot β0k, in the left panel, and β1k, in

the right panel for real and simulated data. The estimated model reproduces the slope of

the β1k-profile well, but underestimates β1k at each firm productivity bin k. With respect

to the β0k-profiles, the model is again able to reproduce the declining pattern observed

in the data, but overestimates the β0k for all k.

Employment cycles: The estimated model also delivers solid fit to the distribution of

the number of jobs in employment cycles as shown in Table 3. The model gets the average

number of jobs per employment cycle almost exactly right, while it underestimates the

variance slightly.

Record statistics: From Table 3, we also note that our model explains well the fraction

of existing matches that end in a layoff to unemployment, almost exactly matching the

0.338 fraction of existing jobs that end in a layoff into unemployment.

5.4.2 Cross section heterogeneity

Raw moments: Our model replicates well both the first two moments of the employ-

ment weighted distribution of log average firm wages, and the first two moments of
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Table 3: Model fit

Data Sim.
Worker reallocation

Number of jobs in employment cycle, average 2.182 2.178
Number of jobs in employment cycle, std. dev. 1.541 1.260
Share of matches ending in EU-transition 0.338 0.348
Cross section heterogeneity

Log firm wage, employment weighted average 5.254 5.252
Log firm wage, employment weighted std. dev. 0.168 0.160
Log firm wage, newly hired workers average 5.167 5.166
Log firm wage, newly hired workers std. dev. 0.222 0.201
Firm size, average 8.646 8.874
Fraction of active firms to worker population 0.091 0.089
Within-job annual log wage growth, average 0.009 0.005
Mean-min wage ratio 1.854 1.799
Firm effects from (5.4), average 5.238 5.217
Firm effects from (5.4), std. dev. 0.179 0.149
Worker effects from (5.4), std. dev. 0.218 0.220
Residuals from (5.4), std. dev. 0.134 0.129
Unemployment duration and starting wages*

Unemployment duration (weeks), average 57.395 78.466
Unemployment duration (weeks), std. dev. 69.853 80.484
Starting wage (DKK), average 186.0 172.8
Starting wage (DKK), std. dev. 62.3 44.8
Correlation(unemployment duration, starting wage) −0.168 −0.381

* All moments in the sorting panel computed on workers hired from unemployment
into top ranked firms.

the distribution of log average firm wages among newly hired workers. The difference

between the two distributions results from the accumulation of job offers, i.e. the job-to-

job transition process as well as the wage bargaining mechanism. The estimated model

reproduces shifts in both location and scale between the two distributions. Firm size, in

the data measured as the number of workers in a firm at a given cross section date (last

week of November), as well as the ratio of firms to workers are also fitted well.23 The

23The design of the simulation replicates the number of firms relative to population in the data and
the auxiliary model includes a moment of how many active firms there are in the data as defined by an
average labor force size of no less than half a worker at an annual level, which the model fits by largely
making the vacancy intensity choice constant across firms. Firm size heterogeneity across firm types is as
result primarily determined by differential worker separation rates. One can expand on the firm size fit
in the model, but our concern is primarily to make sure that firms have the right labor force size in a first
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estimated model, where on-the-job search is the only source of within-job wage dynam-

ics, delivers a log wage growth of 0.005, thus accounting for 56% of the empirical wage

growth.

Mean-min ratio: The empirical mean-min ratio is 1.854 while the simulated ratio is

1.799, an almost perfect fit. Unlike the second moment of the wage distribution, the

mean-min ratio is not trivially captured by σw. The bargaining parameter β plays an

important role here as well. The mean-min wage ratio can get very large for low β

values because initial wages in employment relationships can in some cases be very low.

Log wage regression: From Table 3 we see that the estimated model is able to re-

produce the first two moments of the distributions of firm effects, worker effects and

residuals from the auxiliary log wage regression (5.4), even if the model slightly under-

estimates the overall log wage variance. The empirical log wage variance is 0.097 while

its simulated counterpart is 0.087. The underestimation is due to a smaller firm wage

effect variance in the model estimate than in the data.

The auxiliary log wage regression is a restricted version of the two-way error com-

ponent model applied in Abowd et al. (1999). The restriction is (5.6), that worker and

firm fixed effects are uncorrelated. We imposed assumption (5.6) to ease computations

of the auxiliary firm and worker fixed effects in the Indirect Inference estimation pro-

cedure, and because the correlations between worker and firm fixed effects need not be

particularly informative about sorting, as shown in section 2.2. However, subsequent to

estimation, it is straightforward to assess whether the estimated structural model is in

fact able reproduce the Abowd et al. (1999) specification.

Table 4 presents the log wage variance decomposition obtained from a Abowd et al.

(1999) log wage regression, i.e. (5.4) with only (5.5) imposed, for real and simulated

data.24 In Table 4 we denote the correlation between worker and firm fixed effects

a “wage sorting effect”, not to be confused with sorting, a notion that refers to the

equilibrium correlation between worker skills and firm productivity. The wage sorting

order sense, so that the inflow measure for ranking firms has about the same measurement noise between
data and model simulation.

24The data used for this log wage variance decomposition is identical to that used for the estimation of
the auxiliary log wage regression used in the estimation of the structural parameters.
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Table 4: Log wage variance decomposition—The Abowd et al. (1999) approach.

Data Sim.

Value
Percent of

Var(ln win) Value
Percent of

Var(ln win)

Total log wage variance, Var(ln win) 0.097 100% 0.087 100%
Worker effect, Var(χi) 0.070 71% 0.056 64%
Firm effect, Var(ϕK(i,n)) 0.014 14% 0.011 13%
Residual effect, Var(ǫin) 0.015 15% 0.015 17%
Wage sorting, 2Cov(χi , ϕK(i,t)) −0.002 0% 0.005 6%

effect measures the extent to which high wage workers work in high wage firms. We

note that our estimated model reproduces the Abowd et al. (1999) log wage variance

decomposition well, with a slight underestimation of the relative importance of worker

effects, and a slight overestimation of the relative importance of the wage sorting effect.

Recall that the equilibrium correlation between worker skills h and firm productivity p

is 0.12. Hence, Table 4 is consistent with our conjecture that, within our framework, the

wage sorting effect from a Abowd et al. (1999)-type wage regression provides a lower

bound for the degree of sorting in terms of productivity types.

5.4.3 Unemployment duration and wages

Our data suggests that, among workers hired by a top ranked firm, workers with higher

starting wages have shorter unemployment durations, the empirical correlation being

Corr(t
u
i , w0

i |ι̂ ≥ 0.95) = −0.168. The model interprets the negative correlation as a re-

sulting from a supermodular match production function. The simulated model gets the

sign of the correlation right, but overestimates the magnitude of the correlation, with

the simulated correlation being Corr(t
u
i , w0

i |ι̂ ≥ 0.95) = −0.381. Looking towards the

fit to the marginal distributions of unemployment durations and starting wages, we see

that the estimated model face some problem in fitting unemployment durations, over-

estimating both the average and the variance.25 For starting wages, the model slightly

25We are operating with a broad definition of unemployment, encompassing both registered unemploy-
ment and some nonparticipation. Enriching the model to allow for additional type heterogeneity in the
unemployment pool is likely to improve the model’s ability to fit unemployment spells. It is however
unlikely that the introduction of this feature into the model will have a significant impact on the model
estimate.
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underestimates the average, and substantially underestimates the variance.

In the online appendix we conduct an overfitting exercise, forcing a near-perfect fit

to Corr(t
u
i , w0

i |ι̂ ≥ 0.95).26 As it turns out, overfitting Corr(t
u
i , w0

i |ι̂ ≥ 0.95) has very little

impact on the estimated structural parameters, in particular the estimate of ρ remains

almost the same. Perhaps more importantly, all of our conclusions regarding sorting,

mismatch and wage dispersion remains intact with overfitting of Corr(t
u
i , w0

i |ι̂ ≥ 0.95).

6 Mismatch

The notion of labor market mismatch in for example Gautier and Teulings (2012) and

in Shimer and Smith (2000) take the populations of jobs and workers as given and ask

to what extent the equilibrium in question can be improved upon by changing the allo-

cation of workers to firms. We determine a similar notion of mismatch in our setting:

For the estimated equilibrium match distribution, Gj (h, p) and employment level ej, de-

termine the mass of jobs, e = e0 + e1 and the distribution of productivity of those jobs,

G (p) =
[

∑
1
j=0 ejGj (1, p)

]
/ (e0 + e1) . Then for the estimated population of workers, un-

employed and employed, assign them to jobs to maximize aggregate output. We will

not concern ourselves with how exactly a social planner might make this assignment

happen. The assignment represents a first best non-frictional assignment in the spirit of

a core assignment in Becker (1973), but for a given population of jobs.27

The counter factual also means that we are not concerned with job loss since a worker

can immediately be put into the position in question. Thus, since the production function

is estimated to be supermodular, the optimal allocation result in Becker (1973) dictates

that the highest skill worker be matched with the most productive job, the second highest

skill worker with the second highest productivity job, and so forth.

For the estimated model, we find that taking the estimated population of jobs and

26Our Indirect Inference estimator measures the distance between empirical and simulated auxiliary
statistics using the inverse variance-covariance matrix of the empirical moments as the metric. Hence, rel-
atively less precisely estimated auxiliary statistics receive less weight in the estimation. By construction,
Corr(t

u
i , w0

i |ι̂ ≥ 0.95) is computed from the relatively small sample of workers and is relatively impre-
cisely estimated. The overfitting exercise simply scales up the weight put on Corr(t

u
i , w0

i |ι̂ ≥ 0.95) in the
estimation.

27This counter factual should not be confused with an exercise of eliminating frictions in our model and
letting job creation respond in equilibrium. For our notion of mismatch, the estimated population of jobs
is held constant.
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workers and allocating them efficiently produces an output increase of 7.7%. The es-

timated correlation between worker skill and firm productivity is estimated to be 0.12

and therefore suggest substantial noise in the allocation suggesting scope for substan-

tial efficiency improvements. This has to be weighted against the estimated amount of

complementarity in the production function as well as the estimated dispersion in pro-

ductive heterogeneity across workers and jobs. In the absence of complementarities, the

efficiency gain would be zero.

7 Log wage variance decompositions

Given worker skill and firm productivity distributions may produce radically different

wage distributions, depending on the allocation of workers to firms implemented by

the labor market. Hence, the study of wage dispersion must include an understanding

of sorting, something that has hitherto eluded the literature. In this section we use the

estimated structural model to provide a novel decomposition of log wage variance into

a worker effect, a firm effect, a friction effect and a sorting effect.

We conduct the analysis on simulated data as we need the structural elements (j, h, p, q)

which are unobserved in the real data. It is straightforward to simulate steady state data

for I workers. The simulated data is {wi, ji, hi, pi, qi} where i = 1, 2, ..., I index workers,

and where wi = wji(hi, pi, qi) according to (2.8). We take I = 100, 000. The object of

interest is Var(ln wi). As it turns out 99.8 percent of simulated log wage variation arise

within layoff-type. Given the very low share of high layoff type workers among em-

ployed workers, less than 1%, understanding total log wage variance becomes a matter

of understanding log wage variation among low layoff type workers. Our analysis is

consequently focused exclusively on low layoff type workers (j = L). To proceed, we

project simulated ln wi onto (1, hi, pi, qi), and base our variance decomposition on the

resulting (minimum mean square) prediction of the simulated wages:

l̂n wi = ̺̂0 + h̃i + p̃i + q̃i, (7.1)

with h̃i ≡ ̺̂hhi, p̃i ≡ ̺̂p pi, and q̃i ≡ ̺̂qqi, and where (̺̂0, ̺̂h, ̺̂p, ̺̂q)′ are projection param-

eters.28 We refer to h̃i as the worker skill factor, to p̃i as the firm productivity factor, and

28The predicted log wages based on (7.1) are monotone in hi, pi and qi. The issues with nonmonotone
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to q̃i as the outside option factor. The factors (h̃i, p̃i, q̃i) are not independent. p̃i and q̃i

are mechanically related because pi ≤ qi, and are both increasing in a worker’s search

capital. Labor market sorting implies dependence between h̃i and p̃i and q̃i.29 We now

drop subscript i to avoid clutter.

Separating between- and within-firm variance in (7.1) such that

Var(l̂n wi) = Var(E[h̃i + p̃i + q̃i|p̃i])︸ ︷︷ ︸
Between-firm

+ E(Var[h̃i + p̃i + q̃i|p̃i])︸ ︷︷ ︸
Within-firm

,

expanding the variance expressions, and rearranging terms yields

Var(l̂n w) = Var(p̃) + Var(E[q̃|p̃]) + 2Cov(p̃, E[q̃|p̃])︸ ︷︷ ︸
Firm effect

+ E(Var[h̃|p̃])︸ ︷︷ ︸
Worker effect

+ E(Var[q̃|p̃])︸ ︷︷ ︸
Friction effect

+ Var(E[h̃|p̃]) + 2Cov(E[h̃|p̃], p̃)︸ ︷︷ ︸
Sorting effect (to be continued)

+ 2Cov(E[h̃|p̃], E[q̃|p̃]) + 2E(Cov[h̃, q̃, |p̃])︸ ︷︷ ︸
Sorting effect (continued)

. (7.2)

In (7.2), the firm effect contains between-firm variation in p̃ + q̃. This is a natural

definition as p̃it is the firm productivity factor, and q̃it is the outside option factor, which

according to the structural model, correlates with firm productivity. The worker effect

contains the within-firm variation in the worker skill factor h̃it. For given firm pro-

ductivity and outside option, the only source of wage variation is worker skills. The

friction effect, a notion introduced in Postel-Vinay and Robin (2002), reflects within-firm

variation in outside options. Within a firm, variation in outside options arise due to

the frictions, i.e. stochastic, arrival of job opportunities to workers. The sorting effect

is driven by covariance between the worker skill factor h̃it on the one side, and firm

productivity and outside option factor p̃it and q̃it on the other side.

Table 5 reports (7.2) based on our estimated model. The linear projection comprises

92% of the variation in simulated log wages. Worker effects account for 51% of predicted

log wage variation, firm effects for 11%, and friction effects for 23%. Labor market

wages discussed in section 2.2 occur when the outside option qi is integrated out of the wage equation.
This highlights the importance of having the estimated structural model for making correct inferences;
without it, we would not know the equilibrium distribution of (hi, pi, qi), and would be unable to appro-
priately control for the effect of outside options in (7.1).

29h̃i, p̃i and q̃i are also related in that they depend on the projection parameters ̺̂h, ̺̂p and ̺̂q, which are
reduced form parameters. We ignore this channel in the interpretation of our results.
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Table 5: Log-Wage Variance Decomposition—Accounting for Labor Market Sorting

Value
% of Var(ln wit)

(predicted)
Worker effect 0.037 51%
Firm effect 0.008 11%
Friction effect 0.017 23%
Sorting effect 0.011 15%
Total predicted variance 0.073 100%
Total simulated variance 0.079 108%

sorting effects account for 15%. Hence, labor market sorting contributes substantially to

the dispersion of wages across workers.

If there is no sorting, i.e. if E[h̃it|p̃it, q̃it] = E[h̃it], (7.2) simplifies. First, we have

Var(E[h̃it |p̃it]) = 0 and E(Var[h̃it |p̃it]) = Var(h̃it), so that the worker effect is simply

the variance of worker skills in the population. Second, all the covariance terms in the

sorting effect vanishes. Without sorting, our variance decomposition thus resembles that

of Postel-Vinay and Robin (2002).30 Using French data, they find that worker effects

account for 0-35% of the variance of log wages, depending on occupation, with worker

effects being more important in higher occupations. Firm effects accounts for 20-50%

of log wage variation, with wage variation in higher occupations being less dependent

on firm heterogeneity. Finally, Postel-Vinay and Robin (2002) find that search frictions

accounts for 40-61% of total log wage variation, depending on the occupation under

consideration.31

30Their structural wage equation may be written as ln wit = hit + pit + Ξit where Ξit = Ξ(pit, qit) is the
log share of output transferred to the worker (see Postel-Vinay and Robin (2002, p. 2305, equation (5))). A
within- and between-firm log wage variance decomposition then yields

Var(ln wit) = Var(hit)︸ ︷︷ ︸
Worker effect

+ Var(pit) + 2Cov(pit, Ξit) + Var(E[Ξit|pit])︸ ︷︷ ︸
Firm effect

+ E[Var(Ξit|pit)]︸ ︷︷ ︸ .

Friction effect

With no sorting our decomposition is not exactly identical to that of Postel-Vinay and Robin (2002) due
to a number of other differences between the two models, including an unrestricted bargaining power
parameter and endogenous search intensities.

31Our decomposition (7.2) also bears some resemblance to the decompositions presented in Abowd
et al. (1999) and Abowd et al. (2002). These latter decompositions are reduced form, based on a log wage
regression like our auxiliary log wage regression (5.4) but where the correlation between worker and firm
fixed effects is left unrestricted, i.e. without assumption (5.6) imposed. Such a regression gives rise to a
decomposition of wage dispersion into worker effects, firm effects, residual effects, and “wage sorting”
effects. As noted in relation to Table 4, our structural model does a good job in reproducing Abowd et al.
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8 Concluding Remarks

A labor market addresses mismatch through worker reallocation. The greater the mis-

match, the greater the urgency of the reallocation. Indeed, empirical evidence documents

that reallocation is a common occurrence in most labor markets and that reallocation di-

rectly between jobs more often than not are associated with wage increases. This paper

quantifies the contribution of labor market heterogeneity to wage dispersion in a fric-

tional labor market setting where assortative matching may be present.

The model is estimated on Danish matched employer-employee data. The estimation

can be viewed to be a production function estimation study. But output is not observed at

the match level and wages fail to be a reliable reflection of the match production function

because they are possibly non-monotone functions of the productivity indices. Hence,

inference is necessarily indirect and emphasizes systematic reallocation rate differences

across different worker and firm type matches.

In addition to the variation in the data directly related to identification of sorting, the

model is also disciplined to fit a large number of other statistics from the data through an

indirect inference estimation. In this sense, the paper also serves as a robustness check on

previous wage dispersion measurement papers that are estimated on a narrower view of

the data. In general, the model does quite well in fitting the data. The estimation exercise

is heavily over identified. It leaves some unexplained reallocation rate heterogeneity

which is probably not all that unattractive given the stylized nature of the model. We

check whether forcing a perfect fit to the moments that are primarily related to sorting

and find that it has a minimal impact on the sorting implications.

In the estimated model wage variation is decomposed into four sources: Worker

heterogeneity (51%), firm heterogeneity (11%), friction (23%), and sorting (15%). The

match production function is estimated to be supermodular implying positive assortative

matching. Through the model’s wage determination mechanism it incents more skilled

workers to search with greater urgency to reallocate to better firms. The correlation

coefficient between worker skill and firm productivity is 0.12 in the steady state match

distribution. The associated mismatch implies that output could be increased by 7.7% if

the estimated set of matched workers and firms were perfectly sorted.

(1999)-type wage regressions, and the associated variance decompositions.
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Appendix

A Wage regressions and monotonicity

Ignoring the role of observable covariates, and subsuming the constant term into, say,

the firm effect, Abowd et al. (1999) assume a log wage equation where worker and firm

fixed effects enter additively,

win = χi + ϕK(i,n) + ǫin, (A.1)

where K(i, n) is the firm ID that worker i is matched with at observation time n, and

χi and ϕk are the worker and firm fixed effects. The notation as in the main part of

the paper, see the description related to our auxiliary log wage regression (5.4) with

(5.5) imposed. The identification of the fixed effects from matched employer-employee

data relies on this additive structure. Consider a class of models where workers differ

by skill and firms by productivity. An agent’s type is permanent. Furthermore, match

output is increasing in both skill and productivity. Can the estimated worker and firm

fixed effects from the log-linear wage equation be used as the basis for identification

of the underlying worker skill and firm productivity heterogeneity? In particular, does

the correlation between the estimated worker and firm fixed effects, corr(χ̂i , ϕ̂K(i,n)),

identify sorting in the matching between worker skill and firm productivity? Eeckhout

and Kircher (2011) provide a negative answer for their model. We will generally provide

a negative answer as well. Both answers are based on the insight that for the model

structures in question, the log additive wage equation is fundamentally misspecified

with respect to the worker and firm heterogeneity contributions to wages. Specifically,

wages are generally not monotonically increasing in skill and productivity.

In Figures A.1 and A.2 we relate estimates of worker and firm fixed effects from the

wage equation (A.1) to the true underlying worker skill and firm productivity hetero-

geneity in simulations of steady state equilibria for different (ρ, β) combinations.

Figure A.1 shows corr(χ̂i , hi) and corr(ϕ̂k , pk). It is seen that the wage equation

firm fixed effect is strongly correlated with firm productivity regardless of the type and

strength of sorting and worker’s bargaining power. Not surprisingly, higher bargaining

power increases the correlation.
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Figure A.1: The correlation between wage fixed effects and true agent heterogeneity for
given (ρ, β) combinations.
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Note: The solid and dashed lines show cor[χ̂, h] and cor[ϕ̂, p], respectively. For the given model
specification, the production function scale parameter ( f0) and the base offer arrival rate (λ)
are set such that the the steady state equilibrium solution satisfies u = 0.05 and E[w(h, p)] =
180.0. The dashed red line at ρ = 1 divides the model specifications with positive sorting for
ρ < 1 and negative sorting for ρ > 1.

The correlation between the wage equation worker fixed effect and worker skill is

on the other hand quite sensitive to the specification of the model. If sorting is positive

and wage determination is primarily set by wage posting, then the correlation is low.

In this case, the wage profiles of more skilled workers are characterized by substantial

wage growth over an employment spell, and consequently, the notion of a wage equa-

tion worker fixed effect is misplaced. As documented in Figure 2.1 it is in this type of

equilibrium also perfectly possible to observe more skilled workers receive lower wages

than less skilled workers within a given firm. In such a case, the estimation will tend to

rank the less skilled worker with a higher fixed effect than the more skilled worker. This

mechanism is strengthened by the assumption that the wage equation has an i.i.d. over

time error process, ǫin and the fact that even for the high skilled workers, the wage pro-

cess has some permanence to it. Since the more skilled worker’s realized wage growth

is often associated with an actual job-to-job transition, the estimation will be allowed to
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Figure A.2: The correlation between skill and productivity for given (ρ, β) combinations.
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Note: The solid line is cor[h, p]. The dashed line is cor[χi, ϕK(i,n)]. The wage equation fixed effects
are estimated on simulated data from the given steady state equilibrium. For the given model
specification, the production function scale parameter ( f0) and the base offer arrival rate (λ)
are set such that the the steady state equilibrium solution satisfies u = 0.05 and E[w(h, p)] =
180.0. The dashed red line at ρ = 1 divides the model specifications with positive sorting for
ρ < 1 and negative sorting for ρ > 1.

explain the substantial observed wage growth of the high skilled worker by increasing

the wage equation fixed effect differential between the two firms involved in the job-to-

job transition, thereby laying a foundation for a negative bias in the correlation between

wage equation worker and firm fixed effects.

In the negative sorting case, low skilled workers are the ones taking temporary cur-

rent wage hits with the expectation of future gains. As a result, in this type of equi-

librium wages are monotonically increasing in worker skill within a given firm and the

ranking of wage equation worker fixed effects will be aligned with the skill ranking.

This accounts for the strong positive correlation between the estimated wage equation

worker fixed effects and worker skill for the negative sorting cases, ρ > 1.

For higher β, where wage determination is to a greater extent set by bargaining rather

than posting, corr(χ̂i , hi) is higher because wages are moving towards being monotone

in worker skill and firm productivity.
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Figure A.2 presents the correlation between the wage equation fixed effects in relation

to the correlation between the skill and productivity indices in the equilibrium steady

state match distribution. The correlation between h and p based on G(h, p) reveals the

basic property of the model that sorting is positive for ρ < 1, negative for ρ > 1, and

there is no sorting when ρ = 1. It is seen that when β = 0.2 and there is negative sorting,

the correlation between wage equation worker and firm fixed effects, En[corr(χ̂i , ϕ̂K(i,n))]

is very close to equilibrium steady state corr(h, p). This is consistent with the results in

Figure A.2 that the estimated wage equation worker and firm fixed effects are closely

correlated with the skill and productivity indices in this case. When sorting is positive

and β = 0.2, we see that En[corr(χ̂i , ϕ̂K(i,n))] and corr(h, p) diverge. In this case, the

worker fixed effects are so poorly related to the skill ranking that the resulting negative

bias drives the correlation between χ and ϕ negative. As a result, En[corr(χ̂i , ϕ̂K(i,n))] is

negative both when sorting is positive and negative for this case.

In the case where β = 0.5, the fixed effects correlation En[corr(χ̂i , ϕ̂K(i,n))] does quite

well in capturing the steady state match correlation between skill and productivity. There

is some negative bias in the positive sorting case, but in this case, the correlation coeffi-

cients share the same signs.

The above results suggest that an observed positive value of En[corr(χ̂i , ϕ̂K(i,n))] indi-

cates that sorting between skill and productivity is positive. In general, the correlation

coefficient between h and p is always greater than En[corr(χ̂i , ϕ̂K(i,n))]. It is also worth

emphasizing that the often observed small and negative correlation between χ and ϕ is

consistent with anything from mild negative sorting to strong positive sorting between

h and p.
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